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ABSTRACT

Foundation models have brought changes to the landscape of machine learning,
demonstrating sparks of human-level intelligence across a diverse array of tasks.
However, a gap persists in complex tasks such as causal inference, primarily due to
challenges associated with intricate reasoning steps and high numerical precision
requirements. In this work, we take a first step towards building causally-aware
foundation models for treatment effect estimations. We propose a novel, theoreti-
cally sound method called Causal Inference with Attention (CInA), which utilizes
multiple unlabeled datasets to perform self-supervised causal learning, and subse-
quently enables zero-shot causal inference on unseen tasks with new data. This is
based on our theoretical results that demonstrate the primal-dual connection be-
tween optimal covariate balancing and self-attention, facilitating zero-shot causal
inference through the final layer of a trained transformer-type architecture. We
demonstrate empirically that CInA effectively generalizes to out-of-distribution
datasets and various real-world datasets, matching or even surpassing traditional
per-dataset methodologies. These results provide compelling evidences that our
method has the potential to serve as a fundamental building block for the develop-
ment of causal foundation models.

1 INTRODUCTION

Recent advances in artificial intelligence have created a paradigm shift in which models are trained
on large amounts of data and can be adapted to different tasks, dubbed foundation models (Bom-
masani et al., 2021). These models, which often employ self-supervision, can extract valuable
knowledge from various types of data, including natural language (Devlin et al., 2018; Brown et al.,
2020), images (Radford et al., 2021), and biological sequencing counts (Theodoris et al., 2023). This
acquired knowledge allows the model to generalize when asked to perform tasks in novel scenarios.
With vast amounts of data becoming increasingly available from diverse sources, such models are
of interest to leverage information that can be learned in order to build more intelligent systems
(Bubeck et al., 2023).

A critical aspect of intelligent systems is the ability to reason about cause-and-effect relationships,
which is vital to making informed decisions across various domains, including healthcare, eco-
nomics, and statistics (Harrison & March, 1984; Kube et al., 2019; Geffner et al., 2022; Zhang et al.,
2023c). There have been significant debates regarding whether current foundation models acquire
the ability to reason about causality (Kıcıman et al., 2023; Zečević et al., 2023). However, it was
observed that existing foundation models have difficulties with causal tasks that involve intricate
reasoning or high numerical precision (Bubeck et al., 2023; Mahowald et al., 2023; Wolfram, 2023;
Zečević et al., 2023; Jin et al., 2023), such as treatment effect estimations. Furthermore, perfor-
mance may decline when tested on datasets that were not part of the training set (Feder et al., 2022).
Motivated by this shortcoming, it is crucial to build causally-aware foundation models (see Ap-
pendix A a definition) capable of extracting causal information and performing causal inference at
scale, harnessing the vast amounts of data available from diverse sources.

However, creating a suitable self-supervised learning paradigm for causal foundation models with
theoretical guarantees remains an open question. Unlike existing foundational models for natural
language and vision (e.g., Devlin et al. (2018); Radford et al. (2021)), causal foundation models
generally lacks clearly defined supervised signals since most available machine learning datasets
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only contain observational data without intervention, rendering key causal quantities, such as treat-
ment effects, unknown. On top of this, common datasets used in causality community contain
complex relationships between variables that might be heterogeneous across dataset sources. These
less-structured heterogeneous relationships make it harder for the model to capture compared to
linguistic or perceptual patterns.

Contributions. In this paper, we take a first step towards building causal foundation models, focus-
ing on estimating treatment effects with greater generalizability. One of our primary contributions is
a theoretically sound method, dubbed Causal Inference with Attention (CInA), that leverages multi-
ple unlabeled observational datasets to learn how to estimate treatment effects on various tasks, and
then perform zero-shot causal inference on unseen tasks with new data.

• We theoretically establish the equivalence between optimal covariate balancing and (regu-
larized) self-attention through a primal-dual argument. We prove that with an appropriate
self-supervised loss, a trained self-attention is guaranteed to find the optimal balancing
weights for any given dataset under certain regularity conditions. This serves as the theo-
retical foundation that enables zero-shot causal inference on unseen data.

• Based on our theoretical results, we propose a gradient-based, transformer-type practical
algorithm for zero-shot causal inference. In particular, this model uses covariate balanc-
ing as self-supervised tasks. Once trained on multiple data sources, it performs zero-shot
causal inference by simply extracting the key-value tensors from the last layer of the model
during a forward pass on new data. This stands in contrast to traditional per-dataset causal
inference, which needs to re-fit and re-optimize on new data.

• Empirically, we verify the correctness of our theory and demonstrate the effectiveness of
our algorithm on both synthetic and real-world datasets. Importantly, in the context of zero-
shot causal inference on unseen datasets, we observed competitive and in-certain-cases
better performance to traditional per-dataset causal inference approaches, while achieving
substantial reductions in inference time.

These results show evidence that the proposed method can serve as a fundamental building block in
the development of causally-aware foundation models.

Organization. In Section 2, we discuss related works. In Section 3, we state our theoretical results
and provide the derivation of our algorithm, which serves as a proof sketch. We use these results to
derive our methods for zero-shot causal inference in Section 4. In Section 5, we perform empirical
studies of our proposed algorithms on both synthetic and real-world datasets.

2 RELATED WORKS

Causal Inference via Optimal Balancing. Our work concerns problems in causal inference, as-
suming that we are provided with either the causal structure (Pearl, 2009) or certain independence
conditions between variables that imply structural relationships (Imbens & Rubin, 2015). In partic-
ular, we focus on estimation problems, e.g., estimating average treatment effect (ATE) and policy
evaluation. See Section 3.1 for a detailed problem formulation. Under certain assumptions, one of
the most common methods is to use weighted (e.g., Li et al. (2018)) or doubly robust estimators (e.g.,
Dudı́k et al. (2011)). Numerous weighted estimators have been proposed to optimize covariate bal-
ance (e.g., Hainmueller (2012); Imai & Ratkovic (2014)). Our work extends this line of research by
introducing an optimal balancing approach that relies on training a transformer-type model, which
is the main architecture used by existing foundation models (Bommasani et al., 2021). We discuss
related neural estimation method in Appendix B. It is worth noting that we also differ from prior
work by considering multiple datasets simultaneously, where we show that our proposed method
can be generalized to produce estimand on a new dataset in a zero-shot manner.

Causal Reasoning with Large Language Models (LLMs). A prominent example of founda-
tion models are LLMs (Brown et al., 2020; OpenAI, 2023). Due to their remarkable performance
across various tasks, prior works have explored and exploited their capabilities in addressing causal
inquiries. For example, (Zhang et al., 2023a) assessed the ability of LLMs for three types of
causal questions: identifying causal relationships using existing domain knowledge, discovering
new knowledge from data, and estimating quantitative treatment effects. They found that LLMs per-
form well on the first question but are not yet to provide satisfactory answers for the others. Similar
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limitations with formal reasoning have also been noted in (Bubeck et al., 2023; Mahowald et al.,
2023; Wolfram, 2023). When probing LLMs, Li et al. (2022); Park et al. (2023) found evidences
of emergent representations that are helpful for causal predictions. However, it was observed that
for causal discovery, LLMs are not yet stable (Kıcıman et al., 2023) and might produce different
answers to the same question in two separate queries (Tu et al., 2023). To enhance LLMs for causal
tasks, Ban et al. (2023) proposed to integrate LLM outputs with constraint-based methods.

In this paper, we take a different path towards causally-aware foundation models; namely, we explore
the fundamentals of constructing these models from scratch to address questions on a larger scale
and with greater generalizability than current statistical tools. It is important to note that, apart from
utilizing the attention architecture, this work has no further connection with LLMs.

3 ESTABLISHING DUALITY BETWEEN CAUSALITY AND ATTENTION

We present our main theoretical result on the primal-dual connection between covariate balancing
and self-attention, which enables us to estimate treatment effects via transformer-type architectures.
In particular, in Section 3.1, we describe the adversarial optimal balancing formulation of causality
and show how optimal balancing can be viewed as a specific dual support vector machine (SVM)
problem. Then, in Section 3.2, we establish the equivalence between the SVM expansion and self-
attention. Detailed derivations of this section can be found in Appendix C.

3.1 ADVERSARIAL COVARIATE BALANCING AS DUAL SVM

To illustrate our approach, we focus on the task of average treatment effect estimation. In Ap-
pendix F, we extend our method to other estimands, such as individual treatment effect and policy
evaluation. Consider a dataset of N units D = {(Xi, Ti, Yi)}i∈[N ], where Xi is the observed
covariates, Ti is the observed treatment, and Yi is the observed outcome. Suppose Ti ∈ {0, 1}
for now; Appendix E generalizes these results for non-binary treatments. Let Yi(t) be the poten-
tial outcome of assigning treatment Ti = t. The sample average treatment effect is defined as
τSATE = 1

N

∑N
i=1

(
Yi(1)− Yi(0)

)
.

