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Abstract

In this paper, we investigate how to harness large language
models (LLMs) to solve mathematical problems both quickly
and accurately. Specifically, we demonstrate the effectiveness
of classifying problems into distinct categories and apply-
ing category-specific problem-solving strategies to enhance
the math performance of LLMs. We develop a straightfor-
ward machine learning model for problem categorization and
show that its accuracy can be significantly improved through
the creation of well-designed training datasets. We believe
that our approach works by helping reduce hallucinations in
LLMs, which is a critical step toward unlocking their poten-
tial to tackle advanced mathematical problems.

Introduction
Large language models (LLMs) have significantly influ-
enced numerous domains, including finance (Nie et al.
2024), scientific writing (AI4Science and Quantum 2023;
Geng et al. 2024), and law (Colombo et al. 2024). Re-
cently, mathematics has emerged as a challenging new fron-
tier for LLMs (Srivatsa and Kochmar 2024). Solving mathe-
matical problems requires more than mechanistic computa-
tion; it often demands non-obvious insights and creative ap-
proaches. Unlike many tasks that can be framed as variations
of next-token prediction, mathematical problem-solving in-
volves generating unique strategies and uncovering subtle
insights, making it inherently difficult for machine learning
models.

Unsurprisingly, many AI models struggle with mathe-
matical problems, frequently producing inaccurate results.
For instance, even widely known models like ChatGPT of-
ten fail to solve simple competition math problems cor-
rectly (Greenleaf 2023). One primary reason is hallucina-
tion—where the model generates responses based on faulty
logic or incorrect assumptions.

To address these challenges, researchers at Google Deep-
Mind have developed models like AlphaGeometry and Al-
phaProof, which integrate text generation with formal rea-
soning and theorem-proving techniques (Roberts 2024).
These models have shown promising results: for exam-
ple, AlphaProof achieved a score of 28 on the 2024 In-
ternational Mathematics Olympiad (IMO), earning a sil-
ver medal (Wilkins 2024), while AlphaGeometry outper-
formed the average IMO silver medalist on geometry prob-

lems (Trinh and Luong 2024). However, these models have
limitations. AlphaProof, for instance, can take up to three
days to solve some IMO problems (Wilkins 2024), far ex-
ceeding competition time limits and making it impractical
for real-time solutions. Additionally, AlphaGeometry is re-
stricted to geometry problems, and AlphaProof performs
poorly on combinatorics tasks (Williams 2024).

This paper focuses on the specific but significant chal-
lenge of enabling LLMs to compute solutions to mathe-
matical problems both quickly and accurately. Unlike Al-
phaProof and AlphaGeometry, our approach targets compu-
tational problems that require producing numeric answers.
Even within this narrower scope, hallucinations in LLM out-
puts can lead to particularly egregious errors.

We propose a novel approach that helps mitigate halluci-
nation by categorizing problems into predefined categories
and providing category-specific solving strategies as input
to the LLM. Our framework identifies four primary cate-
gories—algebra, combinatorics, geometry, and number the-
ory—but can be extended to accommodate more nuanced
categorizations. Depending on the problem’s category, we
employ one of two problem-solving strategies: chain of
thought or program of thought. This structured methodol-
ogy substantially improves the accuracy of LLM problem-
solving.

To automate problem categorization, we developed a
lightweight deep neural network model. The key to its ef-
fectiveness lies in curating the right training data. In par-
ticular, we show the importance of domain-specific factors
such as “answer extraction” and achieving a good balance
of different problem categories. We then show how to prob-
abilistically associate a problem-solving strategy with each
identified category.

Our empirical analysis demonstrates that our categoriza-
tion model achieves over 80% accuracy. Furthermore, we
evaluate the impact of our neural model-categorization-
driven strategy selection against two baselines: using
ground-truth categories for strategy selection and randomly
assigning strategies. Our approach outperforms random
strategy assignment by 67% but falls 29% short of the per-
formance achieved using ground-truth categories.

