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ABSTRACT

Voice style transfer, also called voice conversion, seeks to modify one speaker’s
voice to generate speech as if it came from another (target) speaker. Previous
works have made progress on voice conversion with parallel training data and
pre-known speakers. However, zero-shot voice style transfer, which learns from
non-parallel data and generates voices for previously unseen speakers, remains
a challenging problem. We propose a novel zero-shot voice transfer method via
disentangled representation learning. The proposed method first encodes speaker-
related style and voice content of each input voice into separated low-dimensional
embedding spaces, and then transfers to a new voice by combining the source con-
tent embedding and target style embedding through a decoder. With information-
theoretic guidance, the style and content embedding spaces are representative and
(ideally) independent of each other. On real-world VCTK datasets, our method
outperforms other baselines and obtains state-of-the-art results in terms of trans-
fer accuracy and voice naturalness for voice style transfer experiments under both
many-to-many and zero-shot setups.

1 INTRODUCTION

Style transfer, which automatically converts a data instance into a target style, while preserving
its content information, has attracted considerable attention in various machine learning domains,
including computer vision (Gatys et al., 2016} [Luan et al., [2017; [Huang & Belongiel |2017), video
processing (Huang et al., 2017; (Chen et al., [2017), and natural language processing (Shen et al.,
2017; |Yang et al., 2018} [Lample et al., 2019} |Cheng et al., |2020b). In speech processing, style
transfer was earlier recognized as voice conversion (VC) (Muda et al., [2010), which converts one
speaker’s utterance, as if it was from another speaker but with the same semantic meaning. Voice
style transfer (VST) has received long-term research interest, due to its potential for applications
in security (Sisman et al.,|2018), medicine (Nakamura et al., 2006), entertainment (Villavicencio &
Bonada, |2010) and education (Mohammadi & Kainl, 2017), among others.

Although widely investigated, VST remains challenging when applied to more general application
scenarios. Most of the traditional VST methods require parallel training data, i.e., paired voices
from two speakers uttering the same sentence. This constraint limits the application of such models
in the real world, where data are often not pair-wise available. Among the few existing models
that address non-parallel data (Hsu et al.|[2016;|Lee & Wul [2006; |Godoy et al., 201 1)), most methods
cannot handle many-to-many transfer (Saito et al.,2018;|Kaneko & Kameokal 2018} Kameoka et al.}
2018), which prevents them from converting multiple source voices to multiple target speaker styles.
Even among the few non-parallel many-to-many transfer models, to the best of our knowledge, only
two models (Qian et al., |2019; /Chou & Lee, 2019)) allow zero-shot transfer, i.e., conversion from/to
newly-coming speakers (unseen during training) without re-training the model.

The only two zero-shot VST models (AUTOVC (Qian et al,|2019) and AdaIN-VC (Chou & Lee,
2019)) share a common weakness. Both methods construct encoder-decoder frameworks, which ex-
tract the style and the content information into style and content embeddings, and generate a voice
sample by combining a style embedding and a content embedding through the decoder. With the
combination of the source content embedding and the target style embedding, the models generate
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the transferred voice, based only on source and target voice samples. AUTOVC (Qian et al., [2019)
uses a GE2E (Wan et al., 2018) pre-trained style encoder to ensure rich speaker-related information
in style embeddings. However, AUTOVC has no regularizer to guarantee that the content encoder
does not encode any style information. AdaIN-VC (Chou & Lee, |2019) applies instance normaliza-
tion (Ulyanov et al., 2016) to the feature map of content representations, which helps to eliminate
the style information from content embeddings. However, AdaIN-VC fails to prevent content infor-
mation from being revealed in the style embeddings. Both methods cannot assure that the style and
content embeddings are disentangled without information revealed from each other.

With information-theoretic guidance, we propose a disentangled-representation-learning method
to enhance the encoder-decoder zero-shot VST framework, for both style and content informa-
tion preservation. We call the proposed method Information-theoretic Disentangled Embedding
for Voice Conversion (IDE-VC). Our model successfully induces the style and content of voices
into independent representation spaces by minimizing the mutual information between style and
content embeddings. We also derive two new multi-group mutual information lower bounds, to
further improve the representativeness of the latent embeddings. Experiments demonstrate that our
method outperforms previous works under both many-to-many and zero-shot transfer setups on two
objective metrics and two subjective metrics.