Assume Yi = Yi(Ti), i.e., consistency between observed and potential outcomes and non-
interference between units (Rubin, 1990), and Yi(0), Yi(1) ⊥ Ti | Xi, i.e., no latent confounders.
We consider weighted estimators in the form of

τ̂ =
∑
i∈T

αiYi(1)−
∑
i∈C

αiYi(0),

where T = {i ∈ [N ] : Ti = 1} is the treated group and C = {i ∈ [N ] : Ti = 0} is the control group.
We force constraints on the weight by allowing α ∈ A = {0 ⪯ α ⪯ 1,

∑
i∈T αi =

∑
i∈C αi = 1}.

These constraints help with obtaining robust estimators. For example,
∑

i∈T αi = 1 ensures that
the bias remains unchanged if we add a constant to the outcome model of the treated, whereas∑

i∈C αi = 1 further ensures that the bias remains unchanged if we add the same constant to the
outcome model of the control.

A good estimator should minimize the absolute value of the conditional bias that can be written as

E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

)
=

N∑
i=1

(αiTi−
1

N
)E (Yi(1)− Yi(0) |Xi)+

N∑
i=1

αiWiE (Yi(0) |Xi) ,

where we denote Wi = 1 if i ∈ T and Wi = −1 if i ∈ C. As the outcome models are typically
unknown, we follow previous works (Tarr & Imai, 2021; Kallus, 2020b) by minimizing an upper
bound on the square of the second term.1 Namely, assuming the outcome model E(Yi(0) | Xi)

belongs to a hypothesis class F , we solve for minα∈A supf∈F
(∑N

i=1 αiWif(Xi)
)2

. To simplify
this, consider F being an unit-ball reproducing kernel Hilbert space (RKHS) defined by some fea-
ture map ϕ. Then the supremum can be computed in closed form, which reduces the optimization
problem to

min
α∈A

α⊤Kϕα, (1)

1In Appendix D, we show how our method can generalize to alternative balancing objectives, e.g., the square
of both terms in the conditional bias and the conditional mean square error.
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where [Kϕ]ij = WiWj⟨ϕ(Xi), ϕ(Xj)⟩. Here ⟨·, ·⟩ denotes the inner product of the Hilbert space
to which ϕ projects. This is equivalent to solving the following dual SVM problem for some λ ≥ 0
(Theorem 1 in Tarr & Imai (2021)),

min
α

α⊤Kϕα− 2λ · 1⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.
(2)

In other words, the optimal solution α∗ to Eq. (2) solves Eq. (1). Thus we can obtain the optimal
balancing weight by solving the dual SVM. For the choice of the RKHS, we will see in the next
section that the feature function ϕ is also learned from data.

3.2 SELF-ATTENTION AS SUPPORT VECTOR EXPANSION

SVM to Self-attention. The dual SVM problem for covariate balancing (Eq. (2)) has the following
primal form:

min
β,β0,ξ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N ].

(3)

Intuitively, this optimization problem aims to classify the treatment assignment Wi using a linear
transformation of the feature vector ϕ(Xi).

We can connect the primal solution to the dual coeffcients α∗ by the Karush-Kuhn-Tucker (KKT)
condition (Boyd & Vandenberghe, 2004). The optimal β∗ that solves Eq. (3) should satisfy λβ∗ =∑N

j=1 α
∗
jWjϕ(Xj). Thus if λ > 0, the optimal classifer will have the following support vector

expansion

⟨β∗, ϕ(Xi)⟩ =
N∑
j=1

(α∗
jWj/λ) · ⟨ϕ(Xj), ϕ(Xi)⟩. (4)

Note that we drop the constant intercept for simplicity. Next we show how Eq. (4) relates to self-
attention.

‘I’ ‘love’ ‘dogs’
unit 1(X1)

values(V)

unit 2(X2) unit 3(X3)

outputs

Figure 1: Attending to units in-
stead of words. Values correspond
to covariate balancing weights.

Consider input sequence as X = [X1, ...,XN ]⊤ ∈ RN×DX .
We use a self-attention layer to attend to units in a dataset in-
stead of words in a sentence (Vaswani et al., 2017), as illus-
trated in Figure 1. This can be expressed as

softmax
(
QK⊤/

√
D
)
V ,

where Q = [q1, ..., qN ]⊤ ∈ RN×D, K = [k1, ...,kN ]⊤ ∈
RN×D, and V = [v1, ..., vN ]⊤ ∈ RN×1. Here we consider
output as a sequence of scalars; in general, V can be a se-
quence of vectors. The query and key matrices Q,K can be
X itself or outputs of several neural network layers on X .
Note that the softmax operation is with respect to per column of QK⊤

/
√
D, i.e., the i-th output is

N∑
j=1

exp
(
q⊤
i kj/

√
D
)∑N

j′=1 exp
(
q⊤
i kj′/

√
D
)vj . (5)

Following Nguyen et al. (2022), if we set Q = K, then there exists a feature map (exact form given
in Appendix C) such that for any i, j ∈ [N ], there is ⟨ϕ(Xj), ϕ(Xi)⟩ = exp

(
k⊤
i kj/

√
D
)
. Let

h(Xi) =
∑N

j′=1 exp(k
⊤
i kj′/

√
D). We can rewrite the i-th output of attention layer in Eq. (5) as

N∑
j=1

vj
h(Xj)

⟨ϕ(Xj), ϕ(Xi)⟩. (6)

This recovers the support vector expansion in Eq. (4) by setting λvj/h(Xj) = α∗
jWj . This shows

that at optimum, the SVM classifier takes the form of self-attention.
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Self-attention to SVM. Conversely, under mild regularities, we can also read off the optimal balanc-
ing weight α∗

j from λvj/h(Xj)Wj if the attention layer is globally optimized with an appropriate
loss function. In particular, with a penalized hinge loss, the learned optimal self-attention will solve
the primal SVM problem in Eq. (3). Then by the primal-dual relationship, we can equate Eq. (6)
with Eq. (4). This establishes the duality between self-attention and the optimal balancing weights
α∗, which is summarized in Theorem 1. The details of Algorithm 1 can be found in Section 4.1.
Theorem 1 (Duality between covariate balancing and self-attention). Under mild regularities on X ,
learning a self-attention via gradient-based Algorithm 1 recovers the optimal covariate balancing
weight at the global minimum of the penalized hinge loss in Eq. (7).

4 PRACTICAL ALGORITHMS TOWARDS CAUSAL FOUNDATION MODELS

In this section, we show how our theoretical results can lead to a gradient-based, transformer-type
algorithm for zero-shot optimal covariate balancing. Specifically, in Section 4.1, we introduce a
gradient-based solution for the traditional single-dataset setting. We then show how it can be ex-
tended to enable zero-shot inference on unseen datasets through amortization in Section 4.2. Details
of the model architecture and preprocessing steps are provided in Appendix H.

4.1 GRADIENT-BASED OPTIMAL BALANCING VIA SELF-ATTENTION

Comparing Eq. (6) and Eq. (4), we seek a training procedure such that
∑N

j=1
vj

h(Xj)
ϕ(Xj) recovers

the optimal β∗ that solves primal SVM in Eq. (3). Note that Eq. (3) corresponds to a constrained
optimization problem that is unsuitable for gradient descent methods. However, it is equivalent to
an unconstrained optimization problem by minimizing the penalized hinge loss (Hastie et al., 2009)
λ
2 ∥β∥

2+
∑N

i=1

[
1−Wi

(
⟨β, ϕ(Xi)⟩+β0

)]
+

. This motivates the use of the following loss function:

Lθ(D) =
λ

2

∥∥∥∥∥∥
N∑
j=1

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
[
1−W

(
softmax(KK⊤/

√
D)V + β0

)]
+
. (7)

Here we use θ to subsume all the learned parameters, including V and parameters of the layers (if
any) to obtain K. We learn θ via gradient descent on Eq. (7). Note that the penalization can be
computed exactly by using the formula for inner products between features, i.e.,∥∥∥∥∥∥

N∑
j=1

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

=

N∑
i,j=1

vivj exp
(
kik

⊤
j /
√
D
)

h(Xi)h(Xj)
.

Algorithm 1 Causal Inference with Attention (CInA)

1: Input: Covariates X and treatments W .
2: Output: Optimal balancing weight α∗.
3: Hyper-parameter: penalty weight λ > 0.
4: Parameters: θ (including V ), step size η.
5: while not converged do
6: Compute K using forward pass.
7: Update θ ← θ − η∇Lθ.
8: return λ · V /h(X)W .

