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ABSTRACT

Bandwidth extension, the task of reconstructing the high-frequency components
of an audio signal from its low-pass counterpart, is a long-standing problem in au-
dio processing. While traditional approaches have evolved alongside the broader
trends in signal processing, recent advances in neural architectures have signifi-
cantly improved performance across a wide range of audio tasks. In this work, we
extend these advances by framing bandwidth extension as an audio token predic-
tion problem. Specifically, we train a transformer-based language model on the
discrete representations produced by a disentangled neural audio codec, where the
disentanglement is guided by a Harmonic–Percussive decomposition of the input
signals, highlighting spectral structures particularly relevant for bandwidth exten-
sion. Our approach introduces a novel codec design that explicitly accounts for
the downstream token prediction task, enabling a more effective coupling between
codec structure and transformer modeling. This joint design yields high-quality
reconstructions of the original signal, as measured by both objective metrics and
subjective evaluations. These results highlight the importance of aligning codec
disentanglement and representation learning with the generative modeling stage,
and demonstrate the potential of global, representation-aware design for advanc-
ing bandwidth extension.

1 INTRODUCTION

Bandwidth extension seeks to reconstruct the high-frequency content of a signal from its low-
frequency representation. This problem can be viewed as a form of inpainting where missing infor-
mation is recovered from degraded observations, and later extended to audio through spectrogram-
based methods. Applications arise in telecommunication, where it improves speech quality (Chen-
noukh et al., 2001), as well as in music restoration (Moliner & Välimäki, 2022). While early methods
relied on handcrafted signal processing techniques (Dietz et al., 2002), recent approaches leverage
neural networks (Pulakka & Alku, 2011) that can learn efficient internal representations and achieve
significantly better results.

On a more general standpoint, representation learning for audio has benefited from encoder–decoder
architectures (Oja, 1982), particularly neural codecs based on the VQ-VAE paradigm with quanti-
zation (Van Den Oord et al., 2017). These models, originally motivated by compression, yield low-
bitrate latent representations while preserving high reconstruction quality. Beyond compression, the
resulting latents have proven effective for downstream tasks (Borsos et al., 2023). In parallel, ad-
vances in transformer architectures and large language models, combined with neural audio codecs,
have established strong baselines in both speech (Wang et al., 2023a) and music generation (Copet
et al., 2023).

Despite their effectiveness, codec-based representations often lack interpretability and versatility.
This has motivated refined architectures that enforce semantically meaningful latents by reshaping
training objectives and model design. Such disentangled representations, tailored to downstream
tasks, can be exploited to improve task performance. Disentanglement has been explored in diverse
audio processing settings, from specialized applications (Takahashi et al., 2021) to more general
approaches (Hsu et al., 2023).

In this work, we leverage recent advances in language modeling over neural audio codec represen-
tations to address the bandwidth extension task. Our goal is to redefine codec design by shaping
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the latent space for downstream applications and enhancing interpretability. While prior studies
have often treated codec structure as fixed and external to language model training, we propose to
integrate codec design directly into the prediction pipeline.

We first design the Harmonic-Percussive disentangled codec (HP-codec), a neural codec that ex-
plicitly separates high- and low-frequency components and further factors the latent space to cap-
ture harmonic and percussive structures, whose characteristic cross-band patterns improve the pre-
dictability of high-frequency components from their low-frequency counterparts. Building on this
representation, we introduce HP-codecX, a bandwidth extension model based on a transformer lan-
guage model whose architecture is adapted to HP-codec’s structure. The model is trained to predict
high-frequency content from HP-codec’s low-frequency latents, thereby addressing the bandwidth
extension task.

Our main contributions are as follows: (1) We introduce HP-codec, a semantically informed disen-
tangled neural audio codec that leverages an Harmonic–Percussive decomposition of audio signals.
(2) We adapt its latent representation to a language modeling task aligned with bandwidth extension.
(3) We design and train a multi-branch language model tailored for bandwidth extension.
(4) We demonstrate state-of-the-art performance on bandwidth extension, with consistent improve-
ments in both objective metrics and human listening tests.

2 RELATED WORK

2.1 NEURAL AUDIO CODECS AND DISENTANGLEMENT

Feature extraction from audio has long been studied, beginning with handcrafted mathematical rep-
resentations such as the Fourier transform, and later perceptually motivated features like the Mel
scale (Stevens et al., 1937). With the advent of neural networks, representation learning shifted
toward autoencoders (Kingma & Welling, 2014), followed by the introduction of residual vector
quantization (RVQ) between encoder and decoder (Van Den Oord et al., 2017). Modern neural audio
codecs combine an encoder, RVQ, and decoder, trained with composite objectives often including
adversarial losses (Zeghidour et al., 2021; Défossez et al., 2023; Kumar et al., 2023). These models
currently define the state of the art in audio compression, achieving high reconstruction quality at
low bitrates.

Subsequent research has refined codec architectures to address specific limitations. For example,
Takida et al. (2022) proposed a differentiable quantization mechanism to eliminate the stop-gradient
trick. Yang et al. (2023) introduced group residual quantization, reducing the number of quantizers
required for high-quality reconstruction. Liu et al. (2024b) separated encoding into semantic and
acoustic components, enabling operation at very low bitrates and facilitating language model inte-
gration. The Mimi codec (Défossez et al., 2024) augmented RVQ with a parallel quantizer to distill
semantic information, improving phonetic discriminability.

Beyond achieving high compression rates, neural audio codec representations have proven valuable
for downstream tasks. The utility of discrete latents was first demonstrated in computer vision, where
convolutional models trained on VQ-VAE representations enabled high-quality image generation
(Razavi et al., 2019). Extending this principle to audio has motivated task-specific codec designs
that enforce disentangled and semantically meaningful representations. For example, Takahashi
et al. (2021) designed a codec for singing voice conversion that separates pitch, amplitude, and
singer identity from acoustic information, Wang et al. (2023b) disentangled speaker identity and
timbre for zero-shot adaptive speech generation, and Polyak et al. (2021) separated prosody, speaker
identity, and pitch for speech resynthesis. Other works impose disentanglement through auxiliary
objectives, such as Omran et al. (2023) for speech separation or Ju et al. (2025), which constrains a
multi-branch quantizer with pretext tasks and gradient reverse tricks for zero-shot speech synthesis.
More general approaches aim to build codecs that support multiple data modalities and subtasks,
by separating speech, music, and environmental sounds (Bie et al., 2025; Jiang et al., 2025), or
disentangling frequency bands (Luo et al., 2024; Giniès et al., 2025).
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2.2 LANGUAGE MODELS FOR AUDIO APPLICATION

The success of the Transformer architecture (Vaswani et al., 2017) and its subsequent adoption in
language models for next-token prediction (Devlin et al., 2019) has motivated a growing line of
work treating discrete audio representations as tokens for language modeling. Baevski et al. (2020)
demonstrated this approach by combining a Transformer-based language model with masked en-
coder latents and contrastive learning, yielding robust discrete audio representations. Building on
this idea, Huang et al. (2022) integrated masking strategies with Transformer blocks and neural audio
codecs to construct latent representations well-suited for classification tasks. Beyond representation
learning, language models have also been shown to be effective for generative audio modeling. For
instance, Wang et al. (2023a) leveraged codec-derived discrete units with language models for zero-
shot text-to-speech, an idea later extended to speech translation (Zhang et al., 2023). Similarly,
Copet et al. (2023) applied next-token prediction to music generation, further underscoring the gen-
erality of this paradigm. A related strategy has recently been explored in speech restoration, where
generative language models are trained to predict clean codec tokens from their degraded versions
(Li et al., 2024; Yang et al., 2024).