To summarize, our contributions are as follows:

1. We find that prompting LLMs with problem categories
and associated problem-solving strategies significantly



improves problem-solving accuracy.
2. We develop a lightweight neural model for problem cat-

egorization.
3. We show the importance of - and the method for - obtain-

ing the right training data for effective neural categoriza-
tion.

4. We empirically demonstrate the problem-solving accu-
racy of our approach and compare it against key base-
lines.

Background
Hallucination occurs when an LLM produces reasoning
that is incorrect or generates information that is not neces-
sarily true. This issue is particularly critical in mathematical
problem-solving. If an LLM hallucinates and arrives at an
incorrect intermediate result inconsistent with the given in-
formation, it is highly unlikely to recover and successfully
solve the problem.

Our overall approach enhances LLMs’ reliability by intro-
ducing category-specific math problem-solving strategies.
These strategies help mitigate hallucinations by providing
the model with more structured and precise prompts, offer-
ing greater context to guide the solution process. In particu-
lar, we use two strategies: Chain of Thought (CT) (Wei et al.
2022) and Program of Thought (PT) (Chen et al. 2023).

Chain of Thought (Wei et al. 2022) involves asking an
LLM to come up with a detailed, step-by-step solution to
a problem before returning the final answer. This approach
encourages logical reasoning, which helps reduce errors and
hallucinations in problem-solving.

Program of Thought (Chen et al. 2023) involves in-
structing the LLM to create a detailed Sympy-based Python
script to solve the problem and then execute the code to
obtain the answer. Sympy is a Python library for symbolic
mathematics that can solve equations with multiple variables
and perform various algebraic operations. If the generated
code produces an incorrect result, the model iteratively re-
fines and re-runs the code until the correct solution is found.

While CT can be applied broadly to any mathematical
problem to mitigate hallucination, it is particularly effective
for problems requiring careful reasoning. On the other hand,
PT is better suited for problems involving iteration or recur-
sion, as it can execute such operations efficiently and accu-
rately.

We integrate both CT and PT strategies with an LLM
called Deepseek-Math (Shao et al. 2024). Deepseek-Math is
a compact LLM fine-tuned for solving mathematical prob-
lems, chosen for its compatibility with low-end GPUs com-
monly found in online Jupyter Notebooks. This accessibility
makes it especially valuable for math students and educators
worldwide.

Next, we illustrate the effectiveness of CT and PT through
specific examples. CT is very effective for the following
problem:

Problem 1 What is the minimum value of 5x2 + 5y2 − 8xy
when x and y range over all real numbers such that |x −
2y|+ |y − 2x| = 40?

This problem can be solved by CT by noting that 5x2 +
5y2 − 8xy = (x − 2y)2 + (y − 2x)2. After this inference,
there are multiple ways to solve the problem, which is now
drastically easier.

PT is very effective for the following problem:

Problem 2 Suppose that we roll four 6-sided fair dice with
faces numbered 1 to 6. Let a/b be the probability that the
highest roll is a 5, where a and b are relatively prime positive
integers. Find a+ b.

One possible solution with PT would be to iterate through
every single possible roll of the dice and count the num-
ber of rolls with the highest number 5. Because each roll
is equally likely, this allows the model to easily compute the
total probability. Additionally, this algorithm would run very
fast because the number of cases is just 64 = 1296, which
can be covered by a computer in a fraction of a second.

One naive approach to solving a math problem is to ran-
domly try CT or PT. Should the selected strategy be inappro-
priate, not only is the obtained answer likely to be incorrect
but significant time is expended in arriving at it. This is a
poor fit for our setting where we aim to solve math prob-
lems correctly and quickly.

Related Work
In this section, we discuss recent works in the general area of
using AI techniques and LLMs to solve mathematics prob-
lems. We draw the reader’s attention to a recent thorough
survey (Ahn et al. 2024) that covers much of the progress
made in this field, particularly highlighting the development
of math-specific fine-tuned models derived from state-of-
the-art LLMs.

