Under review as a conference paper at ICLR 2026

VAVAVAY
siri SIRI: SCALING ITERATIVE REINFORCEMENT

LEARNING WITH INTERLEAVED COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SIRI, Scaling Iterative Reinforcement Learning with Interleaved
Compression, a simple yet effective RL approach for Large Reasoning Models
(LRMs) that enables more efficient and accurate reasoning. Existing studies have
observed repetitive thinking patterns in LRMs, and attempts to reduce them of-
ten come at the cost of performance. In this paper, we show that this trade-off
can be overcome through a training regime that iteratively alternates between
compressing and expanding the reasoning budget, by dynamically adjusting the
maximum rollout length during training. The compression phase cuts the rollout
length, forcing the model to make precise and valuable decisions within a limited
context, which effectively reduces redundant tokens and increases reasoning den-
sity. The expansion phase then relaxes the length limit, providing space for the
model to explore and plan in long-horizon settings. Remarkably, we find that after
each compression—expansion cycle, the model’s performance improves even as
its output length decreases, steadily pushing it closer to the Pareto frontier in the
performance—efficiency trade-off. Training on DeepSeek-R1-Distill-Qwen-1.5B,
SIRI-low improves performance on AIME24 by 43.2% while reducing token us-
age by 46.9% after three iterations, and SIRI-high achieves the highest accuracy
compared to all other methods (Figure[I)). Our findings shed light on the potential
of periodically oscillating the LRM’s output truncation length during training to
dynamically balance exploration and efficiency in reasoning, converging towards
an optimal “sweet spot” between the two.

45.0

7 SIRI-Iter3-Expanded (SIRI-high)
c)DeepscaleR-DAPO-le

42.5 1

=058

DeepscaleR-Previ
IRI-Iter2-Expanded

40.0 IRI-Iter3-Compresse

IRI-Iterl-Expanded

37.5 IRI-Iter2-Compressed

35.0

erl-Compressed

AIME24 Pass@1 Accuracy (%)

32.51
<a\dap':Think
30.01
cE)l-Pruner OOver'l'h|
DeepSeek-R1-Distill-Qwen-1.5B
27.51
%AST
6000 7000 8000 9000 10000 11000 12000

Average Response Length

Figure 1: Performance-efficiency comparison between different training methods applied to
DeepSeek-R1-Distill-Qwen-1.5B. SIRI continually pushes the model to the Pareto frontier.

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Models (LLMs) have become the frontier of Al research, demonstrating impressive
performance across a wide range of domains, such as text generation, code generation, math reason-
ing, and autonomous agents (OpenAlL [2025). In particular, Large Reasoning Models (LRMs) (Ope-
nAll 2024} DeepSeek-Al, 2025} Zeng et al, 2025)), a branch of LLMs tailored for reasoning tasks
such as math, physics, and coding, have witnessed a great leap recently, empowered by large-scale
reinforcement learning (RL) algorithms (Schulman et al., 2017} |Shao et al., 2024)). These models
are trained using Test-Time Scaling strategy (Snell et al., 2024; Muennighoff et al., [2025) that ap-
pears as a long Chain-of-Thought (Wei et al.,2022), utilizing the model’s backtracking, verification,
exploration and iterative refinement abilities at test time to obtain superior reasoning capability.

However, although RL can boost the model’s performance on reasoning tasks, it also inevitably
causes a rapid increase in the model’s output length. The amount of useless reasoning and overthink-
ing by the model rises significantly (Chen et al.|[2024a}|Qu et al.,[2025)), leading to a notable increase
in both training and inference time. To overcome this issue, prior works have attempted approaches
such as fine-tuning with short and precise reasoning traces (Kang et al., 2025; Ma et al., 2025)), in-
troducing length penalties or length truncation during RL (Team et al.| [2025; /Aggarwal & Welleck,
2025; Luo et al., [2025a)), and adopting hybrid reasoning strategies to automatically switch between
thinking and non-thinking (Fang et al.| [2025; |[Zhang et al.| 2025} |Lou et al., 2025)) to improve the
token efficiency of LRMs. However, without exception, these methods degrade the model’s perfor-
mance or cause it to stagnate, preventing it from fully unlocking its capabilities. To support this, in
Figure[T] all other length-compression approaches perform worse than models trained with standard
RL (DeepScaleR) by a large margin, placing them inside the Pareto frontier.