2.3 BANDWIDTH EXTENSION

Bandwidth extension, which consists in inferring high-frequency content from low-pass signals, has
been studied extensively. Classical approaches focused on spectral manipulation, such as duplicat-
ing or rescaling low-frequency spectra into higher bands (Dietz et al., 2002; Nagel & Disch, 2009).
Neural methods substantially reshaped the problem, with early applications of U-Nets for recon-
structing truncated signals (Kuleshov et al., 2017). Diffusion-based approaches further advanced
performance, including NU-Wave (Lee & Han, 2021; Han & Lee, 2022) and AudioSR (Liu et al.,
2024a), which reconstruct high-frequency details from waveform or mel-spectrogram inputs. Re-
lated tasks such as image inpainting have also been addressed with autoregressive models applied to
VQ-VAE representations (Peng et al., 2021). Diffusion processes have also been coupled with neural
audio codecs, using a MAMBA-based (Gu & Dao, 2024) token enrichment for speech enhancement
(Fang et al., 2025). Some hybrid methods combine differentiable digital signal processing (Engel
et al., 2020) with neural networks (Grumiaux & Lagrange, 2023). Li & Luo (2025) base their archi-
tecture on the codec of (Luo et al., 2024), replacing a processing step between the encoder and the
decoder by a transformer model to predict missing information.

3 OUR APPROACH

We denote by s a time-domain signal, and by sb;SR its version band-limited to b kHz and sampled
at the sampling frequency SR. With this notation, s8;16 corresponds to the signal s, band-limited to
8 kHz and sampled at 16 kHz. The goal of bandwidth extension is to reconstruct s24;48 (the same
signal with frequency content up to 24 kHz and sampled at 48 kHz), from the low-frequency com-
ponents in s8;16.
To this end, we leverage the generative modeling capabilities of transformer-based language models
by operating in a discrete token space. Neural audio codecs provide compact discrete representations
that are well suited for such models, enabling the use of NLP-style sequence modeling techniques.
While discretization necessarily discards some fine-grained information, it also removes low-level
variability that can complicate learning, reduce generalization, or induce artifacts. In practice, the
codec representation yields a cleaner and more tractable modeling domain in which the transformer
can focus on predicting the missing high-frequency structure.
We thus propose a two-stage neural architecture that combines a disentangled neural audio codec
(HP-codec) with a language model to form our bandwidth extension model (HP-codecX). HP-codec
is first trained to produce a structured latent representation of the input signal, after which the lan-
guage model is fitted on this latent space to capture and predict the missing high-frequency infor-
mation. The overall framework is illustrated in Fig. 1 and Fig. 2. Audio examples are given at
https://harmonic-percussive-bandwidth-extension.github.io/.
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Figure 1: HP-codec, our spectrally informed disentangled codec. It is divided in two branches
operating at different sampling rates: a 16 kHz branch and a 48 kHz branch. Each branch contains
parallel RVQs which are composed of a harmonic section, a percussive section and a residual section.

3.1 HP-CODEC: THE DISENTANGLED CODEC

3.1.1 FREQUENCY DISENTANGLEMENT

Our codec builds upon the architecture of Giniès et al. (2025), itself derived from a low-bitrate
variant of the DAC codec (Kumar et al., 2023), by introducing a branched design. Specifically,
the DAC structure is replicated into two branches: one dedicated to encoding and reconstructing
low-frequency components, and the other to high-frequency components. This design enforces a
disentanglement of frequency bands in the learned discrete representations, while maintaining a
dependency between them. The dependency between frequency bands is enforced by computing the
residual between the output of the low-frequency branch and the input to the high-frequency branch,
as illustrated in Fig. 1.

In our implementation, the first branch operates at a 16 kHz sampling rate, modeling spectral com-
ponents up to 8 kHz, while the second branch operates at 48 kHz to capture the remaining content
up to 24 kHz. Denoting by ŝ8;16 the reconstruction extracted from the first branch and by ŝ8;48 its
upsampling to 48 kHz, the input to the second branch is defined as the residual s24;48− ŝ8;48. To en-
sure compatibility between branches, the compression ratios of the 16 kHz and 48 kHz branches are
selected such that both produce the same number of tokens per signal (i.e. each token corresponds
to the same temporal context across branches). In our setting, each RVQ contains two consecutive
codebooks.

3.1.2 SEMANTICALLY INFORMED SECTIONS

To strengthen the spectral structure shared across the two branches of HP-codec, we further decom-
pose the RVQs into three parallel modules: a harmonic RVQ, a percussive RVQ, and a residual
RVQ, as shown in Fig. 1. Each module is specialized for encoding harmonic, percussive, and resid-
ual components of the signal, respectively. This design is motivated by the relevance of Harmonic
+ Noise decompositions for modeling speech and audio signals (Serra & Smith, 1990; McAulay &
Quatieri, 1992; Richard & d’Alessandro, 1996; Fitzgerald, 2010; Driedger et al., 2014) and follows
the line of work adapting neural architectures to the specificities of audio signals (Pons et al., 2016).
Beyond improving the interpretability of the learned latent space, this decomposition reinforces the
coupling between the low- and high-frequency branches: harmonic structures in the low-frequency
band are closely correlated with their high-frequency counterparts, and the same holds for percus-
sive components.
After quantization, the discrete representations produced by the three sections of each branch are
summed and subsequently passed to the decoder, which synthesizes the corresponding time-domain
reconstruction.
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Figure 2: HP-codecX, our bandwidth extension model. It connects the 16 kHz representation,
extracted from the input, to the 48 kHz decoder, through a language model organized into three
sub-models: a harmonic estimator, a percussive estimator and a residual estimator.

3.1.3 TRAINING PROCEDURE

HP-codec is optimized using a combination of multiscale Mel-spectrogram losses (to preserve spec-
tral fidelity), codebook and commitment losses (to regularize the RVQs and align them with encoder
outputs), as well as feature matching and adversarial losses computed with multi-period and multi-
scale STFT discriminators (Kumar et al., 2023). Training follows the cascade strategy of Giniès
et al. (2025): we first train the low-frequency branch, then freeze its parameters, and train the high-
frequency branch. Finally, we jointly finetune the entire codec. Loss scaling across training phases
is also left untouched: DAC’s scheme (Kumar et al., 2023) is applied in the first two phases; dur-
ing finetuning, we aggregate codebook-related losses by summation across branches, while averag-
ing the remaining losses. All phases use an exponential learning-rate scheduler with decay factor
γ = 0.999996, with a base rate of 10−4 in regular phases and 5× 10−5 in finetuning.

