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Abstract
Understanding the world and explaining it with scientific theories is a central aspi-
ration of artificial intelligence research. Proposing theories, designing experiments
to test them, and then revising them based on data are key to scientific discovery.
Despite the promise of LLM-based scientific agents, no benchmarks systematically
test their ability to propose scientific models, collect experimental data, and revise
them in light of new data. We introduce BoxingGym , a benchmark with 10 envi-
ronments for evaluating experimental design (e.g., collecting data to test a scientific
theory) and model discovery (e.g., proposing and revising scientific theories). To
enable quantitative and principled evaluation, we implement each environment as a
generative probabilistic model with which a scientific agent can run interactive ex-
periments. These probabilistic models are drawn from various real-world scientific
domains ranging from psychology to ecology. To evaluate a scientific agent’s ability
to collect informative experimental data, we compute the expected information gain
(EIG), an information-theoretic quantity which measures how much an experiment
reduces uncertainty about the parameters of a generative model. A good scientific
theory is a concise and predictive explanation. To quantitatively evaluate model
discovery, we ask a scientific agent to explain their model and evaluate whether
this explanation helps another scientific agent make more accurate predictions. We
evaluate several open and closed-source language models of varying sizes. We find
that larger models (32B) consistently outperform smaller variants (7B), and that
closed-source models generally achieve better results than open-source alternatives.
However, all current approaches struggle with both experimental design and model
discovery, highlighting these as promising directions for future research. 2

“To understand a system, you must perturb it.”
– George Box (ad sensum)

1 Introduction
Helping humans understand the world (and themselves) by discovering scientific theories is a founda-
tional goal of artificial intelligence research [31]. Proposing theories about the world, conducting
experiments to test them, and revising them based on data is central to this process [9]. Recent
advances in large language models (LLMs), have shown promising potential for accelerating scientific
discovery. LLMs have extensive scientific knowledge [2], strong inductive reasoning capabilities
[53, 43], and the ability to propose models of data [27, 28, 11]. These promising results suggest that
LLMs, functioning as autonomous agents, could be well-suited for experimental design (i.e., col-
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Figure 1: Overview of BoxingGym. The BoxingGym Framework is designed to holistically evaluate
experimental design and model discovery capabilities in the spirit of George Box [9]. 1) The process
starts with a user defining a goal for the scientist agent. 2) The scientist formulates a theory. 3) This
theory guides the experimental design, where the scientist interacts with a simulated world to gather
new data. 4) The scientist then analyzes the new and old data to propose and refine theories. This
iterative process continues for several iterations. 5) The scientist is then asked to explain the findings
to a novice. 6) We evaluate the novice and the scientist by casting the goal as a prediction problem.

lecting informative experiments to test scientific theories) and model discovery (i.e., developing
interpretable models based on experimental data).

Previous work has evaluated automated experimental design and model discovery in isolation [16,
17, 15, 27]. However, they are fundamentally coupled in real-world settings: scientists collect
experimental data to build better models and better models inform better experiments. While
scientific agents are promising, there is currently no systematic way to evaluate an agent’s ability
to propose scientific models, collect experimental data, and revise them in light of new data. This
motivates the need for a benchmark that evaluates an agent’s capabilities holistically in an integrated
scientific discovery pipeline.

We outline the key desiderata for a framework that evaluates experimental design and model discovery:
(1) The framework should enable the agent to actively experiment with the environment without
requiring the agent to perform time-consuming and resource-intensive real-world lab experiments.
(2) Since scientific theories come in different forms, the framework should flexibly accommodate
different representations of scientific theories. (3) The framework should evaluate experimental
design and model discovery in an integrated way. (4) Science is often goal-directed or driven by an
inquiry. For example, a biologist might perform experiments with the goal of identifying cellular
mechanisms underlying circadian rhythm in mammals. Our framework should allow users to specify
high-level goals to guide the agent’s discovery process. Our desiderata are inspired by the framework
for scientific modeling introduced by George Box [7, 8], which emphasizes an iterative process of
building models, designing experiments to test them, and revising them accordingly.

To achieve these desiderata, we introduce BoxingGym (Fig. 1) a flexible framework for evaluating
experimental design and model discovery with autonomous agents. Our benchmark consists of 10
environments grounded in real-world scientific models. To enable agents to actively experiment, we
implement each environment as a generative model. This key design choice makes simulating active
experimentation tractable because it corresponds to sampling from the underlying generative model,
conditioned on the experimental interventions. To accommodate various representations of scientific
theories, all environments are designed with a flexible language based interface (Fig. 2). Finally,
our environments can be instantiated with different goals, or intents for inquiry, that encourage the
agent to adapt their experimentation towards accomplishing the goal (e.g., understand the parameters
underlying participant behavior in a psychology study) by specifying the goal in language.
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class Goal:
  def init(env):
  def get_query:
  def eval(pred, truth):
  def info_gain(design):

class WorldEnv:
  def build_model:
  def reset:
  def step:

class Agent:
  def set_goal:
  def act:
  def predict:
  def explain:

env = WorldEnv()
goal = Goal(env)
desc = goal.describe_goal()
scientist = Agent()
scientist.set_goal(desc)

for n in range(num_exp):
  act = scientist.act(obs)
  eig = goal.info_gain(act)
  obs = env.step(act)

query, answer = goal.get_query()
pred = scientist.predict(query)
error = goal.eval(pred, answer)

explanation = agent.explain()
novice = Agent()
pred = novice.predict(query)
error = goal.eval(pred, answer)

Hyperbolic Temporal Discounting
Understand how value of money for a 
participant decreases with time

Agent that can interact with a language 
interface

Will the participant choose $10 today of 
$100 in 50 days?
EIG: 0.01
Response: $100 in 50 days

Q: Predict if the participant will choose $10 
today or $20 in 5 days?
A: $10 today
Prediction: $10 today

Explanation: The value is hyperbolically 
discounted with a factor of 0.05, so the 
value of $d in D days is 1/1+0.05d.
Prediction: $10 today

BoxingGym Construction Pseudocode Example

Figure 2: Python pseudocode examples. (left) BoxingGym is instantiated as modular classes and
methods for the environment (WorldEnv), goals (Goal), and agents (Agent). (center) Pseudocode
illustrating the workflow of setting goals, performing experiments, predicting outcomes, and providing
explanations. (right) An example, hyperbolic temporal discounting, where the agent predicts a
participant’s choice between immediate and delayed rewards and explains the concept to a novice.
We introduce principled evaluation metrics that measure the quality of experiments and discovered
models. To evaluate experimental design, we draw from Bayesian optimal experimental (BOED)
design [44] and use expected information gain (EIG) to measure the informativeness of an experiment.
EIG captures how much an experiment reduces uncertainty in the parameters of a generative model
and, importantly, this measure complements our decision to implement environments as generative
models. To evaluate model discovery, we take inspiration from the fact that science is a communicative
endeavor. We propose a communication-based evaluation strategy: we ask a scientist agent to distill
their experiments into a natural language explanation and evaluate how much that explanation
empowers a novice agent, who does not have access to the experiments conducted by the scientist, to
make accurate predictions about the environment.

