PyTOD: Programmable Task-Oriented Dialogue with Execution Feedback

Anonymous ACL submission

Abstract

Programmable task-oriented dialogue (TOD)
agents enable language models to follow struc-
tured dialogue policies, but their effectiveness
hinges on accurate state tracking (DST). We
present PyTOD, an agent that generates exe-
cutable code to track dialogue state and uses
policy and execution feedback for efficient er-
ror correction. To achieve this, PyTOD em-
ploys a simple constrained decoding approach,
using a language model instead of grammar
rules to follow API schemata. This leads to
state-of-the-art DST performance on the chal-
lenging SGD benchmark. Our experiments
show that PyTOD surpasses strong baselines in
both accuracy and stability, demonstrating the
effectiveness of execution-aware state tracking.

1 Introduction

TOD agents provide natural language interfaces
which enable users to control their digital environ-
ment to complete daily tasks. Such agents typically
include a dialogue state tracking (DST) component,
which maps the conversation history to a symbolic
representation of the task-relevant information com-
municated during the exchange. At each turn, a di-
alogue manager (DM) uses this information to take
system actions' necessary to help the user complete
the task. The agent behaviour is controlled by a
dialogue policy defined by application developers.
Adapting to new domains has long been a chal-
lenge for state tracking (Jacqmin, 2022), dialogue
management (Mosig et al., 2020a) and end-to-end
(Zhao et al., 2023) agents, as it often requires de-
velopers to collect and annotate new datasets for re-
training. To address this challenge, fine-tuning pre-
trained language models (PLMs) (Radford et al.,
2019; Raffel et al., 2020) within the schema-guided
paradigm (Rastogi et al., 2019; Mosig et al., 2020a)
has emerged as a powerful approach. Schemata

"For example, retrieving information from a knowledge
base or prompting the user to provide task constraints.

task instructions:

schema:

- flights_3_search_oneway_flight(# one-way flights search
origin_city: str, # city in which the journey originates
destination_city: str, # city in which the journey ends
departure_date: str, # date of departure flight

passengers: Optional[int], # number of passengers
flight_class: Optional[enum], choices: economy | business ...

) -> oneway_flight(...):
- flights_3_search_return_flight(...) -> return_flight(...):

transcript:

— I'm looking for one way flights out of Mexico City.

—x1 flights_3_search_oneway_flight(origin_city = 'Mexico City')
x2 Hint('request value: departure_date')

x3 Hint('request value: destination_city')

x4 say(x2, x3) @
gent: Departure date and to which city?

— Leaving the 7th of this month to San Diego.

Previous
system
actions

x1l.to_city =
Action San Diego
Parser(AP)tD_city - 7th of
deififffiggzgizx this month
Schema *44_4777,/J \\\\\‘$ Parser
Supervisor to_city = Supervisor @
SS "San Diego" | Date of NI
departure
flight? Dialogue
x1.destination_city = 'San Diego'; history

x1.departure_date = '7th of this month'

Figure 1: PyTOD overview. The action parser generates
python instructions (x1.to_city = "San Diego") repre-
senting the actions the user took at the current turn (1)
given API schemata (A), dialogue history (11!, al) and
previous user actions (x). The dialogue manager (DM)
executes the user action in a simulated environment.
A schema supervisor is invoked by the DM to correct
errors if predicted instructions contain slot names that
are not part of the API schema (e.g., the slot to_city is
mapped to destination_city, a member of the schema).
Given knowledge of previous system actions (x2, x3)
the DM detects slot omissions and invokes a parser su-
pervisor to correct them (e.g., flight date is recovered).

define the APIs accessible to the agent, including
textual descriptions of their functions and param-
eters (commonly referred to as slots). Mosig et al.
(2020a) extend schemata by including descriptions
of the actions that TOD agents can perform. Zhao
et al. (2023) build on these advances, proposing
a neuro-symbolic approach to design AnyTOD, a
state-of-the-art (SOTA) agent capable of following

dialogue policies unseen during fine-tuning?.

AnyTOD uses the schema and dialogue history
to first generate a symbolic state sequence. This
sequence identifies the API the user wishes to inter-
act with and the slot values the user has mentioned.
A second symbolic sequence - encoding the actions
the user’ and system have taken - is generated se-
quentially after the state sequence. Both sequences
are subsequently interpreted by a deterministic pol-
icy program which recommends the next system
action. State sequence is thus critical: prediction er-
rors can prevent the system from taking the correct
actions, leading to breakdowns in the interaction.

Despite its strengths, AnyTOD has some limi-
tations. First, it re-estimates the state and action
history at every dialogue turn solely based on the di-
alogue history and schema, which increases gener-
ation length and amplifies the risk of state-tracking
errors. Second, it fails to exploit previous system
actions to verify the correctness of the state se-
quence. Finally, its reliance on symbolic repre-
sentations of state and action sequences requires
additional system components to translate them
into executable code, adding deployment complex-
ity. We present PyTOD, a programmable dialogue
system that addresses these challenges by directly
communicating with its execution environment and
policy programs to perform accurate state tracking
for unseen APIs and domains, as discussed next.

PyTOD overview PyTOD incrementally gener-
ates dialogue states as code, using policy- and exe-
cution feedback for accurate state estimation (Fig-
ure 1). It operates as follows: (1) an action parser
(AP) (§2.1) processes the user query to produce
one or more python instructions; (2) the dialogue
manager (DM) (§2.2) executes these instructions;
(3) any attribute errors raised during execution are
resolved by the schema supervisor (SS) (§2.2.2),
a language model that constrains code generation
according to the decoding schema; and (4) the DM
evaluates the constrained output by comparing ex-
pected and current environment states, invoking a
parser supervisor (PS) (§2.2.3) to recover from pos-
sible omissions or semantic errors. The dialogue
state is derived by executing the complete program
generated by PyTOD at each turn.

Contributions Unlike PyTOD, TOD agents
often optimise DST and DM independently in
pipeline architectures (Neelakantan et al., 2019),

2See Appendix A.1 for a detailed description.

3For example, providing a slot value or requesting infor-
mation about a knowledge base item retrieved by the system.

overlooking how policy information can enhance
state generation accuracy. We further demonstrate
that feedback from the execution environment en-
ables language models to constrain decoding with-
out requiring additional training data, with minimal
developer effort and only a slight increase in sys-
tem latency. PyTOD achieves SOTA performance
on the challenging Schema-Guided Dialog (SGD)
dataset (Rastogi et al., 2019).

As an additional contribution, we release
pytodlib, a python library that simulates SGD
APIs, including database responses and API be-
havior. This toolkit addresses the scarcity of con-
versational tool-use corpora, providing a valuable
resource for benchmarking large language models’
ability to handle complex, multi-task, goal-oriented
conversations while following predefined policies.

2 PyTOD

2.1 Action parser

The AP parses user utterances into python expres-
sions, which are executed to carry out the user’s ac-
tions. The prompt consists of: (1) a header contain-
ing task-specific instructions, a linearised schema,
a list of completed tasks, and entities (e.g., flights)
returned by them (§2.1.1); (2) a session transcript,
where user and system turns are interleaved with
python code snippets representing user actions
and execution outputs (§2.1.2); and (3) context-
dependent instructions, dynamically rendered to
provide additional task guidance and entity defini-
tions as the conversation progresses (§2.1.3).

2.1.1 Header

At the start of the conversation, the header (Fig-
ure 1, top) provides instructions prompting the
model to identify the API that aligns with the user’s
intent and extract any arguments specified by the
user (Figure 6a, App. B.1). Schema API definitions
are presented next, linearised as python function
signatures (Figure 1, lines 4-14). Each API name
is followed by an intent description summarising
its function (line 5), while arguments are annotated
with their types and descriptions (lines 6-10). For
categorical slots, which take closed values from a
predefined set, the argument descriptions are pre-
fixed with the list of valid options (line 10). Return
types specify the entities produced by APIs, exclud-
ing their properties (line 12), which are displayed
dynamically as entities are returned (§2.1.3).

As tasks are completed, the header is updated

[1] user: Search a romantic restaurant serving chicken, in London.

x1 search_restaurant(where="London”, cuisine=“chicken”)
x2 show(x1)
x3 next(x1) # type: restaurant; properties: live_band, ..

agent: Chicken’s House?

[2] user: Anything else?

x5 next(x1) # type: restaurant; properties: live_band, ..
agent: Nando’s Oval?

[3] user: Love this one, do they have live music?

x6 select(x5, from_results=x1)
X7 suggest(task="‘book_table’)

agent: Yes, they do! Want a table there?

[4] user: Maybe later. What’s the weather like tomorrow?

x9 suspend(x7)
x10 check_weather(city=“London”, date=“tomorrow”)

agent: 3 degrees, cloudy.

[5] user: Got it. Book that restaurant then!

x11 resume(x9)
x12 book_table(restaurant=“Nando’s Oval”)
x13 Hint(”request value: time”)

agent: What time?

x14 x11.time = “7”
agent: For two, 7pm at Nando’s Oval, tomorrow?

x15 conFirmEleg
x16 perform(x12
agent: You’re all set!

Figure 2: Transcript example. User actions, expressed
in natural language, are parsed as program statements
which implement a pre-determined dialogue policy.
Their execution results - recommended system actions
(x2, x7, x13, x16) - are executed via say, which calls
the . The NLG module generates
the next agent utterance given information contained in
the objects passed as positional arguments to the say.
NLG calls are shown only for turns 1 and 3, for clarity.

with descriptions of completed tasks and relevant
entity definitions (Figure 6b, App. B.1).

2.1.2 Session transcript

The session transcript records the dialogue history,
interleaved with program statements that capture
user and system actions (Figure 2). To model incre-
mental updates to the dialogue state according to
user actions, PyTOD programs employ intermedi-
ate variables (Stacey et al., 2024).

User actions PyTOD defines user actions as ex-
ecutable commands that update the dialogue state.