At each training step, we uniformly sample from {harmonic, percussive, full} to determine the train-
ing objective. In a full iteration, all RVQ sections are updated using batches of non-decomposed sig-
nals. In a harmonic iteration, only the harmonic section of each RVQ is trained, with inputs derived
from harmonic–percussive–residual decomposition (Driedger et al., 2014) restricted to the harmonic
components. The same procedure is applied for percussive iterations. The residual sections are up-
dated exclusively during full iterations, ensuring that they capture signal structures not explained by
the harmonic or percussive sections. For each branch, the overall codebook and commitment losses
are computed as the sum of the corresponding losses across its RVQ sections.

3.2 HP-CODECX: LANGUAGE MODEL FOR PREDICTION

3.2.1 LANGUAGE MODEL

In the bandwidth extension setting, we only observe s8;16, from which we extract the Harmonic,
Percussive, and Residual token sequences from the 16 kHz branch: {H16;1

n , H16;2
n } for the first and

second Harmonic codebooks, {P 16;1
n , P 16;2

n } for the Percussive codebooks, and {R16;1
n , R16;2

n } for
the Residual codebooks, with n ∈ {1, . . . , N} indexing the tokens within each sequence.

Following Wang et al. (2023a), we adapt an autoregressive transformer decoder to operate on
the tokens of each RVQ section (Fig. 2). For instance, the harmonic transformer takes as input
{(H16;1

n ), (H16;2
n )} and predicts (H̃48;1

n ) an estimate of the tokens of the high frequency branch first
codebook. In a second stage, the model uses {(H16;1

n ), (H16;2
n ), (H̃48;1

n )} to predict (H̃48;2
n ). This

procedure is applied analogously to the percussive and residual sections.

The prediction task is decomposed into three subtasks, yielding the estimated token sequences
{(H̃48;1

n ), (H̃48;2
n )}, {(P̃ 48;1

n ), (P̃ 48;2
n )}, and {(R̃48;1

n ), (R̃48;2
n )}. These are summed and passed

through the 48 kHz decoder to reconstruct the high-frequency components, which are then added to
s8;48 to produce s̃24;48, an estimate of the full-band signal s24;48.

3.2.2 TRAINING PROCEDURE

All transformer modules of HP-codecX, corresponding to the RVQ sections, are trained using a
standard cross-entropy objective and optimized jointly, with the total loss defined as the sum of the
cross-entropy terms from each prediction. Following Wang et al. (2023a), we train the two-stage
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prediction process by uniformly sampling from {1, 2} at each iteration to determine which stage is
updated. The training uses a cosine annealing learning rate schedule with an initial rate of 10−4.

4 EXPERIMENTAL SETUP AND RESULTS

4.1 BASELINES

As comparison references for the performances of HP-codecX, we chose to compare to the Apollo
model (Li & Luo, 2025), which reshapes the GULL model (Luo et al., 2024) for bandwidth exten-
sion, and to the AudioSR model (Liu et al., 2024a), which performs bandwidth extension through
a diffusion process applied to the spectrogram of the signals. Apart from slight differences in the
approaches of these models and ours (the Apollo model works at 44.1 kHz and is trained on de-
graded audios encoded through MP3 encoders at low bitrates and the AudioSR model is working at
48 kHz and is trained on signals passed through various low pass filters), we estimated that training
conditions were sufficiently similar to allow for a proper comparison between all models.

4.2 DATASETS

The training of our model has been performed on the training part of the MUSDB18 dataset (Stöter
et al., 2018) and on the JAMENDO dataset (Bogdanov et al., 2019). The testing of HP-codec was
performed on the testing part of MUSDB18 dataset (Stöter et al., 2018). The testing of our band-
width extension model’s (HP-codecX) prediction was done on the testing part of the MUSDB18
dataset (Stöter et al., 2018), as well as on datasets that were not observed during training: the
ENST-Drums dataset (Gillet & Richard, 2006), the OrchideaSOL dataset (Cella et al., 2020), the
Medley-solos-DB dataset (Lostanlen et al., 2018), and on a Monophonic synthetic dataset and a
Polyphonic synthetic dataset which were built according to the implementation designed in Grumi-
aux & Lagrange (2023).

The JAMENDO and MUSDB18 datasets are music datasets gathering more than 55,000 music sig-
nals in the training set. Our training set gathers almost 3 800 hours of music samples, and our testing
set is composed of 1,000 samples randomly extracted from the 50 music tracks from the 3.5 hour
long MUSDB18 testing set. The harmonic–percussive–residual decomposition used during training
follows the procedure of Driedger et al. (2014). The method applies horizontal and vertical median
filtering to the magnitude spectrogram, yielding estimates of the harmonic and percussive compo-
nents, respectively. The residual component is then defined as the part of the signal not captured by
either of these two estimates.

We also constituted testing sets, each composed of 1000 samples extracted from OrchideaSOL and
Medley-solos-DB datasets (which gather single instruments recordings), from ENST-Drums dataset
(which gathers drums recordings) and from the Monophonic and Polyphonic synthetic datasets
(which are composed respectively of purely harmonic sources and superposition of many harmonic
sources). These testing sets were used for out-of-domain testing.
All samples are recorded at 44.1 kHz, upsampled at 48 kHz and contain information up to 22.05 kHz.

4.3 OBJECTIVE METRICS

We evaluate reconstruction quality using a combination of spectral, waveform, and perceptual met-
rics. Specifically, we adopt the multiresolution Mel- and STFT-losses from Kumar et al. (2023) to
capture spectral discrepancies, an ℓ1 waveform loss to assess sample-level fidelity, and the ViSQOL
metric (Chinen et al., 2020) as a proxy for perceptual quality. We additionally report the scale-
invariant signal-to-distortion ratio (SI-SDR) (Le Roux et al., 2019) as a measure of distortion relative
to the underlying content. While commonly used in audio coding, it is less suited for synthesis tasks,
as its sensitivity may penalize samples that remain perceptually acceptable as stated in Défossez et al.
(2024) and Parker et al. (2025).

4.4 LISTENING TEST

We evaluated the perceptual quality of our bandwidth extension approach using a MUSHRA test
(Schoeffler et al., 2018). The study involved 15 non-expert participants under standard office con-
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ditions, using headphones and with the option to replay excerpts. Each participant rated 12 sets
of 5 signals on a 0–100 scale with respect to a reference. For each input s, the test set included
the anchor s8,16, the reference s24,48, and three system outputs: s̃Apo

24,48, s̃Aud
24,48, and s̃HPX

24,48 . The
12 excerpts were randomly sampled from the MUSDB18 test set, with half drawn from segments
exhibiting high energy in the high-frequency band and half from the remaining samples.

4.5 TECHNICAL SPECIFICATIONS

HP-codec follows the DAC architecture (Kumar et al., 2023), with modifications to the number of
tokens and encoder/decoder rates. For the 16 kHz branch, we use encoder rates of {2, 2, 5, 8} with
two codebooks per RVQ, resulting in a bitrate of 6 kbit/s and a compression ratio of 42.6. For the
48 kHz branch, we adopt encoder rates of {2, 5, 6, 8} to preserve proportionality with the sampling
rates, yielding a bitrate of 12 kbit/s and a compression ratio of 64. These settings deliberately operate
in a low-bitrate regime, reflecting a tradeoff between codec reconstruction quality and the predictive
capacity of the language model. We train on 0.38-second audio sequences with a batch size of 32
for the first branch and 16 for the second branch, as well as during finetuning. The model is trained
for 26 hours on a single NVIDIA L40S GPU with 48 GB of memory.

