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ABSTRACT

Making statements about the performance of trained models on tasks involving
new data is one of the primary goals of machine learning, i.e., to understand the
generalization power of a model. Various capacity measures try to capture this
ability, but usually fall short in explaining important characteristics of models that
we observe in practice. In this study, we propose the local effective dimension
as a capacity measure which seems to correlate well with generalization error
on standard data sets. Importantly, we prove that the local effective dimension
bounds the generalization error and discuss the aptness of this capacity measure
for machine learning models.

1 INTRODUCTION

The essence of successful machine learning lies in the creation of a model that is able to learn
from data and apply what it has learned to new, unseen data (Goodfellow et al.,|2016). The latter
ability is termed the generalization performance of a machine learning model and has proven to be
notoriously difficult to predict a priori (Zhang et al.,[2021)). The relevance of generalization is rather
straightforward: if one already has insight on the performance capability of a model class, this will
allow for more robust models to be selected for training and deployment. But how does one begin to
analyze generalization without physically training models and assessing their performance on new
data thereafter? This age-old question has a rich history and is largely addressed through the notion
of capacity. Loosely speaking, the capacity of a model relates to its ability to express a variety of
functions (Vapnik et al., [1994). The higher a model’s capacity, the more functions it is able to fit. In
the context of generalization, many capacity measures have been shown to mathematically bound the
error a model makes when performing a task on new data, i.e. the generalization error (Vapnik &
Chervonenkis, |1971} |Liang et al., [2019; |Bartlett et al.,|2017). Naturally, finding a capacity measure
that provides a tight generalization error bound, and in particular, correlates with generalization error
across a wide range of experimental setups, will allow us to better understand the generalization
performance of machine learning models.

Interestingly, through time, proposed capacity measures have differed quite substantially, with trade-
offs apparent among each of the current proposals (Jiang et al.,[2019). The perennial VC dimension
has been famously shown to bound the generalization error, but it does not incorporate crucial
attributes, such as data potentially coming from a distribution, and ignores the learning algorithm
employed which inherently reduces the space of models within a model class that an algorithm
has access to (Vapnik et al.| [1994). Arguably, one of the most promising contenders for capacity
which attempts to incorporate these factors are norm-based capacity measures, which regularize the
margin distribution of a model by a particular norm that usually depends on the model’s trained
parameters (Bartlett et al.,|2017; Neyshabur et al., [2017b; 2015)). Whilst these measures incorporate
the distribution of data, as well as the learning algorithm, the drawback is that most depend on
the size of the model, which does not necessarily correlate with the generalization error in certain
experimental setups (Zhang et al., 2021).

To this end, we present the local effective dimension which attempts to address these issues. By
capturing the redundancy of parameters in a model, the local effective dimension is modified
from (Berezniuk et al.| [2020; |/Abbas et al., 2021) to incorporate the learning algorithm employed,
in addition to being scale invariant and data dependent. The key results from our study can be
summarized as follows:
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Table 1: Overview of established capacity measures and desirable properties. The first property is
whether the measure can be mathematically related to the generalization error via an upper bound.
The second states whether this bound is good in practice, i.e., that the measure correlates with the
generalization error in various experimental setups, such as (Zhang et al.,[2021)). Scale invariance
corresponds to the measure being insensitive to inconsequential transformations of the model, such
as multiplying a neural network’s weights by a constant. Data and training dependence refers to a
measure accounting for data drawn from a distribution and the learning algorithm employed. Finite
data merely implies that the measure can handle finite data. Lastly, efficient evaluation refers to the
possibility of estimating the capacity measure in polynomial time (in the number of data).

VC- Rademacher Margin- Norm- Sharpness- Local

dimension complexity based  based based ED
1. Generalization bound v v v v v v
2. Correlation with generalization X X X X X v
3. Scale invariant X v X X X v
4. Data dependent X v v v v v
5. Training dependent X X v v v v
6. Finite data X v v v v v
7. Efficient evaluation X X v v v v

e The local effective dimension, unlike its predecessors, includes training dependence as well
as other desirable properties summarized in Table (T}

e We prove that the local effective dimension bounds the generalization error of a trained
model with finite data (see Theorem [4.1)).

e The local effective dimension largely depends on the Fisher information, which is often
approximated in practice (Kunstner et al.,2019). We rigorously quantify the sensitivity of
the local effective dimension when evaluated with an approximated Fisher information (see
Proposition [3.2).

e Lastly, we empirically show that the local effective dimension correlates well with gener-
alization error in various experimental setups using standard data sets. The local effective
dimension is found to decrease in line with the generalization error as a network increases
in size. Similarly, the measure increases in line with the generalization error when models
are trained on randomized training labels.

2 PRELIMINARIES

In this section, we provide an overview of relevant literature and a concise introduction to generaliza-
tion error bounds and the Fisher information.

2.1 RELATED WORK

We briefly discuss relevant capacity measures proposed in literature, but defer to (Jiang et al.,[2019)
for a more comprehensive overview. Given a model class, Vapnik et al. showed that the VC dimension
can provide an upper bound on generalization error (Vapnik et al.,[1994). While this was a crucial first
step in using capacity to understand generalization, the VC dimension rests on unrealistic assumptions,
such as access to infinite data, and ignores things like training dependence and the fact that data, more
reasonably, comes from a distribution (Holden & Niranjan, [1995). The closely-related Rademacher
complexity relaxes some of the assumptions made on the model class, but still suffers similar issues
to the VC dimension (Yin et al.,[2019; Wang et al.,|2018])). Since then, a myriad of capacity measures
aiming to circumvent these problems and provide tighter generalization error bounds, have been
proposed. Margin-based capacity measures stemmed from the work of Vapnik and Chervonenkis in
1974 who pointed out that generalization error bounds based on the VC dimension may be significantly
enhanced in the case of linear classifiers that produce large margins. In (Bartlett et al.,|[1998), it was
shown that the phenomenon where boosting models (no matter how large you make them) do not
overfit data, could also be explained by the large margins these boosting models achieved. Since the
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grand mystery in modern deep learning can be characterized by the same phenomenon — extremely
large overparameterized neural networks that seemingly do not overfit data — it seems natural to try
extend the idea of margin bounds to these model families. Moreover, margin-based approaches allow
us to leverage the fact that learning algorithms, like gradient decent, produce classifiers with large
margins on training dataF_-] Unfortunately, looking at margins in isolation does not say much about the
performance of deep neural networks on unseen data. There have been recent investigations on how
to add a normalization such that margin-based measures become informative. Most of these proposals
involve the incorporation of the Lipschitz constant of a network, which is simply the product of
the spectral norms of the weight matrices (Bartlett et al.l [2017). These normalized margin-based
techniques gave rise to norm-based capacity measures which appear promising, however, it is still
unclear how to perform this normalization and often, the normalization depends on some factor that
scales with the size of the model, which is undesirable in the case of deep neural networks (Neyshabur
et al.l [2015)).