2 BACKGROUND

In information theory, mutual information (MI) is a crucial concept that measures the dependence
between two random variables. Mathematically, the MI between two variables x and vy is

p(z,y)
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where p(x) and p(y) are marginal distributions of @ and y, and p(x,y) is the joint distribution.
Recently, MI has attracted considerable interest in machine learning as a criterion to minimize or
maximize the dependence between different parts of a model (Chen et al.,|2016; |Alemi et al., 2016
Hjelm et al.| 2018 |Velickovi¢ et al., |2018; Song et al.,|2019). However, the calculation of exact MI
values is challenging in practice, since the closed form of joint distribution p(x, y) in equation (I
is generally unknown. To solve this problem, several MI estimators have been proposed. For MI
maximization tasks, Nguyen, Wainwright and Jordan (NWJ) (Nguyen et al.,|2010) propose a lower
bound by representing (1) as an f-divergence (Moon & Hero), 2014):

Tnws = Epa [ (@,9)] — € Epay iy le! @), 2)

with a score function f(x,y). Another widely-used sample-based MI lower bound is In-
foNCE (Oord et al.,[2018), which is derived with Noise Contrastive Estimation (NCE) (Gutmann &
Hyvirinen, 2010). With sample pairs {(z;,y;)}}Y, drawn from the joint distribution p(x,y), the
InfoNCE lower bound is defined as
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For MI minimization tasks, (Cheng et al.| (2020a) proposed a contrastively learned upper bound that
requires the conditional distribution p(x|y):
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where the MI is bounded by the log-ratio of conditional distribution p(x|y) between positive and
negative sample pairs. In the following, we derive our information-theoretic disentangled represen-
tation learning framework for voice style transfer based on the MI estimators described above.

3 PROPOSED MODEL

We assume access to N audio (voice) recordings from M speakers, where speaker u has N, voice
samples X, = {wm}N The proposed approach encodes each voice input x € X = UM X,
into a speaker-related (style) embedding s = F(x) and a content-related embedding ¢ = E.(x),
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using respectively a style encoder E;(-) and a content encoder E.(-). To transfer a source a,;
from speaker u to the target style of the voice of speaker v, x,;, we combine the content embed-
dmg cyi = E.(x,;) and the style embedding s,; = Es(x,;) to generate the transferred voice
Ty—sv,i = D(8y5, cyi) With a decoder D(s, ¢). To implement this two-step transfer process, we in-
troduce a novel mutual information (MI)-based learning objective, that induces the style embedding
s and content embedding c into independent representation spaces (i.e., ideally, s contains rich style
information of & with no content information, and vice versa). In the following, we first describe our
MI-based training objective in Section[3.1] and then discuss the practical estimation of the objective
in Sections[3.2]and 3.31

3.1 MI-BASED DISENTANGLING OBJECTIVE

From an information-theoretic perspective, to learn representative latent embedding (s, ¢), it is de-
sirable to maximize the mutual information between the embedding pair (s, ¢) and the input a.
Meanwhile, the style embedding s and the content ¢ are desired to be independent, so that we can
control the style transfer process with different style and content attributes. Therefore, we minimize
the mutual information Z(s; ¢) to disentangle the style embedding and content embedding spaces.
Consequently, our overall disentangled-representation-learning objective seeks to minimize

L=1I(s;c) —I(x;s,¢c) =I(s;¢c) — I(x;c|ls) — I(x; s). 5)

As discussed in Locatello et al. (Locatello et al.|2019), without inductive bias for supervision, the
learned representation can be meaningless. To address this problem, we use the speaker identity u
as a variable with values {1,..., M} to learn representative style embedding s for speaker-related
attributes. Noting that the process from speaker « to his/her voice x,,; to the style embedding s,,; (as
u — & — 8) is a Markov Chain, we conclude Z(s; x) > Z(s;u) based on the MI data-processing
inequality (Cover & Thomas,2012)) (as stated in the Supplementary Material). Therefore, we replace
Z(s;x) in L with Z(s; ©) and minimize an upper bound instead:

L =1I(s;c) — I(x;cls) — I(u;s) > I(s;c) — I(x; cls) — I(x; s), (6)

In practice, calculating the MI is challenging, as we typically only have access to samples, and lack
the required distributions (Chen et al.,|2016). To solve this problem, below we provide several MI
estimates to the objective terms Z(s; ¢), Z(x; c|s) and Z(u; s).

3.2 MI LOWER BOUND ESTIMATION

To maximize Z(u; s), we derive the following multi-group MI lower bound (Theorem based on
the NWJ bound developed in Nguyen et al. (Nguyen et al.,2010). The detailed proof is provided in
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the Supplementary Material. Let i, = u, represent the mean of all style embeddings in group

X, constituting the style centroid of speaker v; uq(f"i) is the mean of all style embeddings in group

X, except data point x,,;, representing a leave-x,;-out style centroid of speaker u. Intuitively, we
minimize ||8,; — NS[‘“) || to encourage the style embedding of voice &,; to be more similar to the
style centroid of speaker u, while maximizing ||8,; — uv || to enlarge the margm between s,

and the other speakers’ style centroids ,,. We denote the right-hand side of (7)) as 7.
Theorem 3.1. Let HS;““ = N Zk 1 Sk if u # v; and u( ul) — N > i Suje Then,
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To maximize Z(x; c|s), we derive a conditional mutual information lower bound below:

Theorem 3.2. Assume that given s = 8,,, samples { (2, cm)}fil are observed. With a variational
distribution q4(x|s, c), we have I(x; c|s) > E[Z], where

M N, 1 Ny,
N Z Z [IOgQ¢ mub|cu77 su) IOg (F ZQ¢(muj|cui7 3u)>:| (8)
u=1 i=1 voj=1
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Figure 1: Training and transfer processes. (a) Training style encoder Es with objective Zy: All
voice samples are encoded into style embedding space. For style embedding s,,; of x,;, we min-
imize its distance with speaker u’s style centroid p,,, and maximize its distance to other speaker
style centroids p,. (b) Training for content encoder E,. and decoder D as objectives :Z27j'31 We
encode content ¢,; from voice x,,; from speaker u. The style of speaker u is encoded from another
speaker u’s voice x,,;. The dependency of style and content embedding is minimized with Z3. With

cy; and s,,, the decoder reconstructs the voice x,; as &,; = D(8, ¢y;). Then iz is calculated based
on the original voice ¢,; and the reconstruction ¢,;. (c) Transfer process: for zero-shot voice style
transfer, with x,,; from speaker v and x,; from speaker v, we encode content c¢,; and style s,,, and
combine them together to generate a transferred voice &,,_,,,; = D(8y, Cui)-
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Based on the criterion for s in equation (7)), a well-learned style encoder E; pulls all style embed-
dings s,; from speaker u together. Suppose s,, is representative of the style embeddings of set X,.
If we parameterize the distribution g, (z|s, ¢) o exp(—||x — D(s, ¢)||?) with decoder D(s, c), then
based on Theorem we can estimate the lower bound of Z(x; ¢|s) with the following objective:

. 1 M N,
@::N;g[ i — Dlews sl ~log (- Zexp{ s = Dlew s}

When maximizing 75, for speaker u with his/her given voice style s,, we encourage the content
embedding c,; to well reconstruct the original voice @,,;, with small ||z,; — D(cu;, Sy )||. Addi-
tionally, the distance ||&,; — D(cu;, S.,)| is minimized, ensuring c,,; does not contain information
to reconstruct other voices x,,; from speaker u. With Z,, the correlation between x,,; and c,; is
amplified, which improves c¢,; in preserving the content information.