In this paper, we propose SIRI, Scaling Iterative Reinforcement Learning with Interleaved Compres-
sion, a simple yet effective framework that pushes the Pareto frontier by simultaneously reducing
token usage and improving reasoning accuracy. The key idea of SIRI is to periodically alternate
between compressing and expanding the reasoning budget during training, by dynamically ad-
justing the maximum rollout length according to a cosine scheduler. The compression phase forces
the model to think concisely by reducing overthinking, while the expansion phase encourages the
model to further explore based on mature reasoning traces. Unlike prior approaches that suffer
from a strict efficiency-performance trade-off, SIRI leverages the compression—expansion cycle to
achieve steady gains in accuracy despite shorter outputs. As shown in SIRI’s evolution trace in
Figure [1] with each iteration the model spirals upward by using fewer tokens and achieving higher
performance. We contribute the core factor in SIRI’s success to compressing length in each iteration
while not letting accuracy fall off the cliff. We further find that SIRI generalizes effectively across
different model sizes.

Empirically, our method demonstrates superior performance against state-of-the-art models trained
under the same 16K output limit. Training based on DeepSeek-R1-Distill-Qwen-1.5B model, the
expanded-length variant (SIRI-high) achieves a 43.5% pass@1 on AIME24 with an average of 10K
tokens, while the compressed-length variant (SIRI-low) achieves 40.4% pass@1 using only 7K
tokens on average. This nearly halves the token usage while still delivering a 43% improvement
over the initial pre-RL model.

2 RELATED WORK

2.1 LENGTH COMPRESSION FOR LRMSs

Large reasoning models leverage test-time scaling to boost performance, but they frequently ex-
pend unnecessary tokens on repeated backtracking, unnecessary exploration, and non-reasoning
filler (Hou et al., [2025). To mitigate such inefficiency, previous studies mostly leverage reward
shaping for online RL training (Team et al., 2025; [Aggarwal & Welleckl, 2025} |Luo et al., [2025b;
Hou et al., 2025} [Zhang et al., [2025) or precise reasoning traces for offline fine-tuning (Ma et al.,
2025} |Yang et al., 2025). The most commonly used reward shaping strategy is adaptive length
penalty (Team et al., [2025), which is further augmented by prompt engineering (Aggarwal &
Welleck, 2025). Another line of work apply budget forcing on models by either setting the re-
ward to zero or forcing the model to end thinking and generate the final solution once the output
length surpasses the token budget (Luo et al., 2025b; |Hou et al., 2025; Muennighoff et al., [2025)).

Under review as a conference paper at ICLR 2026

Recent studies also try to abandon the thinking process of relatively simple problems by training
the model to generate end-of-thinking tokens (Yang et al., [2025; Zhang et al., 2025} Fang et al.,
2025} |[Lou et al, 2025). However, all methods above inevitably compromise model performance
compared to full-length RL training, while our work shows that we can close this gap by an iterative
RL framework.

2.2 ITERATIVE TRAINING

Iterative training methods have been widely used in preference alignment and simple reasoning tasks
because of their ability to leverage additional data generated by the model over iterations. One line
of work uses maximum likelihood iterative training to enhance the model’s reasoning abilities (Gul-
cehre et al.,|2023};Singh et al.,|2023)). During each iteration, a dataset is first generated by the current
model and labeled by a reward model. Then, this dataset is used to fine-tune the base model, yield-
ing a stronger version for the next iteration. Another line utilizes positive and negative samples with
Direct Preference Optimization (DPO) algorithms (Rafailov et al.l [2023} Xiong et al.| 2023} |(Chen
et al.,|2024b). In GSHF (Xiong et al., 2023), new chosen/rejected responses are generated in each it-
eration and added to the dataset for wider dataset coverage. In SPIN (Chen et al.,2024b), the chosen
responses are generated by humans and fixed, while the model iteratively generates rejected re-
sponses and aligns with the human dataset. The most recent work unifies these two directions (Pang
et al.| 2024), applying both NLL and DPO loss for arithmetic tasks, witnessing modest gains in the
GSMSK dataset. However, all methods above demonstrate only how iterative training can be applied
in off-policy training scenarios for simple reasoning problems. In this work, we further show that
iterative on-policy RL can be used to effectively advance the performance-efficiency Pareto frontier
of LRMs.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a Large Language Model (LLM) parameterized by 6, denoted by 7y and a math dataset
D with question-answer pairs, each denoted by (x, a*). The model samples a problem x and gen-
erates a response Yy = [y1, ..., Y] sampled from the conditional distribution 74 (+|z). In the LLM’s
setting, each element in y is known as an output token. Specifically, for a Large Reasoning Model
(LRM) trained on mathematical tasks with a fixed answer, the last output token, ¥,,, is the model’s
predicted answer for the problem. By defining the scoring function R(y) and setting R(y) = 1 if
a* =y, and R(y) = 0 otherwise, we aim to find #* that satisfies

0" = argmax B (g o)nD,y~my (f2) [R(y) |1yl < L}v
where |y| is the length of the output y, and L is the token budget.