Theorem 1 guarantees that under mild regu-
larities, the optimal parameters lead to the
optimal balancing weights in terms of the
adversarial squared error. This adversarial
squared error is computed using an unit-ball
RKHS defined by ϕ. The optimal balancing
weights and ATEs can be obtained via

α∗
j =

λvj
h(Xj)Wj

,

τ̂ = (α∗W )⊤Y .

Note that for this result to hold, arbitrary mappings can be used to obtain ki from Xi, thus allow-
ing for the incorporation of flexible neural network architectures. We summarize our method in
Algorithm 1, which is later referred to as CInA (or Ours).

4.2 ZERO-SHOT CAUSAL INFERENCE UNDER MULTI-DATASET SETTING

To enable zero-shot estimation of treatment effects, we consider multiple datasets denoted as
D(m) = {(Xi, Ti, Yi)}i∈[Nm] = (X(m),T (m),Y (m)) for m ∈ [M ]. Each dataset D(m) contains
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Nm units following the description in Section 3.1. We allow for datasets of different sizes, mimick-
ing real-world data gathering practices, where a large consortium of datasets may exist. The setting
encapsulates cases where individual datasets are created by distinct causal mechanisms; however,
different units within a single dataset should be generated via the same causal model. This presents
a new challenge, which requires the model to generalize to new datasets without supervision.

Algorithm 1 shows how one can read off the optimal weights α∗ from a trained model with at-
tention as its last layer in a single dataset. Note that the value vector V is encoded as a set of
parameters in this setting. On a new dataset D(∗) = (X(∗),T (∗),Y (∗)), the values of X(∗) and
W (∗) are changed, and thus the optimal V (∗) that minimizes Lθ(D(∗)) should also differ from the
encoded parameters. As indicated by the form of Lθ(D(∗)), the optimal V (∗) only depends on
X(∗) through K(∗). Therefore we encode the value vector V as a transformation of K and W .
Denote the parameters of this transformation as ϕ and let θ subsumes ϕ. We learn ϕ by minimizing

X

softmax 
kernel

W
V

matrix 
product

K
NNϕ

NNθ
outputs

Figure 2: CInA(multi-dataset) forward pass.

∑
m∈[M ]

Lθ(D(m))

on the training datasets in an end-to-end fashion.
On a new dataset not seen during training, we can
directly infer its optimal balancing weight α∗ via
λ ·V (∗)/h(X(∗))W (∗), where V (∗) and h(X(∗)) are
direct outputs using the forward pass of the trained
model. This procedure is summarized in Algorithm 2
and Algorithm 3. We illustrate the forward pass on
the right. This multi-dataset version of our method is
later referred to as CInA (ZS) (or Ours (ZS)).

Algorithm 2 CInA (multi-dataset version).

1: Input: Training datasets D(1), ...,D(M).
2: Hyper-parameter: penalty weight λ > 0.
3: Parameters: θ (including ϕ), step size η.
4: while not converged do
5: for m ∈ [M ] do
6: Compute K,V using forward pass.
7: Update θ ← θ − η∇Lθ(D(m)).

Algorithm 3 Direct Inference with CInA.

1: Input: Test dataset D(∗), trained model, used
penalty weight λ.

2: Output: Estimated sample average treatment
effect τ̂ .

3: Compute h(X(∗)),V (∗) using forward pass.
4: Compute α∗ = λ · V (∗)/h(X(∗))W (∗).
5: return τ̂ = (α∗W (∗))⊤Y (∗).

Intuition of What CInA (ZS) Learns. The transformation that encodes for V approximates the
solution to the optimization problem in Eq. (3). Thus Algorithm 2 can be seen as learning to how to
optimize (Bengio et al., 2021), which enjoys fast inference on a new dataset. It is worth noting that as
our optimization problem is continuous and easier to solve than combinatorial optimization, we do
not need to employ techniques such as reinforcement learning. We also do not require ground-truth
labels to any individual optimization problems as the parameters are learned fully end-to-end.

4.3 COMPUTATIONAL COMPLEXITY

We now discuss the computational complexity of our proposed method with respect to the number
of units N in each dataset. Suppose the last attention layer uses keys and queries of dimension D.
Inside each iteration of every epoch, since it needs to compute exp(kikj/

√
D) for each pair of units

i, j and h(Xi) for each i, the total complexity of this layer is O(N2D). Based on the outputs of
the forward pass, the complexity to evaluate the loss function is O(N2), as it evolves computing
the penalty term. During inference, the complexity relies on the complexity of the forward pass, as
computing α∗ and τ̂ are no more than O(N).

5 EXPERIMENTS

We study the performance of CInA on causal inference tasks using both synthetic and real-world
datasets. Our objectives are twofold: to validate our theoretical findings in a traditional single-
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dataset setting, and to evaluate the feasibility of CInA in a causal foundation modeling context,
where the multi-dataset version of CInA will be used for zero-shot causal inference across settings
with different levels of difficulty. The detailed implementations of this section can be found in
Appendix H. In Appendix I, we provide larger-scale, cross-dataset generalization experiments, as
well as two neural baselines (Shi et al., 2019; Chernozhukov et al., 2022).

5.1 SIMULATION STUDY A: FIXED CAUSAL GRAPH

Base Setting. We follow the simulation study setting in Tarr & Imai (2021), Lee et al. (2010), and
Setoguchi et al. (2008) with some modifications. The main purpose of this experiment is to validate
our theoretical findings by showing that CInA can perform competitively compared to baselines in
the traditional single-dataset setting. We consider a synthetic dataset generated using a fixed causal
graph. The covariates of each unit, Xi, are drawn from a 10-dimensional multivariate Gaussian
distribution with 4 pairs of correlations introduced. Then the treatment is modeled as a single binary
variable generated via a logistic model P (Ti = 1|Xi) = sigmoid(η⊤h(Xi)), where η is a randomly
sampled coefficient parameter, and h is a moderately non-linear and non-additive function detailed
in Setoguchi et al. (2008). Finally, the outcome variable is modeled as Y (T ) = γ0 +γ⊤x+ τT + ϵ
with ϵ ∼ N (0, 0.1) and τ = −0.4 (which defines the ATE). For this setting, we generate 100
different datasets sharing the same parameters, each containing 1024 units. We train all baselines,
and the single-dataset version of CInA in Section 4.1, on each of these 100 datasets separately, and
evaluate their overall performance. We refer to this setting as the single-mechanism setting.

Variation 1. In this variation, we aim to evaluate how the multi-dataset version of CInA performs
in a zero-shot inference setting with moderate difficulty. We generate 100 different datasets (split
into 60/20/20 for training/validation/testing). For each dataset, we first sample a new coefficient
parameter η from a fixed random distribution p(η). We then generate 1024 units using the same
form of outcome model specified in the base setting but with a different η for each dataset. Our
multi-dataset model, CInA (ZS), is trained on 60 training datasets, with hyperparameters selected
using 20 validation sets. The evaluation of its zero-shot performance is based on 20 testing datasets.
All other baselines are still trained on a dataset-specific manner, i.e., they will be fit to the 20 testing
sets separately. We refer to this setting as the multi-mechanism setting.

Variation 2. In the second variation, similar to variation 1, We generate 100 different datasets, each
using a different coefficient parameter η from some prior distribution p(η). However, instead of
sharing the same prior distribution for η, we force the training/validation datasets and testing datasets
to have different supports for η, i.e., supp(ptraining(η)) = supp(pvalidation(η)) ̸= supp(ptesting(η)). We
refer to this setting as multi+OOD.

Variation 3. The third variation is the same as variation 2, except that the 100 datasets have different
numbers of units, ranging from (512, 1024). This setting is referred to as Multi+OOD+diff size.

Figure 3: MAE for Simulation A. CINA matches
the best learning-based method DML; CINA (ZS)
generalizes well in moderate settings.

Baselines (references) and Metrics. As previ-
ous methods are designed for a single dataset,
we used them as reference for evaluating our
zero-shot method. We consider the following
baselines: the naive estimator, that performs
covariate balancing with uniform weights in
A; the IPW estimator (Rosenbaum & Rubin,
1983; Rosenbaum, 1987), which performs clas-
sical inverse probability weighting with logis-
tic models; the self-normalized IPW estimator
(Busso et al., 2014; Robins et al., 2007; Im-
bens, 2004) that normalizes the IPW weights to
be in A; the double machine learning (DML)
estimator (Chernozhukov et al., 2018) with
a linear final stage model; and finally, the
SVM approach which directly solves Eq. (2)
as quadratic programming on a per-dataset ba-
sis. Among those baselines, the parameter λ
for SVM was selected using validation datasets,
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whenever available. When λ is selected properly, the SVM solution should give the exact solution
and serve as the ground truth reference for the gradient-based methods, CInA and CInA-(ZS). To
quantify the accuracy of causal inference, we use mean absolute error (MAE) between true ATE and
predicted ATE as the main evaluation metric.