3.3 MI UPPER BOUND ESTIMATION

The crucial part of our framework is disentangling the style and the content embedding spaces,
which imposes (ideally) that the style embedding s excludes any content information and vice versa.
Therefore, the mutual information between s and c is expected to be minimized. To estimate Z(s; ¢),
we derive a sample-based MI upper bound in Theorem [3.3]base on ().

Theorem 3.3. If p(s|c) provides the conditional distribution between variables s and c, then
Zisic) <

The upper bound in (9) requires the ground-truth conditional distribution p(s|c), whose closed form
is unknown. Therefore, we use a probabilistic neural network gg(s|c) to approximate p(s|c) by

maximizing the log-likelihood F(§) = "M log qo(Sui|cui). With the learned gy (s|c), the
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objective for minimizing Z(s; ¢) becomes:

1 M N, 1 M N,
%:Nzgjm%mmm—NZXMmmm%y (10)
u=1i=1 v=1 j=1

When weights of encoders E., E; are updated, the embedding spaces s, c change, which leads
to the changing of conditional distribution p(s|c). Therefore, the neural approximation gy(s|c)
must be updated again. Consequently, during training, the encoders ., E/s; and the approximation
qo(s|c) are updated iteratively. In the Supplementary Material, we further discuss that with a good

approximation gy (s|c), Zs remains an MI upper bound.

3.4 ENCODER-DECODER FRAMEWORK
With the aforementioned MI estimates il, j:g, and fg, the final training loss of our method is
L =I5 — 1, — To] — BF(H), (11)

where (3 is a positive number re-weighting the two objective terms. Term I3 — Iy — I is minimized
w.r.t the parameters in encoders E., Fs and decoder D; term F(f) as the likelihood function of
go(s|c) is maximized w.r.t the parameter 6. In practice, the two terms are updated iteratively with
gradient descent (by fixing one and updating another). The training and transfer processes of our
model are shown in Figure[I] We name this MI-guided learning framework as Information-theoretic
Disentangled Embedding for Voice Conversion (IDE-VC).

4 RELATED WORK

Many-to-many Voice Conversion Traditional voice style transfer methods mainly focus on one-to-
one and many-to-one conversion tasks, which can only transfer voices into one target speaking style.
This constraint limits the applicability of the methods. Recently, several many-to-many voice con-
version methods have been proposed, to convert voices in broader application scenarios. StarGAN-
VC (Kameoka et al [2018) uses StarGAN (Choi et al., 2018)) to enable many-to-many transfer, in
which voices are fed into a unique generator conditioned on the target speaker identity. A discrimi-
nator is also used to evaluate generation quality and transfer accuracy. Blow (Serra et al.,[2019) is a
flow-based generative model (Kingma & Dhariwall, 2018]), that maps voices from different speakers
into the same latent space via normalizing flow (Rezende & Mohamed, |2015). The conversion is
accomplished by transforming the latent representation back to the observation space with the tar-
get speaker’s identifier. Two other many-to-many conversion models, AUTOVC (Qian et al., [2019)
and AdaIN-VC (Chou & Lee} [2019), extend applications into zero-shot scenarios, i.e., conversion
from/to a new speaker (unseen during training), based on only a few utterances. Both AUTOVC and
AdaIN-VC construct an encoder-decoder framework, which extracts the style and content of one
speech sample into separate latent embeddings. Then when a new voice from an unseen speaker
comes, both its style and content embeddings can be extracted directly. However, as discussed in the
Introduction, both methods do not have explicit regularizers to reduce the correlation between style
and content embeddings, which limits their performance.

Disentangled Representation Learning Disentangled representation learning (DRL) aims to en-
code data points into separate independent embedding subspaces, where different subspaces rep-
resent different data attributes. DRL methods can be classified into unsupervised and supervised
approaches. Under unsupervised setups, |Burgess et al.| (2018)), Higgins et al.| (2016) and Kim &
Mnih| (2018) use latent embeddings to reconstruct the original data while keeping each dimension
of the embeddings independent with correlation regularizers. This has been challenged by |Locatello
et al.[(2019), in that each part of the learned embeddings may not be mapped to a meaningful data at-
tribute. In contrast, supervised DRL methods effectively learn meaningful disentangled embedding
parts by adding different supervision to different embedding components. Between the two embed-
ding parts, the correlation is still required to be reduced to prevent the revealing of information to
each other. The correlation-reducing methods mainly focus on adversarial training between embed-
ding parts (Hjelm et al.l 2018; |Kim & Mnih} 2018), and mutual information minimization (Chen
et al., 2018} [Cheng et al.,2020b). By applying operations such as switching and combining, one can
use disentangled representations to improve empirical performance on downstream tasks, e.g. con-
ditional generation (Burgess et al., [2018)), domain adaptation (Gholami et al., [2020), and few-shot
learning (Higgins et al.,[2017).
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5 EXPERIMENTS

