
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIRI: SCALING ITERATIVE REINFORCEMENT
LEARNING WITH INTERLEAVED COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SIRI, Scaling Iterative Reinforcement Learning with Interleaved
Compression, a simple yet effective RL approach for Large Reasoning Models
(LRMs) that enables more efficient and accurate reasoning. Existing studies have
observed repetitive thinking patterns in LRMs, and attempts to reduce them of-
ten come at the cost of performance. In this paper, we show that this trade-off
can be overcome through a training regime that iteratively alternates between
compressing and expanding the reasoning budget, by dynamically adjusting the
maximum rollout length during training. The compression phase cuts the rollout
length, forcing the model to make precise and valuable decisions within a limited
context, which effectively reduces redundant tokens and increases reasoning den-
sity. The expansion phase then relaxes the length limit, providing space for the
model to explore and plan in long-horizon settings. Remarkably, we find that after
each compression–expansion cycle, the model’s performance improves even as
its output length decreases, steadily pushing it closer to the Pareto frontier in the
performance–efficiency trade-off. Training on DeepSeek-R1-Distill-Qwen-1.5B,
SIRI-low improves performance on AIME24 by 43.2% while reducing token us-
age by 46.9% after three iterations, and SIRI-high achieves the highest accuracy
compared to all other methods (Figure 1). Our findings shed light on the potential
of periodically oscillating the LRM’s output truncation length during training to
dynamically balance exploration and efficiency in reasoning, converging towards
an optimal “sweet spot” between the two.

Figure 1: Performance-efficiency comparison between different training methods applied to
DeepSeek-R1-Distill-Qwen-1.5B. SIRI continually pushes the model to the Pareto frontier.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Models (LLMs) have become the frontier of AI research, demonstrating impressive
performance across a wide range of domains, such as text generation, code generation, math reason-
ing, and autonomous agents (OpenAI, 2025). In particular, Large Reasoning Models (LRMs) (Ope-
nAI, 2024; DeepSeek-AI, 2025; Zeng et al., 2025), a branch of LLMs tailored for reasoning tasks
such as math, physics, and coding, have witnessed a great leap recently, empowered by large-scale
reinforcement learning (RL) algorithms (Schulman et al., 2017; Shao et al., 2024). These models
are trained using Test-Time Scaling strategy (Snell et al., 2024; Muennighoff et al., 2025) that ap-
pears as a long Chain-of-Thought (Wei et al., 2022), utilizing the model’s backtracking, verification,
exploration and iterative refinement abilities at test time to obtain superior reasoning capability.

However, although RL can boost the model’s performance on reasoning tasks, it also inevitably
causes a rapid increase in the model’s output length. The amount of useless reasoning and overthink-
ing by the model rises significantly (Chen et al., 2024a; Qu et al., 2025), leading to a notable increase
in both training and inference time. To overcome this issue, prior works have attempted approaches
such as fine-tuning with short and precise reasoning traces (Kang et al., 2025; Ma et al., 2025), in-
troducing length penalties or length truncation during RL (Team et al., 2025; Aggarwal & Welleck,
2025; Luo et al., 2025a), and adopting hybrid reasoning strategies to automatically switch between
thinking and non-thinking (Fang et al., 2025; Zhang et al., 2025; Lou et al., 2025) to improve the
token efficiency of LRMs. However, without exception, these methods degrade the model’s perfor-
mance or cause it to stagnate, preventing it from fully unlocking its capabilities. To support this, in
Figure 1, all other length-compression approaches perform worse than models trained with standard
RL (DeepScaleR) by a large margin, placing them inside the Pareto frontier.

In this paper, we propose SIRI, Scaling Iterative Reinforcement Learning with Interleaved Compres-
sion, a simple yet effective framework that pushes the Pareto frontier by simultaneously reducing
token usage and improving reasoning accuracy. The key idea of SIRI is to periodically alternate
between compressing and expanding the reasoning budget during training, by dynamically ad-
justing the maximum rollout length according to a cosine scheduler. The compression phase forces
the model to think concisely by reducing overthinking, while the expansion phase encourages the
model to further explore based on mature reasoning traces. Unlike prior approaches that suffer
from a strict efficiency-performance trade-off, SIRI leverages the compression–expansion cycle to
achieve steady gains in accuracy despite shorter outputs. As shown in SIRI’s evolution trace in
Figure 1, with each iteration the model spirals upward by using fewer tokens and achieving higher
performance. We contribute the core factor in SIRI’s success to compressing length in each iteration
while not letting accuracy fall off the cliff. We further find that SIRI generalizes effectively across
different model sizes.