API calls (Figure 2, x1, x10, x12) model task ini-
tiation, with their output stored in variables that can
later be referenced in assignments (x14). The latter
are semantic representations of utterances where
the user provides task constraints or corrects slot
values. Iterations (x3, x5) handle search results,
fetching the top-ranked item (x3) and allowing the
user to navigate through them (x5).

Selection (x6) and confirmation (x15) statements
track user acceptance of system-provided entities*
and of slot values provided by the agent. Unlike

“For example, selecting a restaurant (Figure 2, turn 3).

SOTA DST approaches, which extract slot values
from both agent and user utterances, these com-
mands track system-mentioned slots by executing
the dialogue policy. Specifically, executing a selec-
tion updates the referenced command based on the
chosen entity whereas executing a confirmation as-
signs system-provided values to the corresponding
parameters of the referenced command®.

Variables enable PyTOD to handle complex con-
versations. For example, context switching is repre-
sented by resume/suspend commands (x9, x11).
These commands prevent omission errors when
copying parameters from the dialogue history’. Un-
like SOTA TOD agents, PyTOD mitigates trans-
formers’ vulnerability to copying errors (Liu et al.,
2024; Barbero et al., 2024) by representing nega-
tion, conversation pauses as executable and hierar-
chical slots as executable commands (App. B.1).

System actions are inserted into the transcript by
the DM to provide additional cues for state track-
ing. For example, database call markers (Figure 2,
x2) signal the retrieval of results, guiding the lan-
guage model to predict subsequent iteration (x3,
x5) and selection (x6) statements. Additionally,
Hint messages (x13) are recommended system ac-
tions showing missing required slots®, and the DM
uses these actions to verify AP output (§2.2.3). Ad-
ditional system actions are described in App. B.1.

2.1.3 Context-dependent instructions

Context-dependent instructions list properties of
retrieved entities along with natural language de-
scriptions of their meaning. This allows PyTOD
to answer user queries while reducing system la-
tency’. These instructions appear after iteration
or confirmation calls and may also include system
policy details relevant to state tracking (App. B.1).

2.2 Dialogue manager

The DM coordinates interaction with the user by
taking actions recommended by the dialogue policy
upon AP output execution. To ensure successful ex-

5Executing select(x5, from_results=x1) is equiva-
lent to search_restaurant.restaurant="Nando’s Oval".

®Executing confirm(x12) is equivalent to
book_table.people=2, book_table.date="tomorrow".

"An omission of the restaurant parameter in the
book_table call (Figure 2) can be corrected since the name
of the restaurant is known after select (x6) execution.

8These are all the call parameters that must be specified
for the API to perform its intended function.

°Since generation latency increases with prompt length,
entity definitions are only included when relevant—after the
entities have been retrieved—to optimise efficiency.

ecution, it constrains and validates the AP outputs
as described in the reminder of this section.

2.2.1 AP output constraints

AP-generated statements must be valid python
expressions with declared variables to execute.
The DM enforces these constraints, inserting
parse_errors into the transcript if parsing fails.
Additionally, it restricts generated API names to
those listed in the AP header, correcting errors by
minimizing edit distance. Once constrained, state-
ments are executed. If the AP predicts a slot name
outside the decoding schema, the DM invokes its
SS component to constrain it accordingly.

2.2.2 Schema supervisor

The SS generates a prompt using the schema and
the AP output, based on three generic templates
(App. B.2.1). It follows a multiple-choice question
answering (MQA) format (Figure 3), where the
question and options depend on the AP error. If the
AP predicts an unknown slot, the prompt lists the
all the slot names in the schema with descriptions'”
as answer choices, instructing the model to select
the option corresponding to the slot which best
matches the AP output (Figure 3a). If the slot name
is unknown but its value is listed in the schema, the
prompt includes only categorical slot definitions
and possible values (Figure 3b). For cases where
the AP outputs a slot from a training schema but
not the current task schema, the model is presented
with slot descriptions from the task schema and in-
structed to select the closest paraphrase (Figure 3c).

2.2.3 Parser supervisor

The DM invokes the PS when SS-constrained AP
assignment expressions do not provide values for
slots PyTOD previously requested from the user.
In response, the PS generates a prompt using the
schema and dialogue history, based on a simple
template (App. B.3). The prompt follows an ex-
tractive QA format (Figure 4), where the questions
correspond to the schema descriptions of the omit-
ted slots (e.g., Departure date of the flight? in Fig-
ure 1); the context for answering them is limited to
the dialogue history of the current task.

The PS corrects slot omissions and semantic er-
rors. First, it extracts values for all requested slots
missing from the AP output. Then, for open-value

"Descriptions are replaced with data type for integer-
valued slots and value enumeration for categorical slots.

Given the definitions, which keyword matches [ETRGRASH’

- a) origin_city: flight departure city

- b) destination_city: city in which the journey ends
- ¢) number_of_bags: int

- d) ticket_fare_class: economyl/business

- e) none: the definitions do not describe

Answer:
(a) Unknown slot name. The SS output is converted to
destination_city, replacing in the AP output.
Here are some definitions:

- subtitle_language: language to use for subtitles (or none)
Given these, is a synonym of:

- a) subtitle_language = none

- b) subtitle_language = english

- ¢) options do not describe UM IR CN

Answer:

(b) Unknown slot name (closed value). The SS output
is converted to subtitle language = none, replacing

Sloli il CiccERinel in the AP output.

Which sentence paraphrases 'date of car pickup (JREEND)'?
- a) the first date to start using the rental car
- b) the date to return the car
- ¢) no option above paraphrases

Answer:

(c) Memorised slot name. The SS output is converted to
pickup_date, replacing in the AP output.

Figure 3: Illustration of prompts generated by the SS to
constrain to the decoding schema.

Q: Answer the following questions. Output "unanswerable"
if the question cannot be answered given the conversation.

In the conversation:
user: Great, now search one way flights out of Mexico City.

agent: Departure date and to which city?
user: Leaving the 7th of this month to San Diego.

1) city in which the journey ends?
2) date of departure flight?

Answer:

Figure 4: TIllustration of the prompt generated by
the PS to handle AP omissions and semantic errors.
The expected SS output is 1) San Diego 2) 7th of
this month. The second answer is used to correct
an omission by extending the constrained AP output
in Figure 1 (x1.destination_city = "San Diego") with
xl.departure_date = "7th of this month". The ellipsis
indicates truncated, irrelevant dialogue history.

slots, if a predicted answer exactly matches a value
already assigned to a slot in the constrained AP
output, the system assumes a semantic error and re-
places the predicted slot name with the correspond-
ing omitted one. If no such match is found, the
PS appends assignment expressions that bind the
predicted answers to the omitted slots and updates

the current task (viz departure_date, Figure 1).

3 Experimental Setup

We evaluate PyTOD on schema-guided DST. While
Zhao et al. (2023) also evaluate their system on
next-action prediction, PyTOD is designed such
that, given the correct dialogue state, it is guar-
anteed to take a correct action according to the
dialogue policy. As a result, next-action prediction
performance is correlated with DST performance
and does not provide additional insight into system
behavior. Turn-based evaluations often fail to re-
flect a system’s ability to satisfy complex user goals
in real interactions, as demonstrated by Takanobu
et al. (2020) and recently by Elizabeth et al. (2024).

3.1 Datasets and metrics

Datasets SGD consists of 21, 106 dialogues span-
ning 26 service schemata'! in the training split.
The test set comprises 4,201 dialogues covering
21 service schemata. Designed to assess TOD gen-
eralization, the dataset is challenging: among the
90 distinct task sequences in the test set, 85.6% in-
volve a task grounded in a schema unseen'? during
training, corresponding to 77% of the dialogues.
Additionally, the dialogues exhibit complex con-
versational phenomena such as context switching,
cross-turn corrections, and frequent goal changes,
making DST particularly demanding.

Metrics We evaluate performance using joint
goal accuracy (JGA), which measures the percent-
age of dialogue turns where all slot-value pairs are
predicted correctly. To assess generalization, we
report JGA separately for seen and unseen services.
This distinction highlights each model’s ability to
generalize to unseen slots and values and to cor-
rectly interpret API descriptions that were not en-
countered during training. We compute JGA using
the official evaluator'® but extend the SGD state
annotations (App. C.1) for fair comparison.

While JGA evaluates slot extraction accuracy, it
does not account for state consistency across turns.
If a slot predicted in an earlier turn is later omit-
ted when the state is re-estimated, the agent may
unnecessarily prompt the user to repeat previously
provided information, degrading interaction quality.
We introduce C-JGA, a stricter metric that enforces
state consistency: a turn contributes to the JGA

A service expose multiple APIs representing user intents.

2Unseen APIs may either introduce new functionality
within known domains or belong to entirely new domains.

13 Available at https://bit.ly/3B7jDlc.

only if the state at all previous turns in the same
task is jointly correct.

3.2 Baselines

TSDST (Lee et al., 2022) jointly encodes the dia-
logue history alongside a slot description to gen-
erate the corresponding slot value. Each slot is
processed independently, so TSDST requires mul-
tiple forward passes per turn - one for each slot
in the schema. D3ST (Zhao et al., 2022) opti-
mises T5DST by predicting all active slot values
in a single pass. SDT-Seq (Gupta et al., 2022)
takes a demonstration-based approach, encoding
the dialogue history alongside a sample conversa-
tion and its target state sequence to learn DST via
in-context finetuning. We replicate SDT-Seq and
D3ST (App. C.2).

3.3 State Tracking with PyTOD

API retrieval Consistent with prior work on SGD
and our baselines, we assume that the services the
user interacts with are known at each turn. Accord-
ingly, PyTOD retrieves APIs from the AP header
(§2.1.1) and not the entire assistant schema. In con-
trast, user actions are tied to the dialogue policy
and are learned during finetuning rather than being
explicitly defined in the prompt.