Another interesting proposal for measuring capacity came about by trying to characterize the local
minima achieved by deep networks after training (Keskar et al.l 2016;|Hochreiter & Schmidhuber,
1997)). These so-called sharpness-based measures often depend on the Hessian, which incorporates a
notion of curvature at a particular point in the loss landscape. It was believed that sharper minima
led to better generalization properties, although this was later shown to be incorrect as sharpness
measures were usually not scale invariant and thus, did not correlate well with generalization error in
various scenarios (Dinh et al., [2017)).

This leads us to the purpose of this study where we introduce and motivate the local effective
dimension as a capacity measure. The effective dimension arises from the principle of minimum
description length and thus, tries to capture existing redundancy in a statistical model (Berezniuk et al.,
20205 |Cover & Thomas| [2006} Rissanenl 1996). Redundancy has been widely studied in deep learning
through techniques like pruning and model compression (Yeom et al.,[2021; [Molchanov et al., 2019
Wiedemann et al., [2020; Tung & Mori, 20205 (Cheng et al., 20185 2017; [Tishby & Zaslavskyl 2015).
Interestingly, attempts to connect redundancy/minimum description to generalization performance
have also been studied in (Hinton & van Camp), (1993} |Achille & Soattol 2018} MacKay, [1992),
and the idea was used to compare the capacity of quantum and classical machine learning models
in (Abbas et al.| 2021)). We refine the existing definitions of the effective dimension, which in turn
leads us to the creation of a local version that conveniently meets the criteria presented in Table [I]

2.2  GENERALIZATION ERROR

A typical first step in motivating use for a capacity measure is to prove that it bounds the generalization
error. Informally, all generalization error bounds have the same structure

generalization error < estimate of error + complexity penalty ,

which attempts to relate generalization error to an empirical estimate of the error, plus a complexity
penalty captured by the proposed capacity measure. Since empirical estimates correspond to the train-
ing error on available data, which can mostly be trained to zero with very deep networks in practice, the
capacity term is usually of most relevance. More formally, suppose we are given a hypothesis class, H,
of functions mapping from X to ), a training set S, = {(z1,y1),-- -, (Tn,Yn)} € (X x V)™ where
the data pairs (z;, y;) are drawn i.i.d. from some unknown joint distribution p, andlet £ : ) x ) — R
be a loss function. The machine learning task is to find a particular hypothesis & € H that minimizes
the expected risk, defined as R(h) := E(g )~ [l(h(x), y)]. Since we only have access to a training
set Sy, a good strategy to find the best hypothesis i € H is to minimize the so called empirical risk,
defined as R, (h) := L 3" | ¢(h(x;), y;). The difference between the expected and the empirical
risk is known as the generalization error gap. This gap gives us an indication as to whether a
hypothesis h € H will perform well on unseen data, drawn from the unknown joint distribution
p (Neyshabur et al., [2017a). Therefore, an upper bound on the quantity

sup |R(h) — Rn(h)], (D
hew

' A beautiful review of margin bounds is encapsulated in (Anthony & Bartlett, 2009) where lower bounds are
proved for certain function classes.
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which vanishes as n grows large, is of considerable interestE] Capacity measures help quantify
the expressiveness and power of H. Thus, the quantity in equation |1|is typically bounded by an
expression that depends on some notion of capacity(Vapnik et al., | 1994).

2.3  FISHER INFORMATION

The Fisher information has many interdisciplinary interpretations (Frieden, 2004). In machine
learning, several capacity measures incorporate the Fisher information in different ways (Liang et al.
2019; Tsuda et al.,2004). It is also a crucial quantity in the effective dimension and is thus, briefly
introduced here.

Consider a parameterized statistical model p(z,y;0) = p(y|z;8)p(x) which describes the joint
relationship between data pairs (z,y) forallz € X,y € Y and § € © C R%. The input distribution,
p(z), is a prior distribution over the data and the conditional distribution, p(y|z; @) describes the
input-output relation generated by the model for a fixed § € ©. The full parameter space © forms a
Riemannian space which gives rise to a Riemannian metric, namely, the Fisher information which we
can represent in matrix form

) B
F(0) = Ey)~p [@ log p(z,y; 0)% log p(z, y; G)T} .

By definition, the Fisher information matrix is positive semidefinite and hence, its eigenvalues are
non-negative. In practical applications where d is typically large, there exists sophisticated techniques
to efficiently approximate the Fisher information matrix. This is discussed in Appendix

3 EFFECTIVE DIMENSION

The origin of the effective dimension arose from a simple operational question: Is it possible to
quantify the number of parameters that are truly active in a statistical model‘.ﬂ In the case of deep
neural networks, it has already been shown that many parameters are inactive, inspiring better design
techniques (Han et al.|, |2015)). Measuring parameter activeness can be made mathematically precise
with tools from statistics and information theory. In particular, the effective dimension unites the
principle of minimum description length with the Kolmogorov complexity of a model (Rissanen,
1996; |Cover & Thomas) 2006). We introduce the global effective dimension here and refer the
interested reader to (Berezniuk et al.| [2020; |[Abbas et al.| [2021) for more details.