Empirically, our method demonstrates superior performance against state-of-the-art models trained
under the same 16K output limit. Training based on DeepSeek-R1-Distill-Qwen-1.5B model, the
expanded-length variant (SIRI-high) achieves a 43.5% pass@1 on AIME24 with an average of 10K
tokens, while the compressed-length variant (SIRI-low) achieves 40.4% pass@1 using only 7K
tokens on average. This nearly halves the token usage while still delivering a 43% improvement
over the initial pre-RL model.

2 RELATED WORK

2.1 LENGTH COMPRESSION FOR LRMS

Large reasoning models leverage test-time scaling to boost performance, but they frequently ex-
pend unnecessary tokens on repeated backtracking, unnecessary exploration, and non-reasoning
filler (Hou et al., 2025). To mitigate such inefficiency, previous studies mostly leverage reward
shaping for online RL training (Team et al., 2025; Aggarwal & Welleck, 2025; Luo et al., 2025b;
Hou et al., 2025; Zhang et al., 2025) or precise reasoning traces for offline fine-tuning (Ma et al.,
2025; Yang et al., 2025). The most commonly used reward shaping strategy is adaptive length
penalty (Team et al., 2025), which is further augmented by prompt engineering (Aggarwal &
Welleck, 2025). Another line of work apply budget forcing on models by either setting the re-
ward to zero or forcing the model to end thinking and generate the final solution once the output
length surpasses the token budget (Luo et al., 2025b; Hou et al., 2025; Muennighoff et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Recent studies also try to abandon the thinking process of relatively simple problems by training
the model to generate end-of-thinking tokens (Yang et al., 2025; Zhang et al., 2025; Fang et al.,
2025; Lou et al., 2025). However, all methods above inevitably compromise model performance
compared to full-length RL training, while our work shows that we can close this gap by an iterative
RL framework.

2.2 ITERATIVE TRAINING

Iterative training methods have been widely used in preference alignment and simple reasoning tasks
because of their ability to leverage additional data generated by the model over iterations. One line
of work uses maximum likelihood iterative training to enhance the model’s reasoning abilities (Gul-
cehre et al., 2023; Singh et al., 2023). During each iteration, a dataset is first generated by the current
model and labeled by a reward model. Then, this dataset is used to fine-tune the base model, yield-
ing a stronger version for the next iteration. Another line utilizes positive and negative samples with
Direct Preference Optimization (DPO) algorithms (Rafailov et al., 2023; Xiong et al., 2023; Chen
et al., 2024b). In GSHF (Xiong et al., 2023), new chosen/rejected responses are generated in each it-
eration and added to the dataset for wider dataset coverage. In SPIN (Chen et al., 2024b), the chosen
responses are generated by humans and fixed, while the model iteratively generates rejected re-
sponses and aligns with the human dataset. The most recent work unifies these two directions (Pang
et al., 2024), applying both NLL and DPO loss for arithmetic tasks, witnessing modest gains in the
GSM8K dataset. However, all methods above demonstrate only how iterative training can be applied
in off-policy training scenarios for simple reasoning problems. In this work, we further show that
iterative on-policy RL can be used to effectively advance the performance-efficiency Pareto frontier
of LRMs.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a Large Language Model (LLM) parameterized by θ, denoted by πθ and a math dataset
D with question-answer pairs, each denoted by (x, a∗). The model samples a problem x and gen-
erates a response y = [y1, ..., ym] sampled from the conditional distribution πθ(·|x). In the LLM’s
setting, each element in y is known as an output token. Specifically, for a Large Reasoning Model
(LRM) trained on mathematical tasks with a fixed answer, the last output token, ym, is the model’s
predicted answer for the problem. By defining the scoring function R(y) and setting R(y) = 1 if
a∗ = ym and R(y) = 0 otherwise, we aim to find θ∗ that satisfies

θ∗ = argmax
θ

E(x,a∗)∼D,y∼πθ(·|x)

[
R(y)

∣∣ |y| ≤ L
]
,

where |y| is the length of the output y, and L is the token budget.