3.2 GROUP RELATIVE PoOLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., [2024), based on Proximal Policy Opti-
mization (PPO) (Schulman et al.}[2017), is widely used in post-training of LRMs. For each question-
answer pair (z,a*) sampled from dataset Dgrpo, ms samples G individual responses {y; }$, and
estimates the advantage of the i-th response with group-level rewards

R(y;) — mean({R(y:)}{,)

Air = std({R(y:)}5,)

Then, the loss of the policy is calculated by

LGrro (9) = _E(w,a*)N'DGRpo,{yi}iczl ~Tg, ()

G lyil

1 1 . n . A

G2yl 2= (mm (n,t(e)Ai,t,chp (ra®).1-e1+¢) Al-,t) - BDKL@renmef))],
i=1 9"

t=1

Under review as a conference paper at ICLR 2026

0650 — Gompression Stage Gompression Stage -~
0.625 Response Length _N,.,//“

\// Compression Stage

Expansion Stage

—— Accuracy
Response Length
0 250 500 _}igmms Stggz 1250 1500 1750 Training Steps
(a) DeepScaleR’s training dynamics (Luo et al.,[2025b). (b) Hypothesized iteration dynamics of SIRI.

Figure 2: Motivation of SIRI: The compression stage primarily reduces the model’s overthinking
while preserving performance, storing potential to provide more room for exploration in the next
interleaved expansion stage, and this process repeats cyclically.

where

ri(0) = To(Yit | T, Yi<t)
" ﬂ'eold(yi,t | m7yi7<t)

In Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025)), the upper and lower clip
thresholds are decoupled, and the former is set larger to encourage model exploration. Moreover,
the KL divergence is removed in light that post-trained reasoning model will naturally diverge from
the base model. We adopt these improvements in this work.

4 SIRI: SCALING ITERATIVE REINFORCEMENT LEARNING WITH
INTERLEAVED COMPRESSION

4.1 MOTIVATION

In DeepScaleR’s (Luo et al.| [2025b)) 8K training stage, there is an increase in the model’s perfor-
mance despite a sharp response length drop. This shows that the model can compress key reasoning
steps into shorter contexts, thus freeing capacity for exploration in the subsequent 16K stage. How-
ever, the following context-expansion stage may again introduce redundant reasoning patterns. As
illustrated in Figure 2] we hypothesize that interleaving compression with expansion can yield per-
formance gains while maintaining comparable response lengths across expansion stages. The key
ingredient of the success may lie in the compression stage: after the initial performance drop caused
by switching from long to short outputs, it must restore performance to ensure the model does not
fall below its level at the start of the next expansion stage. With this motivation, we now explore the
best design for the compression-expansion schedule in the following subsections.

4.2 REWARD SHAPING

A common approach for length compression is reward shaping. We adopt the length-capping reward
introduced in DeepScaleR, which assigns a reward to each response y based on a maximum length
L as follows:

Rly) = 1, if an answer can be extracted from clip(y, L) and is correct,
~ 10, otherwise.

Note that this method is effective when the responses in each group are diverse enough, i.e., there
is a correct response whose length is lower than the capping threshold, and a correct/incorrect re-
sponse whose length is higher than the capping threshold. In such case, the policy update will pose
positive gradients on the short and correct responses, while posing negative gradients on the longer
responses, directing the model to preserve correct and dense reasoning patterns while pruning ineffi-
cent or wrong patterns. On the other hand, while using an adaptive length penalty is mathematically

Under review as a conference paper at ICLR 2026

16000 16000 16000

14000 14000 14000

12000 12000 12000

Maximum Length
Maximum Length

10000 10000 10000

Maximum Length

8000 8000 8000
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Training Steps Training Steps Training Steps

(a) Stair scheduler (b) Cosine scheduler (c) Stair-cosine scheduler

Figure 3: Illustration of different schedulers with cycle length 640.

justified, it requires complex hyperparameter tuning since different length constraints may have
different optimal penalty coefficients. Moreover, their training efficiency is worse than the direct
capping method. For these reasons, we do not adopt them.

4.3 LENGTH SCHEDULER

In iterative training, the design of the length scheduler is important as it controls the compression and
exploration behavior of the model. The scheduler should have the following properties: 1) prevent
performance degradation during the compression phase, and 2) encourage exploration during the
expansion phase, meaning that the model’s generation length should plateau before the expansion
phase ends. Here, we introduce three types of schedulers. To unify notation, let 7" denote the cycle
length (in steps), ¢ be the current step, Lyax and Ly, denote the maximum and minimum capping
threshold during each cycle. Figure [3]illustrates the curves of the respective schedulers.