The transformer modules of HP-codecX follow the autoregressive design of Wang et al. (2023a).
Each module employs three input embeddings mapping HP-codec tokens to 1024-dimensional rep-
resentations, a 6-layer transformer decoder with 8 attention heads and hidden dimension 4096, fol-
lowed by two dense layers that output the following tokens’ prediction. Training is performed on
2.5-second audio samples with batches of 32, on a single NVIDIA L40S 48 GB GPU for 54 hours.

4.6 TESTING HP-CODEC

To verify that introducing semantic sections does not degrade the reconstruction quality of HP-
codec, we evaluate the model on the MUSDB18 (Stöter et al., 2018) test set. For comparison, we
adapt the disentangled codec of Giniès et al. (2025) to operate at 48 kHz under identical compression
rates, and we retrain a DAC model (Kumar et al., 2023) on 48 kHz audio at the same compression
ratio. Since DAC is a widely used baseline with extensive comparisons in the literature, including it
provides a clearer sense of how HP-codec aligns with existing methods. The results are summarized
in Table 1.

Table 1: Reconstruction metrics (± standard deviation) for HP-codec. The reference model is a
modified version of Giniès et al. (2025) in which the harmonic, percussive, and residual components
are removed. DAC-48kHz denotes a DAC model Kumar et al. (2023) retrained on our dataset. Both
comparison models operate at 48 kHz and use the same compression rate as our model.

HP-codec Reference DAC-48kHz
Sampling

rates 16000 48000 16000 48000 48000

Mel ↓ 0.80±0.08 0.79±0.05 0.70±0.08 0.72±0.06 0.75±0.08
STFT ↓ 2.30±0.29 2.29±0.29 2.11±0.27 2.22±0.28 2.24±0.28

Waveform ↓ 0.051±0.015 0.052±0.015 0.041±0.014 0.043±0.014 0.041±0.013
SI-SDR ↑ 6.74±2.53 6.30±2.51 8.75±2.94 8.10±2.91 8.79±2.92
ViSQOL ↑ 4.33±0.09 4.33±0.14 4.43±0.07 4.33±0.17 3.92±0.2

These results demonstrate that modifying the RVQ structure to produce a more spectrally informed
discrete representation in HP-codec yields performance competitive with both the unmodified ref-
erence model and the retrained DAC baseline. In Appendix A, we further show that the semantic
sections enhance the interpretability of the learned representations: harmonic sections specialize in
reconstructing harmonic content, while percussive sections are better suited for percussive signals.

4.7 EVALUATING HP-CODECX

We assessed the quality of the estimated signals using the reconstruction metrics introduced previ-
ously, comparing HP-codecX against Apollo and AudioSR. Table 2 reports results for both full-band
evaluation (entire signal) and high-frequency evaluation restricted to the [8 kHz, 24 kHz] range. The
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latter is particularly relevant, as Apollo fully reconstructs low-frequency components. Table 3 gath-
ers the results of the perceptual test introduced in Section 4.4. Spectrograms of estimated signals are
displayed in Appendix D.

Table 2: Objective reconstruction metrics (± standard deviation) for the Apollo (44.1 kHz), Au-
dioSR (48 kHz) models and HP-codecX (48 kHz). The top metrics are calculated over the whole
signals (Global). The lower metrics calculated on the [8 kHz, 24 kHz] band (HF).

Global Apollo
(Li & Luo, 2025)

AudioSR
(Liu et al., 2024a) HP-codecX

Mel ↓ 1.02 ± 0.12 1.83 ± 0.43 0.27 ± 0.09
STFT ↓ 3.35 ± 0.53 3.98 ± 0.71 1.25 ± 0.22

Waveform ↓ 0.048 ± 0.013 0.069 ± 0.019 0.012 ± 0.007
SI-SDR ↑ 3.26 ± 3.82 13.92 ± 5.06 19.85 ± 7.43
ViSQOL ↑ 3.26 ± 0.40 2.98 ± 0.37 3.58 ± 0.35

HF Apollo
(Li & Luo, 2025)

AudioSR
(Liu et al., 2024a) HP-codecX

Mel ↓ 0.80 ± 0.12 0.83 ± 0.16 0.49 ± 0.14
STFT ↓ 3.04 ± 0.51 3.09 ± 0.54 2.06 ± 0.40

Waveform ↓ 0.008 ± 0.005 0.010 ± 0.005 0.012 ± 0.007
SI-SDR ↑ -28.39 ± 8.42 -44.20 ± 10.18 -36.82 ± 8.40
ViSQOL ↑ 3.38 ± 0.37 3.18 ± 0.35 3.53 ± 0.46

Table 3: Results of the perceptual evaluation
(± standard deviation). The MUSHRA test
compared Apollo and AudioSR models to HP-
codecX. Reference signals (SR = 48 kHz) and
anchor signals (SR = 16 kHz) were also evalu-
ated.

Processing Score ± std.
Reference 95.2 ± 11.1

HP-codecX 65.6 ± 23.2
AudioSR (Liu et al., 2024a) 58.7 ± 23.3

Apollo (Li & Luo, 2025) 56.4 ± 23.2
Anchor (16 kHz) 44.8 ± 23.1

HP-codecX consistently outperforms both
baselines in reconstructing high-frequency
spectral content, highlighting its advantage in
capturing fine spectral details. We attribute
the low SI-SDR scores to the limitations of the
metric in synthesis settings, as this degradation
was not reflected in the listening tests.

An evaluation was conducted on the additional
testing datasets, using the two baselines and our
model, giving the results plotted in Fig. 3. This
experiment evaluates the bandwidth extension
quality of the three models on previously un-
seen data types, using out-of-domain datasets.

Apo HPX Aud
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VISQOL 
ENST-Drums Medley-solos-DB OrchideaSOL Monophonic Polyphonic

Figure 3: Out-of-domain objective reconstruction metrics. These metrics were computed for
the Apollo (Apo), AudioSR (Aud) models and HP-codecX (HPX). They have been calculated at
44.1 kHz for the Apollo model, and 48 kHz for the others.

These results confirm that HP-codecX outper-
forms both baselines in nearly all cases. In Appendix B, we provide a more detailed evaluation on
out-of-domain datasets, further highlighting the strength of HP-codecX in reconstructing percussive
and general music signals.

4.8 VALIDATING THE SEMANTIC SECTIONS

Tables 4 and 5 highlight the role of the RVQs semantic sections. Using this decomposition of the
data together with RVQs was initially motivated by a series of experimental results. Basing the
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prediction on the architecture proposed in Giniès et al. (2025), we trained multiple transformer
models to predict high-frequency tokens from their low-frequency counterparts. We conducted nine
training runs, varying the model depth from 1 to 15 layers and the input duration from 0.33 s to
5 s. Among all experiments, only shallow models exhibited successful learning, with the single-
layer transformer achieving the most reliable training behavior. These results suggest that the task
complexity induces weak gradient signals which, when propagated through deeper architectures,
lead to systematic collapse.