Results. Figure 3 shows the results for 4 different settings of simulation A. We observed that across
all settings, the single dataset version of CInA consistently give on-par performance with DML,
despite the unfair advantage of DML since it utilizes the outcome variables during training. CInA
outperforms all other re-weighting based methods except for the ground truth reference, SVM. This
further confirms the validity of our theoretical findings. Furthermore, in the multi-dataset settings
(Multi-mechanism, Multi+OOD and Multi+OOD+diff size), CInA (ZS) shows good zero-shot
generalization capabilities under moderate causal mechanism shifts, and performs competitively
against other baselines that are trained on the testing datasets themselves on a per-dataset basis.

5.2 SIMULATION STUDY B: MULTIPLE CAUSAL GRAPHS

In Section 5.1, we validated our methods in both traditional single-dataset setting and moderate
zero-shot settings under the assumption that all tasks/datasets share the same causal graph. Nevethe-
less, in an ideal context of causal foundational modeling, a good model should be able to perform
zero-shot causal inference on datasets coming from both different graphs and different functional
relationships. Therefore, in this section, we generate a large number of random synthetic datasets
with randomly sampled causal graphs to further evaluate the capability of CInA.

Figure 4: MAEs for ER-5000. CINA and
CINA (ZS) match the best reference method,
where CINA (ZS-S) improves upon CINA
(ZS) with additional supervised signals.

Datasets. Following Lachapelle et al. (2019), we
generate 5000 datasets (referred to as the ER-5000
dataset) each using a different random Erdős-Rényi
DAG (Erdős & Rényi, 1960). A detailed descrip-
tion is given in Appendix G. All datasets are pre-
standardized and split into a 60/20/20 ratio for
training/validation/testing. Similar to above, CInA
(ZS) and CInA (ZS-S) (described below) are trained
on training datasets, with hyperparameters selected
based on validation sets. Reported statistics are based
on testing datasets. All baselines are still trained on
each testing dataset individually.

Baselines (references) and Metrics. The baselines
considered in this experiment are the same as Sec-
tion 5.1, with the exception that the DML base-
line performs additional model selection from linear
DML, kernel DML(Nie & Wager, 2021), and causal
forest DML (Wager & Athey, 2018; Athey et al.,
2019). We add another baseline designed for ER-5000, dubbed as mean prediction, which uses
the mean ATE across all training datasets as the prediction for testing datasets. This helps us exam-
ine whether CInA is simply memorizing the ATEs from the training set. In addition to the evaluation
metric used Section 5.1, we evaluate the computational run-time of all methods on testing datasets.

Supervised Training of CInA. Unlike Section 5.1, all datasets in ER-5000 have differ-
ent average treatment effects. This allows us to utilize the ground truth ATEs of training
datasets as additional supervised signals. We incorporate this via simultaneously minimizing∑

m∈[M ]

∥∥(V (m)/h(X(m)))⊤Y (m) − τ (m)
∥∥2. The new loss function hence becomes∑

m∈[M ]

Lθ(D(m)) + µ
∑

m∈[M ]

∥∥(V (m)/h(X(m)))⊤Y (m) − τ (m)
∥∥2, (8)

where µ is the adjustable coefficient with default value 1. We refer to this supervised variation of
our method as CInA (ZS-S) (or Ours (ZS-S)).

Results. Figure 4 summarizes the results on ER-5000 datasets. We observe that the unsupervised
version of CInA (ZS) already reached the performance of DML, while being able to significantly
accelerate the inference computational time by a magnitude of ∼ 102 (Figure 6). With additional
supervised signals, CInA (ZS-S) is able to significantly outperforms all per-dataset baselines.
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5.3 EMPIRICAL STUDIES ON REAL-WORLD DATASETS

Figure 5: MAE for real-world datasets. CInA outperforms the
majority of baselines in most cases. CInA (ZS) generalizes
well and returns the best result for ACIC.

Figure 6: Elapsed time (seconds).
CINA (ZS) produces estimands in-
stantaneously.

Datasets and Baselines (references). We evaluate treatment effect estimation performances on real-
world datasets including: Twins (Almond et al., 2005), IHDP (Hill, 2011), IHDP-resampled (Cher-
nozhukov et al., 2022), ACIC (Shimoni et al., 2018; MacDorman & Atkinson, 1998), , LaLonde
CPS and LaLonde PSID (LaLonde, 1986). Among them, IHDP-resampled and ACIC naturally
come with multiple datasets, hence can be used to evaluate the zero-shot causal inference for CInA
(ZS). For other datasets, only the single dataset version of CInA is evaluated due to their single-
causal mechanism nature. A detailed description of these datasets can be found in Appendix G. All
baselines and cross-validation settings are the same as Section 5.2.

Results. Figure 5 summarizes our results. We observe that the experimental findings in simulation
studies also hold in real-world settings. In single-dataset experiments, CInA is able to outperform
the majority of per-dataset baselines in most cases (except for DML in LaLonde PSID and IPW in
Twins, etc). In multi-dataset experiments, namely, IHDP-resampled and ACIC, CInA (ZS) outper-
forms the majority of baselines including CInA. Furthermore, we noticed that unlike in simulations,
SVM is not working well in IHDP-resampled and ACIC. This is potentially because the hyper-
parameter selection is performed on validation datasets, which by construction, do not represent the
causal graphs/functional relationships of the test datasets well. However, our results show that CInA
(ZS) and CInA (ZS-S) are able to robustly perform zero-shot causal inference on unseen datasets
in this case. In summary, CInA and its variations generally perform well in real-world settings,
however its performance may be limited by the availability of dataset resources.

6 DISCUSSION

In this work, we take a first step towards building causally-aware foundation models for complex
tasks, with a particular focus on the duality between causal inference and attention mechanisms
in transformer-based architectures. In theory, we show that covariate balancing can be solved via
training any neural network with self-attention as its last layer. Our proposed approach, Causal
Inference with Attention (CInA), leverages multiple unlabeled datasets and is capable of performing
zero-shot causal inference on unseen data. This stands in contrast to previous approaches, which
need to re-optimize on new data. Empirical results show that CInA generalizes well to out-of-
distribution datasets and various real-world datasets, reaching and even surpassing the performance
of traditional per-dataset causal inference approaches. Therefore, we believe that our methods can
serve as a promising building block in the development of causally-aware foundation models.

Going forward, we view it as an important future step to extend the scope of empirical efforts for
obtaining a fully pretrained causal foundation model. First, much work remains to be done to build
large (public) datasets incorporating large-scale real-world/semi-synthetic data. Second, it would be
crucial to improve the efficiency of our method, potentially incorporating techniques from efficient
transformers (Child et al., 2019; Kitaev et al., 2020; Katharopoulos et al., 2020; Sun et al., 2023).
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A DISCUSSION ON THE DEFINITION OF (CAUSAL) FOUNDATION MODELS

In this paper, we focus on treatment effect estimation tasks (defined in Section 3.1). Our model is
then tailored for generalizable zero-shot estimating average treatment effects. That is, given unseen
datasets/contexts that contains observational records of covariates, treatments, and effects, we aim
to estimate the underlying treatment effects using a forward pass of the underlying model.

This approach is inline with the definition of foundation models discussed in Bommasani et al.
(2021): “any model that is trained on broad data (generally using self-supervision at scale) that can
be adapted (e.g., fine-tuned) to a wide range of downstream tasks”. Note that such task-universality
of foundation models does not necessarily imply adaptability across different machine learning
formulations (e.g., prediction, imputation, ATE, CATE, counterfactuals); instead, it can refer to
adaptability across different contexts for a given task. This perspective is widely embraced by recent
studies, such as those focusing on foundation models for tabular datasets (Zhang et al., 2023b),
time series (Garza & Mergenthaler-Canseco, 2023; Das et al., 2023), and knowledge graphs (Galkin
et al., 2023). These studies concentrate exclusively on a single type of task, but assess in-context
generalization across datasets.

B EXTENDED RELATED WORKS

As our work also intersects with the literature on neural causal estimation methods, we provide a
discussion in this section.