Stair scheduler. The stair scheduler reduces the maximum generation length from the upper cap-
ping threshold L, to the lower capping threshold L, during the compression phase. It then
switches from L, to Lyax When the model enters the expansion phase.

Cosine scheduler. To make the length reduction and recovery process smooth, we also investigate
the cosine scheduler. The maximum generation length at each step ¢ can be written as

Lmax + Lmin + Lmax - Lmin

L= 5 5 -COS(%-t).

Stair-cosine scheduler. The cosine scheduler doesn’t maintain at L., and L,;,. However, this
may hinder the model’s ability to further explore at Ly, after expansion and restore performance
at L, after compression. Thus, we combine the stair and cosine scheduler into a unified scheduler
that ensures both smoothness of the whole process, exploration at L.y, and exploitation at L.

Letting the current phase be ¢ = 27 - %, the whole schedule can be written as

Lmaxa ¢< §0T¢Z%ﬂ7
Luax + Lin -~ Lmax — L
ma ;‘ min + ma 5 min -COS<2(¢— %))7 % S ¢< L%r’
L:
Lmina % §¢< %a
Lmax + Lmin Lmax - Lmin
5 + 5 ccos (2(¢p — 21)), Z << IE

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate our compression-expansion approach.
Specifically, our experiments are designed to answer the following questions:

Under review as a conference paper at ICLR 2026

Pass@1 Accuracy 5|R|:.|0W
Average Response Le :

w £ Ry
~ < N
n =} wn

Pass@1 Accuracy (%)
e
o

N w
~ < ! ¢
wn =}

) !) !

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

Figure 4: The 1.5B model’s Pass@1 accuracy and average response length of SIRI with 640-cycle
length cosine scheduler over three iterations on the AIME24 benchmark.

RQ1: Can the compression-expansion scheme enhance reasoning accuracy while pruning redundant
tokens? What is the underlying mechanism behind this behavior?

RQ2: What is the best generalizable design of the length scheduler?

RQ3: Is the compression-expansion scheme generally applicable to different models?

5.1 EXPERIMENT SETUP

Dataset. To provide a fair comparison with the strong DeepScaleR (Luo et al.| 2025b) baseline, we
use the same training set used in training DeepScaleR-1.5B-Preview, which comprises 40K high-
quality math questions with groundtruth answers selected from AIME 1983-2023, AMC, Omni-
Math (Gao et al.l 2024), and STILL (Min et al., 2024} datasets.

Model. For the initial pre-RL model, we select two representative open-source large rea-
soning models with different sizes: DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-
Qwen-7B (DeepSeek-AllL 2025), both fine-tuned on expert trajectories generated by DeepSeek-
R1. For baseline comparison, we evaluate several popular RL approaches, including DeepScaleR-
Preview (Luo et al., 2025b) (released checkpoint from the original DeepScaleR work), DAPO-
DeepScaleR-16K (trained with DeepScaleR’s 8K compression followed by 16K expansion schedule,
but using DAPQO’s clip-higher and no KL-loss strategies for a fairer comparison with our method),
OverThink (Chen et al.l 2024a), DAST (Shen et al., [2025), O1-Pruner (Luo et al., 2025a), and
AdaptThink (Zhang et al.|[2025). All baseline models are trained on the same dataset as ours.

Implementation Detail. For RL training, we use the VeRL framework (Sheng et al., 2024). We
adopt the GRPO (Shao et al.,|2024)) algorithm for training, but decouple the upper and lower thresh-
olds for clipping, as well as removing the KL divergence, as proposed in DAPO (Yu et al.| [2025).
Specifically, we set 0.28 for clip-high and 0.2 for clip-low. For the length scheduler, we set L. at
16384 and Ly, at 8192. The models are trained with a sampling temperature of 1.0, a batch size of
128, and a learning rate of 1le-6. We use 8 xH100 GPUs for training the 1.5B model and 16 xH100
GPUs for the 7B model.

Evaluation Configuration. All the trained models are evaluated on AIME24, AIME25, AMC, and
MATHS500 (Hendrycks et al., 2021) datasets. We set the maximum generation length (including
thinking tokens and answer tokens) at 16384, aligned with L, during training. We sample 32
outputs for each question during training, and sample 64 outputs for each question to obtain the final
evaluation results shown in Table [Tl The sampling temperature is set to 0.6. We report both the
Pass@1 accuracy and the average token number of the responses.