To further validate the choice of semantic decomposition and the split-transformer design, we trained
two additional models that omit semantic partitioning of the training data: one using three deep
transformers identical to those in HP-codecX, and another using a single transformer shared across
the three RVQ branches. As shown in Table 4, both variants and the single-layer reference introduced
earlier perform markedly worse than HP-codecX, confirming the advantage of incorporating explicit
semantic sections.

Table 4: Objective metrics (± standard deviation) for bandwidth-extension with HP-codecX, a
model with three transformers of equivalent depth trained without semantic decomposition (EXP1),
a model with a shared transformer trained without semantic decomposition (EXP2), and a model
without semantic RVQ sections and a single-layer transformer (EXP3). Metrics are evaluated on
the high-frequency (HF) band.

HF HP-codecX EXP1 EXP2 EXP3

Mel ↓ 0.49±0.14 0.78±0.19 0.78±0.18 0.62±0.14
STFT ↓ 2.06±0.40 2.74±0.60 2.84±0.56 2.29±0.43

Waveform ↓ 0.012±0.007 0.016±0.012 0.017±0.012 0.014±0.009
SI-SDR ↑ -36.82±8.40 -34.92±11.74 -37.89±10.36 -37.30±9.15
ViSQOL ↑ 3.53±0.46 2.60±0.58 2.84±0.55 3.03±0.45

In the experiment illustrated by Table 5, we separately used {(H̃48;1
n ), (H̃48;2

n )} the estimated har-
monic tokens, {(P̃ 48;1

n ), (P̃ 48;2
n )} the estimated percussive tokens and {(R̃48;1

n ), (R̃48;2
n )} the esti-

mated residual tokens, to evaluate the reconstruction associated with each group of token, and each
combination of these groups. We applied this differentiated procedure of estimation to a percussive
dataset (ENST-drums), two purely harmonic datasets (Monophonic and Polyphonic) and two gen-
eral music datasets (Medley-solos-DB and OrchideaSOL). The reconstruction metrics we obtained
show that the harmonic section of the estimated tokens better reconstruct a harmonic signal, while
the percussive section of the estimated tokens better reconstruct a percussive signal. This strongly
underlines the interest of our architecture. Additionally, comparing reconstructions obtained from
different token combinations highlights how each section contributes to overall fidelity. For exam-
ple, harmonic signals are best reconstructed using harmonic tokens alone.

5 LIMITATIONS

Our approach is based on two models: HP-codec, a neural audio codec and a language model
(which together form HP-codecX). This constitutes the main drawback of this work, as both models
must be trained jointly in order to have a fully working process. An alternative line of research
would be to avoid architectural coupling at the codec level and instead draw inspiration from recent
approaches such as Li et al. (2024) and Yang et al. (2024). These works employ an off-the-shelf
codec to produce incomplete discrete token sequences, and then train a generative language model
to recover the corresponding clean representations. Although these techniques have so far been
explored only in speech domains, they offer a promising direction for future research on the task
considered here.
In contrast to various bandwidth-extension systems such as Li & Luo (2025) and Liu et al. (2024a),
our model does not support variable input sampling rates and is currently limited to mapping
16 kHz inputs to 48 kHz outputs. This constraint arises primarily from our reliance on discrete
audio codecs, which themselves typically operate at fixed sampling rates. Nevertheless, the
16 kHz-48 kHz setting already yields a substantial and practically meaningful improvement in
spectral coverage, demonstrating the viability of the proposed framework. Moreover, the relatively
low training cost of each model instance makes it feasible to train separate variants for additional
sampling rates when needed.

9
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Table 5: Objective metrics (± standard deviation) across datasets, evaluated on high-frequency
bands.

ENST-drums Medley-solos-DB OrchideaSOL Monophonic Polyphonic
Mel ↓

H 0.41±0.16 0.51±0.20 0.53±0.35 0.33±0.25 0.44±0.14
P 0.40±0.15 0.48±0.19 0.54±0.35 0.37±0.28 0.52±0.18
R 0.89±0.29 0.90±0.32 0.83±0.48 1.67±0.22 1.23±0.25

H+P 0.41±0.16 0.50±0.20 0.55±0.35 0.36±0.24 0.49±0.14
H+R 0.38±0.14 0.47±0.17 0.47±0.28 0.40±0.25 0.47±0.12
P+R 0.39±0.13 0.46±0.15 0.49±0.28 0.46±0.27 0.53±0.15

H+P+R 0.37±0.15 0.46±0.18 0.50±0.33 0.35±0.25 0.46±0.14
STFT ↓

H 1.80±0.47 1.90±0.51 2.17±0.80 2.68±0.54 2.89±0.22
P 1.79±0.49 1.86±0.50 2.20±0.88 2.80±0.65 3.17±0.29
R 2.65±0.63 2.59±0.63 2.65±1.44 5.88±0.99 4.96±0.93

H+P 1.78±0.47 1.85±0.51 2.18±0.86 2.81±0.64 3.07±0.28
H+R 1.71±0.42 1.81±0.41 1.97±0.63 2.93±0.56 3.09±0.23
P+R 1.70±0.44 1.80±0.40 2.00±0.72 3.09±0.64 3.33±0.27

H+P+R 1.69±0.45 1.79±0.45 2.04±0.78 2.78±0.60 3.06±0.24
Waveform ↓

H 0.007±0.007 0.002±0.003 0.003±0.007 0.000±0.001 0.002±0.001
P 0.007±0.007 0.002±0.003 0.004±0.009 0.001±0.003 0.003±0.002
R 0.007±0.005 0.003±0.001 0.004±0.004 0.003±0.000 0.004±0.000

H+P 0.007±0.008 0.002±0.003 0.003±0.008 0.000±0.001 0.002±0.001
H+R 0.006±0.007 0.002±0.002 0.003±0.006 0.000±0.001 0.002±0.001
P+R 0.006±0.007 0.002±0.002 0.003±0.008 0.001±0.002 0.002±0.002

H+P+R 0.007±0.008 0.002±0.003 0.003±0.007 0.000±0.001 0.002±0.001
SI-SDR ↑

H -38.31±11.16 -29.57±10.69 -31.44±12.68 -29.02±13.35 -35.13±10.96
P -37.84±11.40 -30.23±10.97 -31.54±12.47 -28.22±14.50 -37.92±12.14
R -35.39±11.62 -42.88±12.24 -42.47±13.37 -47.06±13.03 -39.90±11.08

H+P -38.09±11.35 -28.48±10.85 -29.61±11.81 -27.37±13.05 -35.60±10.38
H+R -36.73±10.26 -31.49±10.97 -32.59±12.22 -30.31±12.97 -34.57±11.40
P+R -36.36±9.88 -32.03±10.49 -33.50±12.33 -31.40±14.22 -36.15±11.63

H+P+R -37.76±11.22 -29.29±10.81 -30.30±11.50 -27.84±13.22 -35.33±10.77
ViSQOL ↑

H 3.63±0.57 3.30±0.90 3.35±0.92 4.17±0.71 3.88±0.36
P 3.65±0.61 3.24±0.91 3.23±0.89 4.15±0.73 3.83±0.55
R 2.52±0.54 2.71±0.63 2.71±0.66 2.21±0.82 3.28±0.48

H+P 3.73±0.56 3.40±0.93 3.36±0.92 4.21±0.69 3.90±0.42
H+R 3.54±0.64 3.18±0.85 3.33±0.87 4.14±0.73 3.91±0.35
P+R 3.31±0.65 2.88±0.71 3.04±0.81 3.92±0.79 3.83±0.50

H+P+R 3.75±0.56 3.34±0.89 3.34±0.89 4.20±0.70 3.96±0.38

As stated in Section 4.2, HP-codec and HP-codecX are trained on audio samples recorded at
44.1 kHz, upsampled at 48 kHz. A part of the high frequency latent representation is then dedicated
to encoding silence. This suboptimal setting arises from constraints imposed by the language model
prediction. We outline a potential workaround in Appendix C.