We evaluate our IDE-VC on real-world voice a dataset under both many-to-many and zero-shot VST
setups. The selected dataset is CSTR Voice Cloning Toolkit (VCTK) (Yamagishi et al.,|2019), which
includes 46 hours of audio from 109 speakers. Each speaker reads a different sets of utterances, and
the training voices are provided in a non-parallel manner. The audios are downsampled at 16kHz.
In the following, we first describe the evaluation metrics and the implementation details, and then
analyze our model’s performance relative to other baselines under many-to-many and zero-shot VST
settings.

5.1 EVALUATION METRICS

Objective Metrics We consider two objective metrics: Speaker verification accuracy (Verification)
and the Mel-Cepstral Distance (Distance) (Kubichekl|1993)). The speaker verification accuracy mea-
sures whether the transferred voice belongs to the target speaker. For fair comparison, we used a
third-party pre-trained speaker encoder Resemblyzelﬂ to classify the speaker identity from the trans-
ferred voices. Specifically, style centroids for speakers are learned with ground-truth voice samples.
For a transferred voice, we encode it via the pre-trained speaker encoder and find the speaker with
the closest style centroid as the identity prediction. For the Distance, the vanilla Mel-Cepstral Dis-
tance (MCD) cannot handle the time alignment issue described in Section |2} To make reasonable
comparisons between the generation and ground truth, we apply the Dynamic Time Warping (DTW)
algorithm (Berndt & Clifford, [1994) to automatically align the time-evolving sequences before cal-
culating MCD. This DTW-MCD distance measures the similarity of the transferred voice and the
real voice from the target speaker. Since the calculation of DTW-MCD requires parallel data, we
select voices with the same content from the VCTK dataset as testing pairs. Then we transfer one
voice in the pair and calculate DTW-MCD with the other voice as reference.

Subjective Metrics Following Wester et al. (Wester et al., [2016), we use the naturalness of the
speech (Naturalness), and the similarity of the transferred speech to target identity (Similarity) as
subjective metrics. For Naturalness, annotators are asked to rate the score from 1-5 for each trans-
ferred speech.For the Similarity, the annotators are presented with two audios (the converted speech
and the corresponding reference), and are asked to rate the score from 1 to 4. For both scores, the
higher the better. Following the setting in Blow (Serra et al.l [2019), we report Similarity defined
as a total percentage from the binary rating. The evaluation of both subjective metrics is conducted
on Amazon Mechanical Turk (MTurkﬂ More details about evaluation metrics are provided in the
Supplementary Material.

5.2 IMPLEMENTATION DETAILS

Following AUTOVC (Qian et al.| 2019), our model inputs are represented via mel-spectrogram.
The number of mel-frequency bins is set as 80. When voices are generated, we adopt the WaveNet
vocoder (Oord et al., 2016) pre-trained on the VCTK corpus to invert the spectrogram signal back to
a waveform. The spectrogram is first upsampled with deconvolutional layers to match the sampling
rate, and then a standard 40-layer WaveNet is applied to generate speech waveforms. Our model is
implememted with Pytorch and takes 1 GPU day on an Nvidia Xp to train.