Action parser We execute the AP-generated
programs using pytodlib (App. D.1). The li-
brary simulates: (1), the 58 APIs in the SGD de-
velopment and test sets, complete with simulated
databases and API responses; (2) the system pol-
icy of all 88 SGD APIs; (3) user actions (§2.1.2,
App. B.1). An execution engine runs PyTOD pro-
grams in a sandbox environment, tracking the dia-
logue state. We open-source pytod-1ib, address-
ing the limitations of popular resources like Multi-
WOZ (Budzianowski et al., 2018) (App. D.2) and
providing a high-quality resource (Lu et al., 2024;
Farn and Shin, 2023) for evaluating LLMs’ ability
to engage in complex, goal-oriented, conversations.

Schema supervisor The SS constrains the AP
output based on the decoding schema (Figure 3).
We use MQA prompts and PLM knowledge for
zero-shot schema supervision with FlanT5 (3B)
(Chung et al., 2024), eliminating the need for slot
paraphrase collection. This makes PLM-guided
constrained decoding simple to implement.

Parser supervisor The PS corrects slot omis-
sions and semantic errors (Figure 4), with finetun-
ing prompts constructed from the same dialogues

https://bit.ly/3B7jD1c

as those used for AP finetuning. We perform mul-
titask learning for action parsing and parsing su-
pervision. This allows PyTOD to function as a
single model which performs corrections on DM
request, with schema supervision handled by an
off-the-shelf PLM. See training details in App. C.

4 Main Result

Since TOD agents are often deployed in resource-
constrained settings, we implement PyTOD’s AP
and PS components using a small PLM and com-
pare against SOTA models of similar size. Table 1
shows that PyTOD closely matches or outperforms
all baselines, while also achieving higher consis-
tency across turns. In particular, PyTOD (B) sur-
passes D3ST (#2) and TSDST by absolute margins
of 5.6% and 4.2%, respectively, with stronger per-
formance on unseen services. PyTOD (L) achieves
a similar improvement over D3ST (#7&11).

Size Model JGA

D3ST (Zhao et al., 2022) 729 - 92.5 66.4 1

D3ST (Flan-T5, ours)" 712 62.2 932 63.8 2

220M T5DST (Lee et al., 2022) 72.6 - 89.7 66.9 3
SDT-Seq (Gupta et al., 2022) 76.3 - - - 4
SDT-Seq (Flan-T5, ours)" 715 68.7 93.5 722 5
6

7

8

9

C-JGA JGA (Seen) JGA (Unseen) #

D3ST (Zhao et al., 2022) 80.0 - 93.8 754
D3ST (Flan-T5, ours)” 76.5 67.7 93.8 70.8
SDT-Seq (Gupta et al., 2022) 83.3 - - -

SDT-Seq (Flan-T5, ours)" 82.7 74.2 94.1 789

780M

220M PyTOD (Base) 76.8 72.7 91.0 71.8 10
780M PyTOD (Large) 822 78.4 92.1 78.9 1

Table 1: PyTOD DST performance. Rows marked with
T report the results of our replication study in App. C.2.

Both D3ST and T5DST re-estimate the entire di-
alogue state at each turn, meaning their JGA can in-
crease when early errors are later corrected. In real-
world interactions, however, these errors would
alter the dialogue flow, so the JGA increases due
to error recovery overestimate real-world perfor-
mance. When adjusted for consistency, D3ST JGA
drops sharply: 9% (220M, #2) and 8.8% (780M,
#7). In contrast, PyTOD incrementally predicts
user actions based on its predicted past actions, re-
sulting in smaller JGA drops of 4.1% (Base, #10)
3.8% (Large, #11). These smaller decreases stem
from two key factors. First, when users change
goals mid-task, incorrect states are sometimes cor-
rected. Second, parameters incorrectly copied from
previous tasks at the start of a new task are later
overridden by their correct values.

PyTOD retrieves the correct API from the
prompt whiles D3ST and T5SDST JGA is invari-
ant to intent parsing errors, making the figures less
sensitive to annotation errors (§5.3) but less reflec-

Size PS SS Multitask JGA JGA Seen JGA Unseen #
76.8 91.0 72.1 1

X X 75.8 90.1 71.0 2
220M X X 64.2 88.2 56.2 3
X X X 64.4 88.8 56.3 4

82.2 92.1 78.9 5

X X 80.6 91.5 71.0 6

780M X X 74.6 90.8 69.2 7
X X X 74.1 90.4 68.6 8

Table 2: Contribution of parser supervisor (PS) and
schema supervisor (SS) to PyTOD performance. Mul-
titask indicates joint training of the action parsing and
parsing supervision tasks. Rows 10&11 from Table 1
are repeated in rows 1&S5 to facilitate comparisons.

tive of real-world TOD performance. PyTOD’s
JGA more accurately reflects practical deployment
scenarios where intent errors impact conversation
quality.

Descriptions vs demonstrations Beyond sur-
passing schema-guided baselines, PyTOD per-
forms competitively with approaches requiring ad-
ditional developer effort, such as SDT-Seq. The
JGA gap between PyTOD and SDT-Seq is minimal:
0.7% (Base, #5&10) and 0.5% (Large, #9&11),
with SDT-Seq performing better on seen domains.

However, SDT-Seq requires developers to manu-
ally craft example demonstrations for each intent in
addition to service schemas, increasing deployment
overhead. Furthermore, SDT-Seq does not perform
API retrieval, requiring an external intent detec-
tion model. Finally, PyTOD demonstrates substan-
tially higher consistency, outperforming SDT-Seq
by 5.0% (#5&10) and 4.2% (#9&11) in C-JGA,
reinforcing its stability in multi-turn interactions.

5 Analysis and Discussion

5.1 Ablation study

Parser supervisor The PS improves PyTOD per-
formance by an average of 1.0% (Base, #1&2) and
1.6% (Large, #5&6). Analysing 210 errors cor-
rected by the PS in the best-performing PyTOD
(Large) run (82.6% JGA) reveals that slot omis-
sions occur more frequently than semantic errors
(61% vs. 39%). The most common semantic er-
ror stems from confusion between similar slots
(e.g., start date vs. end date). Jointly training the
model for action parsing and parsing supervision
has a negligible effect on parsing accuracy (#3&4,
#7&8), simplifying PyTOD deployment.

Schema supervisor While the AP occasionally
generates slot names absent from the decoding
schema, the predicted slots often retain the cor-
rect semantics. For instance, the AP produces new

AP Size SS Size PS JGA JGA Seen JGA Unseen #

AP Size SS Size Samples per sec Runtime (sec) Relative Latency #

3B 76.8 91.0 72.1 1

X 758 90.1 71.0 2

220M 75.1 89.9 70.2 3
780M X 713 88.8 65.4 4

74.1 89.7 68.8 5

220M X 708 89.0 64.7 6

3B 82.2 92.1 78.9 7

X 806 91.5 77.0 8

780M 81.2 91.2 719 9
780M X 786 90.3 74.7 10

80.5 91.2 76.9 11
220M X 719 90.3 73.7 12

Table 3: PyTOD performance as function of SS size.
Checkmarks (v') and crosses (X) indicate PS presence or
absence, respectively. Rows 10 and 11 from Table 1 are
repeated in rows 1 and 7, for easy comparison. Brack-
eted numbers represent absolute improvements with
respect to our implementation of D3ST (Table 1, #2&7)

slot names such as number_passengers instead of
num_passengers or travel_starts_from instead of
journey_starts_from. Other times, the AP outputs
slots seen in a training schema implementing the
same domain as an (unseen) decoding schema (e.g.,
outputs hotel_name instead of place_name), reflect-
ing real-world challenges where TOD agents must
support integration of services similar to the ones
they have been trained on without further finetun-
ing. The SS effectively mitigates both of these
challenges: it improves JGA by 11.4% for Py-
TOD (Base) (#2&3) and 6.0% for PyTOD (Large)
(#6&7). Notably, the SS reduces system latency
while improving performance: the 220M AP+SS
system (#2) runs 1.89 times faster compared to the
780M AP (#8) while being 1.7% more accurate.
Beyond performance gains, PLM-constrained
decoding simplifies deployment compared to
grammar-based approaches. Unlike the latter,
which require re-engineering to align with new
backbone PLM tokenization schemes, PLM-based
constrained decoding allows seamless AP updates.
Grammar-constrained decoding poses an additional
challenge for PyTOD: some of its grammar rules
depends on dynamically generated variables'* and
have to be generated dynamically during inference.

5.2 Schema supervisor analysis

Table 3 shows that PLM-constrained decoding re-
mains effective even as the SS sizes decreases: JGA
drops by only 2.7% (#1&5) for PyTOD (Base) and
1.7% #7&11) for PyTOD (Large) when reducing

For example, confirm’s sole positional argument can
only be a variable bound to a transaction API call.

- 9.110 5875.12 1.00 1

220M 6.816 7919.79 1.35 2

220M 780M 6.766 7946.26 1.35 3
3B 6.323 8588.64 1.46 4

- 3.331 16269.70 1.00 5

780M 220M 2.971 18300.93 1.12 6
780M 2.964 18341.15 1.13 7

3B 2.903 18771.32 1.15 8

Table 4: Latency of AP size and SS size, reported for
the test set. Numbers reported are for models without
PS (marked with X in Table 3). Each figure is an average
of three runs of making predictions for ~ 53k test set
turns on an NVIDIA A100 GPU.

SS from 3B to 220M parameters. The PS recovers
some of the errors, improving JGA by an average of
3.55% (PyTOD Base) and 2.6% (PyTOD Large).
Regardless of the AP, SS and PS configurations
PyTOD consistently outperforms D3ST (Table 3).