We evaluate several open and closed-source language models ranging from 7B to 32B parameters. We
find that larger models consistently outperform smaller variants, and closed-source models generally
achieve better results than open-source alternatives. We also evaluate Box’s Apprentice [27], which
augments language models with statistical modeling capabilities, but find that this augmentation
does not reliably improve performance. Notably, we observe substantial variation in difficulty across
environments, which remaining challenging even for the strongest models. Promisingly, some
environments show clear performance improvements with model scale. These results highlight
significant opportunities for improving automated scientific reasoning.

2 Related Works
Optimal Experimental Design. Bayesian optimal experimental design (BOED) is a principled
framework for designing maximally informative experiments across various disciplines [49, 12,
35]. While theoretically appealing, BOED’s practical implementation is challenging due to the
intractability of information gain metrics like expected information gain (EIG). Although several
methods [44, 16, 17] exist to approximate EIG, they assume the data follows a fixed generative
model—limiting their utility when model revision is needed as new data is collected.
Automated Model Discovery. Automated model discovery from data has been a long-standing goal
in AI, aiming to build interpretable models that capture underlying patterns in data—from physical
laws [6, 32] to nonparametric regression [15]. Recent work [27, 28] has integrated language models
into this process, leveraging their ability to both propose and critique candidate models, demonstrating
their potential as tools for automated model discovery. This work highlights the potential of using
language models as a powerful tool for model discovery.
Reasoning and Exploration with LLMs. Language models have shown promising capabilities
in both deductive reasoning (deriving consequences from hypotheses) [47, 46, 42] and inductive
reasoning (inferring hypotheses from observations) [53, 43]. While reinforcement learning has
improved LLMs’ reasoning abilities [24, 21, 20, 22], these advances have primarily focused on
deterministic, verfiable systems rather than the stochastic data typical in scientific discovery. Efficient
exploration and information-seeking are crucial for experimental design and model building. Recent

3



work [37, 33, 19, 18, 48, 26] has investigated in-context exploration strategies and shown how
language models can learn how to search and explore directly through sequence modeling, developing
effective search strategies in language.
Interactive Environments. Drawing inspiration from established reinforcement learning principles
[10, 34], BoxingGym adopts the modularity and simplicity of classic environments like OpenAI Gym
while shifting focus to evaluation rather than agent training. While recent work has expanded interac-
tive benchmarks to language agents —spanning tasks from software debugging [25] to automated
scientific research[36, 29], our work advances this direction by introducing a principled framework
for evaluating language agents’ capabilities in iterative experimental design and model discovery.

3 Boxing Gym

3.1 Problem Formulation.

We formalize experimental design and model discovery using probabilistic modeling and Bayesian
optimal experimental design (BOED). In BoxingGym , each environment is implemented as a
generative model defining a joint distribution over the experimental outcome y, experimental design
d, and unobserved parameters θ. This joint distribution is defined in terms of a prior distribution
over θ, p(θ) and a simulator p(y|θ, d) which is a model of the experimental outcome y given
parameters θ and design d. For example, in a psychology experiment, θ could be the parameters
of a behavioral model of participants, d could be the questions posed to participants, and y could
be the participant’s response to d. Running an experiment corresponds to choosing a design d
and observing a sample y from the marginal predictive distribution conditioned on that design,
i.e., y ∼ p(y|d) = Ep(θ)[p(y|θ, d)]) 3.

3.2 Evaluation

3.2.1 Evaluating experimental design via Expected Information Gain

To evaluate experimental design, we take inspiration from the Bayesian OED literature [16, 17].
Crucially, our choice to implement environments as generative models enables us to leverage this
literature. For each domain, we have an underlying predictive model p(y|θ, d). We quantify the
informativeness of a design d through the expected information gain (EIG), that measures the
reduction in posterior uncertainty about the model parameters θ after running an experiment d. Below,
H is the Shannon entropy.

EIG(d) = Ep(y|d) [H[p(θ)]−H[p(θ|y, d)]]

Since the EIG is typically not available in closed-form, we use a Nested Monte Carlo estimator

µ̂NMC(d) =
1

N

N∑
n=1

log

(
p(yn|θn,0, d)

1
M

∑M
m=1 p(yn|θn,m, d)

)
where θn,m

i.i.d.∼ p(θ), yn ∼ p(y|θ = θn,0, d)

We chose this estimator because it is a consistent estimator of the true EIG [44] and is straightforward
to implement. EIG measures the value of an experiment under the assumption that the true distribution
of experimental outcomes is modeled by p(y|d). In general, this assumption is not true, but EIG is
still a useful measure since we generate data from an underlying model in our benchmarks.

3.2.2 Evaluating model discovery via communication
To evaluate the quality of a model, we use standard model evaluation metrics (e.g., prediction MSE)
and a communication-based metric that takes advantage of the natural language interface. In particular,
a scientist agent interacts with an environment through experiments. After these experiments, we ask
the scientist agent to synthesize their findings through an explanation. We then evaluate how much
that explanation enables a novice agent to make more accurate predictions about the environment
without any additional experiments. Since a good explanation is both predictive and parsimonious,
we set a token limit on the explanation. Crucially, this evaluation method can accommodate different
forms of scientific theories. In our experiments, we ask the scientist agent to produce a statistical
model and then distill the model into a natural language explanation to guide the novice agent.

3In the sequential setting, we replace the prior p(θ) with the posterior p(θ|y, d).
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3.2.3 Evaluating goals via prediction
To evaluate success at achieving a specific goal (e.g., how do the populations of predator and prey
change with time) we employ a prediction target (e.g., predict the population of predators at a
particular time) and calculate a standardized prediction error. First, we compute the error between the
predicted and true values. Then, we standardize this error with respect to the prior predictive mean,
which is obtained by assuming a uniform prior over the design space. Specifically, for each domain,
we sample a design d uniformly from the design space and a parameter θ from the prior distribution
p(θ). We then generate samples from the predictive model p(y|θ, d) and average over multiple d and
θ to obtain the prior predictive mean µ0 and variance σ0. Let {yi}ni=1 be the ground truth outputs for
inputs {xi}ni=1. and let {ŷi}ni=1 be the predictions of the agent. The standardized prediction error is
then calculated using these quantities, providing a measure of the agent’s performance relative to
the prior predictive mean. We use a domain-specific function f computing the discrepancy between
a prediction ŷi and ground truth value yi (e.g., MSE). We compute the errors ϵi = f(ŷi, yi) and
ϵµ0

= f(µ0, yi). Finally, we compute the standardized error as ϵi−ϵµ0

σ0
. Crucially, since this metric is

computed with respect to the prior predictive, this metric can be negative.

3.3 Design Decisions in Constructing BoxingGym
We outline the key design decisions of BoxingGym that allow it to capture key aspects of scientific
discovery within a flexible, simulated, and extensible environment.

Discovery via active experimentation. The agent actively interacts with the environment by
conducting experiments, reflecting the real-world coupling of experimentation and model discovery.
This approach assesses the agent’s ability to gather relevant data and refine its models based on
experimental results.

Real-world scientific models. Our environments are grounded in real-world scientific models
from several domains, ensuring the benchmark tests the agent’s ability to handle realistic scenarios.
We implement these environment as pymc generative models to make active experimentation an
automatic and tractable process.

Goal-driven discovery. Each environment has a specific goal, mirroring the inquiry-driven nature
of scientific research. This encourages the agent to engage in targeted experimentation.