3.1 GLOBAL EFFECTIVE DIMENSION

To shorten notation we write
__n
~ 271logn’

2

Rn,y

for n € N, which represents the number of data samples available, and a constant v € (2”1%, 1].

Definition 3.1. The global effective dimension of a statistical model Mg := {p(-,-;0) : 6 € © C
R4} with respect ton € N and «y € (2“%, 1], is defined as

- 210g (3 fo /det (ida+ ., F(6)) d6)

log Kr,

) 3)

dnﬁ(M@)

where Vg = f(_) dd € Ry is the volume of the parameter space and k., ~ is defined in equation
The matrix F(0) € R¥ is the normalized Fisher information matrix defined as

Fi(0) Yo ),

=d—
Jo tr(F(6))deo
where F(0) € R4*? denotes the Fisher information matrix of p(-, -; 0).

2We assume that the loss function is Lipschitz continuous which implies that equationE]vanishes asn — oo.
3 A parameter is considered active if it has a sufficiently large influence on the outcome of its statistical model,
i.e. varying the parameter changes the model.
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For conciseness, we simply denote the global effective dimension as d,, . The global effective
dimension converges to the maximal rank of the Fisher information matrix 7 := maxpce 79 €
{1,2,...,d} in the limit of n — oo, where ry denotes the rank of F'(§). Thus, it often makes
sense to standardize the measure by looking at the normalized effective dimension, denoted by
dn,y = dn~/d, which gives us a proportion of active parameters relative to the total number of
parameters in the model.

We prove that the global effective dimension is continuous as a function of the Fisher information
matrix. Since the Fisher information is typically approximated in practice, such a statement is relevant
to ensure small deviations in the Fisher information do not exacerbate possible deviations in the
global effective dimension (see Section 5] for more details)[]

Proposition 3.2 (Continuity of the effective dimension). Letn € N, v € (2”1%, 1], and consider
two statistical models Mg and My with © C R? and corresponding Fisher information matrices

F and F', respectively. Then,
VEw - \ro|

| (Me) = dyr(Mi)] < Ca <¢5(1F)+¢(1F’))
L W) +29(F)

log Kn, .~

where Cq is a dimensional constant, ky, - is defined in equation o(F) = V%_) Jo V/det(F(6))de,
and

U(F) = max{ log (vl@/@ \/det(idd—i—F(@))d@) —log (;@/@w/det(ﬁ(e))de) 3

The proof is given in Appendix [B| Proposition is informative for statistical models Mg and Mg
with corresponding Fisher information matrices ' and F” such that ¢(F) > 0 and ¢(F”") > 0, re-
spectively. This unavoidable consequence is due to lim,, o0 dp (Me) = 7 = maxgee rank(F(6))
and lim,, o0 dy, o (Me) = 7 = maxgee rank(F’(¢)). Hence, we see that when 7 # 7/, the
effective dimension is not continuous as n — oo. This is consistent with Proposition 3.2 where in the
case of 7 < dor 7 < d, we have ¢(F') = 0 or ¢(F"') = 0, respectively.

max
0€O

)

Remark 3.3 (Stabilized computation of the effective dimension). For large d, sufficiently large n
and models with a full rank Fisher information matrix, the effective dimension is of order d. This
implies that det(idq + Kn 4 F'(0)) is exponentially large in d, which makes direct calculation of the
effective dimension via equation [3|numerically challenging when large models are considered. This

can be circumvented by rewriting the effective dimension as

2 1 1 _
3 _ log [ — ) i F .
dn.~(Mo) log og (V@ /@exp (2 ogdet (idg + Kn - (9))) d9>
Noting that

% log det (idd + Fén,'yF(@)) = %tr log (idd + ’fnryF(e))

d
%Z log (1 + Kny A (F(G))) =:2(0), )

where \;(F(0)) denotes the i-th eigenvalue of F(0). The quantity z(6) can be computed without any
under- or overflow problems for large n and d. Choosing ( = maxgco 2(0) then gives

dny(Me) = 2 + 2 log (;/@exp (2(0) - ¢) d0> ,

logkn,y  logkn,y )

which is a numerically stable expression for the effective dimension.

*This proposition also holds for the local effective dimension introduced in Deﬁnition
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3.2 LOCAL EFFECTIVE DIMENSION

While the global effective dimension has nice properties, an important aspect to note is that it
incorporates the full parameter space ©. In practice, however, training models with a learning
algorithm inherently restricts the space of parameters that a model truly has access to. Once a model
is trained, only a fixed parameter set * € © is considered, which is chosen to minimize a certain
loss function. This leads us to the introduction of the local effective dimension which accounts for
dependence on the training algorithm. To achieve this, we define an e-ball around a fixed parameter
set 0* € © C R for € > 0 as

B.(0*):={0€O:]0—0" <e},
with a volume V, := fBg(o*) dé.

Definition 3.4. The local effective dimension of a statistical model Mg := {p(-,;0) : § € O}
around 0* € © with respectton € N, vy € (2”1%, 1), and € > 1/+/n is defined as

2log (% Js.0) \/det (ida + ki, F(6)) d@)
dn,’y (MBe (9*)) = lOg Kn,y ’

for Ky, ~ given by equation The matrix F(0) € R4 is the normalized Fisher information matrix
defined as
_ Ve
Fi (9) = d ©
/ fB<(9*) tr(F(0))dé

where F(0) € R4*? denotes the Fisher information matrix of p(-, -; 0).

FZJ(Q) )

For ease of notation, we denote the local effective dimension as d,, .. From Definition we
immediately see that the local effective dimension is scale invariant as it depends on the normalized
Fisher information matrix, as well as training dependent, since the training determines 6*. Via its
dependence on the Fisher information, the local effective dimension also incorporates an assumed
distribution for the data and is built for finite data, as summarized in Table E} Proposition @]further
proves that the local effective dimension is continuous in the Fisher information matrix.

