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ABSTRACT

Long-range dependencies are crucial for interpreting genomic structure and func-
tion, yet conventional transformer-based genomics models often fail to general-
ize beyond their training window even when employing sophisticated positional
embeddings. We show that State-Space Models (SSMs) can zero-shot extrapo-
late two orders of magnitude beyond their original context length, thus capturing
distal regulatory interactions required for gene expressions without specialized
fine-tuning. With our hidden-state transfer mechanism, we can efficiently process
ultralong genomic sequences (1Mbp) on a single GPU—providing a scalable, gen-
eralizable, and resource-efficient alternative to transformers.

1 INTRODUCTION

Modeling long-range interactions is crucial for genomic tasks which require tens or even hundreds of
kilobases (kbp) of context (Nguyen et al., 2023; Schiff et al., 2024; Kao et al., 2024; InstaDeep.). For
instance, studying structural variants or mapping distal enhancers to their target genes often demands
analyzing hundreds of kilobases or more in a single pass. Training on such ultralong genomic
data is very expensive and prohibitive. Training on shorter sequences (thereby reducing compute
costs) and leveraging partial-genome datasets, models can subsequently extrapolate to full-length
contexts without extensive retraining or specialized hardware, substantially broadening accessibility
for research labs with limited computational resources.

Although transformers excel at capturing local sequence patterns (Ji et al., 2021; Dalla-Torre et al.,
2024), they struggle to maintain both ultralong context coverage and high positional resolution when
the input length far exceeds their training window. Their quadratic scaling with the sequence length
serves as another obstacle. These limitations are problematic when subtle differences in distant
nucleotides have functional significance. While specialized positional embeddings like sinusoidal
(Vaswani, 2017), RoPE (Su et al., 2023), YaRN (Peng et al., 2023), and SelfExtend (Jin et al.,
2024) improve extrapolation, many still require fine-tuning or can lead to a loss of positional res-
olution. By contrast, State-Space Models (SSMs) maintain linear-time complexity with respect to
sequence length, enabling them to scale to ultralong contexts without incurring prohibitive memory
or computational costs (Gu et al., 2022). In this paper, we demonstrate that SSM-based architec-
tures can zero-shot extrapolate 100x beyond their training window on representative genomic tasks,
preserving single-nucleotide resolution. We also introduce a hidden-state transfer mechanism that
allows models to process sequences of up to 1 million base pairs (1Mbp) on a single NVIDIA A100
GPU—highlighting how SSMs offer a more practical solution for real-world genomic studies com-
pared to attention-based methods.

2 BACKGROUND AND RELATED WORK

Transformers use positional encodings to inject sequence order information. Classic sinusoidal em-
beddings (Vaswani, 2017) are fixed functions of position, allowing relative offsets to be inferred.
However out-of-distribution input lengths produce embeddings leading to phase mismatches and
performance degradation. RoPE (Su et al., 2023) refines sinusoidal encodings by rotating queries
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and keys according to position, enabling more flexible relative attention. Extending RoPE to much
larger contexts still often requires re-tuning the rotational frequencies or partial fine-tuning. Fur-
ther extrapolation strategies include YaRN (Peng et al., 2023), which adapts RoPE-based models
by additional training at larger context windows, and SelfExtend (Jin et al., 2024), which modifies
the attention mechanism during inference to handle extended contexts, but may lose local positional
details for ultralong sequences due to grouping positions to keep the embeddings in-distribution.

Training on ultralong genomic sequences necessitates a large GPU vRAM which can be expensive.
Chunking helps work around this by managing memory footprint, either by selectively processing
portions of the input or by processing the input across multiple steps. Methods like SimCAS (Xie
et al., 2024) and CItruS employ selective processing of portions of the sequence (Bai et al., 2024),
while Recurrent Chunking Mechanisms (Gong et al., 2020) processes the input across multiple steps
employing the hidden state propagation between segments, akin to our method.