Language-based interface for experiments. We use a language-based interface for our experi-
ments because it’s flexible (i.e., scientific domains can generally be described in language), easily
integrates with LLMs, and interpretable to humans.

Emphasis on Measuring Discovery with Explanations. BoxingGym places a strong emphasis
on measuring the quality of the agent’s discoveries through the explanations it can provide after
experimentation (§3.2.2). This design decision is motivated by two considerations. From a theoretical
perspective, science is fundamentally about developing better theories, and scientific theories are
explanations of observed phenomena. From a practical perspective, communicating findings to the
broader scientific community is an essential aspect of scientific research. By using language, we do
not have to commit to a particular representation of a scientific theory. We illustrate this flexibility,
by showing how different representations can be easily integrated within our method for measuring
natural language explanations.

Extensible/modular environments for benchmarking agents. BoxingGym is easily extensible and
modular, enabling researchers to integrate new environments and test different agents with minimal
effort. We illustrate this in Fig. 2 which provides a pseudo-code example of how to implement a new
environment and goal in BoxingGym .

3.4 Domains

BoxingGym consists of 10 environments (see App. D for full details) that cover a range of scientific
domains and test different aspects of experimental design and model discovery. Some environments
are designed to test optimal experiment design, while others focus on model discovery or involve
simulated neuro-symbolic human participants.
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Location finding. [17] In an n-dimensional space with k signal-emitting sources, the scientist
measure signals at any grid location. Goals include predicting the signal at any point or locating the
sources.

Hyperbolic temporal discounting. [17] The scientist observes a participant’s choices for different
immediate rewards (ir), delayed rewards (dr), and delay periods (D days) Fig. 2 (right). Goals
include predicting choices of a participant or discount factors.

Death process. [17] A disease spreads at an infection rate. The scientist can measure the number
of infected individuals at different points of time to predict future infections or the infection rate.

Item Response Theory (IRT). [45] In this environment, there is a set of students and a set of
questions. The experimenter can observe the correctness of a student’s response to a particular
question. The goal is to discover the underlying model that relates student ability and question
difficulty to the probability of a correct response.

Animal growth curves. [30] An experimenter can observe the length of a dugong at a particular
age. The goal is to discover the underlying growth model of dugongs.

Population growth dynamics. [30] An experimenter can observe the population of peregrines at a
particular point in time. The goal is to discover the underlying population dynamics model. This is
tested by asking the experimenter to predict population dynamics at a particular point in time.

Mastectomy Survival analysis. [13] The experimenter can observe if a patient is alive after a
mastectomy, including metastasis status and time since surgery. The goal is to predict survival
probabilities for new patients.

Predator-Prey dynamics. [52] This simulates predator-prey populations over time. The goal is to
discover models like the Lotka-Volterra equations to predict future populations.

Emotion from outcome. [38] Participants guess a player’s emotions after a gambling game’s outcome.
The experimenter designs games with varied probabilities and prizes to model how participants judge
the emotions of a player from outcomes. Human participants are simulated using a probabilistic
model translated into natural language by a language model.

Moral Machines. [5] Participants face moral dilemmas, choosing which group an autonomous car
should save. Experimenters manipulate group compositions and required actions to model moral
decision-making. Human participants are simulated with a probabilistic model, and their actions are
translated into natural language by a language model.

4 Experiments
We conduct experiments to evaluate the performance of two baseline agents on BoxingGym . Our
goal is to assess their ability to perform experimental design and theory building across a diverse set
of environments. We benchmark two types of agents: a standard language model (GPT-4o, OpenAI
[39]) and a language model augmented with symbolic reasoning capabilities (Box’s Apprentice).

LLM Agent. We consider 6 LLMs, GPT-4o [39], Claude-3.7-sonnet [3], Qwen-2.5-32b-instruct,
Qwen-2.5-7b-instruct [55], and reasoning variants OpenThinker-32b, and OpenThinker-7b [51]; the
reasoning variants are finetuned on math and coding task. We prompt these models to interact with
our environment, purely through natural language, without additional tools (see Fig. 2, see App. B
for details).

Box’s Apprentice. The apprentice agent augments language models by enabling them to implement
generative models of observed data. For model discovery, the agent writes a pymc program [27] after
10 experiments, which is then fit and provided to the scientist explaining findings to the novice. For
experimental design, the agent creates and uses these models to guide subsequent experiments.

Experiment Setup. For each environment, we run the agents for 5 independent trials. At each
step, the agent chooses to perform an experiment, by specifying a design, and observes the outcome.
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Figure 3: Normalized Error Compared across Models. (a) Comparison of the normalized errors
for different LLMs with or without prior information included in the prompt. (b) Comparison of
reasoning models (OpenThinker) and instruct models (Qwen) across environments. Error bars are the
standard error across 5 runs.
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Figure 4: Normalized Errors Over Number of Observations. Normalized errors for the LLM
agent with gpt-4o with prior information (solid blue) and without prior information (dotted yellow)
across three domains: Population Growth Dynamics (left), IRT (center) and Hyperbolic Discounting
(right). Error bars are the standard error across 5 runs.

After a fixed number of steps (0, 1, 3, 5, 7, 10), we evaluate the agent’s performance using the
metrics described earlier §3.2. The performance of models is averaged across 5 runs and over 10
evaluation points. We also explore a prior vs no prior condition to investigate whether domain
knowledge helps or hinders scientific discovery. In the prior condition, we give the LM full context
about the problem domain (e.g., “you are observing how participants balance delayed vs immediate
rewards”), simulating scientists with background knowledge. In the no prior condition, we remove
this context and describe the setting in a domain-agnostic way (e.g., “you receive a tuple of three
values”), resembling reasoning from raw observations without preconceptions. This tests whether
prior knowledge scaffolds discovery or creates biases that constrain exploration.

4.1 Experimental Design Evaluation

Setup. To evaluate the agents’ performance, we first assess their ability to gather valuable informa-
tion through their experiment selection and then measure how effectively they use this information
to predict the environment. The Expected Information Regret (EI Regret) compares the Expected
Information Gain (EIG) (§3.2.1) of the agent’s chosen experiments to the maximum EIG achievable
from 100 random experiments. Lower EI Regret indicates more informative experiment selection.

Prior information does not improve performance. We find that models often perform better
when given no prior information after 10 experiments (Fig. 3a). In some cases, this is because the
LLM makes an overly strong assumption about the environment (e.g., the signal decay is symmetric
around the origin) and does not revise the assumption after more experiments; this is consistent with
findings reported by Li et al. [27]. In other cases, such as the hyperbolic discounting environment
(Fig. 4, right), the model overfits to limited observations.

More experiments generally lead to better predictions. We plot the learning trajectories for
three environments in (Fig. 4). The agent’s average prediction error decreases as it performs more
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Figure 5: (a) Comparison of the Box’s Apprentice with an LLM agent. (b) EIG Regret scores for six
large language models, with lower values indicating better performance.

experiments. The Hyperbolic Temporal Discounting environments shows an unexpected trends
where more experiments actually increases error. This may again be related to how prior knowledge
interferes with effective learning from data.

Models Improve with Scale. Larger models consistently outperform their smaller counterparts
within the same model family. Both OpenThinker-32B and Qwen2.5-32B demonstrate significantly
better performance than their respective 7B variants across environments (Fig. 3a), highlighting the
benefits of scale for experimental design tasks.