The computationally dominant part in evaluating the local effective dimension is the calculation of the
Fisher information matrix. Luckily, this is a well-studied problem with existing proposals for efficient
evaluation (Kunstner et al.,2019; |[Martens & Grossel|2015)). Since we only require the eigenvalues of
the Fisher matrix for the local effective dimension, we can further exploit these Fisher approximations
and do not need to store a d X d matrix (see Section for more details). Additionally, the integral
over the e-ball can be evaluated efficiently with Monte-Carlo type methods.

To complete the criteria from Table[T] it remains to show that the local effective dimension bounds
and correlates with the generalization error, which is illustrated next.

4 GENERALIZATION AND THE LOCAL EFFECTIVE DIMENSION

Understanding the role of the local effective dimension in the context of generalization requires a
rigorous relationship to be defined. We demonstrate this relationship through the generalization error,
bounded by the local effective dimension.

4.1 GENERALIZATION ERROR BOUND

Consider machine learning models described by stochastic maps, parameterized by some 6 € © and
a loss function as a mapping ¢ : P())) x P()) — R where P()’) denotes the set of distributions on
Y. The following regularity assumption on the model Mg := {p(-,-;0) : § € O} is assumed:

036 p(-,0). 5)

is M;-Lipschitz continuous w.r.t. the supremum norm.
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Theorem 4.1. Let © = [—1,1]? and consider a statistical model Mg = {p(-,+0) : § € O}
satisfying equationsuch that F(0) has full rank for all € ©, and ||Vglog F(0)| < A for some
A > 0andall § € ©. Furthermore, let { : P(Y) x P(Y) — [-B/2,B/2] for B > 0 be a loss
function that is Lipschitz continuous with constant My in the first argument with respect to the total
variation distance. Then, there exists a dimensional constant cq such that for 0* € ©, n € N,
v E (2”1%7 1], and € > 1/+/n we have

AM dn,y.e
P( sup |R(6) — Ra(0)] > —— ) <1+ e mns exp <_ B2y

16w M?2€? log n)
6eB. (%) Ry 7

where M = MMy, Ky is defined in equation E] and dy, ~ ¢ is the local effective dimension
dny (Mg, (0%))-

Theorem 4.1 assumes that the loss function is Lipschitz continuous. This excludes some popular loss
functions such as the relative entropy. Hence, in Appendix [C] we extend Theorem [4.1]to include loss
functions that are log—LipschitzE]

4.2 PROOF OF THEOREM [4.1]

Let NB<(?") (1) denote the number of boxes of side length r required to cover the set B, (6*) — the
length being measured with respect to the metric F;;(6*).

Lemma 4.2. Under the assumption of Theorem we have for any £ € (0,1)

2
P s [RO)- R(0) 2 €) <2005 e (752

0eB(6*)

Proof. If we replace the full parameter space, O, by the relevant reduced space, B,(6*), the proof of
this lemma follows directly from (Abbas et al.l 2021, Lemma 2 in the Supplementary Information) if
we set a = 1. O

Lemma 4.3. Under the assumption of Theorem there exists a dimensional constant cq such that

dn,~,e
NBO (&) <yl +eM)? kn? .
Kn,y

Proof. If we choose © = B(0*) instead of [—1,1]¢, we can then rescale B.(6*) — Bi(6*),
F(0) — F(e0), 1//n — 1/(ey/n), and r — 7/ef| In other words, the number of balls of radius r
needed to cover B.(6*) is equal to the number of balls of radius /e needed to cover B;(6*). Then,
constants ¢y and ¢4 exist such that

N—BE(G*)(T) - NBl(G*)(T/e)

—_

2 —
< céqa(l+ cUleA)d71 / \/det (idd + %F(eﬁ))de
B1(6%)

N d 1 . 62 —
= Cq(1 + cqel) 7 / det (1dd + T—QF(G)))d(‘).
B.(6*)

Hence, choosing (e/7)% = k,, , gives

* € dn,y.e
NBe(Q ) ( ) Scd(l‘FCdEA)d'Hm—f ,
Kn,~
which proves the assertion of the lemma. O

We say that a function f is log-Lipschitz with constant L if | f(z) — f(y)| < L|z — y|log(e + 1/|z — y|).
SRecall that by assumption of Theorem we have € > 1/4/n.
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Thanks to Lemmas [#.2]and [4.3| we can deduce Theorem 4.1} For & = 4Me/ /Ry, we find

. 167w M3€?1
P ( sup |R(0) — R,(0)] > 4M6/1/mw> < 2 NB(0) (e/,mn,n,) exp (—67T B; ogn)
Y

0€B(6*)
dn, e 167 M2€21
< 2cq(1+ €M) ky 7 exp <7r3260gn> ,
v

which completes the proof[] O

4.3 REMARKS ON THE GENERALIZATION ERROR BOUND

Ideally, the generalization bound from equation {.1|should be non-vacuous. This occurs if the right-
hand side is smaller than one, or equivalently, when the logarithm of the right-hand side is negative.
Table [2|demonstrates that a choice for v € (2”1%, 1] such that the bound remains non-vacuous, is
reasonable in practical settings where we set v = 0.003, but could become vacuous in deeper regimes.
For more details, see Appendix

5 EMPIRICAL RESULTS

In this section, we perform experiments to verify whether the local effective dimension captures
the true behaviour of generalization error in various regimes. We use standard fully-connected
feedforward neural networks with two hidden layers and vary the model size by altering the number
of neurons in the hidden layers. All training was conducted with batched stochastic gradient descent,
with experimental setups identical to those of (Liang et al., 2019)@ The details can be found in

Appendix [E]

We consider both shallow and deep regimes by training models on MNIST and CIFARI10 data
sets, with the latter requiring far more parameters for the training to converge to zero error. Within
these regimes, we conduct two experiments respectively: first, we incrementally increase the model
size, train to zero error and calculate the local effective dimension, along with the generalization
error; second, we replicate the experiment from (Zhang et al, [2021)) by fixing the model size and
randomizing the training labels by an increasing proportion, training to zero error and calculating
the local effective dimension and generalization error. In all calculations, we perform simulations
using the K-FAC approximation of the Fisher information from (Martens & Grossel 2015). K-FAC
crucially allows computation of the local effective dimension in very large parameter spaces and we
further exploit the block structure of this approximation for computation of the eigenvalues of the
Fisher information matrix (Georgel [2021).