Table 4 confirms that SS size has a minimal im-
pact on PyTOD latency. Expanding SS from 220M
to 3B increases latency by only 11% for PyTOD
(Base) and just 2% for PyTOD (Large). This is
expected since the SS prompts are short and the
MQA formatting enables SS to constrain decoding
with a single token. Most of the latency increase
stems from on-demand SS model loading, which
can be optimized by keeping SS in memory at the
cost of a higher memory footprint. As discussed
in App. E.1, PyTOD can be further optimised by
decoupling the PS and AP.

5.3 Error analysis

Seen services An analysis of 20 dialogues from
each of the 3 services with JGA below SDT-Seq
average, reveals that RideSharing_2 (RS_2) and
Movies_1 (MOV_I) contribute most to the discrep-
ancy. For RS_2, 70% of the errors involve incorrect
slot values: the system consistently misinterprets
requests like cheapest ride as regular instead of
pool, suggesting that PyTOD could benefit by im-
plementing the AP and PS with a PLM that has
stronger world knowledge. For MOV_I, value er-
rors are primarily span errors, where the model
fails to capture the full movie title or crosses span
boundaries. Notably, annotation errors where the
annotated slot values are absent from the user utter-
ance largely explain the Travel I performance.
Unseen services Annotation errors significantly
impact unseen service performance, particularly in
Trains_1, where intent paraphrase errors (App. E.2)
prevent PyTOD from tracking state due to its
reliance on retrieved train schedules. When

Error RideSharing_2 Movies_1 Travel_1 RentalCars_3 Trains_1 Music_3 Messaging 1 Total
Type 78.2 80.7 92.5 55.3 60.2 64.0 65.7

X X X X -

Missed 15.0 5.9 9.5 3.7 9.4 20.0: - 16
Value 70.0 32.4 - 22.2 9.4 36.0 - 43

Copy 15.0 29.4 4.8 48.1 21.9 28.0 78.6 52
Annot. - 17.6 T1.4 14.8 40.6 16.0 214 45
Intent - - - - 9.4 - - 3
Other - 14.7 14.3 1.1 9.4 - - 14/

Total 20 34 21 27 32 25 14 173

Table 5: Error analysis for the best PyTOD (Large) run,
including seen (v') and unseen (X) services. Second row
indicates service JGA and its absolute deviation with
respect to the average seen/unseen JGA in Table 1 (row
11). Percentages indicate the fraction of total service
errors and (raw counts) are shown. Missed=omitted
slot, Value=incorrect value predicted, Copy=copied
incorrect value/did not copy value, Annot.=annotation
error, Intent=incorrect intent.

search tasks succeed, copy errors - where PyTOD
fails to propagate query parameters (e.g., album
from LookupMusic to PlayMedia) reduce JGA in
Movie_3 and RentalCars_3. For example, while
GetCarsAvailable succeeds 90% of the time, Re-
serveCar succeeds in just 26.23% of cases. This
highlights systematic failures which could be ad-
dressed through targeted improvements (App. E.3).

In Messaging_1 copy errors stem from incorrect
co-reference resolution: the location slot is incor-
rectly resolved to cities instead of addresses, due
to biases in training data where other services use
this slot for city names. TOD agents that support
multiple services are prone to similar semantic mis-
matches when concept names differ across training
schemas, and fine-tuning alone can lead to overfit-
ting to schema-specific naming conventions. Fu-
ture work will explore enhanced supervision mech-
anisms to mitigate these biases.

6 Related Work

Few- and zero-shot DST Our approach and base-
lines (§3.2) extend prior transfer learning work on
cross-domain DST generalization via schema de-
scriptions (Lin et al., 2021b) and QA tasks (Lin
et al., 2021a). Recently, large-scale proprietary
LLMs (e.g., ChatGPT (OpenAl, 2022)) have shown
strong DST performance with no (Heck et al.,
2023) or few (Li et al., 2024; Hu et al., 2022; Feng
et al., 2023; Wu et al., 2023, inter alia) training
dialogues. Like PyTOD, these approaches predict
state updates, represented in JSON format (Wu
etal., 2023), as SQL queries (Hu et al., 2022), func-
tion calls (Stricker and Paroubek, 2024; Li et al.,
2024) or code (King and Flanigan, 2023). Unlike

PyTOD, they are not policy-guided nor do they
operate in a simulated environment, tracking slots
from both user and agent utterances - a limitation
that degrades performance (Wu et al., 2023).

These methods focus on data-efficient DST, rely-
ing on LLMs at inference. Recent works (Kulkarni
et al., 2024; Finch and Choi, 2024) use LLMs for
data generation, improving generalization without
costly per-turn inference and addressing concerns
over cost, resource availability, and privacy (Heck
et al., 2023; Feng et al., 2023). Distillation (Lee
et al., 2024c; Dong et al., 2024) and data augmen-
tation (Feng et al., 2023; Li et al., 2024) provide
alternatives, though they still depend on billion-
scale models. To improve efficiency, subsequent
works (Lee et al., 2024a,b) employ self-correction
(Xie et al., 2022; Tian et al., 2021) to maintain ac-
curacy. PyTOD targets stricter resource constraints,
achieving accurate and consistent DST with mod-
els an order of magnitude smaller. It eschews cor-
rector fine-tuning or feedback generation, using
readily available execution feedback and simple
QA prompts for zero-shot correction with one to-
ken. Its policy- and environment-driven corrections
avoid per-turn supervision, improving efficiency.

TOD agents Transfer learning (Zhao et al.,
2023) and prompting (Shu et al., 2022; Zhang
et al., 2023; Li et al., 2023; Saley et al., 2024, in-
ter alia) also apply to TOD agent development.
pytodlib provides challenges beyond MultiwOZ
through policy (App. D.2) and ontology complex-
ity (Hudecek and Dusek, 2023; Lee et al., 2024a;
Gao et al., 2024), providing a testbed for advancing
TOD agents while addressing the dearth of conver-
sational tool-use corpora (Lu et al., 2024).

7 Conclusion

We introduced PyTOD, a TOD agent that gener-
ates code incrementally and tracks dialogue state
through execution, leveraging DM and execution
feedback to achieve SOTA DST performance on
the SGD benchmark. By coupling state tracking
with execution, PyTOD shows enhanced cross-turn
consistency and thus improved real-world reliabil-
ity. We release pytod-1ib, a simulation grounding
the SGD dataset, to advance research on zero-shot
TOD agents and conversational tool use. Future
work will focus on enhancing robustness to copy
errors and integrating PyTOD with LLMs for zero-
and few-shot end-to-end dialogue modeling.

Limitations

API retrieval Like most state-of-the-art ap-
proaches on the SGD and MultiWOZ datasets, Py-
TOD assumes knowledge of the service schema
at each turn (but not the API). In real-world sce-
narios, however, virtual assistants must first infer
the schema before tracking dialogue state. This
is particularly challenging in SGD, where multi-
ple services within the same domain exhibit fine-
grained differences. For instance, both Buses_1
and Buses_2 both implement the FindBus APIs,
yet disambiguation between the two services is only
possible when users mention fare_type an op-
tional slot. Similarly, Buses_3 (test set), can only
be distinguished if the category slot is provided.
As discussed in §5.3, PyTOD relies on accurate
intent parsing, making it susceptible to service dis-
ambiguation errors that will degrade performance.

Schema robustness We have not explicitly evalu-
ated PyTOD’s robustness to linguistic schema vari-
ations, which are known to affect transfer learning-
based DST systems. While AP accuracy will de-
gradoae, PyTOD’s SS - the primary contributor
to its performance (§5.1) - is expected to miti-
gate this impact since it performs zero-shot cor-
rections using MQA prompts. Future work could
enhance AP and PS robustness using transfer learn-
ing from QA task (Lin et al., 2021a; Cho et al.,
2023), knowledge-seeking turn grounding (Coca
et al., 2023a) or synthetic schemas (Coca et al.,
2023b), none of which require additional annota-
tion.

Prompt optimisation While PS and AP latency
are optimized through dialogue history truncation
and minimal generation length, the AP prompt it-
self remains unoptimised. The AP header already
maintains a stack of completed tasks and retrieved
entities, effectively summarising the dialogue his-
tory. However, our prompts contain both the header
and transcript, introducing redundancy and increas-
ing system latency.

Additionally, the API header presents an oppor-
tunity for personalized conversational intelligence.
Embedding and storing it in a vector database could
enable retrieval across multi-session conversations,
improving continuity and personalization. We will
explore this in future work.

Grammar-constrained decoding We opted for
deep learning approach to constraining AP output

to the schema due to the complexity of working
with dynamically generated grammar rules needed
to constrain decoding to a set of valid tokens. We
considered this advanced optimisation to be a re-
search topic that future work could address.

Interactive evaluation Our results demonstrate
that state-of-the-art DST models exhibit stability
errors when evaluated using C-JGA. As DST sys-
tems continue to improve, we believe that evaluat-
ing models in real-world user interactions will be
essential to assessing their practical viability.

Dataset choice As discussed in §3.3 and §6, we
conduct our experiments on the SGD, which in-
cludes all the MultiWOZ domains, features more
complex conversation flows challenges LLMs. Mo-
rover, the MultiWOZ policy depends on unobserv-
able factors such as wizard’s task interpretation
(Mosig et al., 2020b). Through pytod-1ib we pro-
vide a resource for developing agents capable of
following pre-defined policies in a more demand-
ing and controlled settings.

References

Federico Barbero, Andrea Banino, Steven Kaptur-
owski, Dharshan Kumaran, Jodo G. M. Aradjo, Alex
Vitvitskyi, Razvan Pascanu, and Petar Velickovic.
2024. Transformers need glasses! information over-
squashing in language tasks. CoRR, abs/2406.04267.

Pawetl Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasié. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026, Brussels,
Belgium. Association for Computational Linguistics.