Neural Estimation Methods for Treatment Effects. Research in this direction employs deep learn-
ing methods to estimate treatment effects, typically relying on standard assumptions that ensure
identifiability, similar to our setting. A prominent approach focuses on learning a representation of
the covariates that is predictive of the outcome (Johansson et al., 2016; Shalit et al., 2017; Yao et al.,
2018). Following this, several methods have been proposed to combine outcome models learned
through neural networks with balanced propensity weights (Alaa et al., 2017; Schwab et al., 2018;
Du et al., 2021). Semi-parameteric estimation theory and doubly robust estimators have also been
applied in neural estimation methods, e.g., using regularization (Shi et al., 2019) or shared repre-
sentations (Chernozhukov et al., 2018). Another perspective of using neural network is to control
for complex relationships and covariates. Kallus (2020a) extends adversarial covariate balancing
(Kallus, 2020b) using flexible modeling with neural networks. Generative causal models have also
been proposed to leverage the expressivity of neural networks to approximate structural causal mod-
els (Louizos et al., 2017; Kocaoglu et al., 2017; Alaa & Van Der Schaar, 2017; Yoon et al., 2018;
Pawlowski et al., 2020; Xia et al., 2021; 2022), which then allows for the estimation of treatment
effects. In addition, Xia et al. (2021) also proved that their proposed method can be used to test
the identifiability of causal effect in terms of do-interventions (Pearl, 2009) in the general setting.
Xia et al. (2022) extended such testing for counterfactual outcomes (Bareinboim et al., 2022). In
(Melnychuk et al., 2022), the attention mechanism was employed to estimate treatment effect over
time for a given unit. Concurrent to our work, Nilforoshan et al. (2023) proposed a meta-learning
framework to learn causal effects of various structured treatments on the same population. Their
method leverages information across different treatments, which allows for zero-shot learning on an
unseen treatment. Our work can be viewed as orthogonal, as we focus on learning the causal effects
of the same treatment across different populations.

C OMITTED PROOFS

C.1 DERIVATIONS OF EQ. (1) AND EQ. (2)

We first establish the conditional bias decomposition:

E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

)
= E

(
N∑
i=1

αiWiYi −
N∑
i=1

1

N

(
Yi(1)− Yi(0)

)
| {Xi, Ti}Ni=1

)
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=

N∑
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1

N
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=
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i=1

(αiWiE (Yi(0) |Xi) + αiTiE (Yi(1)− Yi(0) |Xi)) +
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1

N
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=
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(αiTi −
1

N
)E (Yi(1)− Yi(0) |Xi) +

N∑
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αiWiE (Yi(0) |Xi) ,

where we use the assumption of consistency between observed and potential outcomes and non-
interference between unit (SUTVA, Rubin (1990)) in the second equation and unconfoundedness in
the third equation.

Formally, define a feature map ϕ : X → Hϕ, where X is the support of covariates and Hϕ is some
Hilbert space. The unit-ball RKHS is given by Fϕ = {f : X → R | ∃θ ∈ Hϕ, s.t. f(x) =
⟨θ, ϕ(x)⟩, ∀x ∈ X and ∥θ∥ ≤ 1}. Recall that ⟨·, ·⟩ denotes the inner product of Hilbert space Hϕ

and ∥ · ∥ denotes the associated norm. The adversarial upper bound of the square of the second term
in the conditional bias can be calculated via

sup
f∈Fϕ

(
N∑
i=1

αiWif(Xi)

)2

= sup
θ∈Hϕ,∥θ∥≤1

(
N∑
i=1

αiWi

〈
θ, ϕ(Xi)

〉)2

= sup
θ∈Hϕ,∥θ∥≤1

(〈
θ,

N∑
i=1

αiWiϕ(Xi)
〉)2

≤

∥∥∥∥∥
N∑
i=1

αiWiϕ(Xi)

∥∥∥∥∥
2

= α⊤Kϕα.

Recall that [Kϕ]ij = WiWj⟨ϕ(Xi), ϕ(Xj)⟩. Therefore minimizing this adversarial loss subject to
α ∈ A reduces to Eq. (1).

By evoking Theorem 1 in Tarr & Imai (2021), we have that Eq. (1) is equivalent to Eq. (2) for
some λ ≥ 0. However, the exact value of λ depends on Kϕ. For example, if Kϕ is such that the
minimum value of Eq. (1) is 0, then λ = 0. This is because the minimizer of Eq. (1) would also
be the minimizer under the unnormalized constraint (Eq. (2) with λ = 0), as α⊤Kϕα ≥ 0 for any
α ∈ RN .

Conversely, we can also show that λ > 0 if Kϕ is of full rank.

Lemma 1. If Kϕ if of full rank, then λ > 0.

Proof. From the proof of Theorem 1 in Tarr & Imai (2021), we know that λ = 0 only if q∗ =

minW⊤α=0,0⪯α⪯1,α ̸=0

√
α⊤Kϕα

1⊤α/2
is zero. However, since Kϕ is of full rank, it is positive definite.

Thus for any α ̸= 0, there is α⊤Kϕα > 0. Therefore q∗ > 0. Consequently, λ > 0.

C.2 DERIVATIONS OF EQ. (3) AND EQ. (4)

The dual form of Eq. (3) can be derived using its Lagrangian

L(β, β0, ξ,α, ᾱ) =
λ

2
∥β∥2 +

N∑
i=1

ξi +

N∑
i=1

αi

(
1− ξi −Wi

(〈
β, ϕ(Xi)

〉
+ β0

))
−

N∑
i=1

ᾱiξi,

where α ⪰ 0 and ᾱ ⪰ 0. The primal form in Eq. (3) can be obtained by
minβ,β0,ξi maxα⪰0,ᾱ⪰0 L(β, β0, ξ,α, ᾱ). If we exchange minmax with maxmin, solving
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minβ,β0,ξi by setting the derivatives to zero leads to

∇βL(β, β0, ξ,α, ᾱ) = λβ −
N∑
i=1

αiWiϕ(Xi) = 0,

∇β0
L(β, β0, ξ,α, ᾱ) = −

N∑
i=1

αiWi = 0,

∇ξiL(β, β0, ξ,α, ᾱ) = 1− αi − ᾱi = 0, ∀ i ∈ [N ].

Plugging these in L(β, β0, ξ,α, ᾱ), we can reduce maxα⪰0,ᾱ⪰0 minβ,β0,ξi L(β, β0, ξ,α, ᾱ) to
Eq. (2). Thus it is the dual form of Eq. (3).

In addition, we can also derive Eq. (4). It is easy to check that Slater’s condition holds for the primal
SVM problem in Eq. (3). Thus it satisfies strong duality. Therefore any optimal solutions to the
primal-dual problems must satisfy the KKT condition λβ∗ =

∑N
j=1 α

∗
jWjϕ(Xj).

C.3 DERIVATIONS OF EQ. (6)

From the Taylor expansion

exp(k⊤
i kj/

√
D) =

+∞∑
l=0

1

l!
(k⊤

i kj/
√
D)l

=

+∞∑
l=0

∑
N1+...+ND=l

(
[ki]

N1
1 ...[ki]

ND

D

)(
[kj ]

N1
1 ...[kj ]

ND

D

)
Dl/2N1!...ND!

,

we have that exp(k⊤
i kj/

√
D) = ⟨ϕ(Xi), ϕ(Xj)⟩ if

ϕ(x) =

(
[k]N1

1 ...[k]ND

D

Dl/2(N1!...ND!)1/2

)
N1+...+ND=l, l∈N

. (9)

Here k denotes the key embedding of x following the same transformation that ki is obtained from
Xi. Note that we allow the transformation to depend on X , which corresponds to a data-dependent
kernel.

Using this expression, the i-th output of the self-attention layer when Q = K can be equivalently
written as

N∑
j=1

exp
(
k⊤
i kj/

√
D
)∑N

j′=1 exp
(
k⊤
i kj′/

√
D
)vj = N∑

j=1

⟨ϕ(Xi), ϕ(Xj)⟩
h(Xi)

vi =

N∑
j=1

vj
h(Xj)

⟨ϕ(Xj), ϕ(Xi)⟩.

C.4 PROOF OF THEOREM 1

We first state its formal version:

Theorem 1. If the covariates X satisfy that ϕ(X1), ..., ϕ(XN ) are linearly independent, then Al-
gorithm 1 recovers the optimal balancing weight at the global minimum of the penalized hinge loss
in Eq. (7).

In particular, the optimal solution α∗ to Eq. (1), in which the feature function ϕ is defined using the
optimal neural network parameters via Eq. (9), can be obtained using the optimal neural network
parameters that minimize Eq. (7) via α∗

j = λvj/h(Xj)Wj .

Proof. Denote β =
∑N

j=1
vj

h(Xj)
ϕ(Xj), then using Eq. (6), we can rewrite the loss function in

Eq. (7) as

Lθ(D) =
λ

2
∥β∥2 +

N∑
i=1

[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+
.
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Denote ξi =
[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+

, then minimizing Lθ(D) can be equivalently written as

min
θ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N ].