Encoder Architecture The speaker encoder consists of a 2-layer long short-term memory (LSTM)
with cell size of 768, and a fully-connected layer with output dimension 256. The speaker encoder
is initialized with weights from a pretrained GE2E (Wan et al.l 2018)) encoder. The input of the
content encoder is the concatenation of the mel-spectrogram signal and the corresponding speaker
embedding. The content encoder consists of three convolutional layers with 512 channels, and two
layers of a bidirectional LSTM with cell dimension 32. Following the setup in AUTOVC (Qian
et al.,|2019), the forward and backward outputs of the bi-directional LSTM are downsampled by 16.

Decoder Architecture Following AUTOVC (Qian et al} 2019), the initial decoder consists of a
three-layer convolutional neural network (CNN) with 512 channels, three LSTM layers with cell
dimension 1024, and another convolutional layer to project the output of the LSTM to dimension of
80. To enhance the quality of the spectrogram, following AUTOVC (Qian et al.| 2019), we use a
post-network consisting of five convolutional layers with 512 channels for the first four layers, and

"https://github.com/resemble-ai/Resemblyzer
“https://www.mturk.com/
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Table 1: Many-to-many VST evaluation results. For all metrics except Distance, higher is better.

Metric Objective Subjective

Distance Verification[%] Naturalness [1-5] Similarity [%]
StarGAN 6.73 71.1 2.77 51.5
AdaIN-VC 6.98 85.5 2.19 50.8
AUTOVC 6.73 89.9 3.25 55.0
Blow 8.08 - 2.11 10.8
IDE-VC (Ours) 6.70 92.2 3.26 68.5

Table 2: Zero-Shot VST evaluation results. For all metrics except Distance, higher is better.

Metric Objective Subjective

Distance Verification[ %] Naturalness [1-5] Similarity [%]
AdaIN-VC 6.37 76.7 2.67 68.4
AUTOVC 6.68 60.0 2.19 58.6
IDE-VC (Ours) 6.31 81.1 3.33 76.4

80 channels for the last layer. The output of the post-network can be viewed as a residual signal.
The final conversion signal is computed by directly adding the output of the initial decoder and the
post-network. The reconstruction loss is applied to both the output of the initial decoder and the
final conversion signal.

Approximation Network Architecture As described in Section minimizing the mutual in-
formation between style and content embeddings requires an auxiliary variational approximation
go(s|c). For implementation, we parameterize the variational distribution in the Gaussian distribu-
tion family go(s|c) = N(po(c), o3(c) - I), where mean py(-) and variance o (-) are two-layer
fully-connected networks with tanh(-) as the activation function. With the Gaussian parameteriza-
tion, the likelihoods in objective 75 can be calculated in closed form.

5.3 STYLE TRANSFER PERFORMANCE

For the many-to-many VST task, we randomly select 10% of the sentences for validation and 10% of
the sentences for testing from the VCTK dataset, following the setting in Blow (Serra et al.,[2019).
The rest of the data are used for training in a non-parallel scheme. For evaluation, we select voice
pairs from the testing set, in which each pair of voices have the same content but come from different
speakers. In each testing pair, we conduct transfer from one voice to the other voice’s speaking style,
and then we compare the transferred voice and the other voice as evaluating the model performance.
We test our model with four competitive baselines: Blow (Serra et al.| 2019ﬂ AUTOVC (Qian
et al., 2019), AdaIN-VC (Chou & Lee, 2019) and StarGAN-VC (Kameoka et al., 2018). The de-
tailed implementation of these four methods are provided in the Supplementary Material. Table [I]
shows the subjective and objective evaluation for the many-to-many VST task. Both methods with
the encoder-decoder framework, AdaIN-VC and AUTOVC, have competitive results. However, our
IDE-VC outperforms the other baselines on all metrics, demonstrating that the style-content disen-
tanglement in the latent space improves the performance of the encoder-decoder framework.