State-Space Models view sequence modeling as a learned linear recurrence with convolution-like
operations (Gu et al., 2022), granting them O(n) complexity and long-range coverage. Recent
SSM variants, such as the “Caduceus” and “Hawk” architectures (Schiff et al., 2024; De et al.,
2024), demonstrate strong performance on benchmarks ranging from standard text to genomic tasks.
Crucially, SSMs bypass the need for positional embeddings in favor of hidden-state propagation.
This removes the need for out-of-distribution positional embedding corrections, thus allowing better
zero-shot extrapolation to contexts far exceeding their training length.

3 EXPERIMENTS

3.1 ZERO-SHOT EXTRAPOLATION

Figure 1: Zero-shot extrapolation on VEP eQTL (AUROC). All models trained at 12 kbp. Transformers
(NTv2) collapse at 24 kbp+ lengths, even with position interpolation. SSMs (Caduceus, Hawk) remain stable
up to 120 kbp. Dotted lines indicate unmeasured values, extrapolated from trends.

We assess zero-shot extrapolation by testing on downstream tasks at sequence lengths up to two
orders of magnitude beyond the pretraining window. We evaluate our models on two tasks from the
Genomics Long-Range Benchmark (Kao et al., 2024; InstaDeep.), Variant Effect Prediction (VEP)
on eQTL and ClinVar. We use SSM-based models (e.g. Caduceus, Hawk), as well as Nucleotide
Transformer baseline Dalla-Torre et al. (2024) for which we employ (i) RoPE (Su et al., 2024), or
(ii) RoPE with Positional Interpolation (Chen et al., 2023) for better extrapolation. Each model
is designed to be 50M parameters and pretrained on multi-species genomic dataset on 300 billion
nucleotides as demonstrated in Dalla-Torre et al. (2024). All models are pretrained on 12 kbp and
their scores on different sequence lengths from the same testing dataset are recoded. Figure 1 shows
that while attention-based models degrade sharply beyond 24 kbp, SSMs remain stable up to 120 kbp
without additional fine-tuning.
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3.2 HIDDEN-STATE TRANSFER FOR 1MBP SEQUENCES

We also push SSMs to process sequences up to 1Mbp. To address memory constraints on a single
GPU, we divide the input into manageable chunks (e.g. 100 kbp each). After processing one chunk,
the model’s final hidden state is passed forward as the initial state for the next chunk, ensuring
continuity across the entire 1Mbp. This preserves global context while remaining memory-friendly,
effectively emulating a full forward pass on a hypothetical large-memory device (Figure 2). Our
implementation is based on Hawk’s linear scan (De et al., 2024).

Figure 2: Hidden-State Transfer in SSMs. The ultralong sequence is split into chunks over which we do a
linear scan. The final hidden state of a chunk initializes the next, preserving global context while limiting GPU
memory usage.

Figure 3 demonstrates Hawk SSM’s stable performance while tested on 1Mbp sequences on VEP
ClinVar and eQTL tasks, while being pretrained on 12 kbp sequences. This demonstrates that our
approach efficiently and reliably extrapolates to ultralong sequences on a single GPU.

Figure 3: Hawk SSM zero-shot extrapolation to 1 Mbp on VEP ClinVar (left) and eQTL (right).

4 DISCUSSION AND CONCLUSION

Our findings demonstrate that SSMs are capable of reliably zero-shot extrapolating two orders of
magnitude beyond their training window, maintaining stable performance on ultralong genomic se-
quences (up to 1Mbp on a single GPU), whereas standard transformers degrade without additional
fine-tuning or complex inference modifications, and even advanced extensions like RoPE and YaRN
fail to match this zero-shot scalability.

Looking ahead, SSMs hold promise for genomic analyses spanning hundreds of kilobases. An im-
portant observation from our work is that although SSMs can reliably extrapolate to longer genomic
sequences, their performance on relevant tasks does not improve with the additional contextual in-
formation. Inspecting this phenomena could give us insights into utilizing longer contexts more
thoroughly, thereby potentially improving their performance on all downstream tasks. Another di-
rection is to expand these approaches to additional tasks like single-cell multi-omics or alternative
splicing prediction. Our hidden-state transfer is implemented in a straightforward linear scanning
manner for simplicity, future work could explore parallel and other more advanced scans to fur-
ther enhance speed and scalability. This line of research could further establish SSMs as practical,
resource-efficient architectures for capturing distant regulatory interactions across the genome.
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