3.2 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., 2024), based on Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), is widely used in post-training of LRMs. For each question-
answer pair (x, a∗) sampled from dataset DGRPO, πθ samples G individual responses {yi}Gi=1 and
estimates the advantage of the i-th response with group-level rewards

Âi,t =
R(yi)− mean

(
{R(yi)}Gi=1

)
std
(
{R(yi)}Gi=1

) .

Then, the loss of the policy is calculated by

LGRPO(θ) = −E(x,a∗)∼DGRPO,{yi}G
i=1∼πθold (·|x)[

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL(πθ∥πref)

)]
,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) DeepScaleR’s training dynamics (Luo et al., 2025b).

Training Steps

Compression Stage Expansion Stage Compression Stage Expansion Stage

Compression Stage
Expansion Stage
Accuracy
Response Length

(b) Hypothesized iteration dynamics of SIRI.

Figure 2: Motivation of SIRI: The compression stage primarily reduces the model’s overthinking
while preserving performance, storing potential to provide more room for exploration in the next
interleaved expansion stage, and this process repeats cyclically.

where

ri,t(θ) =
πθ(yi,t | x,yi,<t)

πθold(yi,t | x,yi,<t)
.

In Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025), the upper and lower clip
thresholds are decoupled, and the former is set larger to encourage model exploration. Moreover,
the KL divergence is removed in light that post-trained reasoning model will naturally diverge from
the base model. We adopt these improvements in this work.

4 SIRI: SCALING ITERATIVE REINFORCEMENT LEARNING WITH
INTERLEAVED COMPRESSION

4.1 MOTIVATION

In DeepScaleR’s (Luo et al., 2025b) 8K training stage, there is an increase in the model’s perfor-
mance despite a sharp response length drop. This shows that the model can compress key reasoning
steps into shorter contexts, thus freeing capacity for exploration in the subsequent 16K stage. How-
ever, the following context-expansion stage may again introduce redundant reasoning patterns. As
illustrated in Figure 2, we hypothesize that interleaving compression with expansion can yield per-
formance gains while maintaining comparable response lengths across expansion stages. The key
ingredient of the success may lie in the compression stage: after the initial performance drop caused
by switching from long to short outputs, it must restore performance to ensure the model does not
fall below its level at the start of the next expansion stage. With this motivation, we now explore the
best design for the compression-expansion schedule in the following subsections.

4.2 REWARD SHAPING

A common approach for length compression is reward shaping. We adopt the length-capping reward
introduced in DeepScaleR, which assigns a reward to each response y based on a maximum length
L as follows:

R(y) =

{
1, if an answer can be extracted from clip(y, L) and is correct,
0, otherwise.

Note that this method is effective when the responses in each group are diverse enough, i.e., there
is a correct response whose length is lower than the capping threshold, and a correct/incorrect re-
sponse whose length is higher than the capping threshold. In such case, the policy update will pose
positive gradients on the short and correct responses, while posing negative gradients on the longer
responses, directing the model to preserve correct and dense reasoning patterns while pruning ineffi-
cent or wrong patterns. On the other hand, while using an adaptive length penalty is mathematically

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Training Steps

8000

10000

12000

14000

16000

M
ax

im
um

 L
en

gt
h

(a) Stair scheduler

0 200 400 600 800 1000 1200
Training Steps

8000

10000

12000

14000

16000

M
ax

im
um

 L
en

gt
h

(b) Cosine scheduler

0 200 400 600 800 1000 1200
Training Steps

8000

10000

12000

14000

16000

M
ax

im
um

 L
en

gt
h

(c) Stair-cosine scheduler

Figure 3: Illustration of different schedulers with cycle length 640.

justified, it requires complex hyperparameter tuning since different length constraints may have
different optimal penalty coefficients. Moreover, their training efficiency is worse than the direct
capping method. For these reasons, we do not adopt them.