Instruction-Tuned Models outperform Reasoning Models. Surprisingly, the instruction-tuned
Qwen2.5 models outperform the reasoning-focused OpenThinker models (Fig. 3b). This may be
because OpenThinker models are finetuned to perform well on a relatively narrow set of verifiable
problems in math and code, while instruction-tuned models retain broader capabilities that could be
useful for experimental design.

Models performance varies substantially across environments. Models show varying perfor-
mance across different environments (Fig. 3b). Performance is strongest on environments like
population growth dynamics and death process, where the LM agent achieves negative standardized
error, indicating that the LM successfully leveraged information gained through experimentation.
However, in environments like hyperbolic discounting, performance is low even after experimentation,
suggesting that some domains are inherently more challenging for current models.

EIG Regret reveals relationship between experimental design and prediction. Our EIG regret
analysis (Fig. 5b) provides insight into the relationship between two key components of scientific
reasoning: designing informative experiments and making accurate predictions from collected
data. GPT-4o achieves both the lowest EIG regret and strong predictive performance across several
environments, suggesting these capabilities can be aligned. However, the varying performance of other
models is informative — for instance, Qwen-32B shows higher EIG regret despite good predictive
performance in some domains, indicating that while these abilities may be related, excellence in
prediction doesn’t automatically translate to optimal experimental design.

LLMs cannot always optimally leverage statistical models. While Box’s Apprentice can propose
and fit explicit statistical models to observed data, it does not consistently improve over the non-
augmented LLM (GPT-4o) (Fig. 5a) From qualitative analysis of the models, we find that Box’s
Apprentice tends to favor overly simple functional forms due to limited data, such as using linear
approximations for inherently nonlinear phenomena.

4.2 Evaluating Model Discovery via Communication

Setup. Next, we evaluate the agents’ ability to build and communicate models that capture the
underlying phenomena in each environment. To test this, we have the agents interact with the
environment for 10 steps (scientist phase) and then generate a natural language explanation of their
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Figure 6: Evaluation of Model Discovery via Communication. (a) Comparison of the standardized
error of the Novice (gpt-4o) with different Scientist models. (b) Comparison of errors made by the
Novice and the Scientist (both models are gpt-4o). Error bars are standard error.

findings. We then provide this explanation to a novice agent, which must make predictions about the
environment without any direct interaction (novice phase by using the explanation from the scientist;
§3.2.2). The novice agent is always gpt-4o. The scientist’s prediction after 10 observations (Error
After Experiments) acts as a weak positive control. Ideally, if the scientist’s explanation is effective,
the novice’s error should approach the positive control.

Explanations improve with scale. Larger models generally produce more effective explanations,
as evidenced by better novice performance when using explanations from 32B variants compared to
7B models (Fig. 6a). This suggests that increased model scale improves not just experimentation but
also the ability to distill and communicate findings.

Explanations are not as good as experiments. As expected, novice agents perform worse than
scientists who directly interacted with the environment (Fig. 6b). The gap suggests that current
explanation methods do not fully capture the knowledge gained through experimentation.

Explanations are more helpful for some environments. However, the effectiveness of explana-
tions varies substantially across domains (Fig. 6b). For instance, explanations are helpful for animal
growth, but struggle with complex domains like moral judgments. This variation likely reflects the
complexity of different domains and the current limitations of language models in capturing and
communicating certain types of patterns.

5 Discussion
We introduced BoxingGym , a benchmark measuring language-based agents’ capabilities in ex-
perimental design and model discovery across 10 real-world-based environments. We evaluated
experimental design using information gain metrics and developed a novel model discovery metric
based on an agent’s ability to explain its model to a novice agent. Our evaluation across multiple
model scales (7B-32B parameters) shows that while larger and closed-source models generally
perform better, fundamental challenges persist. Neither domain-specific prior knowledge nor statisti-
cal modeling capabilities consistently improved performance. Some environments yielded strong
results with larger models, while others remained challenging for all approaches. BoxingGym has
limitations: it uses pre-defined experimental paradigms rather than requiring design from scratch
[14], ignores resource constraints, and covers limited scientific domains. Future work should address
these limitations by incorporating experiment design from scratch, resource constraints, and more
diverse fields [23]. We could also expand the human behavior environments (Moral Machines,
Emotions) with more sophisticated participant simulations [4, 1, 50, 40, 41]. While our experiments
demonstrated potential for interfaces that augment language models’ scientific reasoning capabilities,
future research should explore data visualization, model validation [28], and web-based research
strategies to enhance experimental guidance and discovery.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe the design of our benchmark accurately, summarize results with
different models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No proofs or new theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, further, all our code, results and scripts are available on github.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All the code is accessible on the github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe this in detail in experimental setup and have the full specification
in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance in all our results...

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See appendix section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Single blind submission and we follow the code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We don’t discuss these as there are no direct negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not relevant for the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All models have been cited appropriately. The papers that inspired the
environments have been credited too.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We add documentation to the BoxingGym code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human participants were recruited.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper does not use human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: None of the core methods used LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Env Goal Error@0 Error@10 Discovery@10

Hyperbolic Discounting Choice 0.32±0.04
0.96±0.15

0.87±0.08
1.04±0.04

0.79±0.37
0.96±0.07

Hyperbolic Discounting Discount -0.06±0.00
-

-0.06±0.00
-

-
-

Location Finding Signal 0.30±0.25
0.63±0.39

0.59±0.55
0.86±0.47

4.75±4.51
1.52±1.28

Location Finding Source Location 1.29±1.3
-

-0.15 ±0.4
-

-
-

Death Process Num Infected 0.54±0.52
-0.31±0.30

-1.06±0.03
-1.04±0.01

-1.08±0.01
-1.00±0.11

Death Process Infection Rate 0.13±0.37
-

1.64±1.12
-

-
-

IRT Correctness 0.12±0.07
0.08±0.15

-0.24±0.10
0.00±0.13

0.12±0.18
0.12±0.14

Dugongs Length -0.04±0.02
-0.04±0.02

-0.08±0.00
-0.08±0.00

-0.06±0.04
-0.07±0.02

Peregrines Population 1.95±0.22
1.30±0.11

-0.57±0.09
-0.65±0.01

-0.65±0.02
-0.66±0.03

Mastectomy Survival 0.04±0.14
0.32±0.08

0.36±0.10
0.27±0.12

1.00±0.41
0.45±0.18

Predator-Prey Population 0.38±0.04
0.75±0.02

-0.31±0.05
-0.42±0.01

-0.01±0.12
-0.07±0.40

Emotions Prediction 1.04±0.21
N/A

1.22±0.29
N/A

0.90±0.58
N/A

Moral Machines Judgement 0.40±0.07
N/A

0.36±0.04
N/A

0.68±0.13
N/A

Table 1: Performance of GPT-4o Across Different Tasks. Numbers shown are normalized-0 errors.
Errors with prior (top line) and without prior (bottom line) appear on different lines. Errors are
averaged across 5 runs.

A Full Results

See Tab. 1, and Tab. 2 for 4 prediction errors across all environments for GPT-4o and the Box’s
apprentice with GPT-4o. Full results are available in the Github Repository.