6 CONCLUSION

We introduce HP-Codec, a multi-branch neural audio codec that produces a latent representation
disentangled across frequency bands. This disentanglement is further enhanced through a Har-
monic–Percussive decomposition, which strengthens inter-band coupling and facilitates prediction
of high-frequency representations from their low-frequency counterparts. In this way, we restructure
the codec architecture to naturally support the downstream task of bandwidth extension. Building
upon this design, we propose HP-CodecX, a bandwidth extension model that integrates HP-Codec
with an autoregressive Transformer-based language model. The Transformer mirrors the codec’s
architecture, enabling effective modeling of cross-band dependencies. Empirical results across mul-
tiple datasets demonstrate that HP-CodecX achieves state-of-the-art performance on both objective
and subjective metrics, yielding more accurate high-frequency reconstruction than existing base-
lines.
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USE OF LLMS

During the preparation of this manuscript, the authors employed Large Language Models in a limited
capacity, specifically for text reformulation and figure layout refinement. These uses were auxiliary
and do not constitute a substantive contribution of the LLMs to the development of the scientific
content of this work.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, our experiments were conducted on publicly available or oth-
erwise reproducible datasets, and our approach builds upon reproducible models. We pro-
vide detailed technical descriptions throughout the paper when necessary, and we plan
to release our implementation on the companion website upon acceptance (https://
harmonic-percussive-bandwidth-extension.github.io/).
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A APPENDIX: FINER HP-CODEC ANALYSIS

In this work, we proposed a disentanglement strategy for the representations extracted by a neural
audio codec. Our approach modifies the structure of each RVQ in the model and leverages a train-
ing procedure inspired by harmonic–percussive decomposition (Fitzgerald, 2010; Driedger et al.,
2014) to enforce disentanglement. Within this framework, each RVQ section is designed to cap-
ture a distinct spectral property of the input: the harmonic section encodes harmonic components,
the percussive section captures percussive events, and the residual section models information not
explained by the other two.

Building on the harmonic–percussive decomposition algorithm, we consider three signal compo-
nents: harmonic, percussive, and residual (the latter capturing information not explained by the first
two). Based on this, we designed an experiment in which HP-codec was provided with four types
of input: full signals (Global), harmonic components (H), percussive components (P), and residual
components (R). Reconstructions were then evaluated under four corresponding decoding settings,
where only the relevant RVQ sections (Global, H, P, or R) were used. This setup yields 4× 4 = 16
input–reconstruction pairs.
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Figure 4: Reconstructions metrics of HP-codec, varying the spectral composition of the input
(Global, Harmonic, Percussive or Residual), and the sections of the RVQs used for reconstruction.
These graphs illustrate the values of Table 6.

The results of this experiment are reported in Fig. 4 and detailed in Table 6. Reconstructions using
all sections (Global) consistently achieve the best performance across input types, indicating that the
sections are complementary and each contributes information essential for accurate reconstruction.
Reconstructions based solely on the residual section are consistently weaker than those using har-
monic or percussive sections, suggesting that most of the signal information is effectively captured
by harmonic and percussive components, as expected from harmonic–percussive decomposition.

Interestingly, percussive inputs reconstructed with the global configuration show limitations in the
16 kHz branch but are refined in the 48 kHz branch. For this type of input still, the percussive section
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produces the most accurate reconstruction, whereas for harmonic inputs at 16 kHz, the harmonic
section performs best. These findings align with the spectral distribution of natural audio: harmonic
components dominate at low frequencies, while percussive components retain significant energy
at higher frequencies. Overall, the results provide evidence that HP-codec achieves meaningful
disentanglement of harmonic and percussive structures.

Table 6: Detailed reconstructions metrics (± standard deviation) of HP-codec, varying the spectral
composition of the input, and the sections of the RVQs used for reconstruction. From top to bottom,
the first table gathers results for experiments where full signals were inputted, the second table is
for harmonic parts of signals as input, the third for percussive parts and the last for residual parts.
Each table is subdivised into sections, which correspond to the RVQ sections that were used for
reconstruction.

Input
Signal

Used
Sections

Sampling
Rate Mel ↓ STFT ↓ Waveform ↓ SI-SDR ↑ ViSQOL ↑

Global

Global 16000 0.80±0.08 2.30±0.29 0.051±0.015 6.74±2.53 4.33±0.09
48000 0.79±0.05 2.29±0.29 0.052±0.015 6.30±2.51 4.33±0.14

H 16000 1.17±0.10 2.82±0.36 0.071±0.018 3.13±2.58 4.04±0.14
48000 1.02±0.08 2.60±0.35 0.071±0.018 2.88±2.58 4.12±0.15

P 16000 1.18±0.18 2.89±0.41 0.077±0.020 1.95±2.81 4.12±0.11
48000 1.03±0.08 2.60±0.34 0.077±0.020 1.71±2.80 4.14±0.16

R 16000 2.75±0.62 4.97±0.74 0.142±0.025 -10.77±4.19 3.13±0.30
48000 2.57±0.60 4.51±0.63 0.140±0.025 -10.83±4.19 2.32±0.41

H

Global 16000 0.99±0.18 1.92±0.29 0.017±0.005 10.11±2.37 4.27±0.12
48000 1.57±0.56 2.24±0.51 0.039±0.016 3.43±2.91 3.86±0.28

H 16000 1.15±0.17 2.08±0.28 0.026±0.008 6.48±2.66 4.12±0.14
48000 1.64±0.56 2.33±0.50 0.042±0.015 1.88±3.08 3.73±0.30

P 16000 1.59±0.36 2.52±0.57 0.032±0.012 4.15±3.60 4.04±0.16
48000 1.67±0.51 2.30±0.47 0.044±0.015 0.13±3.64 3.79±0.24

R 16000 2.68±0.87 3.52±0.96 0.07±0.028 -10.64±6.36 3.50±0.44
48000 2.54±0.80 3.15±0.64 0.060±0.019 -11.55±7.09 1.88±0.51

P

Global 16000 1.73±0.69 2.54±0.75 0.026±0.012 4.38±3.17 4.23±0.11
48000 1.33±0.22 1.89±0.19 0.015±0.007 -4.07±3.45 3.77±0.32