Hyundong Cho, Andrea Madotto, Zhaojiang Lin, Khy-
athi Chandu, Satwik Kottur, Jing Xu, Jonathan May,
and Chinnadhurai Sankar. 2023. Continual dialogue
state tracking via example-guided question answer-
ing. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3873-3886, Singapore. Association for Com-
putational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,

https://doi.org/10.48550/ARXIV.2406.04267
https://doi.org/10.48550/ARXIV.2406.04267
https://doi.org/10.48550/ARXIV.2406.04267
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235

Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2024. Scaling instruction-finetuned
language models. J. Mach. Learn. Res., 25:70:1—
70:53.

Alexandru Coca, Bo-Hsiang Tseng, Jinghong Chen,
Weizhe Lin, Weixuan Zhang, Tisha Anders, and Bill
Byrne. 2023a. Grounding description-driven dia-
logue state trackers with knowledge-seeking turns.
In Proceedings of the 24th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 444-456, Prague, Czechia. Association for
Computational Linguistics.

Alexandru Coca, Bo-Hsiang Tseng, Weizhe Lin, and
Bill Byrne. 2023b. More robust schema-guided dia-
logue state tracking via tree-based paraphrase rank-
ing. In Findings of the Association for Computa-
tional Linguistics: EACL 2023, pages 1443—-1454,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Xiaoyu Dong, Yujie Feng, Zexin Lu, Guangyuan
Shi, and Xiao-Ming Wu. 2024. Zero-shot cross-
domain dialogue state tracking via context-aware
auto-prompting and instruction-following contrastive
decoding. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 8527-8540, Miami, Florida, USA. Association
for Computational Linguistics.

Michelle Elizabeth, Morgan Veyret, Miguel Couceiro,
Ondrej Dusek, and Lina Maria Rojas-Barahona. 2024.
Do large language models with reasoning and acting
meet the needs of task-oriented dialogue? CoRR,
abs/2412.01262.

Nicholas Farn and Richard Shin. 2023. Tooltalk: Eval-
uating tool-usage in a conversational setting. CoRR,
abs/2311.10775.

Yujie Feng, Zexin Lu, Bo Liu, Liming Zhan, and Xiao-
Ming Wu. 2023. Towards llm-driven dialogue state
tracking. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 739-755. Association for Computational Lin-
guistics.

James D. Finch and Jinho D. Choi. 2024. Diverse and
effective synthetic data generation for adaptable zero-
shot dialogue state tracking. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2024,
pages 12527-12544, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Haoyu Gao, Ting-En Lin, Hangyu Li, Min Yang,
Yuchuan Wu, Wentao Ma, Fei Huang, and Yong-
bin Li. 2024. Self-explanation prompting improves
dialogue understanding in large language models. In
Proceedings of the 2024 Joint International Confer-
ence on Computational Linguistics, Language Re-
sources and Evaluation, LREC/COLING 2024, 20-25
May, 2024, Torino, Italy, pages 14567-14578. ELRA
and ICCL.

Raghav Gupta, Harrison Lee, Jeffrey Zhao, Yuan Cao,
Abhinav Rastogi, and Yonghui Wu. 2022. Show,
don’t tell: Demonstrations outperform descriptions
for schema-guided task-oriented dialogue. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022,
pages 4541-4549. Association for Computational
Linguistics.

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato
Vukovic, Shutong Feng, Christian Geishauser, Hsien-
chin Lin, Carel van Niekerk, and Milica Gasic. 2023.
ChatGPT for zero-shot dialogue state tracking: A
solution or an opportunity? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
936-950, Toronto, Canada. Association for Compu-
tational Linguistics.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A. Smith, and Mari Ostendorf. 2022. In-
context learning for few-shot dialogue state tracking.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 2627-2643.
Association for Computational Linguistics.

Vojtéch Hudecek and Ondrej Dusek. 2023. Are large
language models all you need for task-oriented dia-
logue? In Proceedings of the 24th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 216228, Prague, Czechia. Association
for Computational Linguistics.

Léo Jacqgmin. 2022. « est-ce que tu me suis ? » : une
revue du suivi de I’état du dialogue (“do you follow
me 77 : areview of dialogue state tracking). In Actes
de la 29e Conférence sur le Traitement Automatique
des Langues Naturelles. Volume 2 : 24e Rencontres
Etudiants Chercheurs en Informatique pour le TAL
(RECITAL), pages 1-19, Avignon, France. ATALA.

Brendan King and Jeffrey Flanigan. 2023. Diverse
retrieval-augmented in-context learning for dialogue
state tracking. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5570-
5585, Toronto, Canada. Association for Computa-
tional Linguistics.

Atharva Kulkarni, = Bo-Hsiang Tseng, Joel
Ruben Antony Moniz, Dhivya Piraviperumal,
Hong Yu, and Shruti Bhargava. 2024. SynthDST:
Synthetic data is all you need for few-shot dialog
state tracking. In Proceedings of the 18th Conference
of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1988-2001, St. Julian’s, Malta. Association
for Computational Linguistics.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.
2024a. Correctionlm: Self-corrections with SLM
for dialogue state tracking. CoRR, abs/2410.18209.

https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.18653/v1/2023.sigdial-1.42
https://doi.org/10.18653/v1/2023.sigdial-1.42
https://doi.org/10.18653/v1/2023.sigdial-1.42
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.48550/ARXIV.2412.01262
https://doi.org/10.48550/ARXIV.2412.01262
https://doi.org/10.48550/ARXIV.2412.01262
https://doi.org/10.48550/ARXIV.2311.10775
https://doi.org/10.48550/ARXIV.2311.10775
https://doi.org/10.48550/ARXIV.2311.10775
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.48
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.48
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.48
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://aclanthology.org/2024.lrec-main.1269
https://aclanthology.org/2024.lrec-main.1269
https://aclanthology.org/2024.lrec-main.1269
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://doi.org/10.48550/ARXIV.2410.18209
https://doi.org/10.48550/ARXIV.2410.18209
https://doi.org/10.48550/ARXIV.2410.18209

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.
2024b. OrchestraLLM: Efficient orchestration of
language models for dialogue state tracking. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 1434—-1445, Mexico City,
Mexico. Association for Computational Linguistics.

Harrison Lee, Raghav Gupta, Abhinav Rastogi, Yuan
Cao, Bin Zhang, and Yonghui Wu. 2022. SGD-X:
A benchmark for robust generalization in schema-
guided dialogue systems. In Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Sym-
posium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22
- March 1, 2022, pages 10938—-10946. AAAI Press.

Seanie Lee, Jianpeng Cheng, Joris Driesen, Alexan-
dru Coca, and Anders Johannsen. 2024c. Effective
and efficient conversation retrieval for dialogue state
tracking with implicit text summaries. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 96—111, Mexico City, Mexico.
Association for Computational Linguistics.

Zekun Li, Zhiyu Chen, Mike Ross, Patrick Huber, Se-
ungwhan Moon, Zhaojiang Lin, Xin Dong, Adithya
Sagar, Xifeng Yan, and Paul A. Crook. 2024. Large
language models as zero-shot dialogue state tracker
through function calling. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 8688—
8704. Association for Computational Linguistics.

Zekun Li, Baolin Peng, Pengcheng He, Michel Galley,
Jianfeng Gao, and Xifeng Yan. 2023. Guiding large
language models via directional stimulus prompting.
In Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Or-
leans, LA, USA, December 10 - 16, 2023.

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seungwhan
Moon, Zhenpeng Zhou, Paul Crook, Zhiguang Wang,
Zhou Yu, Eunjoon Cho, Rajen Subba, and Pascale
Fung. 2021a. Zero-shot dialogue state tracking via
cross-task transfer. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7890-7900, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba.
2021b. Leveraging slot descriptions for zero-shot
cross-domain dialogue StateTracking. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational

11

Linguistics: Human Language Technologies, pages
5640-5648, Online. Association for Computational
Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language
models use long contexts. Trans. Assoc. Comput.
Linguistics, 12:157-173.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming
Pang. 2024. Toolsandbox: A stateful, conversational,
interactive evaluation benchmark for LLM tool use
capabilities. CoRR, abs/2408.04682.

Johannes E. M. Mosig, Shikib Mehri, and Thomas
Kober. 2020a. STAR: A schema-guided dialog
dataset for transfer learning. CoRR, abs/2010.11853.

Johannes E. M. Mosig, Vladimir Vlasov, and Alan
Nichol. 2020b. Where is the context? - A critique of
recent dialogue datasets. CoRR, abs/2004.10473.

Arvind Neelakantan, Semih Yavuz, Sharan Narang,
Vishaal Prasad, Ben Goodrich, Daniel Duckworth,
Chinnadhurai Sankar, and Xifeng Yan. 2019. Neu-
ral assistant: Joint action prediction, response gen-
eration, and latent knowledge reasoning. CoRR,
abs/1910.14613.

OpenAl. 2022. Introducing ChatGPT.
openai.com/blog/chatgpt.

https://

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language mod-
els: A survey. CoRR, abs/2405.17935.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. CoRR,
abs/1909.05855.

Vishal Vivek Saley, Rocktim Jyoti Das, Dinesh Raghu,
and Mausam . 2024. Synergizing in-context learn-
ing with hints for end-to-end task-oriented dialog
systems. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 5596-5612, Miami, Florida, USA. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
http://papers.nips.cc/paper_files/paper/2023/hash/c5601d99ed028448f29d1dae2e4a926d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c5601d99ed028448f29d1dae2e4a926d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c5601d99ed028448f29d1dae2e4a926d-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2004.10473
http://arxiv.org/abs/2004.10473
http://arxiv.org/abs/2004.10473
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://doi.org/10.48550/ARXIV.2405.17935
https://doi.org/10.48550/ARXIV.2405.17935
https://doi.org/10.48550/ARXIV.2405.17935
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320

Raphael Shu, Elman Mansimov, Tamer Alkhouli, Niko-
laos Pappas, Salvatore Romeo, Arshit Gupta, Saab
Mansour, Yi Zhang, and Dan Roth. 2022. Dialog2api:
Task-oriented dialogue with API description and ex-
ample programs. CoRR, abs/2212.09946.