B LLM Agent

The LLM agent provides an easy way for a large language model (LLM) to interact with BoxingGym .
By tailoring the system message to the specific environment, we can clearly define goals for the LLM,
elicit experimental designs from it, make accurate predictions for queries, and generate explanations
for a novice. This agent class also incorporates a simple retry mechanism that allows the LLM to
correct its designs if they are initially invalid.

Models were configured with a temperature parameter of 0.0 to ensure deterministic outputs. Maxi-
mum token limits were set to 512 tokens for instruct models and 1024 tokens for thinking variants,
providing sufficient thinking tokens for generating an answer without multiple retries.

4We omit the predatory-prey and Emotions domains for Box’s Apprentice, since GPT-4o could not reliably
produce pymc programs

21



Env Goal Error@0 Error@10 Discovery@10

Hyperbolic Discounting Choice 0.66 ± 0.25
0.66 ± 0.25

1.17 ± 0.14
0.91 ± 0.09

0.66 ± 0.30
0.74 ± 0.42

Location Finding Signal 0.99 ± 0.58
1.18 ± 0.64

1.45 ± 1.60
0.83 ± 0.60

1.18 ± 1.12
-0.01 ± 0.30

Death Process Num Infected 3.79 ± 1.68
-0.90 ± 0.05

-1.02 ± 0.05
-0.61 ± 0.30

0.58 ± 0.85
0.50 ± 1.26

IRT Correctness 0.44 ± 0.36
0.12± 0.24

−0.12± 0.14
0.12± 0.14

-0.08 ± 0.39
0.2 ± 0.40

Dugongs Length 0.26 ± 0.12
0.05 ± 0.10

-0.08 ± 0.02
-0.09 ± 0.004

−0.09± 0.005
−0.08± 0.004

Peregrines Population 2.71 ± 0.60
1.62 ± 0.47

0.04 ± 0.21
0.95 ± 0.86

0.97 ± 1.38
-0.19 ± 0.79

Mastectomy Survival 0.14 ± 0.41
0.73 ± 0.15

0.55 ± 0.24
0.64 ± 0.15

0.91 ± 0.28
0.27 ± 0.23

Moral Machines Judgement 0.97 ± 0.33 0.89 ± 0.21 0.56 ± 0.18

Table 2: Performance of Box’s Apprentice Across Different Tasks. Standardized errors shown
here. Errors with prior (top line) and without prior (bottom line) appear on different lines. Errors are
averaged across 5 runs.

GPT-4o and Claude-3.7-Sonnet were accessed via their APIs, while all other models were deployed
using vLLM. For the vLLM-served models, we utilized a dual A40 GPU configuration: one GPU
dedicated to model serving and the other for inference execution through the vLLM endpoint.
This architecture ensured optimal resource allocation and performance stability throughout the
experimental process.

Each OED experimental run consisted of 10 predictions conducted after 0, 1, 3, 5, 7, and 10
observations, respectively. Comprehensive log files were generated for each set of predictions
to facilitate subsequent analysis. Execution time varied across model architectures, with most
configurations requiring approximately 2-3 minutes per run (defined as a single seed, configuration,
and environment combination). Models accessed through external APIs typically required longer
execution times due to network latency and rate limiting considerations. Discovery experiments
reduced execution times compared to OED experiments due to the decreased number of required API
calls.

C Box’s Apprentice

We closely follow Li et al. [27]. In particular, to generate a candidate, we sample a single probabilistic
program z from the proposal LM, qLM(·). For the model discovery experiments, we perform this
once after 10 experiments. For the OED experiments, we perform this three times over the course of
10 experiments. In all experiments, we use GPT-4o (gpt-4o-2024-05-13). The proposal LM qLM
“conditions” on ht ∈ Σ∗, a natural language instruction synthesizing previous modeling approaches
and suggesting new approaches, the previous program zt−1, and a textual representation of the dataset
D.

zt ∼ qLM(·|zt−1, ht−1,D).

We run this at a temperature of 0.0. Chain-of-thought reasoning, or generating intermediate reasoning
steps, improves the performance of LMs [54]. Motivated by this, we instruct qLM to reflect on the
properties of the dataset, sketch a high-level modeling approach, state the hypotheses that it will
address before writing a program, and add comments to code. See the system prompt in Figure 7.
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D Domains

D.1 Location Finding

The location finding environment has hidden signal sources that emit a signal. The scientist can
makeg measurements of the superimposed signal at various points. The experiment is directly taken
from Foster et al. [16]. In table 3, we describe the inputs and outputs of the experiment.

Parameter Description
Model Superposition of K signal sources in d-dim space
Setup Parameters Num signal sources K, dim of space d, base signal b, max signal m, noise σ
Observations Total noisy signal at point of measurement
Goals Predicting signal intensity at new points and source locations

Table 3: Location Finding

We define k = 3 signal sources in Rd = R2 space with locations at θk. The number of sources is
predefined and is known to the agent. Each source emits a signal strength αk. In our implementation,
we choose αk to be fixed for all sources. The signal strength decays according to the inverse square
law–if an agent measures at point ξ, then the noisy superimposed signal observed will be distributed
according to N (µ(θ, ξ), σ) where σ is the signal noise, µ(θ, ξ) is the total intensity at point ξ,

µ(θ, ξ) = b+

K∑
k=1

αk

m+ || θk − ξ ||2
(1)

and b,m > 0 are constants governing background and maximum signal. Note that unlike Foster et al.
[17], we observe the total intensity, not the log total intensity.

D.2 Hyperbolic Discounting

The hyperbolic discounting domain has two hidden variables (k, α) to describe a participant’s
behavior, where each participant is asked to choose between an immediate reward $iR or a delayed
reward $dR in D days. The experiment is outlined in table 4 below.

Parameter Description
Model Human decision-making in temporal discounting of rewards
Setup Parameters Params of the discount function (ϵ, mean and std for log k, scale for α)
Observations Choice between immediate iR and delayed reward dR at delay D
Goals Predicting choices and the value of the discount factor

Table 4: Hyperbolic Discounting

In each measurement, we require iR is strictly smaller than dR and all three values have to be positive,
because we assume a rational participant would always choose a higher immediate reward over a
lower delayed reward. We follow the prior distribution of the latent variables given by Foster et al.
[16]:

log k ∼ N(−4.25, 1.5), α ∼ HalfNormal(0, 2) (2)

where the HalfNormal distribution is a normal distribution truncated at 0. For each test, there are three
variables in design: iR, dR, and D. We give values to each choice: receiving the immediate reward
$iR has value Vi = iR, while receiving the delayed reward $dR in D days has value Vd = dR

1+kD .
Then, whether each participant’s chooses the delayed reward in each scenario is characterized as a
Bernoulli random variable X ∼ Bernoulli(p) where the probability of choosing the delayed reward
is given by
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Box’s Apprentice system prompt

1 You are a brilliant statistician modeling a dataset.
2 Your job is to come up with a generative model that explains the

true data by writing a pymc probabilistic program.
3 Here is a description of the dataset {dataset_description}
4 {dataset_text_representation}
5 Here is a description of the columns {column_description}
6 If you are in the first round , you will not receive any

additional information.
7 However , for the second round and beyond , I will give you the

model you proposed previously.
8 Please import pymc NOT pymc3!
9 Note that there are differences in the arguments pymc expects.