5.2 RESULTS

Table |I| shows the main evaluation results. Our models, SIRI-low (SIRI-Iter3-Compressed) and
SIRI-high (SIRI-Iter3-Expanded), were trained with a 640-cycle cosine length scheduler over three

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on AIME24, AIME25, MATHS500 and AMC. Best result in bold and
second best underlined.

AIME24 AIME25 AMC MATHS00 Average
Acc Length Acc Length Acc Length Acc Length AC/;“(T)*

Method

DeepSeek-RI1-Distill-Qwen-1.5B

Original 28.2 12333 21.5 12264 61.8 8449 824 4745 0.00
DeepScaleR-Preview (Luo et al.[[2025b) 41.1 8585 29.0 8348 739 5515 87.6 3054 0.39
DAPO-DeepScaleR-16K 42.8 10453 309 10352 746 7339 88.1 4223 0.36
OverThink (Chen et al.|2024a)f 283 11269 - - - - 81.2 4131 0.00
DAST (Shen et al.[[2025)" 26.9 7745 - - - - 83.0 2428 0.01
O1-Pruner (Luo et al.|2025a)" 289 10361 - - - - 82.2 3212 0.01
AdaptThink (Zhang et al.|[2025) 31.0 6679 223 6800 63.3 3498 82.0 1782 0.08
SIRI-low (Ours) 404 7093 29.6 6509 74.6 4700 87.7 2881 0.47
SIRI-high (Ours) 43.6 10049 322 9739 759 7396 884 4633 0.38
DeepSeek-R1-Distill-Qwen-7B

Original 53.5 10306 38.3 11114 794 6740 90.2 3674 0.00
DAPO-DeepScaleR-16K 57.6 9983 40.8 10705 84.5 6508 92.5 3658 0.06
OverThink (Chen et al.|2024a)" 53.1 8744 - - - - 89.4 2435 0.00
DAST (Shen et al.[[2025)" 45.6 7578 - - - - 89.6 2162 0.00
O1-Pruner (Luo et al.|2025a)" 492 9719 - - - - 86.6 2534 0.00
AdaptThink (Zhang et al.[[2025) 55.6 8546 37.0 9556 80.1 4778 90.6 1868 0.02
SIRI-low (Ours) 56.1 6122 41.5 6386 85.8 4015 93.5 2452 0.10
SIRI-high (Ours) 57.1 8585 454 9106 86.7 5773 93.7 3378 0.11

* _ current model accuracy : __current model length . .
AAce = max(T oiTaemaey — 1> 0), CR (Compressed Ratio) = THrrrmesR. Higher is better.

T For these methods, we directly use the results reported in AdaptThink (Zhang et al.|[2025). Since the corresponding
checkpoints were not released, we are unable to evaluate them on AIME25 and AMC.

iterations. Compared to the original 1.5B model, SIRI-low reduces response length by 43.1% and
boosts performance by 27.0% on average. After expansion of SIRI-low during the third iteration, we
yield SIRI-high that achieves the highest accuracy on all benchmarks, improving performance by
33.6% on average. A similar trend can also be seen on the 7B model. These show that the interleaved
compression phase enhances, instead of mitigates, the model’s potential to explore and plan in long
Chain-of-Thought. Regarding generation length, while SIRI-low produces longer responses than
models trained with adaptive length penalties (e.g., DAST) or “no-thinking” methods (e.g., Adapt-
Think) on easier benchmarks (AMC and MATHS500), its output length is comparable to them for the
1.5B model and notably shorter for the 7B model on more challenging benchmarks (AIME24 and
AIME2S5). In addition, SIRI-low also performs similarly with DeepScalerR-Preview-1.5B (the latter
is trained under 24K context). This demonstrates SIRI’s robustness across tasks and its advantage
on difficult problems.

We additionally report the accuracy-CR ratio that evaluates the change in the model’s token effi-
ciency after training. We find that SIRI trained models have the optimal accuracy-CR ratio, showing
that iterative compression with a length scheduler is better at pruning redundant tokens compared to
manually introducing “thinking” and “no-thinking” patterns (Zhang et al.| 2025)), or using compli-
cated reward shaping techniques (Luo et al., 2025a). We detail our findings below.