Regardless of the regime and particular experiment conducted, the local effective dimension seems
to move in line with the generalization error. In Figures[I(a)]and[2(a)l we see this for an increasing
model size shown on the horizontal axes (with notably much larger models used to learn the CIFAR10
data set). As the models get larger, they are able to perform better on the learning task at hand and
their generalization error declines accordingly, as does the (normalized) local effective dimension.
The error bars represent the standard deviation around the mean of 10 independent training runs. A
lower normalized local effective dimension as the model size increases, intuitively implies increasing
redundancy, as also suggested in (Frankle & Carbinl [2018)), and motivates pruning techniques (Karnin
1990).

In Figures and we fix the model size to d ~ 10° and d ~ 107 respectively. Here, the
horizontal axis marks the level at which the labels of the training data have been randomized. We
begin at 20% randomization to 100% in increments of 20%. At all points, we train to zero training
loss or terminate at 600 epochs and plot the resulting normalized local effective dimension and
generalization error. Naturally, the generalization performance worsens as we randomize more labels
since the network is fitting more and more noise that has been artificially introduced. Interestingly,
the local effective dimension captures this behaviour too - increasing with the generalization error -

"The full rank assumption of the Fisher information matrix in Theoremcan be relaxed following the
ideas from (Abbas et al.,|2021, Remark 2).
8We include results with the ADAM optimiser in the appendix.
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Figure 1: MNIST (a) Normalized local effective dimension and generalization error plotted over
different model sizes (standard feedforward networks with two hidden layers and varying number of
neurons). The parameter 7 is fixed to equal the size of the training set, i.e. n = 60000. (b) Normalized
local effective dimension and generalization error over different percentages of randomized labels on
the training data. Here, the model size is fixed to d = 105.
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Figure 2: CIFAR10 (a) Normalized local effective dimension and generalization error plotted over
different model sizes. The number of parameters required to train CIFAR10 is far greater than the
number of training samples (n = 50000). We observe that the local effective dimension moves in line
with the declining generalization error as the model is made larger. (b) Normalized local effective
dimension and generalization error over different percentages of randomized labels on the training
data. Here, the model size is fixed to d =~ 107.

indicating that more and more parameters need to become “active” to fit this noise. This result is
independent of the regime, deep or shallow.

6 DISCUSSION

Whilst the search for a good capacity measure continues, we believe that the local effective dimension
serves as a promising candidate. Besides being able to correlate with the generalization error in
different experiments, the local effective dimension incorporates data, training and does not rest on
unrealistic assumptions. It’s intuitive interpretation as a measure of redundancy in a model, along
with proof of a generalization error bound, suggests that the local effective dimension can explain the
performance of machine learning models in various regimes. Investigation into the tightness of the
generalization bound, in particular for specific model architectures and in the deep learning regime
(where bounds are typically vacuous), would be beneficial in further understanding the local effective
dimension’s connection to generalization. Additionally, empirical analyses involving bigger models,
different data sets and other training techniques/optimizers could shed more light on the practical
usefulness of this promising capacity measure.
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A BENEFITS OF THE LOCAL EFFECTIVE DIMENSION

When deciding what is a good measure of capacity for a model, in particular for deep neural
networks which are notoriously difficult to understand in a generalization context, it is helpful to
check whether the capacity measure satisfies certain criteria which we highlight in Table|I] The
first criterion is whether the measure can be mathematically related to the generalization error via
an upper bound. This is the main contribution of our work, where we essentially show that the
local effective dimension can indeed bound the generalization error. The question of whether one
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can obtain tighter generalization bounds using the effective dimension, for specific models, is left
for future research. However, there are several interesting pieces of work that could be relevant
for this direction, such as (Pennington & Worah, 2018) who investigate the spectrum of the Fisher
information for a single layer neural network with infinite width. Since the effective dimension
depends largely on the eigenvalues of the Fisher matrix, this would be a convenient place to start this
investigation. Additionally, the work in (Pennington & Worah, 2018)) shows that a single linear layer
network produces a Fisher information spectrum which converges to a Marchenko-Pastur distribution
in the infinite width limit. In this setting, the generalization bound based on the effective dimension
reduces to something quite trivial which depends primarily on n, since the number of data determines
how many eigenvalues are counted in the local effective dimension. We hope that future studies can
improve the bound we present in this work, as we do not yet explore any optimality results.

The second criterion for a well-proposed capacity measure tries to address whether the generalization
bound using the capacity measure is actually good in practice, i.e., that the measure correlates with
the generalization error in various experimental setups, such as (Zhang et al.,|2021). Through our
numerical experiments in Section[5} we answer this with an affirmative answer.

Another crucial property for capacity is scale invariance, which corresponds to the measure being
insensitive to inconsequential transformations of the model, such as multiplying a neural network’s
weights by a constant. Since the local effective dimension is a function of the Fisher information,
which is inherently scale invariant, this requirement is naturally accounted for in the local effective
dimension.

A good capacity measure should also account for data and training dependence, i.e. the fact that
data is drawn from a distribution and one imposes a learning algorithm. Once again, the Fisher
information incorporates the data distribution, and the purpose of the localization of the effective
dimension is to account for training dependence.

A capacity measure should also be realistic in the sense that it should allow for finite data, which
is always the case in practice. The local effective dimension not only allows for finite data, but is
structured for this realistic purpose to include the amount of data available as a resolution parameter.
This creates a beautiful operational meaning for the local ED that depends on the amount of data one
has in practice.