Thus at the optimal θ, the corresponding β is also the optimal solution to

min
β,β0,ξ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N ],

where ϕ is defined using the optimal θ. This recovers the primal SVM problem. By the primal-dual
connection proven in Appendix C.2, if we denote the optimal solution to the dual problem (which is
Eq. (2)) as α∗, we have

λβ =

N∑
j=1

α∗
jWjϕ(Xj).

Consequently, by the definition of β, we have

N∑
j=1

λvj
h(Xj)

ϕ(Xj) =

N∑
j=1

α∗
jWjϕ(Xj).

By the assumption that ϕ(X1), ..., ϕ(XN ) are linearly independent, we must have λvj

h(Xj)
= α∗

jWj

for all j ∈ [N ]. Therefore α∗
j = λvj/h(Xj)Wj .

Remark 1. Note that when ϕ(X1), ..., ϕ(XN ) are linearly independent, the matrix Kϕ =
[W1ϕ(X1), ...,WNϕ(XN )]⊤[W1ϕ(X1), ...,WNϕ(XN )] is of full rank. Thus by Lemma 1,
there is λ > 0. Conversely, using a similar decomposition, we know that if K̂ϕ =
[ϕ(X1), ..., ϕ(XN )]⊤[ϕ(X1), ..., ϕ(XN )] is of full rank, then ϕ(X1), ..., ϕ(XN ) are linearly in-
dependent. Since K̂ϕ = exp(KK⊤/

√
D), we have ϕ(X1), ..., ϕ(XN ) linearly independent if K

is of row rank N . Thus the assumption on X in Theorem 1 is satisfied when K is of row rank N .

D ALTERNATIVE OBJECTIVES

Consider minimizing the square of both terms in the conditional bias, which we decompose into the
following form

(
E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

))2
=

(
N∑
i=1

αiWiE
(
Yi(Ti)|Xi, Ti

)
− 1

N

N∑
i=1

(
E
(
Yi(1)|Xi

)
− E

(
Yi(0)|Xi

)))2

.
(10)

Denote the outcome models E(Yi(1)|Xi) = f1(Xi) and E(Yi(0)|Xi) = f0(Xi). We choose to
minimize the above term in worst case over all possible potential outcome models (f0, f1) ∈ F2

ϕ.
Here the space F2

ϕ is defined as F2
ϕ = {(f0, f1) | f0 ∈ Fϕ, f1 ∈ Fϕ}.
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Suppose f0(x) = ⟨ϕ(x), θ0⟩ and f1(x) = ⟨ϕ(x), θ1⟩ for θ0, θ1 ∈ Hϕ, ∥θ0∥ ≤ 1, ∥θ1∥ ≤ 1. We can
bound Eq. (10) with respect to all outcome models in F2

ϕ as(
N∑
i=1

αiWifTi
(Xi)−

1

N

N∑
i=1

(
f1(Xi)− f0(Xi)

))2

=

〈∑
i∈T

αiWiϕ(Xi)−
1

N

∑
i∈[N ]

ϕ(Xi), θ1

〉
+

〈∑
i∈C

αiWiϕ(Xi) +
1

N

∑
i∈[N ]

ϕ(Xi), θ0

〉2

≤ 2

∑
i∈T

αiWiϕ(Xi)−
1

N

∑
i∈[N ]

ϕ(Xi)

2

+ 2

∑
i∈C

αiWiϕ(Xi) +
1

N

∑
i∈[N ]

ϕ(Xi)

2

where the inequality uses Cauchy-Schwartz inequality. Minimizing this upper bound subject to
α ∈ A is equivalent to solving

min
α

α⊤Gϕα+α⊤gϕ,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1.
(11)

Here

[Gϕ]i,j = δWi=Wj ⟨ϕ(Xi), ϕ(Xj)⟩,

[gϕ]i = −
2

N

N∑
j=1

⟨ϕ(Xi), ϕ(Xi)⟩.

It is easy to show that Gϕ ⪰ 0 as it can be decomposed into two submatrixes which are positive
semi-definite. In addition, as ⟨ϕ(Xi), ϕ(Xj)⟩ = exp(k⊤

i kj/
√
D) > 0, we know that gϕ ≺ 0.

To come up with a consistent gradient-based solver, notice first that Eq. (11) is equivalent to the
following unnormalized problem for some λ, µ ≥ 0

min
α

α⊤Gϕα+ 2µ · g⊤
ϕ α− 2λ · 1⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.
(12)

This can be shown similarly to the proof of Theorem 1 in Tarr & Imai (2021). We escape the details
but provide the following main steps:

1. We first show that for some ϵλ, ϵµ ≥ 0, Eq. (12) is equivalent to

min
α

α⊤Gϕα,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1, −g⊤
ϕ α ≥ ϵµ, 1⊤α ≥ ϵλ.

2. Next, we show that the above problem is equivalent to

min
α

√
α⊤Gϕα,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1, −g⊤
ϕ α ≥ ϵµ, 1⊤α ≥ ϵλ,

which is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α− νλ1
⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.

for some νλ, νµ ≥ 0.

19



Under review as a conference paper at ICLR 2024

3. For some λ ≥ 0, the above problem is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α

1⊤α
,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.

Since this problem is scale-free, it is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α

1⊤α
,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

i.e.,

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

4. Using similar arguments as above, one can show the above problem is equivalent to

min
α

α⊤Gϕα+ g⊤
ϕ α,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

for some µ ≥ 0.

The primal form of Eq. (12) can be written as

min
β1,β2,β0,ξ

1

2
∥β1∥2 +

1

2
∥β2∥2 +

N∑
i=1

ξi,

s.t.
(〈
β1, ϕ(Xi)

〉
+ β0

)
≥ λ− µ[gϕ]i − ξi, ∀i ∈ T(〈

β2, ϕ(Xi)
〉
− β0

)
≥ λ− µ[gϕ]i − ξi, ∀i ∈ C

ξi ≥ 0, ∀i ∈ [N ].

Following similar derivations in Appendix C, we can write out an unconstrained loss function

Lθ(D) =
1

2

∥∥∥∥∥∥
∑
j∈T

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
1

2

∥∥∥∥∥∥
∑
j∈C

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
[
λ− µ[gϕ]T −

(
softmax(KTK

⊤
T /
√
D)VT + β0

)]
+

+
[
λ− µ[gϕ]C −

(
softmax(KCK

⊤
C /
√
D)VC − β0

)]
+
,

where the optimal α∗ solving Eq. (11) can be read off as αi =
vi

h(Xi)
.

For the conditional mean square error, under regularity constraints in Bennett & Kallus (2019), we
can also use the same upper bound as above (up to an additive O(1/N) gap). Therefore the same
derivation holds. However, as this loss function separates the treated group from the control group
aside from sharing the constant intercept β0, it might not be preferable than the objective proposed
in the main text.

E NON-BINARY TREATMENTS

Consider a generalization to the setting in Section 3.1, where the dataset D = {(Xi,Ti, Yi)}i∈[N ]

in which Ti is a S-dimensional vector of multiple binary treatments. Let Y s
i (t) be the potential

outcome of assigning treatment [Ti]s = t.
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Assuming SUTVA (Yi = Y s
i ([Ti]s)) and unconfoundedness. Denote Ts = {i ∈ [N ] : [Ti]s = 1}

and Cs = {i ∈ [N ] : [Ti]s = 0}. We consider weighted estimators in the form of

τ̂s =
∑
i∈Ts

αiY
s
i (1)−

∑
i∈Cs

αiY
s
i (0)

for the sample average treatment of the s-th treatment

τsSATE =
1

N

N∑
i=1

(
Y s
i (1)− Y s

i (0)
)
.

Following the same derivations in Section 3 and Appendix C, we can obtain a dual-SVM formulation
to optimize α in the adversarial case. This dual-SVM formulation can then be transformed into its
primal problem. As self-attention is implicitly implementing the predictor in the primal problem, we
can then read off the optimal α∗ by training this self-attention-based neural network with a penalized
hinge loss.