Several studies, such as (Kao, Wang, and Hsieh 2024) and
(He-Yueya et al. 2023), focus specifically on solving algebra
problems using LLMs. For example, (Kao, Wang, and Hsieh
2024) addresses algebraic problems involving two or more
variables, while (He-Yueya et al. 2023) explores the use of
symbolic solvers for tackling algebraic word problems. In
contrast, our work differs in two key ways: (a) it spans mul-
tiple problem categories, and (b) it emphasizes problems
from mathematics competitions, which are succinctly speci-
fied and present unique challenges.

A related approach involves using one LLM to solve prob-
lems while employing another LLM to evaluate solutions or
provide feedback and hints, as discussed in (Agrawal et al.
2024) and (Wu et al. 2024). Unlike these methods that pro-
vide generic hints, our approach provides highly specific
guidance by categorizing problems and instructing the LLM
on which strategy to use based on the problem’s category.

Other works explore complementary aspects of problem-
solving. For instance, (Xu et al. 2024) examines how the
length of word problems impacts LLM performance, while
(Anantheswaran et al. 2024) investigates the effects of ir-
relevant information on problem-solving accuracy and pro-
poses methods to mitigate this issue. These techniques could
synergize with our approach, potentially enhancing accuracy
further: for example, it would be possible to integrate mea-
sures to reduce noise and reduce problem length in prompts
given to the model.



Overview of Our Approach
Our method extracts relevant information about a problem
before the model attempts to solve it. Using this informa-
tion, we select the most suitable strategy between Program
of Thought (PT) and Chain of Thought (CT) for solving the
problem. This approach not only increases the likelihood of
arriving at the correct solution but also reduces the number
of attempts required to reach an answer.

Our overall approach to solving problems is as follows:

1. Determine the category of a problem, choosing from one
of four: algebra, combinatorics, geometry, or number the-
ory.

2. Use this to determine the probability distribution for
picking one of {PT, CT} as the strategy for this problem.

3. Use this chosen strategy to solve the problem.
4. Repeat steps 2 and 3 until some answer has the desired

frequency or a problem has been attempted a fixed num-
ber of times. In either case, conclude that the most fre-
quent answer is the final answer.

The four categories—algebra, combinatorics, geometry,
and number theory—are chosen because they align with
the structure of problems in many major international
math competitions, such as the International Mathematics
Olympiad (IMO). Problems within the same category of-
ten share similar characteristics, making this categorization
highly relevant for strategy selection.

In Section , we empirically demonstrate how categorizing
problems enhances LLM problem-solving. Prior to that, in
Section , we discuss the rationale behind step 2, including
why certain strategies are more effective for specific prob-
lem types and the benefit of employing a probability-based
approach for strategy selection.

On Using Different Strategies
Typically, geometry problems will be easier to solve using
CT – because they do not involve multiple cases, PT (typ-
ically involving iteration) will not benefit problem-solving.
On the other hand, combinatorics problems will typically be
easier to solve using PT, because they often involve counting
cases. (This is true with counting and probability problems.)

However, a notable exception to the above observation is
the following problem:

Problem 3 Let the ‘sparkle’ operation on positive integer n
consist of calculating the sum of the digits of n and taking its
factorial, e.g. the sparkle of 13 is 4! = 24. A robot starts with
a positive integer on a blackboard, then after each second
for the rest of eternity, replaces the number on the board
with its sparkle. For some ‘special’ numbers, if they’re the
first number, then eventually every number that appears will
be less than 6. How many such special numbers are there
with at most 36 digits?

The main idea of this problem is that the sum of the digits
of any special number must be at most 2. For this problem,
a PT approach without any nontrivial observations would
involve iterating through 1036 possibilities for our number n.
The PT procedure outlined above involves solving every part

of the problem using code rather than making inferences, so
this procedure would likely not work.