Lastly, a capacity measure should be computationally efficient to evaluate (in polynomial time in the
number of data). Thanks to various approximations of the Fisher information, this too is possible for
the local effective dimension and is explained in Appendix [E.3]

B PROOF OF PROPOSITION

We denote the maximal rank of F' and F’ by 7 and 7/, respectively, and define the function

F(t) = vio /@ det (ida/ oy +1/F(9) + (1~ 1)\/F(0) )t ©)

=:G

We consider a modified version of the effective dimension, defined as

- 2log f(1) _ 5 / 2log f(0) |
dp~(F) i = ————= d dp~(F") i = ————= .
7’Y( ) log/ﬁ;n,'y +r an a'Y( ) logK/n,'y +r

The triangle inequality then gives

|y (F) = iy (F)| < |disy (F) = ooy (F)] 4 |y (F) = i (F')| + |l (F') = dM(F,)(‘i)

We next bound all the three terms. For the first and the last one, recall (Abbas et al.|[2021], Supple-
mentary Information, Section 2) that

i 2 1 . =
< -
dn~(F) <7+ og log <V@ /@ y/det(idg + F(Q))d@)
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andfor A:={0 €O :ry =7}

dn~(F) > 7+ logiw log <V1®/@\/det(F(0))d0) .

Recalling that

W(F) :max{log (Vl@/@ ./det(idﬁF(a))da) ,—log <V1®/®\/det(F(0))d9> }

gives |dy,  (F) —dp »(F)| < ﬁg’% and |dy, - (F") —dp (F')| < iqg(%/) It thus remains to bound
middle term in equation

To do so note that

L)
i

H%ﬂn4%ﬂW§A

We can bound the numerator of the integral as
d .
— det(idg/\/Fn,y + Gt)

o< [ G
Vi@/ece’d \/%—\/}T@?)Hd&

VE®) —\JF6)

where the constant Cyy depends on d, ||v/F||?~*, and ||V F[4~ 1.

do

IN

; ®)

< Cymax
0€O

Using the fact that A — (det A)'/¢ is concave on the space of Hermitian positive definite matrices
gives

1/d

d
et (ida/ /oy + Gr) > (tdet (ida/ Ry +G1) " + (1= ) det (ida/Fony + Go) ")
> thdet (ida//Fny + G1) + (1 — t)* det (ida//Fn~ + Go) -

Hence we have f(t) > t?f(1) + (1 — ¢)*£(0). Combining this with equation [§] gives
[, e
o (1) + (1 -1)4f(0)

. — 1/2 1 1 1
SCd%leaé( F(0) -/ F"(0) (/o ﬁ}f(l)dt+/1/2(1t)df(0)dt>

nll L L
< Capez | VE®) - FW)<ﬂm+fm>'

dt

|log f(1) —log f(0)] < Camax |[\/ F(0) =/ F'(0)

Combining this with

. . 2
[ (F) = oy (') <

| log (1) —log f(0)]

n,y

almost completes the proof. The final thing to note is that

£(0) = Vig/edet (ida/ /Ry + JF/(0)) 0 > Vi/@det( F1(6))do,

(C]

and similarly for f(1). O
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C GENERALIZATION BOUND FOR LOG-LIPSCHITZ LOSS FUNCTIONS

In this appendix we prove a generalization of Theorem [d.T] where the loss function is assumed to be
log-Lipschitz continuous instead of Lipschitz continuous.

Theorem C.1. Consider the same setting as in Theoremwith € € (1/+/n, 1], but the loss function
is log-Lipschitz continuous with constant Mo in the first argument with respect to the total variation
distance. Then

su — 2Me (6] e il
P( b IR0) = Bu(0)] > 22 tog (o4 ¥ ))

0cB.(0%) oy Mse

dn,~,e 2 M2 2 2
et e (S0 (o e ).
mn,y
9)

where M = M M; and k., ~ is defined in equation@

To prove Theorem|[C.I| we need a preparatory lemma.
Lemma C.2. Under the assumption of Theorem we have for any & € (0,1)

P sup [R(0) = Ru0)] 2 €) < 20 exp (”5) |

9B (6%) 282

where r = r(&) is defined as the unique value such that 2M, Marlog(e + N}ﬂ) = 5/2.E|

Proof. Letr € P(X) and ¢ € P(Y) denote the observed input and output distributions, respectively.
Then using the log-Lipschitz assumption of the loss function, we find

[R(6:) — R(02)]
Eyq [(p(yles00)r(2). a(y) | = Brg [E(p(yla: 02)r (). a(w) |
< Evy[[0(p(sl2: 007 (2),aly)) — £(p(ylas 02)r (@), a(v))]|

1
< ME, [ lp(y|x; 01)r(z) —p(ylz; 92)T(I)”1 log <e + p(ylz; 01)r(z) —p(ylz; 02)r ()| ) ]
) b) 1
1
< M [p(y1a30:) — plyh o) tog (o + ot )
1
< MM |61 — 6| log <e + ) , (10
01 — 02|

where the penultimate step uses that R} > x +— xlog(e + 1/z) is monotone together with Holder’s
inequality. The final step follows from the Lipschitz continuity assumption of the model. Equivalently
we see that

1
|Rp(01) — Rn(02)| < MyMy ||61 — 62| log (e + ) . (11)
161 — b2l
Combining equation 10| with equation[T1] gives for S(6) := R(6) — R,,(6)

1

Assume that B.(6*) can be covered by k subsets By, ..., By, i.e. B.(6*) = By U...U By. Then,
for any £ > 0,

k k
P( sup)|S<e>|zg>:P<Usups |>§> > (sup|s |>5) (3

0eB(0* i—19€Bi

“With the convention that r = oo if M7 = 0 or Ma = 0.
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where the inequality is due to the union bound.