Token efficiency iteratively improves. Figure 4] shows the training dynamic of the 1.5B model
trained by the 640-cycle cosine scheduler. The model starts with an average response length of
about 12000 tokens. After the first iteration, the average length is suppressed to about 8000 tokens
with a 7% gain in accuracy. In the following iterations, we witness a stable increase in token ef-
ficiency, where the model ends each cycle with almost the same response length, but its Pass@1
accuracy consistently improves, eventually surpassing 43%. This shows that the model’s reasoning
is condensed through the iteration of compression and expansion. We also observe an interesting
phenomenon: the change in model output length lags behind the scheduler. Typically, the output
length reaches its peak or trough about 100-200 steps after the scheduled maximum or minimum
length. This indicates that, thanks to the smoothness of the cosine scheduler, the model still has
sufficient time to continue expanding or compressing its output length, even though the scheduler
does not pause at the maximum or minimum length. Meanwhile, as shown in Figure |1} the model

Under review as a conference paper at ICLR 2026

Pass@1 Accuracy (%)

30.0

—k‘— Pass@1 Accuracy
—+- Average Response Length
\

9000

8000

—— DAPO-DeepScaleR-16K 7000

500 750 1000 1250 1500 1750 2000

Training Steps

(a) Dynamics on AIME24

12000

11000

10000

N w w
@ 5] R

N
o

Average Response Length
Pass@1 Accuracy (%)

N
b

N
N

—!‘-- Pass@1 Accuracy
=== ‘Average Response Length
\

SIRI
—— DAPO-DeepScaleR-16K

r 12000

r 11000

10000

9000

8000

7000

750 1000 1250 1500 1750 2000
Training Steps

(b) Dynamics on AIME25

Average Response Length

Figure 5: The training dynamics comparison between SIRI and DAPO-DeepScaleR-16K on
DeepSeek-R1-Distill-Qwen-1.5B. DAPO-DeepScaleR-16K transits from 8K to 16K at step 320.

[Iter2-Expanded - Correct [0 Iter3-Compressed - Correct [lter3-Expanded - Correct

0.005-1 3 Iter2-Expanded - Incorrect [Iter3-Compressed - Incorrect [Iter3-Expanded - Incorrect
> = —
2 0.004 ——
[—
=}
o
2 0.003
[
o
g 0.002
<

0.001

N A
0.000 - "
wait hold on alternatively so compute

Figure 6: Representative token frequency before and after compression.

keeps pushing the Pareto frontier forward after each iteration, resulting in higher accuracy as well as
greater token efficiency. Specifically, the accuracy of the compressed-length variant (SIRI-Iter1/2/3-
Compressed) goes up across iterations: 33.3% — 38.1% — 40.4%, while the average response
length continually goes down: 8065 — 7266 — 7093.

To validate the advantage of our iterative compression-extension scheme over DeepScaleR’s two-
stage compression-then-extension approach, we compare SIRI with DeepScaleR-DAPO-16K under
similar training times. As shown in Figure[5] SIRI reaches comparable performance on the AIME24
benchmark while largely outperforming it on the more challenging AIME25 benchmark with sub-
stantially fewer tokens due to the interleaved compression phases. These findings suggest that SIRI’s
iterative compression scheme effectively improves token efficiency and is better adapted to more de-
manding, reasoning-intensive tasks. A similar observation can also be drawn from the dynamics of
the 7B model, as discussed in Appendix[A.T]

The iterative compression-expansion scheme mainly influences the model’s backtracking and
verification behavior. We further analyze the change in the 1.5B model’s behavior after com-
pression and expansion. Specifically, we choose the model’s responses for AIME24 problems at
step 1280 (the finish of the second expansion stage), step 1600 (the finish of the third compression
stage), and step 1920 (the finish of the third expansion stage) during the 640-cycle cosine schedule.
We choose tokens that represent the model’s backtrack-verification (“wait”, “hold on”), alternative-
seeking (“alternatively”), and general deduction behavior (“s0”, “compute”). As shown in Figure[6]
the frequency of “wait” tokens that stand for backtracking and verification changes significantly
during training, while others remain stable. In particular, the “wait” tokens are suppressed during
compression and encouraged during expansion, and this trend is consistent for both correct and in-
correct responses. Notably, the correct responses from the model at step 1280 and 1920 are almost
identical, despite the latter having better performance. This shows that the interleaved compression
phase indeed encourages the model to add more information under the same generation context.

Entropy oscillation continually pushes model improvement. In Appendix we also attempt
to analyze SIRI’s success from an entropy perspective. We observe that entropy decreases during

Under review as a conference paper at ICLR 2026

IS
=)

w
3

w
=Y

, 9000 9000

w
Iy

Pass@1 Accuracy (%)
w
®

\
\
\
\
10000 1) r 10000
Vo
\
\ \ W
\ IA
\ A \\ \ ’
. \ \/,J — losing’ [8000
“',\ J — stair
-7 % stair-cosine [7000

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Training Steps Training Steps

Pass@1 Accuracy (%)
w
&
o

=% Pass@1 Accuracy —\-v Pass@1 Accuracy
42.5 ——}\Average Response Length 12000 —L ‘Average Response Length [12000
Ay
40.0 W \/\/\/ 11000 S \ F11000
Y
37.5 \ /‘/
\\
A«
f ‘o P \ ’
\ /
PP RN \ \ ’
¢ S

Average Response Length
Average Response Length

\,/\;‘-(— Lycl¥ \en;fth 320 8000
LAY aletérigth=480

cycle/length=640 | 7000

w
o

30.0

N
@

27.5

(a) Dynamics of cosine scheduler with different cycle (b) Dynamics of different-shaped schedulers with a cy-
lengths. cle length of 480.