Joe Stacey, Jianpeng Cheng, John Torr, Tristan Guigue,
Joris Driesen, Alexandru Coca, Mark Gaynor, and
Anders Johannsen. 2024. LUCID: LLM-generated
utterances for complex and interesting dialogues. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages S6—
74, Mexico City, Mexico. Association for Computa-
tional Linguistics.

Armand Stricker and Patrick Paroubek. 2024. A few-

shot approach to task-oriented dialogue enhanced
with chitchat. In Proceedings of the 25th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 590-602, Kyoto, Japan. Associ-
ation for Computational Linguistics.

Ryuichi Takanobu, Qi Zhu, Jinchao Li, Baolin Peng,
Jianfeng Gao, and Minlie Huang. 2020. Is your goal-
oriented dialog model performing really well? em-
pirical analysis of system-wise evaluation. In Pro-
ceedings of the 21th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, SIGdial
2020, 1st virtual meeting, July 1-3, 2020, pages 297—
310. Association for Computational Linguistics.

Xin Tian, Liankai Huang, Yingzhan Lin, Siqi Bao,
Huang He, Yunyi Yang, Hua Wu, Fan Wang, and
Shugi Sun. 2021. Amendable generation for dialogue
state tracking. In Proceedings of the 3rd Workshop on
Natural Language Processing for Conversational Al,
pages 80-92, Online. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Yuxiang Wu, Guanting Dong, and Weiran Xu. 2023.

Semantic parsing by large language models for intri-
cate updating strategies of zero-shot dialogue state
tracking. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 11093-11099. Association
for Computational Linguistics.

Hongyan Xie, Haoxiang Su, Shuangyong Song, Hao

Huang, Bo Zou, Kun Deng, Jianghua Lin, Zhihui
Zhang, and Xiaodong He. 2022. Correctable-DST:
Mitigating historical context mismatch between train-
ing and inference for improved dialogue state track-
ing. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing,
pages 876—889, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

12

Xiaoying Zhang, Baolin Peng, Kun Li, Jingyan Zhou,

and Helen Meng. 2023. SGP-TOD: building task
bots effortlessly via schema-guided LLM prompting.
CoRR, abs/2305.09067.

Jeftrey Zhao, Yuan Cao, Raghav Gupta, Harrison Lee,

Abhinav Rastogi, Mingqiu Wang, Hagen Soltau,
Izhak Shafran, and Yonghui Wu. 2023. AnyTOD:
A programmable task-oriented dialog system. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 16189—
16204, Singapore. Association for Computational
Linguistics.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,

Mingqiu Wang, Harrison Lee, Abhinav Rastogi,
Izhak Shafran, and Yonghui Wu. 2022. Description-
driven task-oriented dialog modeling. CoRR,
abs/2201.08904.

https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.48550/arXiv.2305.09067
https://doi.org/10.48550/arXiv.2305.09067
https://doi.org/10.48550/arXiv.2305.09067
https://doi.org/10.18653/v1/2023.emnlp-main.1006
https://doi.org/10.18653/v1/2023.emnlp-main.1006
https://doi.org/10.18653/v1/2023.emnlp-main.1006
http://arxiv.org/abs/2201.08904
http://arxiv.org/abs/2201.08904
http://arxiv.org/abs/2201.08904

A Background
A.1 AnyTOD

[params] pO=flight id pl=name of airline
p2=flight destination city p3=flight
departure city ..

[useracts] uO@=user would like to book a
flight ul=user is informing pl u2=user is
informing p2 u3=user would like to search
for flights ..

[sysacts] sO=request p3 from user sil=request
p2 from user s2=query flights api ..

[convo] [usex] hello, i’'d like to book a
flight [system] where would you like to fly?
[usexr] could you find a flight to dubai on
emirates?

X
[states] pl=emirates airlines p2=dubai
[history] u@; s1; ul u2 u3

}%l

Symbolic program action
recommendations:

- Flight departure (p3) is
unknown, so we should
request this (=©)

- User wants to search for
flights (u3), so we should
query flight API (= 2)

[choose] sO
[response] where are you flying from?

Figure 5: AnyTOD overview. Image reproduced from
Zhao et al. (2023) with authors’ permission.

Figure 5 shows an overview of AnyTOD (Zhao
et al., 2023), a neuro-symbolic end-to-end TOD
agent capable of zero-shot transfer to unseen tasks
and domains. The prompt contains dialogue his-
tory (prefixed by [convo] in Figure 5) and a lin-
earised schema (above it). The schema prompt
contains three parts, deliniated by the [params],
[useracts] and [sysacts] tokens. The first lists
the slot descriptions alongside slot identifiers and
the following two parts provide natural language
descriptions of the user and system actions, along-
side action identifiers. This prompt is input to a
language model (LM), which predicts a sequence
of slot identifiers (state sequence, in red), followed
by a sequence of ;-separated action identifiers (ac-
tion sequence, in purple). The separator indicates
turn-boundaries. These sequences are interpreted
by the dialogue policy, a program which outputs

13

a sequence of recommended actions given the cur-
rent context (in orange). This sequence is appended
to the prompt along with the state and action se-
quences, providing context for the language model
to select the next action (in green) and generate the
agent response in natural language.

B Prompts

B.1 Action parser

Header Figure 6 presents a sample AP prompt
header. If no task has been completed, the prompt
begins with task instructions (Figure 6a). Once a
task is completed, a summary of the task and the
returned entity is prepended before the task instruc-
tions (Figure 6b). The entity definitions include a
docstring instructing the model to retain and copy
relevant argument values into subsequent API call
paramater values.

your task is to identify which of the following tasks

the user wants to complete, and update it accordingly

as the user provides more information during the conversation.
you should also carefully follow any developer instructions
to answer user questions and complete follow-up tasks.

(a) Task instruction

1. considered one-way air travel options for their itinerary.
the 'flights_3_search_oneway_flight' api returned a
'oneway_flight' object (x11).

class oneway_flight:
"""object returned by the 'flights_3_search_oneway_flight' api.
in subsequent api calls, you should pass, to compatible
arguments, the last value mentioned for the following entity
properties:

properties
origin_city: str

city in which the journey originates
destination_city: str

city in which the journey ends
departure_date: str

date of departure flight
airlines: enum

name of airline operating the flight
passengers: int

number of passengers to find flight seats for
flight_class: enum

fare class of flight booking
number_checked_bags: int

number of bags to check in

your task is to identify ...

(b) Task stack

Figure 6: Action parser header prompt components.

Session transcript Beyond the user and system
actions described in Section 2.1, we introduce ad-
ditional actions that enable PyTOD to handle more
complex user interactions.

User actions Conversation interruptions (Fig-
ure 7, turn 7) and negations (turn 9) require TOD
agents to copy the dialogue state from the history,

agent: For two, 7pm at Nando’s Oval, tomorrow?

[7] user: Lemme think about it ...

x15 conversation_pause()
x16 Hint(”prompt for next action”)

agent: Take your time, I’ll be here!

[8] user: Go ahead actually!

x18 confirm(x12)
x19 Notification(”Booking did not succeed”)
x20 Hint(Poffer alternative: date”)

agent: No luck with the booking for today. Tomorrow same time?
[9] user: Nah, leave it. Directions to my next meeting, quick,

just noticed the time!
x27 decline_alternative()
x28 Hint(”prompt for next action”)
x29 get_meeting(sort_by=“date™)
x30 next(x29)
x31 get_directions(to=x30.location)
x32 perform(x31)

agent: Sure! It’s in 3 minutes in the ARR building, room April.

[10] user: K, gotta dash! Bye!

agent: Have a productive one!

Figure 7: An alternative continuation of the conversation
in Figure 2 after turn 6. Additional user/system actions
and an example of how PyTOD can handle complex
compositional utterances (turn 9) are depicted. Note
that unlike in Figure 2 where some of the say calls
were omitted for clarity, all calls to the NLG module are
shown.

making them vulnerable to copying errors. PyTOD
mitigates this by generating special program state-
ments (x15, x27), ensuring the state is carried over
to the next turn without errors through execution.
In contrast, AnyTOD (Figure 5) predicts the entire
state and action sequences from scratch at every
turn, which is inefficient and error prone.

System actions In §2.1 we introduced hints
as prompts generated by a deterministic dialogue
policy through the execution of API calls or as-
signments. More broadly, the system policy can
be designed to generate such prompts in a wider
variety of contexts. As shown in Figure 7, PyTOD
can be programmed to prompt the user to take ac-
tion after a conversation pause (Figure 7, x16) or a
negation (x28). If the user does not respond (as in
turn 7), these actions are executed to continue the
dialogue.

Successful API calls are marked by perform
statements. These are always followed by a say
command call to generate an agent utterance which
informs the user the task has been successfully
completed.

API call failures are also included in the prompt

14

to enable PyTOD to reason about the dialogue state
in such cases (Figure 7, x19). Depending on the
API response, PyTOD may assist the user in recov-
ering from failures by offering alternatives, repre-
sented as hint messages (x20).

NLG calls Unlike Figure 2, Figure 7 shows all
NLG calls, illustrating how PyTOD can function
as an end-to-end TOD agent. Since say commands
ground agent utterances but do not provide rele-
vant information for state tracking, they are omit-
ted from the action parser prompt (the dialogue
manager appropriately re-indexes the variables).

Handling complex utterances Figure 7
demonstrates how PyTOD handles compositional
user utterances requiring nested function calls.
Such utterances cannot represented by AnyTOD or
other state-of-the-art TOD agents and DST models,
which are limited to parsing slot-value pairs from
user and agent utterances.