Finally, let K = A/(r) and let By, . .., By, be balls of radius r centered at 61, . . ., 0y covering B.(6*).
Recalling that by assumption r = r(&) is such that 2M; Morlog(e + Mlﬂ) = &/2 we find for all
i=1,....,k

P (sup Is@12¢) <P (15002 5) (14)

0eB;

To see this recall that since |§# — 6;| < r, by definition of r and using the monotonicity of =
xlog(e + 1/x), Inequality equation|12]implies |S(0) — S(6;)| < &/2. Hence, if |S(6)| > &, it must
be that |.S(6;)| > % This in turn implies equation (14

To conclude, we apply Hoeffding’s inequality, which yields

P (15001 2 §) =P (IR0 - Ru(0)] 2 § ) < 20w (;’;f) | (s)

Combined with equation[I3] we obtain
: S €
P > > P s
<sup 15(0) 5) >? (sup 501> €) < §j (1501 %)

0B (0*)
—ng?
< 2N (r)exp < 55 ) :

where the second step uses equation [I4] The final step follows from equation [I5]and by recalling that
k= N(r). O

Proof of Theorem|[C.1} Choosing r = ¢/, /k,, , implies

2M1 M. Kn
€= 201 Mae log (e + "V> (16)
K~y Mse

via the relation between r and £ given in Lemma|C.2] Hence Lemma|C.2]implies

- B.(o) [ __€ _ng

dn,y.e 2
< 2cq(1 +eA)? /fnﬁ; exp (_nf)

2B2
dn,~,e InM?2e? 2
=2t e F o (2 (o (04 Y2)))
where the second step uses Lemma[d.3]and the final step follows from equation[T6] O

D REMARKS ON THE GENERALIZATION ERROR BOUND

Lemma@.2|implies that lim,, o P(supeeg ) |R(6)— R, ()] > &) =0foré € (0,1). As aresult,
to ensure that the generalization bound in equation @15 meaningful, the right-hand side must vanish
as n — oo. This depends on the problem setting, in particular, on the parameters € > 1/4/n, and

v e (2”1% 1]. There is some flexibility in choosing these parameters, with a “critical" scaling
obtained if e = Q(1/log(n ETI In the case where € = O(1/nP) for p < 3, the generalization bound
gets vacuous for sufficiently large n, regardless of the choice of the constant y € (2”1%, 1]EI

Ideally, the generalization bound from equation [4.1| should be non-vacuous. This occurs if the right-
hand side is smaller than one, or equivalently, when the logarithm of the right-hand side is negative.

1%Tn this case, the two terms in the right-hand side of equation balance each other out and the hyperparam-
eter -y can control the behaviour of the generalization bound as n — co.

Recall that choosing y dependent on n would conflict with the geometric interpretation of the effective
dimension (Berezniuk et al., 2020; |Abbas et al., 2021)).
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Table [2| demonstrates that a choice for v € (2”1%7 1] such that the bound remains non-vacuous,

is reasonable in practical settings where we set v = 0.003. As a result, we plot the accompanying
error bound &,,, the local effective dimension and the logarithm of the right-hand side of equation [4.]
which remains negative, for increasing values of n.

Table 2: Evaluation of the generalization bound equation [4.1] for a feedforward neural network
trained on MNIST. The model sets d ~ 10°, ¢ = 1/v/n, CAd = 2v/d,and B = M = 1. Even
when setting e = 1/4/n, we can still fix v = 0.003 such that the generalization bound is non-
vacuous, i.e., the RHS of equation E] is < 1. In fact, the log RHS of equation E] is strongly
negative, implying that the RHS is virtually zero. Following equation the error bound is given by
€n = AMe(ZBR)1/2 = WETOER 1 /.

A

n dnvy,e &n log RHS of equation
5x10° 23474 0.00132 —98507

108 25285  0.00068 —91345
2x10% 27594  0.00034 —79921
5x10% 31106 0.00014 —59307

107 33933 0.00007 —40316

E EXPERIMENTAL SETUP

Here, we explain the models and techniques used for the experiments in this study. All models
constituted fully-connected feedforward neural networks with leaky relu activation functions. We
used 2 hidden layers for all architectures, but varied the number of neurons per layer depending on
the experiment. Training was done with stochastic gradient descent, with batch sizes equal to 50.
In the instances where the CIFAR10 data set was used, we performed a standard transformation
of the data by normalizing and cropping from the center. For more details on this transformation,
see (Zhang et al.| 2021)).

E.1 INCREASING MODEL SIZE

In Figures and we train feedforward neural networks on the MNIST and CIFARI10 data
sets respectively. In both cases, we plot the model size on the x-axis and incrementally increase the
number of neurons in both hidden layers, thereby increasing the number of parameters in the model.
For MNIST, we do not need to train very large models to achieve zero training error, thus, we vary
the number of parameters from 2 x 10% to 10°. On the other hand, for CIFAR10, we train models
with parameters ranging from 5 x 10° to 107. In MNIST, the training and test split is 60000 and
10000 images respectively. For CIFAR10, it is 50000 and 10000.

We train every model for 200 epochs and plot the resulting generalization errors, approximated by
the test error. We also plot the normalized local effective dimension for every model using the trained
parameter set 6*. For this, we use n = 6 x 10* (which is the size of both training sets) and set v = 1.

In both Figures, we repeat the entire experiment 10 times with different parameter initialization and
plot the average generalization error and average normalized local effective dimension over these 10
trials, with error bars depicting 1 standard deviation above and below the mean values. As expected,
the local effective dimension declines along with the generalization error in both shallow (MNIST)
and deep (CIFAR10) regimes.

E.2 RANDOMIZATION EXPERIMENT

In Figures [[(b)]and 2(b)] we train models on the MNIST and CIFAR10 data sets respectively. In this
experiment, both models are fixed to d ~ 10° for MNIST and d ~ 107 for CIFAR10. What we vary
is the proportion of training labels that are replaced with random labels (as originally done in (Zhang
et al.,[2021)). We begin by randomizing 20% of the training labels as shown on the x-axis. We train
the models to zero training error or terminate after 600 epochs and plot the resulting generalization
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error and effective dimension. Thereafter, we increase the proportion of random labels in increments
of 20%, until 100% randomization and plot the generalization error and normalized local effective
dimension after training, each time.