4.3 LENGTH SCHEDULER

In iterative training, the design of the length scheduler is important as it controls the compression and
exploration behavior of the model. The scheduler should have the following properties: 1) prevent
performance degradation during the compression phase, and 2) encourage exploration during the
expansion phase, meaning that the model’s generation length should plateau before the expansion
phase ends. Here, we introduce three types of schedulers. To unify notation, let T denote the cycle
length (in steps), t be the current step, Lmax and Lmin denote the maximum and minimum capping
threshold during each cycle. Figure 3 illustrates the curves of the respective schedulers.

Stair scheduler. The stair scheduler reduces the maximum generation length from the upper cap-
ping threshold Lmax to the lower capping threshold Lmin during the compression phase. It then
switches from Lmin to Lmax when the model enters the expansion phase.

Cosine scheduler. To make the length reduction and recovery process smooth, we also investigate
the cosine scheduler. The maximum generation length at each step t can be written as

L =
Lmax + Lmin

2
+

Lmax − Lmin

2
· cos(2π

T
· t).

Stair-cosine scheduler. The cosine scheduler doesn’t maintain at Lmax and Lmin. However, this
may hinder the model’s ability to further explore at Lmax after expansion and restore performance
at Lmin after compression. Thus, we combine the stair and cosine scheduler into a unified scheduler
that ensures both smoothness of the whole process, exploration at Lmax, and exploitation at Lmin.
Letting the current phase be ϕ = 2π · t mod T

T , the whole schedule can be written as

L =



Lmax, ϕ < π
4 or ϕ ≥ 7π

4 ,

Lmax + Lmin

2
+

Lmax − Lmin

2
· cos

(
2(ϕ− π

4)
)
, π

4 ≤ ϕ < 3π
4 ,

Lmin,
3π
4 ≤ ϕ < 5π

4 ,

Lmax + Lmin

2
+

Lmax − Lmin

2
· cos

(
2(ϕ− 3π

4)
)
, 5π

4 ≤ ϕ < 7π
4 .

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate our compression-expansion approach.
Specifically, our experiments are designed to answer the following questions:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

SIRI-low

SIRI-high

Pass@1 Accuracy
Average Response Length
Scheduled Maximum Length
Full Cycle Finishes

8000

10000

12000

14000

16000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

Figure 4: The 1.5B model’s Pass@1 accuracy and average response length of SIRI with 640-cycle
length cosine scheduler over three iterations on the AIME24 benchmark.

RQ1: Can the compression-expansion scheme enhance reasoning accuracy while pruning redundant
tokens? What is the underlying mechanism behind this behavior?
RQ2: What is the best generalizable design of the length scheduler?
RQ3: Is the compression-expansion scheme generally applicable to different models?

5.1 EXPERIMENT SETUP

Dataset. To provide a fair comparison with the strong DeepScaleR (Luo et al., 2025b) baseline, we
use the same training set used in training DeepScaleR-1.5B-Preview, which comprises 40K high-
quality math questions with groundtruth answers selected from AIME 1983-2023, AMC, Omni-
Math (Gao et al., 2024), and STILL (Min et al., 2024) datasets.

Model. For the initial pre-RL model, we select two representative open-source large rea-
soning models with different sizes: DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-
Qwen-7B (DeepSeek-AI, 2025), both fine-tuned on expert trajectories generated by DeepSeek-
R1. For baseline comparison, we evaluate several popular RL approaches, including DeepScaleR-
Preview (Luo et al., 2025b) (released checkpoint from the original DeepScaleR work), DAPO-
DeepScaleR-16K (trained with DeepScaleR’s 8K compression followed by 16K expansion schedule,
but using DAPO’s clip-higher and no KL-loss strategies for a fairer comparison with our method),
OverThink (Chen et al., 2024a), DAST (Shen et al., 2025), O1-Pruner (Luo et al., 2025a), and
AdaptThink (Zhang et al., 2025). All baseline models are trained on the same dataset as ours.

Implementation Detail. For RL training, we use the VeRL framework (Sheng et al., 2024). We
adopt the GRPO (Shao et al., 2024) algorithm for training, but decouple the upper and lower thresh-
olds for clipping, as well as removing the KL divergence, as proposed in DAPO (Yu et al., 2025).
Specifically, we set 0.28 for clip-high and 0.2 for clip-low. For the length scheduler, we set Lmax at
16384 and Lmin at 8192. The models are trained with a sampling temperature of 1.0, a batch size of
128, and a learning rate of 1e-6. We use 8×H100 GPUs for training the 1.5B model and 16×H100
GPUs for the 7B model.