For the zero-shot VST task, we use the same train-validation dataset split as in the many-to-many
setup. The testing data are selected to guarantee that no test speaker has any utterance in the training
set. We compare our model with the only two baselines, AUTOVC (Qian et al., [2019) and AdaIN-
VC (Chou & Lee, 2019), that are able to handle voice transfer for newly-coming unseen speakers.
We used the same implementations of AUTOVC and AdaIN-VC as in the many-to-many VST.
The evaluation results of zero-shot VST are shown in Table [2] among the two baselines AdaIN-VC
performs better than AUTOVC overall.Our IDE-VC outperforms both baseline methods, on all met-
rics. All three tested models have encoder-decoder transfer frameworks, the superior performance

3For Blow model, we use the official implementation available on Github (https:/github.com/joansj/blow).
We report the best result we can obtain here, under training for 100 epochs (11.75 GPU days on Nvidia V100).
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Figure 2: Left: t-SNE visualization for speaker embeddings. Right: t-SNE visualization for content
embedding. The embeddings are extracted from the voice samples of 10 different speakers.

of IDE-VC indicates the effectiveness of our disentangled representation learning scheme. More
evaluation details are provided in the supplementary material.

5.4 DISENTANGLEMENT DISCUSSION

Besides the performance comparison with other VST baselines, we demonstrate the capability
of our information-theoretic disentangled representation learning scheme. First, we conduct a t-
SNE (Maaten & Hinton, 2008) visualization of the latent spaces of the IDE-VC model. As shown
in the left of Figure [2| style embeddings from the same speaker are well clustered, and style em-
beddings from different speakers separate in a clean manner. The clear pattern indicates our style
encoder F; can verify the speakers’ identity from the voice samples. In contrast, the content embed-
dings (in the right of Figure[2) are indistinguishable for different speakers, which means our content
encoder E. successfully eliminates speaker-related information and extracts rich semantic content
from the data.

We also empirically evaluate the disentanglement, by predicting
the speakers’ identity based on only the content embeddings. A Table 3: Speaker identity pre-
two-layer fully-connected network is trained on the testing set  diction accuracy on content em-
with a content embedding as input, and the corresponding speaker bedding.

identity as output. We compare our IDE-VC with AUTOVC and
AdaIN-VC, which also output content embeddings. The classi-

fication results are shown in Table 3l Our IDE-VC reaches the Accuracy[%]
lowest classification accuracy, indicating that the content embed- AUTOVC 9.5
dings learned by IDE-VC contains the least speaker-related in- AdaIN-VC 19.0
formation. Therefore, our IDE-VC learns disentangled represen- IDE-VC 8.1

tations with high quality compared with other baselines.

5.5 ABLATION STUDY

Moreover, we have considered an ablation study that ad- Table 4: Ablation study with different
dresses performance effects from different learning losses training losses. Performance is mea-
in (TI), with results shown in Table d] We compare our sured by objective metrics.

model with two models trained by part of the loss func-

tion in (L1, while keeping the other training setups un- Distance Verification[%]

changed, including the model structure. From the results, - -

when the model is trained without the style encoder loss ~ WithoutZ, — 9.81 111

term Z;, a transferred voice still is generated, but with a Without 73 6.73 89.4
IDE-VC 5.66 92.2

large distance to the ground truth. The verification accu-
racy also significantly decreases with no speaker-related

information utilized. When the disentangling term 7T is removed, the model still reaches com-
petitive performance, because the style encoder E and decoder D are well trained by Z; and Zs.
However, when adding term 73, we disentangle the style and content spaces, and improve the trans-

fer quality with higher verification accuracy and less distortion. The performance without term Z is
not reported, because the model cannot even generate fluent speech without the reconstruction loss.
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6 CONCLUSIONS

We have improved the encoder-decoder voice style transfer framework by disentangled latent rep-
resentation learning. To effectively induce the style and content information of speech into inde-
pendent embedding latent spaces, we minimize a sample-based mutual information upper bound
between style and content embeddings. The disentanglement of the two embedding spaces ensures
the voice transfer accuracy without information revealed from each other. We have also derived two
new multi-group mutual information lower bounds, which are maximized during training to enhance
the representativeness of the latent embeddings. On the real-world VCTK dataset, our model out-
performs previous works under both many-to-many and zero-shot voice style transfer setups. Our
model can be naturally extended to other style transfer tasks modeling time-evolving sequences,
e.g., video and music style transfer. Moreover, our general multi-group mutual information lower
bounds have broader potential applications in other representation learning tasks.
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