Thus, even though problems in some categories may usu-
ally be more amenable to one strategy than the other, both
strategies should still be considered, as we do in Step 2.

Problems in algebra and number theory are equally
amenable to both CT and PT because while Sympy can it-
erate through integers in a range quickly and can solve mul-
tivariate equations, it will have trouble solving complicated,
layered problems. Thus, we can choose either strategy with
equal probability.

We conclude this section by stating the weights that our
approach will use in the probability distribution for choosing
between CT and PT. For both algebra and number theoretic
problems, we set the probability for each of CT and PT to
be 50% based on the discussion above. For geometry prob-
lems, we use a weight of 90% for CT and 10% for PT. For
combinatorics problems, we use a weight of 35% for CT and
65% for PT. In the latter two cases, we found that the cho-
sen probabilities offered the empirical best performance for
each category.

How Useful is Categorization?
We now demonstrate the utility of using categorization to
improve problem-solving accuracy. Specifically, we com-
pare the performance of Deepseek-Math in two scenarios:
1. Category-Based Strategy Selection: Deepseek-Math is
provided with the strategy corresponding to the correct cat-
egory of the problem, which we determine through man-
ual labeling. Based on this categorization, a strategy from
{CT, PT} is selected using the defined probability distribu-
tion, and the model is tasked with solving the problem us-
ing the selected strategy. 2. Random Strategy Selection:
Deepseek-Math is given a randomly selected strategy from
{CT, PT} for each problem, without any regard for catego-
rization.

In both scenarios, the model is allowed up to five at-
tempts per problem; in each attempt the strategy is reselected
from the corresponding distribution. This comparison high-
lights the effectiveness of leveraging problem categorization
to guide strategy selection.

The dataset we use for this experiment consists of 25
problems similar to those from the AIME as well as prob-
lems drawn directly from the 2015 AIME I (which were not
used in any training data). The results are shown in Table 1.
The results from the first situation are shown in blue, and
those from the second are shown in brown.

We make the following observations:

1. When using category-based choice between CT and PT,
Deepseek-math solves 28% of the problems (7 out of 25),
versus only 12% (3 out of 25) of the problems when using
random choice.

2. When using category-based choice, Deepseek-math has
a nonzero correct answer frequency on 36% of the prob-
lems (9 out of 25), versus 24% of the problems for ran-
dom choice (6 out of 25).

3. When using category-based choice, Deepseek-math
solves every problem that it solves using random choice.



Problem Outputs Frequencies Correct Correct Answer Correct?
Answer Frequencies

1 52 30 2 2 52 2 0 Yes No
2 891 445 2 2 250 0 0 No No
3 1 14 2 1 702 0 0 No No
4 0 2 2 2 800 1 1 No No
5 310 10 2 2 211 0 0 No No
6 100 1 2 2 199 1 1 No No
7 97 97 2 4 185 0 0 No No
8 256 256 2 2 320 0 0 No No
9 464 229 2 1 480 0 0 No No

10 199 793 2 2 199 2 1 Yes No
11 39 750 1 2 722 0 0 No No
12 139 139 3 4 139 3 4 Yes Yes
13 307 307 2 2 307 2 2 Yes Yes
14 768 800 2 1 507 0 0 No No
15 4 316 2 2 341 0 0 No No
16 12 150 1 2 58 0 0 No No
17 396 396 2 2 539 0 0 No No
18 695 695 4 2 695 4 2 Yes Yes
19 494 604 2 2 494 2 0 Yes No
20 72 12 2 3 72 2 0 Yes No
21 24 45 1 2 108 0 0 No No
22 143 509 2 2 431 0 0 No No
23 14 1 1 2 91 0 0 No No
24 999 10 2 1 483 0 0 No No
25 2 85 1 2 53 0 0 No No

Table 1: Outputs of Deepseek-math while using category-based choice between CT and PT. The second and third columns are
the most frequent outputs for each problem. The blue table entries correspond to the model using a strategy based on the correct
category, whereas the brown entries correspond to choosing randomly between CT and PT.