Evaluation Configuration. All the trained models are evaluated on AIME24, AIME25, AMC, and
MATH500 (Hendrycks et al., 2021) datasets. We set the maximum generation length (including
thinking tokens and answer tokens) at 16384, aligned with Lmax during training. We sample 32
outputs for each question during training, and sample 64 outputs for each question to obtain the final
evaluation results shown in Table 1. The sampling temperature is set to 0.6. We report both the
Pass@1 accuracy and the average token number of the responses.

5.2 RESULTS

Table 1 shows the main evaluation results. Our models, SIRI-low (SIRI-Iter3-Compressed) and
SIRI-high (SIRI-Iter3-Expanded), were trained with a 640-cycle cosine length scheduler over three

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on AIME24, AIME25, MATH500 and AMC. Best result in bold and
second best underlined.

Method AIME24 AIME25 AMC MATH500 Average

Acc Length Acc Length Acc Length Acc Length ∆Acc
CR (↑)⋆

DeepSeek-R1-Distill-Qwen-1.5B

Original 28.2 12333 21.5 12264 61.8 8449 82.4 4745 0.00
DeepScaleR-Preview (Luo et al., 2025b) 41.1 8585 29.0 8348 73.9 5515 87.6 3054 0.39
DAPO-DeepScaleR-16K 42.8 10453 30.9 10352 74.6 7339 88.1 4223 0.36
OverThink (Chen et al., 2024a)† 28.3 11269 – – – – 81.2 4131 0.00
DAST (Shen et al., 2025)† 26.9 7745 – – – – 83.0 2428 0.01
O1-Pruner (Luo et al., 2025a)† 28.9 10361 – – – – 82.2 3212 0.01
AdaptThink (Zhang et al., 2025) 31.0 6679 22.3 6800 63.3 3498 82.0 1782 0.08
SIRI-low (Ours) 40.4 7093 29.6 6509 74.6 4700 87.7 2881 0.47
SIRI-high (Ours) 43.6 10049 32.2 9739 75.9 7396 88.4 4633 0.38

DeepSeek-R1-Distill-Qwen-7B

Original 53.5 10306 38.3 11114 79.4 6740 90.2 3674 0.00
DAPO-DeepScaleR-16K 57.6 9983 40.8 10705 84.5 6508 92.5 3658 0.06
OverThink (Chen et al., 2024a)† 53.1 8744 – – – – 89.4 2435 0.00
DAST (Shen et al., 2025)† 45.6 7578 – – – – 89.6 2162 0.00
O1-Pruner (Luo et al., 2025a)† 49.2 9719 – – – – 86.6 2534 0.00
AdaptThink (Zhang et al., 2025) 55.6 8546 37.0 9556 80.1 4778 90.6 1868 0.02
SIRI-low (Ours) 56.1 6122 41.5 6386 85.8 4015 93.5 2452 0.10
SIRI-high (Ours) 57.1 8585 45.4 9106 86.7 5773 93.7 3378 0.11

⋆ ∆Acc = max(current model accuracy
initial model accuracy − 1, 0), CR (Compressed Ratio) = current model length

initial model length . Higher is better.
† For these methods, we directly use the results reported in AdaptThink (Zhang et al., 2025). Since the corresponding
checkpoints were not released, we are unable to evaluate them on AIME25 and AMC.

iterations. Compared to the original 1.5B model, SIRI-low reduces response length by 43.1% and
boosts performance by 27.0% on average. After expansion of SIRI-low during the third iteration, we
yield SIRI-high that achieves the highest accuracy on all benchmarks, improving performance by
33.6% on average. A similar trend can also be seen on the 7B model. These show that the interleaved
compression phase enhances, instead of mitigates, the model’s potential to explore and plan in long
Chain-of-Thought. Regarding generation length, while SIRI-low produces longer responses than
models trained with adaptive length penalties (e.g., DAST) or “no-thinking” methods (e.g., Adapt-
Think) on easier benchmarks (AMC and MATH500), its output length is comparable to them for the
1.5B model and notably shorter for the 7B model on more challenging benchmarks (AIME24 and
AIME25). In addition, SIRI-low also performs similarly with DeepScalerR-Preview-1.5B (the latter
is trained under 24K context). This demonstrates SIRI’s robustness across tasks and its advantage
on difficult problems.