However, as we would like to evaluate the sample average treatment for multiple treatments, we can
actually aggregate S SVM problems together using the flexibility of self-attention layers. Namely,
instead of consider a one-dimensional value vector V in Section 3.2, we use V ∈ RN×S , where the
s-th dimension corresponds to the s-th treatment. By minimizing the following loss function

Lθ(D) =
λ

2

S∑
s=1

∥∥∥∥∥∥
N∑
j=1

[V ]js
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+

S∑
s=1

[
1−W:,s

(
softmax(KK⊤/

√
D)V:,s + β0

)]
+
,

we can read off the optimal balancing weight α for the s-th treatment via λ · V:,s/h(X)W:,s

F INDIVIDUAL TREATMENT EFFECT ESTIMATION

In this section, we further consider the problem of estimating individual treatment effect (ITE) in
the binary treatment setup of Section 3. Here we present one possible algorithmic approach to
approximate ITEs with CInA. Without loss of generality, suppose T1 = 1 and we would like to
estimate ITE on the first unit E(Y1(1)− Y1(0) |X1).

Denote the “counterfactual dataset” by replacing the first sample with (X1, 0, Ŷ1(0)) as D̂, where
Ŷ1(0) is a realization of Y1(0). Note that we do not have access to the value of Ŷ1(0). However,
we do have access to the covariates and treatments of D̂. As these are all the required inputs to
Algorithm 1, we can compute the optimal balancing weight for this counterfactual dataset D, which
we denote as α̂.

Notice that the sample average treatments of D are D̂ should be the same, as they are defined for
the same set of units. Therefore the two weighted estimators are approximating the same τSATE (or
ATE when N increases) and thus∑

i∈T
αiE(Yi(1) |Xi)−

∑
i∈C

αiE(Yi(0) |Xi)

≈
∑

i∈T\{1}

α̂iE(Yi(1) |Xi)−
∑
i∈C

α̂iE(Yi(0) |Xi)− α̂0E(Ŷ1(0) |X1).

Therefore we have the following approximation

α̂1E(Ŷ1(0) |X1) ≈ −α1Y1(1) +
∑

i∈T\{1}

(α̂i − αi)Yi(1)−
∑
i∈C

(α̂i − αi)Yi(0).

As we have access to all individual terms on the right, we can compute an approximation of
E(Y1(0) |X1), using this formula as long as α̂0 ̸= 0.2

2Once we have these estimands, policy evaluation can done via plug-in estimations.
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To enhance the robustness of this estimation, we can also compute this for units with covariates
closed to X1, e.g., using KNNs (Devroye et al., 1994; Li & Tran, 2009), which would give con-
sistent estimations for conditional expectations. Algorithm 4 summarizes this procedure, where
Algorithm 3 can be used instead of Algoritm 1 to estimate ITE in a zero-shot fashion.

Algorithm 4 CInA for ITE.

1: Input: Covariates X and treatments W .
2: Output: Estimation of E(Y1(1)− Y1(0) |X1).
3: Hyper-parameter: penalty weight λ > 0.
4: Initialize τ = ∅.
5: for unit i with Xi ≈X1 do
6: Run Algorithm 1 on X,W to obtain α.
7: Set Ŵ to be W except Ŵi = −Wi.
8: Run Algorithm 1 on X, Ŵ to obtain α̂.
9: Let α̂iE(Ŷi(1 − Ti) | Xi) = −αiYi(Ti) +

∑
j ̸=i,Tj=Ti

(α̂j − αj)Yj(Tj) −
∑

Tj ̸=Ti
(α̂j −

αj)Yj(Tj).
10: Append Wi · (E(Ŷi(1− Ti) |Xi)− Yi(Ti)) to τ if α̂i ̸= 0.
11: return Average of τ .

G DATASET DETAILS

The details of the datasets for simulation A are provided in Section 5.1. We now provide the details
of ER-5000 and the real-world datasets. Code for downloading and pre-processing these datasets
will be provided upon publication.

ER-5000. Each of the ER-5000 datasets is generated following the structural causal model (SCM)
framework. The detailed procedure is as follows. First, we sample a random directed acyclic graph
(DAG) from the Erdős-Rényi random graph model (Erdős & Rényi, 1960) with edge probability
sampled from 0.25 to 0.5. Then, Based on the sampled DAG, we sample the corresponding func-
tional relationships using a linear weight sampler, with random weights sampled from a uniform
distribution between 0 and 3. Next, a treatment node and effect node is randomly chosen. For each
non-treatment node, we use additive gaussian random noise with standard deviation randomly sam-
pled uniformly between 0.2 and 2. For treatment node, we specify a Bernoulli distribution with logit
equal to the functional output of the corresponding node. Finally, we simulate each variable (in X ,
T and Y ) using the sampled DAG, functional relationships, and noises.

IHDP and IHDP-resampled. The Infant Health and Development Program (IHDP) dataset is a
semi-dataset complied by Hill (2011). We use the existing versions from Chernozhukov et al. (2022),
which are sampled using the outcome model implemented as setting A in (Dorie, 2016). Each dataset
comprises of 747 units and 25 covaraites measuring the aspects of children and their mothers. For
IHDP, the treatment group (139 out of 747 units) has been made imbalanced by removing a biased
subset of the treated population. A total of 1000 datasets are used (following Shi et al. (2019)),
where different datasets only differ in terms of outcome values. For IHDP-resampled, 100 datasets
are used where the treatments are resampled by setting the propensity score to “True” in the (Dorie,
2016).

Twins. Introduced by Louizos et al. (2017), this is a semi-synthetic dataset based on the real data
on twin births and twin mortality rates in the US from 1989 to 1991 (Almond et al., 2005). The
treatment is “born the heavier twin”, which is simulated as a function of the GESTAT10 covariates.
Therefore this dataset is confounded. After assigning the treatment for each pair of twins, the dataset
is constructed by hiding the other twin. We downloaded the dataset and processed it following Neal
et al. (2020).

LaLonde CPS and PSID. We also use the datasets from LaLonde (1986), in which the treatment
is job training and the outcomes are income and employment status after training. The ground-truth
average treatment effect is computed using a randomized study, where we use the observational data
to estimate it. The observational data has multiple versions. We use both the PSID-1 and CPS-1
versions for our experiments (Dehejia & Wahba, 1999).
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ACIC. The data for the 2018 Atlantic Causal Inference Conference competition (ACIC) (Shimoni
et al., 2018) comprises of serveral semi-synthetic datasets derived from the linked birth and infant
death (LBIDD) data (MacDorman & Atkinson, 1998). The data-generating process is described in
(Shimoni et al., 2018). In our experiment, we use datasets containing 1k or 10k samples.3 In the
experiments in Section 5, a total of 293 datasets (each of size 1k) were used, where 93 were left out
for testing. In Appendix I, we extend this to datasets of size 10k, where a total of 288 datasets were
used and 88 among these were left out for testing. We use datasets with polynomial link function for
training and validation. For testing, we use datasets with exponential link functions thus creating a
harder task for evaluating our methods.

H IMPLEMENTATION DETAILS

Code for our method will be released on GitHub upon publication. Below we describe the archi-
tecture, hyper-parameters, training procedures and other details of our method. We also provide the
implementation details of the baselines. Finally, we discuss a new data augmentation technique that
we observe to be helpful on certain datasets.

H.1 CINA

Pre-processing and Padding. For Algorithm 2, we might encounter multiple datasets with different
number of samples. We wish them to share the same transformation from W ,K to V ∈ RN×1,
where N is the number of units in the corresponding dataset. For this, we adopt similar pre-
processing steps as in natural language. We pad all datasets to the same size (i.e., adding dumy
units to smaller datasets) and save the masks that indicate these paddings. During back-propagation,
we use this mask to make sure that the loss function is only computed using actual units.

Model Configurations. We describe the architecture used in Algorithm 2, as the single-dataset
version uses the same components aside from parametrizing the values V directly as learnable
parameters. An illustration of the forward pass is provided in Figure 2.

For the transformation from covariates X to keys K, we implemented two versions: (1) an identical
mapping followed by a batch-norm layer K = bn(X), (2) a projected mapping followed by a batch-
norm layer ki = bn ◦ relu ◦ linear(Xi). In our first simulation study in Section 5.1, we observe that
the projection to be marginally helpful and thus report all the results based on the identical mapping.

For the transformation from W ,K to V , we first embed Wi,ki into a 32-dimensional space using
one layer of relu ◦ linear(·). These two 32-dimensional vectors are then concatenated into a 64-
dimensional vector following by a batch-norm layer. Denote these 64-dimensional embedding for
each unit as E = [e1, ..., eN ]⊤. We encode them into N × 1-dimensional outputs O using a scaled
product attention with value, key, query being linear transformations of E. Notice that we read
off the balancing weights via V /h(X)W and h(X) ≻ 0. As the optimal weights α∗ ⪰ 0, the
values V should have the same sign as W in an element-wise fashion. Therefore to enforce this,
we include another multiplier layer to obtain V from the outputs O, namely, V = relu(OW ).