Context-dependent instructions Context-
dependent instructions, formatted as developer:
turns, appear in the prompt after an iteration (ie
next) or confirmation instructions. In the former
case (Figure 8a), they provide an itemized list of
entity properties that the user may inquire about
along with their natural language descriptions from
the schema. A brief instruction precedes this list,
prompting the language model to invoke the say
routine to communicate the requested information
to the user. In the latter case (Figure 8b),
additional system policy instructions relevant to
state tracking may be included. For instance, line
6-9 in Figure 8b illustrate how PyTOD can be
guided to correctly parse API parameters following
an API calling error.

B.2 Dialogue Manager
B.2.1 Schema supervisor

Figure 9 shows the SS prompt generation tem-
plates. A common input to these is slot_schemas,
a list of dictionaries containing the names, de-
scriptions, data type and possible values (for cat-
egorical slots) for the active service. These
are formatted by developer-defined filters (e.g.,
slot_definition_formatter). The template for
constraining the value of a categorical slot to one
of the values listed in the schema (Figure 9c¢) is a
special case of the template for constraining un-
known slot names with categorical values (Fig-
ure 9b): only one slot definition corresponding

prompt :
: weather on 11th of this month in london, england.
© weather_1_get_weather(date = '11th of this month', city = 'london, england')
1 show(x@)
2 next(x@) # type: forecast
developer: the user may request specific information about the 'forecast’ object (x2)
properties listed below. pass the relevant property or properties to "say’ to answer
(eg, say(x2.precipitation, xZ.humidity))
- precipitation: the possibility of rain or snow in percentage
- humidity: percentage humidity
- wind: wind speed in miles per hour
- temperature: temperature in fahrenheit
- date: date for the weather
agent: 71 degrees 15 percent chance
: how humid though? windy?
3

target:
say(x2.humidity, x2.wind)

(a) Post-iteration context-dependent instructions.

agent: alright, so you'd like to send $1,470 from your checking account
to the checking account belonging to yumi?

iser: yes. how many days will that take?

9 confirm(x7)

developer: in the event of a 'banks_2_transfer_money' failure,

copy the values of the keywords below the agent last mentioned

to subsequent 'banks_2_transfer_money' calls:

- recipient_account_type

developer: unless a signal indicates a 'banks_2_transfer_money'

error, the properties

- transfer_time: number of days for the transfer to go through

may be communicated to the user upon their request by referencing

'x13" while calling 'say' (eg, say(x13.transfer_time)).

calling

(b) Post-confirmation context-dependent instructions.

Figure 8: Sample context-dependent instructions.

to the one predicted by the AP is displayed and the
none option is removed to ensure the output is one
of the values enumerated in the schema.

B.3 Parser supervisor

Figure 10 shows the PS prompt generation tem-
plate. The DM filters the transcript to extract

and agent relevant to the current task, ignoring ir-
relevant previous tasks which are not relevant for
predicting the current slot value. These turns are
processed by the conversation_formatter filter,
which preprends the conversation role to the ut-
terance. The schemata of the slots requested at
the previous turned are passed to the template as
slot_list. The question_formatter filter the
formats the slot descriptions by lowercasing them
and appending a question mark.

C Experimental details

C.1 Slot values normalisation

In SGD, the dialogue state updates when the user
either explicitly provides a slot value or accepts a
system-proposed value. Traditional TOD agents
track the latter by extracting slot-value pairs from
agent utterances. In contrast, as described in Sec-
tion 2.1.2, PyTOD updates the state by execut-
ing select and confirm commands. These com-
mands read relevant slot values from entities re-
trieved via database queries (for search-based inter-
actions) or API responses (for transactional inter-

15

Given the definitions, which keyword below best matches
{{ predicted_argument_with_definition }}?

{% for slot in slot_schemas -%}
- {{ loop.index | int2alpha }}) {{ slot | slot_definition_formatter }}
{%if loop.last -%}
- {{ (loop.index + 1) | int2alpha }}) none:
the definitions do not describe {{ predicted_argument }}
{% endif -%}
{%- endfor %}
Answer:

(a) Unknown slot name. Sample prompt in Figure 3a.

Here are some definitions:

{% for slot in slot_schemas %}
- {{ slot | slot_definition_formatter }}

{%- endfor %}

{% set cnt = [0] %}

Given these, {{ predicted_keyword }} is a synonym of
{% for slot in slot_schemas -%}
{% for value in slot.possible_values -%}
{% if cnt.append(cnt.pop() + 1) %}{% endif %}
- {{ cnt[@] | int2alpha }}) {{ slot.name }} {{ "=" }} {{ value | lower }}
{%- endfor -%}
{%if loop.last %}
- {{ (ent[0] + 1) | int | int2alpha }}) \
options do not describe {{ predicted_keyword }}
{% endif -%}
{%- endfor %}

Answer:

(b) Unknown slot name (closed value). Sample prompt in
Figure 3b.

Here are some definitions:
- {{ arg_def.name }}: {{ arg_def.description | lower }}

Given these, {{ predicted_keyword }} is a synonym of:
{% for value in arg_def.possible_values %}
- {{ loop.index | int2alpha }}) \
{{ arg_def.name 3} {{ "=" 3} {{ value | lower }}
{%- endfor %}

Answer:

(c) Unknown categorical slot value
Which sentence below paraphrases {{ memorised_argument_description_with_name }3}?

{% for slot in slot_schemas -%}
- {{ loop.index | int2alpha }}) {{ slot | slot_definition_formatter }}
{%if loop.last -%}
- {{ (loop.index + 1) | int2alpha }}) \
none of the sentences above paraphrases {{ memorised_argument_name }}
{% endif -%}
{%- endfor %}
Answer:

(d) Memorised slot name. Sample prompt in Figure 3c.

Figure 9: Schema supervisor prompt templates

actions). Since SGD system call annotations'> are

canonicalised, PyTOD must normalise open-valued
parameters extracted from the dialogue history be-
fore making API calls and ensure that system-
proposed slot values are de-normalised for eval-
uation.

In practice, normalisation is performed by look-
ing up the surface form of a predicted value in a
mapping that links surface forms to their canoni-
cal counterparts. This table is easily constructed
from SGD semantic annotations, as illustrated in
Figure 11. Instead of de-normalising slot values
copied from entities or API responses, we equiva-
lently extend the corpus annotations to include their
canonical forms. This ensures that slots tracked via
execution are directly comparable to the reference
values used by the official evaluator.

5These include call parameters, entity properties, and API
responses.

Q: Answer the following questions. OQutput "unanswerable" \
if the question cannot be answered given the conversation.

In the conversation:

{{source_turns | conversation_formatter }}

{%- for item in slot_list %}

{{ loop.index 3}) {{ item | question_formatter }}
{%- endfor %}

Answer:

Figure 10: Parser supervisor template

C.2 Implementation details

Library versions We finetune D3ST and SDT-
Seq using the transformers (Wolf et al., 2019)
library and the key software dependencies in Ta-
ble 6. With the exception of FlanT5 (Chung et al.,
2024) D3ST, which was trained on two NVIDIA
A100 GPUs (80GB), all models were trained on a
single NVIDIA RTX 3090 GPU (24GB).

Library Version
transformers 4.35.2
accelerate 0.24.1
torch 1.17
numpy 1.26.2

Table 6: Software dependencies used to train PyTOD.

D3ST replication We set all training parameters
to match those reported by Zhao et al. (2022) and
pre-process the data using their official script'®.
As the original work does not specify a model se-
lection metric or evaluation frequency, we evalu-
ate every 5,000 steps and select the best check-
point based on overall JGA on the development
set. Training is terminated early if accuracy does
not improve within 15, 000 steps (approximately 3
epochs).

Our results show an absolute 1.7% difference
from the published JGA for the base model (Ta-
ble 7, rows 1 & 2). We observe a +1.0% improve-
ment on seen services, but a 2.6% drop on unseen
services.

To rule out overfitting, we increase the evalua-
tion frequency to 900 steps and select the model
maximising the unseen serivces JGA, stopping the
training after 1 epoch if there are no improvements.
However, this leads to a slight performance drop
(Table 7, rows 2 & 3). We finetune Flan-T5 (780M)
with the best settings, achieving seen services per-
formance on par with the published results but a

16 Available at https:/bit.ly/4aKe9KL

16

"frames":

{

"actions":

{

L
L

act": "INFORM",
"canonical_values": [
"11:30"
]’
YSleErs HeimeY,
"values": [
"half past 11 in the morning"
]
}
],
"service": "Restaurants_1",
"slots": [

{
"exclusive_end": 49,
"slot": "time",
"start": 22
}
1g
"state": {
"active_intent": "ReserveRestaurant"
"requested_slots": [],
"slot_values": {
"time": [
"half past 11 in the morning",
"11:30"§
i

}
}
}
]

Figure 11: Semantic frame for the utterance I would
like it to be half past 11 in the morning. The action
annotations (line 3 - 14) are processed to extend slot-
value annotation with the corresponding canonical value
(e.g., line 29). The ellipsis in line 31 marks slot-value
pairs which were omitted for clarity.

4.6% discrepancy on unseen services (rows 4 & 5).

SDT replication We set training hyperparame-
ters to the values reported by Gupta et al. (2022)
and use the data processing scripts from the offi-
cial SDT code release!’. Since the evaluation fre-
quency and model selection metric are unspecified,
we evaluate every 1600 steps, selecting the model
with the highest development set overall JGA. We
closely replicate the reported results (Table 8).

PyTOD implementation details We finetune Py-
TOD with the same software versions as our base-
lines and the parameters in Table 9 until the de-
velopment set JGA for unseen services is max-

17 Available at https://bit.ly/4aKe9KL

https://bit.ly/4aKe9KL
https://bit.ly/4aKe9KL

Size Model JGA JGA Seen JGA Unseen Setting #
D3ST (Zhao et al., 2022) 72.9 925 66.4 - 1
220M D3ST (Flan-T5, ours) 712 932 63.8 A 2
D3ST (Flan-T5, ours) 70.7 929 63.3 B 3
780M D3ST (Zhao et al., 2022) 80.0 93.8 754 - 4
D3ST (Flan-T5, ours) 76.5 93.8 70.8 A 5

Table 7: D3ST replication results. Numbers in brackets
show the metric values for each experiment run, three-
runs averages are shown otherwise.