We additionally report the accuracy-CR ratio that evaluates the change in the model’s token effi-
ciency after training. We find that SIRI trained models have the optimal accuracy-CR ratio, showing
that iterative compression with a length scheduler is better at pruning redundant tokens compared to
manually introducing “thinking” and “no-thinking” patterns (Zhang et al., 2025), or using compli-
cated reward shaping techniques (Luo et al., 2025a). We detail our findings below.

Token efficiency iteratively improves. Figure 4 shows the training dynamic of the 1.5B model
trained by the 640-cycle cosine scheduler. The model starts with an average response length of
about 12000 tokens. After the first iteration, the average length is suppressed to about 8000 tokens
with a 7% gain in accuracy. In the following iterations, we witness a stable increase in token ef-
ficiency, where the model ends each cycle with almost the same response length, but its Pass@1
accuracy consistently improves, eventually surpassing 43%. This shows that the model’s reasoning
is condensed through the iteration of compression and expansion. We also observe an interesting
phenomenon: the change in model output length lags behind the scheduler. Typically, the output
length reaches its peak or trough about 100-200 steps after the scheduled maximum or minimum
length. This indicates that, thanks to the smoothness of the cosine scheduler, the model still has
sufficient time to continue expanding or compressing its output length, even though the scheduler
does not pause at the maximum or minimum length. Meanwhile, as shown in Figure 1, the model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy
Average Response Length

SIRI
DAPO-DeepScaleR-16K 7000

8000

9000

10000

11000

12000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

(a) Dynamics on AIME24

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

22

24

26

28

30

32

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy
Average Response Length

SIRI
DAPO-DeepScaleR-16K

7000

8000

9000

10000

11000

12000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

(b) Dynamics on AIME25

Figure 5: The training dynamics comparison between SIRI and DAPO-DeepScaleR-16K on
DeepSeek-R1-Distill-Qwen-1.5B. DAPO-DeepScaleR-16K transits from 8K to 16K at step 320.

Figure 6: Representative token frequency before and after compression.

keeps pushing the Pareto frontier forward after each iteration, resulting in higher accuracy as well as
greater token efficiency. Specifically, the accuracy of the compressed-length variant (SIRI-Iter1/2/3-
Compressed) goes up across iterations: 33.3% → 38.1% → 40.4%, while the average response
length continually goes down: 8065 → 7266 → 7093.

To validate the advantage of our iterative compression-extension scheme over DeepScaleR’s two-
stage compression-then-extension approach, we compare SIRI with DeepScaleR-DAPO-16K under
similar training times. As shown in Figure 5, SIRI reaches comparable performance on the AIME24
benchmark while largely outperforming it on the more challenging AIME25 benchmark with sub-
stantially fewer tokens due to the interleaved compression phases. These findings suggest that SIRI’s
iterative compression scheme effectively improves token efficiency and is better adapted to more de-
manding, reasoning-intensive tasks. A similar observation can also be drawn from the dynamics of
the 7B model, as discussed in Appendix A.1.

The iterative compression-expansion scheme mainly influences the model’s backtracking and
verification behavior. We further analyze the change in the 1.5B model’s behavior after com-
pression and expansion. Specifically, we choose the model’s responses for AIME24 problems at
step 1280 (the finish of the second expansion stage), step 1600 (the finish of the third compression
stage), and step 1920 (the finish of the third expansion stage) during the 640-cycle cosine schedule.
We choose tokens that represent the model’s backtrack-verification (“wait”, “hold on”), alternative-
seeking (“alternatively”), and general deduction behavior (“so”, “compute”). As shown in Figure 6,
the frequency of “wait” tokens that stand for backtracking and verification changes significantly
during training, while others remain stable. In particular, the “wait” tokens are suppressed during
compression and encouraged during expansion, and this trend is consistent for both correct and in-
correct responses. Notably, the correct responses from the model at step 1280 and 1920 are almost
identical, despite the latter having better performance. This shows that the interleaved compression
phase indeed encourages the model to add more information under the same generation context.