This entire process is repeated 10 times with different parameter initialization and we plot the
average generalization error and average normalized local effective dimension over increasing
label randomization. Unsurprisingly, the generalization error increases as we increase the level of
randomization since the network is essentially learning to fit more and more noise and thus, does
not generalize well. Interestingly, the local effective dimension moves in line with this trend and
increases over increasing randomization too. This could be interpreted as the network requiring more
and more parameters to forcefully fit the increasing noise levels that would not naturally occur. Thus,
the local effective dimension captures the correct generalization behaviour, even in this artificial set
up where most capacity measures fail to explain generalization performance.

While in the case of noisy labels, deep neural networks seem to overfit regardless of how deep
you make them, it is worthwhile to mention other progress in understanding deep learning through
experiments aiming to probe the nature of overfitting. One particular analysis involves the study
of memorization of overparameterized models which produces a “double descent” curve rather
than the traditional U-shaped risk curve (Belkin et al., 2019). The details of the double descent
phenomenon are very subtle and depend on several interrelating factors such as the distribution of
data, the optimizer used (i.e. the trained parameters) and the notion of capacity employed. Given
that the local effective dimension accounts for these factors through the nature of its definition and it
is able to capture overfitting in an overparameterized regime induced through artificial noise in the
labels, we postulate that the local effective dimension through training would also track the double
descent risk curve accordingly. Thus far, we have conducted various experiments that calculate the
local effective dimension after training is complete, but the measure should intuitively inform us
about local information around any set of parameters. Thus, one could also extend the analysis to
look at the local effective dimension throughout training, which should mirror the double descent
phenomenon containing various regimes of under- and overfitting as in the work of (Maddox et al.,
2020) who employ a different notion of effective dimension.

E.3 ESTIMATING THE LOCAL EFFECTIVE DIMENSION

In all calculations involving the local effective dimension, there are two assumptions made. First, we
use a fixed parameter set 6* chosen after training to estimate the local effective dimension and assume
it is a good approximation of the average of sampling in an e-ball around 6*. In other words, we
ignore the integral over B, (6*) in Definition and simply use the trained parameter set to compute
the local effective dimension. In Table 3] we check the sensitivity of the local effective dimension
by comparing this “midpoint” approximation to sampling in an e-ball around #* and conclude that
the approximation is sufficiently close and thus helps reduce computational time. We use the more
efficient reformulation from Remark [3.3]to calculate the local effective dimension with multiple
samples and take e = 1/4/n.

Table 3: Evaluation of the local effective dimension for a feedforward neural network trained on
CIFAR10 with d ~ 107. We plot values for the normalized local effective dimension d calculated
with increasing samples from an e-ball around the trained 6*, where ¢ = 1//n. The midpoint
approximation uses the single 8* after training. For completeness, we include the unnormalized local
effective dimension d,, -, . and the average of the z(f) values generated from each sample as defined
in equation 4]

Samples Midpoint 50 100 200 500 1000
d 0.21815588 0.21815937 0.21816021 0.21815975 0.218159262 0.21815838
dn,y,e 2189499.62 2189534.68 2189543.14 2189538.53 2189533.61 2189524.72
Average of z(0) N/A 7407283.05 7407306.34 7407286.62 7407213.06 7407150.42

The second assumption made is that the Fisher information matrix can be approximated by the
empirical Fisher information matrix. From (Liao et al.,|2018)), we acknowledge that this assumption
does not always necessarily hold. Thus, the continuity statement from Proposition becomes
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relevant to ensure errors introduced by the estimate of the empirical Fisher do not strongly propagate
in the calculation of the local effective dimension.

Through the empirical Fisher information assumption, we further exploit work done in (Martens
& Grossel, |2015) and use the Kronecker-Factored Approximation (K-FAC) Fisher matrix in the
estimation of the effective dimension. The K-FAC Fisher allows us to estimate the eigenvalues of
the empirical Fisher information much more efficiently for large models. We slightly extend the
PyTorch (Paszke et al.|[2019) implementation developed in (Georgel [2021)). We refer the interested
reader to (Martens & Grossel 2015) for more details. The K-FAC estimate constitutes several block
matrices which comprise a diagonal block estimate of the empirical Fisher estimate. The block
matrices relate to the hidden layers used in a neural network model. Conveniently, these block
matrices can be further factorized into a tensor product of two smaller matrices. Thus, to calculate
the eigenvalues of the K-FAC Fisher, it suffices to compute the eigenvalues of the block matrices, and
thereby take advantage of their tensor decomposition. We extend the PyTorch K-FAC implementation
from (George, 2021)) to include a function that computes all the eigenvalues. Thereafter, the estimation
of the local effective dimension follows from equation[d] Due to these approximations and the code
implementation in (Georgel |2021)), we would like to highlight that computational bottleneck lies
solely with training the model when d is very large. The memory and time overhead for computing
the local effective dimension with the K-FAC Fisher is highly efficient and could, for example, run
on a laptop with modest memory for a model with d = 10000000 in just few minutes.

E.4 ADDITIONAL EXPERIMENTS

In order to validate the robustness of our results with different optimizers, we have conducted the
same experiment as in Figure [J] using the ADAM optimizer. As was the case with stochastic gradient
descent, we see that the relationship between generalization and the local (normalized) effective
dimension still holds.

051 018

0.10
016

014 .

s
§7)

009

008

060

generalization error
generalization error

047

006 007

normalized effective dimension d

normn

046 004

02 01 06 08 0 _ 02 03 04 05 06 ar  0s 09 10
model size (# parameters) percentage of randomized labels

(a) Model size (b) Random labels

Figure 3: CIFAR10 with ADAM (a) Normalized local effective dimension and generalization error
plotted over different model sizes. The number of parameters required to train CIFAR10 is far greater
than the number of training samples (n = 50000). We observe that the local effective dimension
moves in line with the declining generalization error as the model is made larger, even with training
using a different optimizer (ADAM as opposed to SGD in Figure[3] (b) Normalized local effective
dimension and generalization error over different percentages of randomized labels on the training
data. Here, the model size is fixed to d ~ 107 and training using the ADAM optimizer.
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