Figure 7: Ablation studies on scheduler design.

compression and gradually increases during expansion, but remains stable within a bounded range
rather than collapsing. Notably, performance gains often accompany rising entropy, allowing SIRI
trained model to evolve through these oscillations.

5.3 ABLATIONS ON SCHEDULER DESIGN

Scheduler with a longer cycle performs best. The design of the scheduler is the key to iterative im-
provement in each cycle. Figure [7Ta|demonstrates the 1.5B model’s performance of cosine scheduler
with cycle lengths of 320, 480, and 640. During the compression stage, the 320-cycle and 480-cycle
scheduler suffers from sharp performance degradation, while the 640-cycle scheduler reaches its
response length minima with a mild drop in performance. In addition, the longer expansion phase
of the 640-cycle scheduler ensures sustained and stable accuracy gains. As a whole, the 640-cycle
scheduler leads to the largest length oscillation and highest compression ratio at the response length
minima. This shows that a smoother compression phase is crucial for performance maintenance,
while a longer expansion phase is the key to iterative accuracy improvement. This finding is in line
with earlier work (Hou et al.| 2025), where the authors argue that iterative length capping preserves
performance, while direct length capping leads to sharp decline in response length, causing serious
performance loss.

Scheduler with different shapes has different advantages. We show in Figure[7b|the 1.5B model’s
performance of the stair, cosine, and stair-cosine schedulers, all with a cycle length of 480. We
observe that the cosine scheduler mitigates performance loss during compression, while the stair
scheduler maximizes performance gain during expansion. Specifically, in Figure the cosine
scheduler maintains the model’s accuracy around 0.39 when its response length falls from above
9000 to around 8000 from step 960 to step 1200. However, the performance drops further while the
scheduler slowly increases the maximum generation length to 16K. In comparison, the direct 8K
compression phase of the stair scheduler causes a sharp drop in the model’s performance, but the
subsequent full 16K expansion phase significantly boosts the model’s response length and accuracy.
For the stair scheduler, the extended 8K compression phase also fails to improve performance, while
the extended 16K expansion phase brings additional gains. Again, this indicates that the compres-
sion phase should be smooth, while the expansion phase should be extended, relaxing its constraint
on model’s exploration behavior.

6 CONCLUSION

In this paper, we propose SIRI, a simple but effective approach to enhance the performance of
LRMs while pruning repetitive reasoning traces. We apply expansion and compression of the token
budget iteratively, encouraging exploration and consolidation in turn. Experiments show that SIRI
boosts the model’s performance and token efficiency consistently during each iteration. While this
approach has provided extra gains, the upper performance threshold remains to be discovered and
understood (e.g., limited by dataset size, algorithm efficiency, etc). Moreover, how SIRI can be
applied in other tasks that require intensive reasoning, such as code generation, is also a promising
direction. Looking forward, online RL post-training has been an ever-broadening avenue towards
artificial general intelligence, and we hope this work can help to further scale up RL training.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All datasets used for training and evaluation are open-sourced. Our training code is modified from
the open-source framework VeRL, and we will release the modified parts upon publication. We will
also release the trained model checkpoints along with the corresponding training logs.

USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely for polishing and enhancing the clarity of the
manuscript. They did not contribute to research ideation, methodological design, experimental exe-
cution, data analysis, or any other substantive aspect of this work. All scientific content, results, and
conclusions are entirely the responsibility of the authors.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024a.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024b.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning.
arXiv preprint, arXiv preprint arXiv:2501.12948, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. In The Thirteenth International Conference on Learning Representations,
2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312-24320, 2025.

Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qing-
ping Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
reinforcement learning. arXiv preprint arXiv:2505.11896, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,

and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

10

Under review as a conference paper at ICLR 2026

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing ol-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025b.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

Yingqgian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAl. Openai ol system card. arXiv preprint, arXiv preprint arXiv:2412.16720, 2024.