Entropy oscillation continually pushes model improvement. In Appendix A.2, we also attempt
to analyze SIRI’s success from an entropy perspective. We observe that entropy decreases during

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy
Average Response Length

cycle length=320
cycle length=480
cycle length=640 7000

8000

9000

10000

11000

12000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

(a) Dynamics of cosine scheduler with different cycle
lengths.

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

28

30

32

34

36

38

40

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy
Average Response Length

cosine
stair
stair-cosine 7000

8000

9000

10000

11000

12000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

(b) Dynamics of different-shaped schedulers with a cy-
cle length of 480.

Figure 7: Ablation studies on scheduler design.

compression and gradually increases during expansion, but remains stable within a bounded range
rather than collapsing. Notably, performance gains often accompany rising entropy, allowing SIRI
trained model to evolve through these oscillations.

5.3 ABLATIONS ON SCHEDULER DESIGN

Scheduler with a longer cycle performs best. The design of the scheduler is the key to iterative im-
provement in each cycle. Figure 7a demonstrates the 1.5B model’s performance of cosine scheduler
with cycle lengths of 320, 480, and 640. During the compression stage, the 320-cycle and 480-cycle
scheduler suffers from sharp performance degradation, while the 640-cycle scheduler reaches its
response length minima with a mild drop in performance. In addition, the longer expansion phase
of the 640-cycle scheduler ensures sustained and stable accuracy gains. As a whole, the 640-cycle
scheduler leads to the largest length oscillation and highest compression ratio at the response length
minima. This shows that a smoother compression phase is crucial for performance maintenance,
while a longer expansion phase is the key to iterative accuracy improvement. This finding is in line
with earlier work (Hou et al., 2025), where the authors argue that iterative length capping preserves
performance, while direct length capping leads to sharp decline in response length, causing serious
performance loss.

Scheduler with different shapes has different advantages. We show in Figure 7b the 1.5B model’s
performance of the stair, cosine, and stair-cosine schedulers, all with a cycle length of 480. We
observe that the cosine scheduler mitigates performance loss during compression, while the stair
scheduler maximizes performance gain during expansion. Specifically, in Figure 7b, the cosine
scheduler maintains the model’s accuracy around 0.39 when its response length falls from above
9000 to around 8000 from step 960 to step 1200. However, the performance drops further while the
scheduler slowly increases the maximum generation length to 16K. In comparison, the direct 8K
compression phase of the stair scheduler causes a sharp drop in the model’s performance, but the
subsequent full 16K expansion phase significantly boosts the model’s response length and accuracy.
For the stair scheduler, the extended 8K compression phase also fails to improve performance, while
the extended 16K expansion phase brings additional gains. Again, this indicates that the compres-
sion phase should be smooth, while the expansion phase should be extended, relaxing its constraint
on model’s exploration behavior.

6 CONCLUSION

In this paper, we propose SIRI, a simple but effective approach to enhance the performance of
LRMs while pruning repetitive reasoning traces. We apply expansion and compression of the token
budget iteratively, encouraging exploration and consolidation in turn. Experiments show that SIRI
boosts the model’s performance and token efficiency consistently during each iteration. While this
approach has provided extra gains, the upper performance threshold remains to be discovered and
understood (e.g., limited by dataset size, algorithm efficiency, etc). Moreover, how SIRI can be
applied in other tasks that require intensive reasoning, such as code generation, is also a promising
direction. Looking forward, online RL post-training has been an ever-broadening avenue towards
artificial general intelligence, and we hope this work can help to further scale up RL training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All datasets used for training and evaluation are open-sourced. Our training code is modified from
the open-source framework VeRL, and we will release the modified parts upon publication. We will
also release the trained model checkpoints along with the corresponding training logs.

USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely for polishing and enhancing the clarity of the
manuscript. They did not contribute to research ideation, methodological design, experimental exe-
cution, data analysis, or any other substantive aspect of this work. All scientific content, results, and
conclusions are entirely the responsibility of the authors.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024a.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024b.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint, arXiv preprint arXiv:2501.12948, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. In The Thirteenth International Conference on Learning Representations,
2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312–24320, 2025.

Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qing-
ping Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
reinforcement learning. arXiv preprint arXiv:2505.11896, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025b.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Openai o1 system card. arXiv preprint, arXiv preprint arXiv:2412.16720, 2024.