10 IMPORTANT: do not use sd as an argument use sigma instead!
11 It is crucial that you pass the idata_kwargs argument to pm.

sample !!
12 IMPORTANT: Use the variable name "y_obs" for the observations

when you define it!
13 IMPORTANT: Use the variable name "y_obs" for the observations

when you define it!
14 IMPORTANT: Index the appropriate column names when grabbing data

from observed_data. These column names are indicated in the
column description.

15

16 Your answer should follow the template in the following order.
17 1. First , sketch a high -level probabilistic program for the data

.
18 You will go through multiple rounds of revision.
19 If there 's a previous program in your context window and a

list of hypotheses , revise based on this information!
20 Explicitly cite the hypotheses (if there are any) that you

address in your sketch.
21 2. After coming up with a plan , write your program and add

comments to lines of code that address certain hypotheses.
22 ```python
23 import pymc as pm
24 import numpy as np
25 def gen_model(observed_data):
26 # convert observed_data columns to numpy arrays
27 # index the appropriate column names
28

29 ....
30 rng1 = np.random.default_rng (42)
31 rng2 = np.random.default_rng (314)
32 with pm.Model as model ():
33 # create a pm.MutableData object for each non -

observation column
34 ... Your code here ...
35 # Copy the rest of this code verbatim but remember to

have this indented in scope of model ()!
36 trace = pm.sample (1000 , tune =500, target_accept =0.90 ,

chains=3, cores=1, random_seed=rng1)
37 posterior_predictive = pm.sample_posterior_predictive(

trace , random_seed=rng2 , return_inferencedata=False)
38 return model , posterior_predictive , trace
39 ```

Figure 7: BoxLM system prompt The system prompt for the proposal pLM . We also include some
additional instructions on pymc syntax such as wrapping features in a MutableData container.
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p(X = 1|k, α, iR, dR,D) = ϵ+ (1− 2ϵ)Φ(
Vd − Vi

α
) (3)

where Φ is the cumulative distribution function of the standard normal distribution. In our implemen-
tation, we set ϵ = 0.01 for all scenarios.

D.3 Death Process

The death process environment models an infection spreading among a healthy population of N
individuals. The infection rate θ determines how the probability of infection increases over time. The
environment is outlined in table 5 below.

Parameter Description
Model The spread of an infection over time
Setup Parameters Pop size N , params of the infetion rate (µ, σ, upper and lower bounds)
Observations Number of infected individuals at observation time
Goals Predicting the number of infected individuals at a time and the infection rate

Table 5: Death Process

In our model, θ is given by the prior distribution outlined in Foster et al. [17].

θ ∼ TruncatedNormal(µ = 1, σ = 1,min = 0,max = ∞) (4)

The number of infected individuals Y at time t is distributed as a binomial random variable:

Y |θ, t ∼ Binomial(N, η) (5)

where η = 1−e−θt, and N is the population size. We ask the agent to make observations sequentially
by giving a time t > 0 at each step.

D.4 IRT

1PL IRT Model The one parameter IRT (or Rasch) domain models the performance of multiple
students on multi-question exams. The binary outcome (whether the student is correct) of a student-
question pair is determined by latent variables governing the student’s proficiency and the question’s
difficulty (Figure 2). The agent’s goal is to predict the outcome of a particular student-question pair.
The agent may observe other student-question pairs to view their outcome. Table 6 below details the
inputs, outputs, and target for every variation of the IRT model.

Param Description
Model Student performance on multi-question exams
Setup Parameters Number of students N , number of questions Q, student-question pair to predict
Observations Outcomes of various student-question pairs
Goals Predicting the correctness of student responses to questions

Table 6: IRT Model

We define the ability αj of student j and the difficulty βk of question k. In our implementation, α and
β are standard normals. The outcome Ojk of a student j on question k is determined by a Bernoulli
trial where the probability of success pjk is determined by the logit function of zjk = αj − βk.

pjk =
1

1 + e−zjk
(6)
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In summary, for a given student-question pair, we compute the probability of the student getting the
question correct and return the result of the corresponding Bernoulli trial.

2PL IRT Model The two parameter IRT model is identical to the 1PL variant with an additional
variable governing the discriminability γk of question k. The discriminability models how sensitive
the question is to incorrect answers. For higher values of γ, the probability of a student’s answer being
correct is higher. Thus the outcome Ojk of a student j on question k is determined by a Bernoulli
trial where the probability of success pjk is determined by the logit function of zjk = γk(αj − βk).

3PL IRT Model The three parameter IRT model is identical to the 2PL variant with an additional
variable modeling how susceptible a question is to guessing. For question k, ck determines the
probability that a student gets the question right by guessing. Thus the outcome Ojk of a student j on
question k is determined by a Bernoulli trial where the probability of success pjk is determined by

pjk = ck + (1− ck)
1

1 + e−zjk
(7)

where zjk = γk(αj − βk) as in 2PL.

We use the 2PL model in BoxingGym .

D.5 Dugongs

The dugongs environment has the ages and lengths of dugongs (sea cows)[30]. The goal is to model
the length of a dugong based on its age. The following table describes the inputs and outputs of the
experiment:

Parameter Description
Model Bayesian hierarchical model
Setup Parameters alpha, beta, lambda, lower limit, upper limit
Observations Length of dugong at a given age
Goals Predicting the length of dugongs at different ages

Table 7: Dugongs Environment

In this environment, the length of a dugong at age x is modeled using a hierarchical Bayesian model
with parameters α, β, and λ. The age values range between 0 and 5. The observed length Y at a given
age x is generated from a normal distribution with a mean that is a function of x and the parameters
α, β, and λ, and a fixed standard deviation. The function representing the mean length m is defined
as:

m = α− β · |λ|x (8)

The observed lengths are then drawn from a normal distribution:

Y ∼ N (m,σ) (9)

where σ is the noise in the observed lengths, set to a fixed value (e.g., 0.25).

D.6 Peregrines

The peregrine environment models the population count of peregrine falcons at different times [30].
The goal is to understand how the population changes over time. The following table describes the
inputs and outputs of the experiment:

In this environment, the population count of peregrine falcons at time t is modeled using a Poisson
regression model with parameters α, β1, β2, and β3 . The time values range between 0 and 5. The
population count C at a given time t is generated from a Poisson distribution with a mean that is a
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Parameter Description
Model Poisson regression model
Setup Parameters Regression params: α, β1, β2, and β3

Observations Population count of peregrine falcons at a given time
Goals Predicting the population of peregrines at different times

Table 8: Peregrine Environment

function of t and the parameters α, β1, β2, and β3. The function representing the log of the mean
population count λ is defined as:

log λ = α+ β1t+ β2t
2 + β3t

3 (10)

The observed population counts are then drawn from a Poisson distribution:

C ∼ Poisson(exp(log λ)) (11)

This model allows for capturing the non-linear trends in the population data over time.