4. The average output frequency, in either case, is similar
(1.92 vs 2.04 in category-based choice versus random
choice). However, the average correct output frequency
of category-based choice is 0.76, versus 0.44 for random
choice.

In summary, our empirical analysis shows that categoriza-
tion is useful for facilitating LLM problem-solving.

Categorization Model
In this section, we first build a categorization model. We then
study the accuracy of the model and improve on it in later
sections.

Our model is a deep neural network with three layers,
whose architecture we will describe in detail shortly. To
train the model, we use a 412-problem subset of the MATH
dataset (Hendrycks et al. 2021), a collection of problems
written in LaTeX and categorized into five difficulty lev-
els. We focus specifically on level 5 problems because they
are comparable in difficulty to those found in AMC 12 and
AIME competitions, whereas the other levels are signifi-
cantly easier.

The MATH dataset categorizes problems into seven
groups, three more than the four categories (algebra, geome-
try, number theory, and combinatorics) used in our approach.
These additional categories are prealgebra, precalculus, and
intermediate algebra.

We exclude problems from the prealgebra category be-
cause they are not only much simpler than AIME-level prob-
lems but also broadly distributed across the other categories
(e.g., algebra, geometry, number theory, and combinatorics).
Similarly, problems in the precalculus and intermediate al-
gebra categories are primarily solved using algebraic tech-
niques, so we classify them as algebra problems in our
framework.

One very effective way to predict the category of a prob-
lem is to use word frequency. This is because some words
can be considered ‘indicators’, or words that indicate that a
problem is very likely to be of a particular . Table 2 shows
examples of several indicators found in the MATH dataset:

Some standard indicators can be easily identified, such
as the words polynomial, probability, and integer. However,
seemingly arbitrary words and code commands can also
serve as indicators for specific categories due to their con-
textual significance. For instance, the syntax ‘++i);‘ is com-
monly used to create iterative diagrams in Asymptote, a vec-
tor graphics language predominantly used in combinatorics
problems. Thus, this syntax becomes a meaningful indicator
for the combinatorics category.

Focusing on our neural model, it consists of three lay-
ers. The first layer includes one node for each indicator, the
second layer contains ten hidden nodes, and the third layer
has four output nodes, each representing one of the cate-



Indicator
Algebra Polynomial
Algebra Complex
Algebra \dots
Algebra \begin{array}{cl}
Combinatorics Committee
Combinatorics Probability
Combinatorics ++i);
Combinatorics $(a,b,c)$
Geometry Tangent
Geometry Rectangle
Geometry [‘asy’]
Geometry label($a$
Number Theory Integer
Number Theory Remainder
Number Theory \cdots
Number Theory $n$

Table 2: Some sample indicators for each

gories: algebra, combinatorics, geometry, or number theory.
The model employs a sigmoid activation function to account
for the possibility that some problems may span multiple
categories.

Before training the model, it is essential to address the
imbalance in the sizes of each category within the dataset.
Specifically, the training data consists of 237 algebra prob-
lems, 44 combinatorics problems, 40 geometry problems,
and 91 number theory problems. If the model were trained
directly on this data, its predictions would be heavily biased
towards algebra. In fact, when we tested this, the model as-
signed a 93% probability to the algebra category when pro-
vided with an empty string as input.

To mitigate this issue, we balanced the dataset by dupli-
cating the non-algebra problems so that all categories are
approximately equally represented.

This model achieves between a 60% and 70% accuracy
with the categorization of problems around the difficulty
level of the AIME (see Section for suitable results). We now
examine how to further improve the model’s accuracy.