Normalization. As the optimal balancing weights is in A = {0 ⪯ α ⪯ 1,
∑

i∈T αi =
∑

i∈C αi =
1}, we normalize the read-off balancing weights during inference. In particular, in Algorithm 1 and
Algorithm 3, after setting α∗ = λ · V /h(X)W , we project it into A by taking max(α∗,0) and
normalizing the treated and control group to sum up to 1.

Hyper-parameters. For both Algorithm 1 and Algorithm 2, we search for the optimal penalty λ > 0
from range [λmin, λmax] by exponentially increasing it from λmin to λmax. On the same dataset, this
range remains the same for both algorithms (and all variations, if applicable). The following table
summarizes the values of λmin to λmax for different datasets.

Training and Evaluations. For all the experiments, we use a cosine annealing schedule for the
learning rate from lmax to lmin during the first half of the training epochs. Then the learning rate
is fixed to lmin for the second half of the training epochs. The exact values of lmax and lmin for

3In datasets with large sample sizes, techniques for efficient transformers (Child et al., 2019; Kitaev et al.,
2020; Katharopoulos et al., 2020; Sun et al., 2023) can be applied to accelerate our method.
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Dataset λmin λmax

Simulation A 1e-6 1e-2
Simulation B 1e-6 1e-2

IHDP 1 1000
IHDP-resmapled 1e-5 1000

Twins 1e-8 1e-2
LaLonde CPS 1e-10 5e-6

LaLonde PSID 1e-10 5e-6
ACIC 1e-6 100

Table 1: Search range for λ in different datasets.

different datasets can be found in the codebase. For Algorithm 1, we train for 20, 000 epochs on all
datasets. For Algorithm 2, we train for 4, 000 epochs on all datasets.

For evaluating the results of Algorithm 2, we choose the best hyper-parameters based on the mean
absolute error on the validation sets of datasets and report the results on the testing sets of datasets.
For evaluating the results of Algorithm 1, if the setting contains multiple datasets (Simulation A,
Simulation B, IHDP-resampled, ACIC), we choose the best hyper-parameters based on the mean
absolute error on the validation sets of datasets and report the results on the testing sets of datasets.
Note that even though IHDP contains multiple datasets, they all share the same sets of covariates
and treatments. Therefore we treat it the same as settings with one dataset for Algorithm 1. On these
datasets (IHDP, Twins, LaLonde CPS, LaLonde PSID), we choose the best hyper-parameters based
on the reported results.

H.2 BASELINES

IPW and Self-Normalized IPW. For both IPW and self-normalized IPW, we first standardized the
covariates X . Then we fit a random forest classifier on the data to predict propensity scores. The
depth of the random forest classifier is chosen in the same way as the hyper-parameter λ is chosen
in CInA, which we described above.

DML. For DML, we use the implementation of Battocchi et al. (2019). In particular, we consider
three models: LinearDML, CausalForestDML, KernelDML. Similar as above, when a valida-
tion set of datasets is present, we report the results based on the best of these three models in terms
of validation MAE. Otherwise we report based on the best performance on the reported dataset.
However, in simulation A, we only use LinearDML as the outcome model is linear.

SVM. For this baseline, we first standardized the covariates X . Then we solve the dual SVM
problem in Eq. (2), where the kernel is defined using ϕ given in Eq. (9) on the standardized data. We
use the support vector classifier (Pedregosa et al., 2011) with a precomputed kernel. The maximum
number of iterations is capped with a hard limit of 50, 000. The reported results are based on λ
choosen in the same way as CInA described above.

H.3 DATASET AUGMENTATION

In our experiments in Section 5.1 and certain datasets in Section 5.3 using the multi-dataset ver-
sion of CInA, we implemented a new type of data augmentation. As we observe that the network
can learn how to balance on a set of datasets using very few training steps, we propose to reshuffle
amongst different datasets in every epoch. This essentially creates a “new” set of datasets by com-
bining units from different datasets. Intuitively, this augments the number of covariate balancing
problems that the model has to learn to solve without actually needing to acquire more data. How-
ever, we note that this technique is only applied if different datasets from the same experiment share
the same causal graph. If different datasets contain very different causal structures such as ER-5000
in Section 5.2 and ACIC in Section 5.3, this shuffling is not used as it would create covariate bal-
ancing problem that does not aid learning. The main intuition is that if we reshuffle units among
these datasets, units in a reshuffled dataset could follow different causal graphs, which means there
is potentially no underlying causal structure that can explain the data.
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I ADDITIONAL EMPIRICAL RESULTS

I.1 COMPARISON TO DRAGONNET AND RIESZNET

Method Simulation-A ER-5000 IHDP
Naive 0.172 ± 0.03 50.27 ± 5.97 0.259 ± 0.01
IPW 0.304 ± 0.03 27.42 ± 3.19 0.766 ± 0.02
Self-normalized IPW 0.158 ± 0.03 49.99 ± 5.88 0.141 ± 0.00
DML 0.094 ± 0.01 11.13 ± 3.17 0.585 ± 0.03
DragonNet 0.386 ± 0.01 11.21 ± 3.17 0.146 ± 0.01
RieszNet 0.045 ± 0.01 12.90 ± 4.54 0.110 ± 0.01
SVM 0.015 ± 0.00 11.09 ± 3.13 1.202 ± 0.05
Ours 0.126 ± 0.02 N/A 0.114 ± 0.01
Ours (ZS) 0.147 ± 0.01 11.50 ± 1.85 N/A
Ours (ZS-S) N/A 2.66 ± 0.33 N/A
Mean N/A 17.88 ± 1.83 N/A

Table 2: ATE MAE comparison of different methods on the ”Simulation-A”, ”ER-5000”, and
”IHDP” datasets.

In this section, we further compare two additional baselines, DragonNet (Shi et al., 2019) and
RieszNet (Chernozhukov et al., 2022), both of which were considered strong neural estimation
methods for per-dataset causal inference. Results for IHDP dataset were directly cited from (Shi
et al., 2019; Chernozhukov et al., 2022), following their best performing models. Furthermore, we
also compare to Simulation-A-Multi+OOD+diff size, and ER-5000, both are the most general
synthetic settings in Section 5. On Simulation-A-Multi+OOD+diff size, CINA (ZS) outperforms
DragonNet, while RieszNet outperforms both DragonNet and CINA (ZS) method. On both ER-5000
and IHDP, CINA (ZS) is on par with or outperforms DragonNet and RieszNet, while CINA (ZS-S)
massively outperforms the other methods on ER-5000.

I.2 LARGER SCALE EXPERIMENTS ON 10K ACIC 2018, WITH CROSS-DATASET
GENERALIZATION

Method ATE MAE Inference time on new data (s) Pretraining time (s)
Naive 13.07 ± 8.25 0.005 N/A
IPW 10.29 ± 5.94 48.927 N/A
Self-normalized IPW 10.30 ± 5.90 49.322 N/A
DML 8.572 ± 8.96 7391.743 N/A
RieszNet 69.39 ± 31.9 8157.498 N/A
Ours (ZS) 1.460 ± 0.48 78.503 1800
Ours (ZS-S) 1.361 ± 0.42 77.546 1800
Ours (ZS-ER) 1.718 ± 0.74 78.085 1800
Ours (ZS-S-ER) 1.702 ± 0.74 77.947 1800

Table 3: Comparison of different methods on the 10k ACIC 2018 dataset.

To demonstrate the performance of our method on larger version of ACIC 2018, we produce addi-
tional experiment using the 10k-size datasets of ACIC (Shimoni et al., 2018), which is a commonly
used scale considered in the literature (Shi et al., 2019; Mahajan et al., 2022). Note that instead of
only selecting a subset of datasets in ACIC 2018 as in (Shi et al., 2019; Mahajan et al., 2022), we
make use of all datasets of size 10k generated by (Shimoni et al., 2018) that has polynomial link
functions as training datasets, and all datasets of size 10k with exponential link functions as test
datasets.

In this setting, we also compare two new variants of our method, CINA (ZS-ER) and CINA (ZS-S-
ER), that are fully trained on a larger-scale, 200-dimensional ER-5000 dataset Section 5.2 under
both unsupervised and supervised settings, respectively. After pre-training, CINA (ZS-ER) and
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CINA (ZS-S-ER) are applied directly to all ACIC 2018 test sets. This will help us to demonstrate
whether the model can show generalization ability across datasets. All CINA-related methods are
trained for a fixed time budget (1800 seconds), which is significantly shorter than the full training
time of DML and RieszNet. As shown in Table 2, both CINA (ZS) and CINA (ZS-S) significantly
outperforms all baselines. The CINA (ZS-ER) and CINA (ZS-S-ER) methods give marginally worse
performance than CINA (ZS) and CINA (ZS-S), but still out-performs the other baselines by a clear
margin.
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