H 16000 1.91±0.60 2.71±0.66 0.031±0.012 0.49±3.49 3.96±0.13
32000 1.45±0.24 2.03±0.22 0.017±0.008 -7.11±4.04 3.65±0.32

P 16000 1.91±0.71 2.72±0.79 0.029±0.012 0.39±3.84 4.13±0.11
48000 1.31±0.19 1.89±0.18 0.016±0.007 -6.24±4.20 3.81±0.29

R 16000 3.73±1.01 4.32±1.05 0.059±0.015 -15.65±4.14 3.11±0.35
48000 2.96±0.80 3.57±0.66 0.027±0.015 -17.61±3.25 1.06±0.30

R

Global 16000 0.77±0.09 1.93±0.22 0.030±0.012 4.74±2.85 4.28±0.085
48000 0.95±0.15 2.13±0.21 0.043±0.011 0.96±2.24 4.18±0.24

H 16000 1.05±0.09 2.26±0.27 0.041±0.014 1.03±2.79 3.99±0.13
48000 1.09±0.14 2.30±0.25 0.052±0.013 -1.71±2.34 4.02±0.22

P 16000 1.04±0.13 2.27±0.28 0.043±0.015 0.12±3.10 4.11±0.08
48000 1.08±0.14 2.27±0.24 0.052±0.013 -2.01±2.59 4.03±0.24

R 16000 2.64±0.55 4.02±0.65 0.072±0.018 -11.43±3.80 3.13±0.36
48000 2.53±0.53 3.87±0.60 0.079±0.017 -12.88±3.62 2.18±0.58
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B APPENDIX: FINER HP-CODECX ANALYSIS

Fig. 5 and Table 7 report the complete out-of-domain evaluation introduced in Section 4.7. We
compare HP-codecX with two baselines across five test datasets: ENST-Drums, Medley-solos-DB,
OrchideaSOL, Monophonic, and Polyphonic. Objective reconstruction metrics were computed on
full-band signals (Global), low-frequency bands [0 kHz, 8 kHz] (LF), and high-frequency bands
[8 kHz, 24 kHz] (HF). Full-band results were already summarized in Fig. 3.
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Figure 5: Objective reconstruction metrics, calculated on whole estimated signals (Global) and high
frequency bands of estimated signals (HF). These metrics have been computed on Out-of-Domain
test datasets: ENST-Drums, Medley-solos-DB, OrchideaSOL, Monophonic and Polyphonic. The
Apollo (Apo) metrics are calculated at 44.1 kHz, while the AudioSR (Aud) and HP-codecX (HPX)
metrics have been calculated at 48 kHz. These graphs illustrate the values contained in the Global
and HF rows of Table 7.

As expected, LF scores serve mainly as reference since Apollo is the only model that fully recon-
structs low frequencies. However, HF results reveal a clear spectral advantage of HP-codecX on
percussive sources (ENST-Drums) and more general music signals (Medley-solos-DB, Orchidea-
SOL). This advantage diminishes for purely harmonic signals (Monophonic, Polyphonic), although
our model remains competitive overall. Consistent with the objective results, informal listening tests
confirmed that HP-codecX excels at reconstructing percussive and noise-like components relative to
the baselines.
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Table 7: Objective reconstruction metrics (± standard deviation), calculated on whole estimated
signals (Global), low frequency bands (LF) and high frequency bands (HF) of estimated signals.
These metrics have been computed on Out-of-Domain test datasets: ENST-Drums, Medley-solos-
DB, OrchideaSOL, Monophonic and Polyphonic. The Apollo metrics are calculated at 44.1 kHz,
while the other metrics have been calculated at 48 kHz.