The Right Data Matters!
To improve our accuracy, we examine one of the problems
that our model consistently gets wrong:

Problem 4 Suppose that we roll four 6-sided fair dice with
faces numbered 1 to 6. Let a/b be the probability that the
highest roll is a 5, where a and b are relatively prime positive
integers. Find a+ b.

The model evaluates the category of this problem as num-
ber theory, whereas in reality, the category is combinatorics.
If we search for specific number-theoretic keywords in this
problem, the phrase “relatively prime positive integers” will
jump out. While this is a number-theoretic concept, it is not
part of the real substance of the problem, rather it is a method
of extracting an integer answer from the fraction a/b. This
part of a problem is generally known as the ‘answer extrac-
tion’ of a problem: it is the part of a problem that consists

of work and calculations done after the main quantities in
a problem are found. Answer extraction appears frequently
on contests such as the AIME, which has a specific answer
format.

One issue is that the MATH dataset has a much lower
proportion of problems with answer extraction compared to
what appears on the AIME and the AMC 12.

Another issue here is that most problems with answer
extractions will be categorized as number theory by our
model. This is because answer extractions typically have
many number theory indicators. For example, one of the
most common answer extractions on the AIME asks the
competitor to first represent a rational quantity as x

y for rel-
atively prime positive integers x and y and then compute the
sum x+y. The italicized text in the previous section contains
four keywords which are likely number theory indicators.
Other problems in competitions such as the AIME involve
similar number-theoretic answer extraction methods.

What we notice here is that a key reason for the low accu-
racy of our model is the nature of the data used for training.
We address this by adding more problems to our training
dataset such that the proportion of problems that involve an-
swer extraction methods is comparable to AIME. Training
using this richer data is helpful – it enables our model to ex-
perience problems that involve number theory indicators but
are not actually categorized as number theory. This helps
our model avoid categorizing problems with answer extrac-
tions as always being number-theoretic.

The best option for problems to add to our dataset is prob-
lems from the AIME itself. These problems satisfy the afore-
mentioned constraints and are very similar to the problems
that we would ultimately like to solve. Hence, we hand-label
and add every problem from the last six AIME contests – to-
taling 90 problems – to our training dataset. We will see in
the next section that the addition of this richer data makes a
huge difference to the accuracy of our categorization model.

Evaluation
We train our model with the updated training data from the
previous section. We will refer to our model trained using the
added data as the “updated model” henceforth. We compare
our updated and original models according to both their cat-
egorization accuracy and how the improved accuracies help
Deepseek-math in problem-solving.

Accuracy Improvements
We first compare the accuracies of our original model and
the updated model using a 25-question test set. The results
are presented in Tables 3 and 4.

Here are the key takeaways from our results:
1. Our initial categorization model categorizes 64% of

problems correctly, versus 84% of problems for our up-
dated determination model.

2. Every problem that was correctly categorized by our ini-
tial model is also categorized correctly by our updated
model.

3. On two of the four problems that our updated model got
wrong, the probability of the correct category was close



Problem A C G N Answer Correct
Answer

1 0.14 0.14 0.68 0.04 G G
2 0.21 0.43 0.05 0.31 C C
3 0.08 0.20 0.04 0.68 N C
4 0.75 0.05 0.11 0.09 A A
5 0.18 0.12 0.06 0.63 N N
6 0.07 0.36 0.08 0.48 N A
7 0.08 0.24 0.18 0.51 N C
8 0.23 0.18 0.52 0.08 G G
9 0.15 0.04 0.65 0.16 G G
10 0.19 0.11 0.04 0.66 N A
11 0.15 0.07 0.63 0.15 G G
12 0.60 0.04 0.03 0.33 A A
13 0.22 0.23 0.06 0.49 N N
14 0.24 0.20 0.05 0.51 N N
15 0.16 0.45 0.19 0.21 C C
16 0.30 0.04 0.24 0.41 N G
17 0.31 0.27 0.07 0.35 N C
18 0.16 0.24 0.14 0.46 N G
19 0.22 0.29 0.04 0.45 N C
20 0.45 0.07 0.04 0.44 A N
21 0.62 0.03 0.04 0.31 A A
22 0.41 0.08 0.05 0.46 N N
23 0.10 0.10 0.71 0.10 G G
24 0.66 0.03 0.11 0.20 A A
25 0.14 0.12 0.57 0.17 G G