OpenAI. Gpt-5 system card, 2025. URL https://cdn.openai.com/pdf/
8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. Advances in Neural Information Processing
Systems, 37:116617–116637, 2024.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
ematical reasoning in open language models. arXiv preprint, arXiv preprint arXiv:2402.03300,
2024.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
ing models. arXiv preprint arXiv:2503.04472, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

11

https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf
https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. arXiv preprint arXiv:2312.11456, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025.

A ADDITIONAL EXPERIMENT RESULTS

A.1 RESULTS ON DEEPSEEK-R1-DISTILL-QWEN-7B

Figure 8 demonstrates the training dynamics of SIRI and DAPO-DeepScaleR-16K for the
DeepSeek-R1-Distill-Qwen-7B model. SIRI reaches comparable performance to DAPO-
DeepScaleR-16K on AIME24 and outperforms DAPO-DeepScaleR-16K on AIME25, both with
less tokens.

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

52

54

56

58

60

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy
Average Response Length

SIRI
DAPO-DeepScaleR-16K 6000

7000

8000

9000

10000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

(a) Dynamics on AIME24

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

36

38

40

42

44

46

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy
Average Response Length

SIRI
DAPO-DeepScaleR-16K

7000

8000

9000

10000

11000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

(b) Dynamics on AIME25

Figure 8: The training dynamics comparison between SIRI and DAPO-DeepScaleR-16K. DAPO-
DeepScaleR-16K transits from 8K to 16K at step 360.

A.2 DETAILS ON TRAINING DYNAMICS: AN ENTROPY VIEW

0 500 1000 1500
Training Steps

28
30
32
34
36
38
40
42

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy (%)
Entropy (Absolute Value)
Full Cycle Finishes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
tro

py
 (A

bs
ol

ut
e)

(a) 320 cycle

0 500 1000 1500 2000
Training Steps

28

30

32

34

36

38

40

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy (%)
Entropy (Absolute Value)
Full Cycle Finishes

0.5

0.6

0.7

0.8

0.9

1.0

En
tro

py
 (A

bs
ol

ut
e)

(b) 480 cycle

0 500 1000 1500 2000
Training Steps

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy (%)
Entropy (Absolute Value)
Full Cycle Finishes 0.5

0.6

0.7

0.8

0.9

1.0

En
tro

py
 (A

bs
ol

ut
e)

(c) 640 cycle

Figure 9: The entropy during training for cosine scheduler with different cycle length.

We additionally report the change of entropy during the cosine scheduler training in Figure 9. During
the compression stage, the model’s entropy decreases; During the expansion stage, its entropy slowly

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Training Steps

32

34

36

38

40

42

44

Pa
ss

@
1

Ac
cu

ra
cy

 (%
)

Pass@1 Accuracy (%)
Entropy (Absolute Value)

0.4

0.5

0.6

0.7

0.8

En
tro

py
 (A

bs
ol

ut
e)

Figure 10: The entropy of DAPO-DeepScaleR-16K during 16K context training.

increases. However, we find that the model’s entropy does not collapse. Instead, it tends to remain
stable within a certain range as training proceeds.

Interestingly, for non-iterative models such as DAPO-DeepScaleR-16K, we notice similar trends,
where the model’s entropy periodically fluctuates. As shown in Figure 10, there is also roughly a
cosine-shaped entropy curve during 16K context training of DAPO-DeepScaleR-16K. This shows
that the periodic change in entropy is common for different training scheduler.

Moreover, for both training methods, we notice a increase in performance when entropy increases
even as the response length pleataus for DAPO-DeepScaleR-16K after step 360. This implies the
possibility of using entropy bonus or clipping even higher during the expansion stage to further
enhance SIRI’s performance.

13

	Introduction
	Related Work
	Length Compression for LRMs
	Iterative Training

	Preliminaries
	Problem formulation
	Group Relative Policy Optimization

	SIRI: Scaling Iterative Reinforcement Learning with Interleaved Compression
	Motivation
	Reward Shaping
	Length Scheduler

	Experiments
	Experiment Setup
	Results
	Ablations on Scheduler Design

	Conclusion
	Additional Experiment Results
	Results on DeepSeek-R1-Distill-Qwen-7B
	Details On Training Dynamics: An Entropy View