D.7 Survival Analysis: Mastectomy

The survival analysis environment models the outcomes of breast cancer patients based on the time
since surgery and the metastasized status. The following table describes the inputs and outputs of the
experiment:

Parameter Description
Model Survival analysis using a Bayesian approach
Setup Parameters num_patients, time_upper_bound, lambda, beta
Observations Whether a selected patient is alive or dead
Goals Predict survival based on time since surgery and if the cancer had metastasized

Table 9: Survival Analysis Environment

In this environment, the outcome (alive or dead) of a patient is modeled based on the time since
surgery and whether the cancer metastasized [13]. The outcomes are generated using a Bayesian
model with parameters λ0 and β. The number of patients and the upper bound of the time since
surgery are configurable. At the start of an episode, we sample a set of patients that have undergone
mastectomy, with varying times since they had surgery and if their cancer had metastasized or not.
The experimenter can then choose to observe specific patients to see if they are alive or dead. The
probability of death is calculated using the following model:

λ = exp(β · metastasized) · λ0µ = time_since_surgery · λ (12)

The probability of death for a patient is given by the logistic function:

p(death) =
1

1 + exp(−µ)
(13)

Each patient’s outcome is simulated from a Bernoulli distribution with the calculated death probability.
The observed data consists of tuples indicating whether the patient died, the time since surgery, and
the metastasized status.

For example, for a patient with a given time since surgery and metastasized status, the death outcome
is sampled as follows:
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death_outcome ∼ Bernoulli(p(death)) (14)

D.8 Predator-Prey Dynamics

The predator-prey environment models the interaction between populations of predators and prey over
time using the Lotka-Volterra equations [52]. The following table describes the inputs and outputs of
the experiment:

Parameter Description
Model Lotka-Volterra equations
Setup Parameters Initial prey population, initial predator population, α, β, γ, and δ
Observations Populations of prey and predators at a given time
Goals Predicting populations

Table 10: Predator-Prey Environment

In this environment, the populations of prey and predators at time t are modeled using the Lotka-
Volterra equations. The initial populations of prey and predators are given by the parameters
‘prey_init’ and ‘predator_init’, respectively. The interaction between the populations is governed by
the parameters α, β, γ, and δ. The time values range between 0 and 50. The Lotka-Volterra system
of differential equations is defined as follows:

dprey
dt

= α · prey − β · prey · predator (15)

dpredator
dt

= δ · prey · predator − γ · predator (16)

The populations of prey and predators at any given time t are obtained by solving these differential
equations. The observed data consists of tuples indicating the time and the populations of prey and
predators at that time.

For example, for a given time t, the populations of prey and predators are computed by solving
the Lotka-Volterra equations with the specified parameters and initial populations. The resulting
populations are nonnegative integers representing realistic population counts.

D.9 Emotions from Outcomes

The Emotions from Outcomes environment models a participant’s predictions of a players emotions
after spinning a wheel with three possible monetary outcomes [38]. The model considers the
actual outcome, the expected outcome, and the absolute difference between the actual and expected
outcomes. The following table describes the inputs and outputs of the experiment:

Parameter Description
Model Forward regression model with priors for emotional response
Setup Parameters Prize values, probabilities, outcome, LLM
Observations Prediction in natural language of how a player feels and why
Goals Predicting what a participant thinks a player feels on a likert scale of 8 emotions.

Table 11: Emotions From Outcomes Environment

In this environment, the participant’s predictions of a player’s emotions are modelled after observing
the outcome of the player spinning a wheel with three possible prizes. Each outcome has a known
probability and monetary value. The emotion predictions are influenced by the actual outcome, the
difference between the actual outcome and the expected outcome, and the absolute difference between
the actual outcome and the expected outcome.
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The model uses the following parameters:

1. Prize values: The monetary values of the three possible outcomes.

2. Probabilities: The probabilities of each outcome occurring.

3. Outcome: The actual outcome of the wheel spin.

The emotions are measured on a Likert scale from 1 to 9 for the following eight emotions: Happiness,
Sadness, Anger, Surprise, Fear, Disgust, Contentment, Disappointment

The emotional response is generated based on the following model:

mean = α+ βwin · win + βPE · PE + βabsPE · absPE (17)

where:

• α are the intercepts for each emotion.

• βwin are the coefficients for the actual outcome.

• βPE are the coefficients for the prediction error (PE).

• βabsPE are the coefficients for the absolute prediction error (absPE).

For each emotion, the value is sampled from a normal distribution with the computed mean and a
predefined standard deviation.

The generative model produces Likert scale ratings for the 8 emotions for the participant’s predictions
of what a player would feel. These predictions are translated into free-form natural language
observations by a language model with the prompt shown in Fig. 8. For example, an observation
when the prizes are $50, $20, $10 with probabilities 0.1, 0.4, 0.5, and the player wins $50, the
simulated participant responds with “The player might be feeling quite happy and content because
they landed on the highest possible outcome, which was unexpected given its low probability.”

D.10 Moral Machines

The Moral Machine environment Awad et al. [5] models participants’ decisions in moral dilemmas
involving autonomous vehicles. Participants are presented with scenarios where the vehicle must
decide between two outcomes, each involving the death of a different group of characters. The
following table describes the inputs and outputs of the experiment:

Parameter Description
Model Logistic regression model with priors for moral decision-making
Setup Parameters Character attributes, intervention type, LLM
Observations Prediction in natural language of which group to save and why
Goals Predicting which group participants choose to save

Table 12: Moral Machines Environment

In this environment, participants must decide which group of characters to save in a moral dilemma
involving autonomous vehicles. The characters in each group can be any of the following: stroller, boy,
girl, pregnant_woman, male_doctor, female_doctor, female_athlete, male_athlete, female_executive,
male_executive, large_woman, large_man, homeless, old_man, old_woman, criminal, dog, cat.

The model uses the following parameters:

1. Character attributes: gender, age, social status, fitness, species (human or pet).

2. Intervention type: ’swerve’ or ’stay’.

The decision to save a group is influenced by the difference in attributes between the two groups and
the intervention required. The logistic regression model considers the following coefficients:
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LLM prompt to translate predictions from the generative model to observations

1 You are observing a user play a game where they spin a wheel.
2 The wheel has three possible outcomes (monetary values), and the

probabilities of landing on each are known to you and the
player.

3 You are observing the player play the game and the outcomes.
4 You are asked to predict how the player feels after each spin of

the wheel.
5 Translate the values for emotions to a sentence that describes

the player.
6 The decisions are based on the following model and features:
7 - Your predition of the player 's happiness , sadness , anger ,

surprise , fear , disgust , contentment , and disappointment are
influenced by a few factors.

8 - The player 's emotions are influenced by the actual outcome of
the spin.

9 - The player 's emotions are influenced by the difference between
the actual outcome and the expected outcome.

10 - The player 's emotions are influenced by the absolute
difference between the actual outcome and the expected
outcome.

11 The wheel has three possible outcomes with the following
probabilities:

12 {v1:0.2f}: {p1:0.2f}
13 {v2:0.2f}: {p2:0.2f}
14 {v3:0.2f}: {p3:0.2f}
15 The player has spun the wheel and landed on {outcome }.
16 This is how you think the player feels:
17 Happiness: {happiness }/9
18 Sadness: {sadness }/9
19 Anger: {anger }/9
20 Surprise: {surprise }/9
21 Fear: {fear }/9
22 Disgust: {disgust }/9
23 Contentment: {contentment }/9
24 Disappointment: {disappointment }/9
25 Translate the values for emotions to a sentence that describes

the player.
26 1: Not at all , 9: Very much
27 This sentence should be concise and describe the player 's

emotions after the spin.
28 The sentence should be a few words long and should not contain

any numbers or refer to the numbers directly.
29 Only talk about the most salient emotions.
30 Start with "The player might be feeling ... because ..." and

provide a description of the player 's emotions and a reason.