OpenAl Gpt-5 system card, 2025. URL |https://cdn.openai.com/pdf/
8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. Advances in Neural Information Processing
Systems, 37:116617-116637, 2024.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
ematical reasoning in open language models. arXiv preprint, arXiv preprint arXiv:2402.03300,
2024.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
ing models. arXiv preprint arXiv:2503.04472, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jachoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny

Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

11

https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf
https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf

Under review as a conference paper at ICLR 2026

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. arXiv preprint arXiv:2312.11456, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025.

A ADDITIONAL EXPERIMENT RESULTS

A.1 RESULTS ON DEEPSEEK-R1-DISTILL-QWEN-7B
Figure [8] demonstrates the training dynamics of SIRI and DAPO-DeepScaleR-16K for the
DeepSeek-R1-Distill-Qwen-7B model. SIRI reaches comparable performance to DAPO-

DeepScaleR-16K on AIME24 and outperforms DAPO-DeepScaleR-16K on AIME25, both with
less tokens.

60 —'r Pass@1 Accuracy A PRt TN —-\- Pass@1 Accuracy _=7 - \\,—\ _ 11000
- \Average Responsezﬁmgth """" 10000 - 46 —--\ Average Response Length M~ -
= Y °© = A\ / °©
K8 — ys g Saa 3 S 10000 £
> 9000 - > 1N - =
3 o o <’ @
g & g - &
5 56 s 542 9000 §
I+ a S a
£ 8000 § & \ g
= & = 40 2
954) 2 /\ 8000 g
a 8 a 8
8 7000 g 835 g
52 SIRI < V— s 7000 <
—— DAPO-DeepscaleR-16K 6000 36 —— DAPO-Deep5caleR-16K
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Training Steps Training Steps
(a) Dynamics on AIME24 (b) Dynamics on AIME25

Figure 8: The training dynamics comparison between SIRI and DAPO-DeepScaleR-16K. DAPO-
DeepScaleR-16K transits from 8K to 16K at step 360.

A.2 DETAILS ON TRAINING DYNAMICS: AN ENTROPY VIEW

42
5 <40 <425
S0 e s
- >.38 >.40.0
O'3g 9 9
e C36 2375
5 5 5 ;
036 o o !
g | g3 2350 i

34 !
® . / 0 @2 i) ®325 d

{ ; o i :

B | — pass@1 Acqi | J {3 301 — Pass@1 Accuracy (%) 2 30.0] — Pass@1 Accuracy)
& 30 Entropy (Absoltice Vall ¢ L Entropy (Absolute Value) £ Entropy (Absolute \

Jg| o Fullcycle Finishes ; : 281 - Full Cycle Finishes : 27.5] — Full Cycle Finishes :

0 500 1000 1500 0 500 1500 2000 0 500 1000 1500 2000

Training Steps

(a) 320 cycle

1000
Training Steps

(b) 480 cycle

Training Steps

(c) 640 cycle

Figure 9: The entropy during training for cosine scheduler with different cycle length.

We additionally report the change of entropy during the cosine scheduler training in Figure[9] During
the compression stage, the model’s entropy decreases; During the expansion stage, its entropy slowly

12

Under review as a conference paper at ICLR 2026

as! 0.8
& 421 6
40/ =
:
>
§3& 06
>
— 361 8_
%3¢ 052
n‘? —— Pass@1 Accuracy (%) w
321 —— Entropy (Absolute Value)

o
N

0 200 400 600 800 1000 1200
Training Steps

Figure 10: The entropy of DAPO-DeepScaleR-16K during 16K context training.

increases. However, we find that the model’s entropy does not collapse. Instead, it tends to remain
stable within a certain range as training proceeds.

Interestingly, for non-iterative models such as DAPO-DeepScaleR-16K, we notice similar trends,
where the model’s entropy periodically fluctuates. As shown in Figure there is also roughly a
cosine-shaped entropy curve during 16K context training of DAPO-DeepScaleR-16K. This shows
that the periodic change in entropy is common for different training scheduler.

Moreover, for both training methods, we notice a increase in performance when entropy increases
even as the response length pleataus for DAPO-DeepScaleR-16K after step 360. This implies the
possibility of using entropy bonus or clipping even higher during the expansion stage to further
enhance SIRI’s performance.

13

	Introduction
	Related Work
	Length Compression for LRMs
	Iterative Training

	Preliminaries
	Problem formulation
	Group Relative Policy Optimization

	SIRI: Scaling Iterative Reinforcement Learning with Interleaved Compression
	Motivation
	Reward Shaping
	Length Scheduler

	Experiments
	Experiment Setup
	Results
	Ablations on Scheduler Design

	Conclusion
	Additional Experiment Results
	Results on DeepSeek-R1-Distill-Qwen-7B
	Details On Training Dynamics: An Entropy View