Table 3: Normalized probabilities for each category are
shown in columns 2-5. The model picks the highest-
probability category (column 6) and the correct category is
shown in column 7. Incorrectly categorized problems are
shown in orange or red. In particular, the red problems are
incorrectly classified by our original model but correctly cat-
egorized by our updated model (Table 4)

to (but lower than) the category with the highest proba-
bility.

4. Our updated model got four problems wrong, each of
which was incorrectly categorized as number theory.
This shows the shortcomings of our model: even though
fixing our dataset decreased the bias towards number the-
ory, it still exists. (The initial model incorrectly catego-
rized 9 problems, of which 8 were categorized as number
theory.)

As can be seen, despite the shortcomings, the updated
model presents a significant improvement. In Section , we
study how this accuracy improvement translates to im-
provements in the “downstream” task of using Deepseek-
math to solve problems. Before that, we consider the four
incorrectly-categorized problems and discuss ideas for fur-
ther improving our accuracy.

On Further Improving Categorization. Here are the
problems that both models got wrong during the categoriza-
tion test:

Problem 5 Let the ‘sparkle’ operation on positive integer n
consist of calculating the sum of the digits of n and taking its

Problem A C G N Answer Correct
Answer

1 0.15 0.08 0.74 0.03 G G
2 0.29 0.56 0.00 0.15 C C
3 0.06 0.08 0.01 0.85 N C
4 0.87 0.06 0.04 0.04 A A
5 0.16 0.05 0.02 0.77 N N
6 0.07 0.39 0.02 0.51 N A
7 0.14 0.67 0.08 0.11 C C
8 0.22 0.33 0.43 0.03 G G
9 0.18 0.05 0.72 0.05 G G
10 0.50 0.09 0.08 0.34 A A
11 0.03 0.08 0.82 0.07 G G
12 0.56 0.04 0.03 0.36 A A
13 0.04 0.10 0.02 0.84 N N
14 0.05 0.29 0.01 0.65 N N
15 0.04 0.83 0.05 0.08 C C
16 0.11 0.06 0.72 0.12 G G
17 0.30 0.26 0.01 0.43 N C
18 0.03 0.33 0.31 0.34 N G
19 0.04 0.60 0.01 0.35 C C
20 0.32 0.11 0.03 0.55 N N
21 0.82 0.09 0.01 0.07 A A
22 0.08 0.11 0.02 0.80 N N
23 0.03 0.07 0.82 0.08 G G
24 0.67 0.04 0.04 0.25 A A
25 0.04 0.07 0.82 0.08 G G

Table 4: Normalized probabilities for each category are
shown in columns 2-5. The model picks the highest-
probability category (column 6) and the correct category is
shown in column 7. Incorrectly categorized problems are
shown in orange.

factorial, e.g. the sparkle of 13 is 4! = 24. A robot starts with
a positive integer on a blackboard, then after each second
for the rest of eternity, replaces the number on the board
with its sparkle. For some ‘special’ numbers, if they’re the
first number, then eventually every number that appears will
be less than 6. How many such special numbers are there
with at most 36 digits?

Problem 6 For how many positive integers m does the
equation

||x− 1| − 2| = m

100
have 4 distinct solutions?

Problem 7 (AIME 2020/7) A club consisting of 11 men
and 12 women needs to choose a committee from among its
members so that the number of women on the committee is
one more than the number of men on the committee. The
committee could have as few as 1 member or as many as 23
members. Let N be the number of such committees that can
be formed. Find the sum of the prime numbers that divide N.