Figure 8: LLM prompt for simulated participant. LLM prompt to translate predictions from the
generative model to observations in free-form natural language.

• βintervention: Preference for inaction.
• βgroup: Preference for group 1 (passengers).
• βgender: Preference for sparing females.
• βfitness: Preference for sparing the fit.
• βsocial_status: Preference for sparing higher status individuals.
• βage: Preference for sparing the young.
• βhuman_count: Preference for sparing more characters.
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• βspecies: Preference for sparing humans over pets.

The logistic regression model generates a choice for which group to save based on the computed
attributes and intervention. These predictions are translated into free-form natural language observa-
tions by a language model with the prompt shown in Fig. 9. For example, in a scenario where group
1 consists of a boy and a girl, and group 2 consists of an elderly man and an elderly woman, with
the intervention being ’swerve’, the simulated participant responds with “I choose to save group 1
because they are younger and have more potential life ahead of them.”

LLM prompt to translate predictions from the logistic regression model to observations

1 You have to make choices in a moral dilemma involving autonomous
vehicles. In each dilemma , the vehicle must decide between

two outcomes , each involving the death of a different group
of characters.

2 There are two groups of characters , and the vehicle must decide
which group to save. You can query the participant for their
decision by providing the descriptions of the characters in
each group and the intervention the car would take ('swerve '
or 'stay ' to save group 1).

3 The characters can be any of the following: {characters}
4 Translate the decision that is shown to you in natural language

and provide reasons for it.
5 The importance that you place on the different attributes of the

characters affects your decision. Values range from -1 to 1,
with 0 being neutral.

6 Your preferences are as follows:
7 - Preference for human count: {beta_human_count}
8 - Preference for group 1 (passengers): {beta_group}
9 - Preference for males: {beta_gender}

10 - Preference for young: {beta_age}
11 - Social status: {beta_social_status}
12 - Preference for Fitness: {beta_fitness}
13 - Preference for humans over pets: {beta_species}
14 - Preference for having to take an action: {beta_intervention}
15 DO NOT talk about the values of preferences directly in your

response. Only talk about the most salient reasons for the
decision. Be concise , write one sentence only.

16 Translate the decision that is shown to you in natural language
and provide reasons for it.

17 The scenario presented to you was as follows:
18 Group 1: {group1}
19 Group 2: {group2}
20 Intervention: {intervention}
21 Choice made: {choice}
22 Translate the decision that is shown to you in natural language

and provide reasons for it.
23 Only talk about the most salient reasons for the decision.
24 The sentence should be concise and should not refer to the

importance factors/values directly.
25 Start with "I choose to save group 1/group 2 because ...". Be

concise and faithful to the importance weights.

Figure 9: LLM prompt for simulated participant. LLM prompt to translate predictions from the
logistic regression model to observations in free-form natural language.

E Qualitative Examples
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Box’s Apprentice proposed programs

1 with pm.Model() as model:
2 # Priors for student abilities and question difficulties
3 student_ability = pm.Normal (" student_ability", mu=0,

sigma=1, shape =6)
4 question_difficulty = pm.Normal (" question_difficulty",

mu=0, sigma=1, shape =6)
5

6 # Linear combination of student ability and question
difficulty

7 logit_p = student_ability[student_id] -
question_difficulty[question_id]

8

9 # Likelihood
10 y_obs = pm.Bernoulli (" y_obs", logit_p=logit_p , observed=

correctness , dims=" obs_id ")

1 with pm.Model() as model:
2 # Define priors for the parameters of the linear model
3 intercept = pm.Normal("intercept", mu=0, sigma =10)
4 slope = pm.Normal("slope", mu=0, sigma =10)
5

6 # Define the linear model for the mean of the Poisson
distribution

7 lambda_ = pm.math.exp(intercept + slope * year_data)
8

9 # Define the likelihood
10 y_obs = pm.Poisson("y_obs", mu=lambda_ , observed=C, dims

="obs_id")

1 with pm.Model() as model:
2 # Define the locations of the three sources as latent

variables
3 source_x1 = pm.Uniform("source_x1", lower=0, upper=1,

shape =3)
4 source_x2 = pm.Uniform("source_x2", lower=0, upper=1,

shape =3)
5

6 # Calculate the distances from each source to each
observation point

7 distances = pm.math.sqrt(( x1_data[:, None] - source_x1[
None , :])**2 +

8 (x2_data[:, None] - source_x2[
None , :]) **2)

9

10 # Model the signal strength as a function of the
distances

11 signal_strength_mu = pm.math.sum(1 / distances , axis =1)
12

13 # Define the likelihood of the observations
14 y_obs = pm.Normal("y_obs", mu=signal_strength_mu , sigma

=1, observed=signal_strength , dims="obs_id")

Figure 10: BoxLM proposed programs. (top) IRT (middle) Peregrines (bottom) Location finding
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Example of an explanation produced by the LLM Agent for the IRT Environment

1 Based on the observations made , we can infer some patterns about
the students and questions:

2

3 1. ** Question 1**: Students 0, 1, 2, and 3 answered question 1
correctly , while student 4 answered it incorrectly. This
suggests that question 1 is generally easier for most
students , but not universally so.

4

5 2. ** Question 0**: Students 2, 3, and 4 answered question 0
correctly. This indicates that question 0 might also be
relatively easy for students , though we lack data for
students 0, 1, and 5.

6

7 3. ** Student 1**: Answered question 1 correctly but answered
question 2 incorrectly. This suggests that student 1's
performance may vary depending on the question.

8

9 4. ** Student 4**: Answered question 0 correctly but answered
question 1 incorrectly. This indicates that student 4's
performance also varies by question.

10

11 From these observations , it appears that some questions (like
question 1 and question 0) might be easier for a majority of
students , but individual performance can vary. Without more
data , it's challenging to make definitive predictions for all
student -question pairs , but these patterns provide a

starting point for understanding the environment.

Figure 11: Example Explanation. Example of an explanation produced by the LLM Agent for the
IRT Environment.
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Example of an explanation produced by Box’s Apprentice for the IRT Environment

1 Based on the observations and the statistical model , we can
infer that each student 's ability and each question 's
difficulty play significant roles in determining the
correctness of answers. The model uses these factors to
predict the probability of a correct response.

2

3 ** Student Abilities :**
4 - Students have varying abilities , with some being more likely

to answer correctly than others. For instance , student 2 has
a higher ability (0.544) compared to student 0 ( -0.405).

5

6 ** Question Difficulties :**
7 - Questions also vary in difficulty. For example , question 1 is

relatively easier ( -0.873) compared to question 3 (0.492).
8

9 ** Predicted Probabilities :**
10 - The model calculates the probability of a correct answer by

combining student ability and question difficulty. For
example , student 2 answering question 1 has a high
probability of correctness (0.708) , while student 0 answering
question 3 has a lower probability (0.414).

11

12 ** General Patterns :**
13 - Students with higher abilities are more likely to answer

correctly across various questions.
14 - Easier questions are more likely to be answered correctly by

most students.
15

16 To predict if a student will answer a question correctly ,
consider both the student 's ability and the question 's
difficulty. Higher student ability and lower question
difficulty increase the likelihood of a correct answer.

Figure 12: Example Explanation. Example of an explanation produced by the Box’s Apprentice for
the IRT Environment.
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