ENST-drums Monophonic
Apollo AudioSR HP-codecX Apollo AudioSR HP-codecX

Mel ↓
Global

LF
HF

0.88±0.02
0.38±0.19
0.69±0.28

1.32±0.51
0.94±0.39
0.51±0.23

0.29±0.16
0.09±0.13
0.37±0.15

0.72±0.45
0.41±0.24
0.22±0.20

0.97±0.64
0.50±0.37
0.61±0.48

0.37±0.22
0.07±0.02
0.35±0.25

STFT ↓
Global

LF
HF

2.17±0.57
0.47±0.18
2.35±0.71

2.12±0.72
0.81±0.36
1.98±0.70

1.17±0.27
0.14±0.09
1.69±0.45

2.06±0.32
0.79±0.11
1.70±0.27

2.68±1.45
0.80±0.45
2.44±1.37

2.93±0.67
0.71±0.27
2.78±0.25

Waveform ↓
Global

LF
HF

0.018±0.019
0.015±0.018
0.005±0.006

0.025±0.018
0.022±0.018
0.007±0.007

0.007±0.007
0.001±0.002
0.007±0.008

0.005±0.008
0.005±0.008
0.000±0.000

0.015±0.012
0.015±0.012
0.001±0.001

0.000±0.001
0.000±0.000
0.000±0.001

SI-SDR ↑
Global

LF
HF

8.97±12.45
13.31±14.17
-28.49±8.41

13.43±10.95
23.85±6.83

-41.22±12.21

18.90±13.36
37.82±9.50

-37.76±11.22

30.45±6.83
31.50±6.51

-20.10±13.44

25.27±4.81
27.19±4.51

-32.45±14.40

43.82±14.12
56.53±8.99

-27.84±13.22

ViSQOL ↑
Global

LF
HF

3.09±0.87
4.61±0.10
3.69±0.84

3.60±0.59
4.59±0.12
3.45±0.68

3.70±0.58
4.70±0.03
3.75±0.56

4.26±0.65
4.67±0.05
4.45±0.43

3.57±0.88
4.36±0.34
3.57±0.96

4.28±0.55
4.72±0.02
4.20±0.70

Medley-solos-DB Polyphonic
Apollo AudioSR HP-codecX Apollo AudioSR HP-codecX

Mel ↓
Global

LF
HF

0.95±0.20
0.34±0.08
0.75±0.25

0.69±0.30
1.10±0.42
0.60±0.24

0.33±0.14
0.03±0.01
0.46±0.18

1.14±0.36
0.55±0.17
0.54±0.22

0.80±0.26
0.50±0.20
0.44±0.16

0.42±0.10
0.08±0.01
0.46±0.14

STFT ↓
Global

LF
HF

2.38±0.49
0.51±0.09
2.52±0.51

2.37±0.74
0.88±0.31
2.24±0.72

1.31±0.35
0.10±0.05
1.79±0.45

2.38±0.22
0.78±0.06
2.01±0.18

2.31±0.70
0.74±0.26
2.16±0.70

3.18±0.25
0.57±0.21
3.06±0.24

Waveform ↓
Global

LF
HF

0.035±0.016
0.035±0.017
0.001±0.002

0.037±0.017
0.036±0.017
0.003±0.005

0.003±0.006
0.001±0.005
0.002±0.003

0.005±0.005
0.005±0.005
0.001±0.000

0.023±0.010
0.022±0.010
0.002±0.001

0.002±0.001
0.000±0.000
0.002±0.001

SI-SDR ↑
Global

LF
HF

5.76±9.12
5.95±9.45

-20.29±9.46

22.38±6.24
24.90±5.13

-41.70±11.55

37.66±12.00
48.26±12.08

-29.29±10.81

26.37±4.17
28.65±4.39

-19.00±10.05

20.45±4.08
24.43±4.5

-39.06±10.39

28.30±3.64
51.08±5.32

-35.33±10.77

ViSQOL ↑
Global

LF
HF

3.17±0.67
4.57±0.13
3.96±0.70

3.19±0.62
4.40±0.22
3.25±0.65

3.45±0.66
4.70±0.03
3.34±0.89

3.20±0.58
4.65±0.04
4.01±0.42

3.25±0.58
4.34±0.21
3.29±0.56

3.97±0.34
4.71±0.03
3.96±0.38

OrchideaSOL -
Apollo AudioSR HP-codecX - - -

Mel ↓
Global

LF
HF

0.97±0.32
0.34±0.13
0.81±0.37

1.00±0.65
0.63±0.47
0.54±0.31

0.36±0.23
0.04±0.03
0.50±0.33

-
-
-

-
-
-

-
-
-

STFT ↓
Global

LF
HF

2.53±0.60
0.52±0.13
2.62±0.76

2.15±0.93
0.80±0.40
2.07±0.85

1.59±0.71
0.19±0.21
2.04±0.78

-
-
-

-
-
-

-
-
-

Waveform ↓
Global

LF
HF

0.026±0.020
0.025±0.019
0.002±0.004

0.034±0.026
0.032±0.026
0.006±0.011

0.003±0.007
0.000±0.001
0.003±0.007

-
-
-

-
-
-

-
-
-

SI-SDR ↑
Global

LF
HF

12.52±12.03
13.10±12.48
-19.75±9.04

22.80±10.01
26.79±7.67

-42.73±13.62

36.09±13.38
49.30±12.05

-30.30±11.50

-
-
-

-
-
-

-
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-

ViSQOL ↑
Global
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3.10±0.87
4.60±0.14
3.82±0.89

3.34±0.79
4.46±0.29
3.41±0.87

3.42±0.79
4.71±0.04
3.34±0.89
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C APPENDIX: A 32 KHZ MODEL

A limitation of HP-codec and HP-codecX arises from the mismatch between the operating sam-
pling rate of the codec (48 kHz) and the recording rate of the training data (44.1 kHz). As a re-
sult, the 48 kHz branch cannot be fully exploited: part of its capacity is used to encode silence in
the [22.05 kHz, 24 kHz] band. This issue stems from the requirement that both branches of HP-
codec yield the same number of tokens per input, ensuring compatibility with the language model.
Consequently, the high-frequency branch sampling rate must be an integer multiple of that of the
low-frequency branch.

To address this, we reconfigured the system to perform bandwidth extension from 16 kHz to 32 kHz.
We trained HP-codec32, a derived version of HP-codec, modifying only the encoder ratios of the
high-frequency branch to {2, 2, 5, 8}, while keeping the language model unchanged (forming HP-
codec32X), and subsequently evaluated its performance.

Table 8: Objective reconstruction metrics (± standard deviation) for the Apollo (44.1 kHz), Au-
dioSR (48 kHz) models and HP-codec32X (32 kHz). The top metrics are calculated over the whole
signals (Global). The lower metrics are calculated on [8 kHz, 22.05 kHz] bands (HF). For a fair
comparison, we upsampled the results of our model to the sampling rate of the model we want to
compare to.

Global Apollo
(Li & Luo, 2025)

HP-codec32X
(ups. at 44.1 kHz)

AudioSR
(Liu et al., 2024a)

HP-codec32X
(ups. at 48 kHz)

Mel ↓ 1.02 ± 0.12 0.24 ± 0.06 1.83 ± 0.43 0.23 ± 0.061
STFT ↓ 3.35 ± 0.53 1.77 ± 0.17 3.98 ± 0.71 1.96 ± 0.15

Waveform ↓ 0.048 ± 0.013 0.011 ± 0.006 0.069 ± 0.019 0.011 ± 0.006
SI-SDR ↑ 3.26 ± 3.82 20.81 ± 7.24 13.92 ± 5.06 20.81 ± 7.24
ViSQOL ↑ 3.26 ± 0.40 3.67 ± 0.31 2.98 ± 0.37 3.67 ± 0.31

HF Apollo
(Li & Luo, 2025)

HP-codec32X
(ups. at 44.1 kHz)

AudioSR
(Liu et al., 2024a)

HP-codec32X
(ups. at 48 kHz)

Mel ↓ 0.80 ± 0.12 0.26 ± 0.06 0.83 ± 0.16 0.26 ± 0.06
STFT ↓ 3.04 ± 0.51 1.88 ± 0.14 3.09 ± 0.54 2.06 ± 0.14

Waveform ↓ 0.008 ± 0.005 0.011 ± 0.006 0.010 ± 0.005 0.011 ± 0.006
SI-SDR ↑ -28.39 ± 8.42 -34.22 ± 8.03 -44.20 ± 10.18 -34.22 ± 8.04
ViSQOL ↑ 3.38 ± 0.37 3.80 ± 0.30 3.18 ± 0.35 3.80 ± 0.30

Table 8 reports objective reconstruction metrics computed on full signals (Global) and on the high-
frequency band (HF). For fair comparison, our outputs were upsampled to match the sampling
rates of the baseline models (44.1 kHz for Apollo and 48 kHz for AudioSR). Consistent with the
48 kHz setting, HP-codec32X achieves superior spectral reconstruction compared to both baselines.
Although SI-SDR indicates higher distortion in the high-frequency range, informal listening tests
suggest that these distortions are not perceptually salient, further underscoring the limitations of
SI-SDR as a metric for synthesis tasks.

Comparing Table 8 with Table 2, we find that both HP-codec32X and HP-codecX achieve similarly
strong reconstruction metrics. This confirms that training the 48 kHz model on data recorded at
44.1 kHz does not lead to a loss of efficiency.
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D APPENDIX: SPECTROGRAMS OF EXTENDED SIGNALS

In Fig. 6 and Fig. 7 we display the spectrograms of the 12 signals drawn from the MUSDB18 test
set for the MUSHRA evaluation introduced in Section 4.4, in four different settings: a reference
spectrogram, a spectrogram of the estimation drawn from the Apollo model, one from the AudioSR
model and finally HP-codecX estimation.

The spectrogram analysis highlights several characteristics of HP-codecX. First, it provides more
accurate percussive reconstructions (visible through the vertical structures of the spectrograms) than
the baselines, as observed in samples 11, 105, 131, 535, and 792. Second, it generates denser high-
frequency estimates, as illustrated in samples 189, 658, and 792. However, this sometimes leads
to artifacts in the high-frequency range, where the model attempts to reconstruct content absent
from the reference (sample 723). Interestingly, there are also cases where the spectrogram suggests
poor estimation (sample 407), while listening tests confirm that the output remains perceptually
satisfactory due to the low energy in the affected bands.
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Figure 6: Spectrograms of estimated signal drawn from Apollo, AudioSR and HP-codecX (1/2)
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Figure 7: Spectrograms of estimated signal drawn from Apollo, AudioSR and HP-codecX (2/2)
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