Problem 8 (AIME 2020/8) A bug walks all day and sleeps
all night. On the first day, it starts at point O, faces east,
and walks a distance of 5 units due east. Each night the bug
rotates 60◦ counterclockwise. Each day it walks in this new



Problem Outputs Frequencies Correct Correct Answer Correct?
Answer Frequencies

1 2 1 52 0 No
2 39 1 250 0 No
3 1 2 702 0 No
4 8 2 800 1 No
5 310 3 211 0 No
6 199 2 199 2 Yes
7 1 2 185 0 No
8 100 3 320 0 No
9 437 2 480 0 No

10 100 2 199 1 No
11 781 2 722 0 No
12 139 2 139 2 Yes
13 2 3 307 1 No
14 990 2 507 0 No
15 4 1 341 0 No
16 24 2 58 0 No
17 396 4 539 0 No
18 695 2 695 2 Yes
19 494 2 494 2 Yes
20 12 2 72 0 No
21 32 2 108 0 No
22 15 2 431 0 No
23 91 1 91 1 Yes
24 158 1 483 0 No
25 25 2 53 0 No

Table 5: Outputs of Deepseek-math while using model-based choice between CT and PT. The second and third columns are the
most frequent outputs for each problem.

direction half as far as it walked the previous day. The bug
gets arbitrarily close to the point P. Then OP 2 = m

n , where
m and n are relatively prime positive integers. Find m+ n.

Both models predicted all of these questions to be num-
ber theory, whereas they should have been categorized as,
respectively, combinatorics, algebra, combinatorics, and ge-
ometry.

Additionally, the errors in the third and fourth problems
seem to be in the answer extraction. For example, the third
problem states “Find the sum of the prime numbers that di-
vide N”, and the fourth problem states “relatively prime pos-
itive integers” (this is again the most common answer extrac-
tion). These are answer extraction errors that we specifically
tried to fix in Section . This shows that our model is not per-
fect, and there is still a lot of room for improvement. One
of the simplest ways to improve the model would be to add
more problems from the AIME to its training dataset. Only
90 problems were added in Section , but adding more would
lead to a much higher accuracy.

Downstream Task Evaluation
We utilize the same testing set and number of iterations as
Section , but the categorization of problems will now be
done automatically by the updated model we evaluated in
the previous section rather than manually. This categoriza-
tion is not perfect, so we should expect slightly worse results
than problem-solving with perfect categorization.

1. The model answers 20% of the problems correctly, and
has a nonzero correct answer frequency on 32% of the
problems. These values are slightly worse than the values
for perfect categorization (28%, 36%), and significantly
better than the values for random choice (12%, 24%).

2. Surprisingly, we find that Deepseek-math solves problem
23 in this test set, which is not only a very difficult prob-
lem (it was problem 13 on the 2015 AIME), but was also
unsolved even with perfect categorization.

As can be seen in Table 5, our model answers five prob-
lems correctly out of the 25, and gets the correct answer on
three other problems, though the correct answer in that case
did not have the highest frequency. This is a very significant
improvement from randomly choosing between CT and PT,
but there is still a gap between the accuracy here and accu-
racy with perfect categorization.

Conclusion
In this paper, we showed that problem categorization could
be used to facilitate math problem-solving by LLMs. This
is because, with some guidance on what category a problem
belongs to, we can provide the LLM with a tactic in {CT,
PT} that is likelier to work on the specific problem. This
provides a large improvement over other approaches.

We find that the accuracy of LLMs when a strategy is
chosen using perfect categorization is much higher than the



accuracy of LLMs when a random strategy is chosen. The
accuracy of LLMs when a strategy is chosen using our cate-
gorization model lies in between these two.

Our model achieves around 84% accuracy in predicting
the categories of problems. While this is fairly high, the ac-
curacy can likely be further improved by using a larger and
even more accurate dataset.
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