Size Model JGA JGA Seen JGA Unseen #
220M SDT-Seq (Gupta et al., 2022) 76.3 - - 1
SDT-Seq (Flan-T5, ours) 77.5 93.5 72.2 2

780M SDT-Seq (Gupta et al., 2022) 83.3 - - 3
SDT-Seq (Flan-T5, ours) 82.7 94.1 78.9 4

Table 8: SDT-Seq replication results.The reported num-
bers are averaged over five runs, each using a distinct set
of demonstrations to construct the fine-tuning prompts.

imised. The learning rate is constant, with no scal-
ing. We follow the same protocol when finetuning
google/flan-t5-large, except that we allocate
a training budget of just one epoch.

Hyperparameter Value
Pretrained model google/flan-t5-base
Optimizer Adafactor

Batch size 32

Learning rate 0.0001
Warmup steps 1500

Number of epochs 2
Evaluation frequency 1500 steps

Table 9: PyTOD training hyperparameters.

D pytod-lib

D.1 Simulation framework
D.1.1 Service APIs

Figure 12 shows a sample implementation of the
Buses_3 service from SGD. The service provides
two APIs: (1) FindBus, a search or query API
(Figure 12a) that enables users to query a bus
schedule database using natural language, and (2)
BuyBusTicket, a transactional API (Figure 12)
that allows users to purchase a ticket for an itinerary
proposed by the TOD agent based on FindBus
search results or by specifying ticket details di-
rectly.

D.1.2 Dialogue policy

The SGD conversations are generated by sampling
from a policy graph (Rastogi et al., 2019; Mosig
et al., 2020a), which outlines the intended flow of
a dialogue. Both search and transactional APIs re-

17

@register_command(service="Buses_3")

class FindBus(SearchCommand):
from_city: SearchCommandArgument[str] = SearchCommandArgument()
to_city: SearchCommandArgument[str] = SearchCommandArgument()
departure_date: SearchCommandArgument[str] = SearchCommandArgument()
num_passengers: SearchCommandArgument[str] = SearchCommandArgument()
category: SearchCommandArgument[str] = SearchCommandArgument()

def __init__(self, dialogue_id: DialoguelID):
super().__init__(dialogue_id)

(a) Search API.

@register_command(service="Buses_3")

class BuyBusTicket(ConfirmedCommand):
from_city: ConfirmedCommandArgument[str] = ConfirmedCommandArgument()
to_city: ConfirmedCommandArgument[str] = ConfirmedCommandArgument()
departure_time: ConfirmedCommandArgument[str] = ConfirmedCommandArgument()
departure_date: ConfirmedCommandArgument[str] = ConfirmedCommandArgument()
num_passengers: ConfirmedCommandArgument[str] = ConfirmedCommandArgument()
additional_luggage: ConfirmedCommandArgument[str] = ConfirmedCommandArgument()

def __init__(self, dialogue_id: DialogueID):
super().__init__(dialogue_id)

(b) Transactional API.

Figure 12: Implementation of the SGD Buses_3 service

quire zero or more specific slots to function. To
provide them, the system processes the initial user
turn and takes actions to elicit missing slot val-
ues. Once all required slots are filled, search APIs
can construct a valid database query, while trans-
actional APIs execute an external service call (e.g.,
to a ticket booking service).

Slot-filling is abstracted in the SearchCommand
and ConfirmedCommand interfaces, which all con-
crete service implementations (e.g., Buses_3) in-
herit. Upon execution, the interfaces return sys-
tem actions, such as show, perform, Hint and
Notification (see Figure 1 in §1, Figure 2 in
§2.1.2 and Figure 7 in App. B.1). For example, if a
user says, I need a bus from London to Manch-
ester., executing FindBus returns a system ac-
tion Hint (request value: departure_date)!®,
which an agent can verbalise to ask for the miss-
ing constraints. Unlike a majority of examples in
datasets such as STAR (Mosig et al., 2020a) and
STARV2 (Zhao et al., 2023), where users provide
constraints only when prompted, SGD conversa-
tions frequently include user-initiated constraint
specification.

Complex policy The SGD policy models re-
alistic, multi-turn interactions beyond simple slot
filling.

For search APIs, it supports user goal changes, it-
eration through multiple results satisfying the same
constraints, and cases where no results match the
user’s constraints.

Transactional API policy incorporates complex
error recovery, where the system may suggest alter-

!3The other arguments in Figure 12 are optional, so are not
requested by the system.

native actions (e.g., an alternative bus time if the
selected bus is fully booked). The user can accept
or decline system-initiated changes or update their
constraints to resolve the issue. Additionally, the
system can initiate tasks (e.g., proposing a ticket
purchase after retrieving a bus schedule), at which
point the user may switch context to another task
and later return to complete the system-initiated
one. This policy extends beyond the standard slot-
filling approach seen in MultiwOZ, where users
typically accept system proposals without modify-
ing their constraints or declining offers in response
to API failures.

We encourage interested readers to explore the
documentation of the simulation package in our
pre-release code.

D.1.3 API behaviour

Feedback The pytod APIs define slots as
class variables implementing the descriptor pro-
tocol'®, enabling advanced functionality. One such
function is execution error feedback: setting an
undefined attribute on an API returns a string de-
scribing the error instead of raising an exception.
Another example is type coercion: descriptors cast
slot values to the data types specified in the schema,
and may be configured to provide natural language
feedback if conversion fails.

Execution engine The execution engine converts
the dialogue manager’s output into a python ob-
ject. Figure 13 illustrates how a program statement
is interpreted as an API object implemented by
a service (e.g., FindBus in Figure 12a). The ex-
ecution process begins by parsing the statement
into an abstract syntax tree (AST) (line 24). If
the tree matches a function call signature (line 25),
a conversion function (string_to_py_cmd) first
extracts the function name and arguments (lines
6-10). If the function corresponds to an API im-
plemented by the schema (line 14), the engine re-
trieves the command from a registry, instantiates
the appropriate object (e.g., FindBus), and assigns
slot values (lines 15—18). For user or system ac-
tions, the function name is returned (lines 20-22),
and object instantiation is handled downstream. We
invite interested readers to consult the documenta-
tion of the execution package in our pre-release
code for further details.

1See https://bit.ly/4hLB4aU.

18

def maybe_parse_api_call_or_action(
program_statement: str
) -> Command | str | None:
"""Parse an action parser output to a python API or action name."""
def string_to_py_cmd(ast_expr: ast.Expr) -> Command | str:
match ast_expr:
matches a fcn call e.g.,
buses_3_find_buses(location="Cambridge")
case ast.CallCast.Name() as func, args, keywords):
command_name = func.id # "buses_3_find_buses"
match command_name:
if the command is not a user/system action
it must be an API call
case tool if tool not in USR_SYS_ACTIONS:
build FindBus command from the schema
command = _build_command(command_name)
set slot values
_set_command_properties(command, args, keywords)
return command
case :

return the action name, parsed downstream
return command_name

match ast.parse(program_statement).body:
matches function calls e.g. find_bus(), next(x1), etc
case [ast.Expr(value=ast.Call() as expr)]:
api_py_obj = string_to_py_cmd(expr)
return api_py_obj
case _:
return

Figure 13: Sample execution engine code, showing how
a program statement is interpreted as a python object.

D.2 Task-oriented agents beyond MultiwWOZ

Endowing LL.Ms with tool-use capabilities has at-
tracted widespread focus in the research commu-
nity. While LLMs have facilitated creation of syn-
thetic data to evaluate LLMs’ ability to parse in-
dividual user commands into tool calls, extending
this to generate high quality conversations follow-
ing predefined policies remains an open challenge
(Zhao et al., 2023; Stacey et al., 2024). As a result,
while a plethora of corpora evaluating single-turn
interactions exist??, few provide an interactive eval-
uation setting for conversational use. ToolSandbox
(Lu et al., 2024) is among the few notable excep-
tions, yet, as Lu et al. (2024) highlight, hallucina-
tions remain a key limitation in their approach to
policy-grounded conversation simulation.

In contrast, task-oriented dialogue corpora are
collections of natural conversations following pre-
defined policies. These collections are expert-
curated and their dialogues are grounded in rich
ontologies of user/system actions and diverse API
calls. As we showed in this paper, actions and API
calls can be naturally represented as tool calls.

By introducing an interactive environment for
SGD, the largest and most complex TOD dataset,
we provide a valuable resource to both the tool-
use and TOD research communities. Compared to
MultiwOZ (Budzianowski et al., 2018), a widely
used benchmark in both dialogue and LLM re-
search, SGD presents significantly greater chal-
lenges due to its complex policy (§D.1.2), richer
ontology and task diversity (Table 10). These fac-

2See Qu et al. (2024) for a recent review.

https://bit.ly/4hLB4aU

Dataset #Domains #Intents #Slots # Dialogues Avg. Turns # Utterance Annotation Explanation Service
SGD 20 88 365 6684 20.44 T pickup_time="2 in ., o
MultiWOZ 7 1 35 2000 13.46 1 Today at 2 in the the afternoon’ start_date="today’in ~ RC_3

Table 10: Comparison of dataset statistics for SGD and
MultiWOZ. Dialogue counts reported are for combined
development and test sets whereas average turns is re-
ported for the training split.

tors make it a more rigorous benchmark for study-
ing conversational tool use and TOD agent gener-
alization, aligning with recent efforts to develop
scalable, policy-driven dialogue systems (Hudecek
and Dusek, 2023).

E Extended Analysis and Discussion

E.1 Parser supervisor

As the PLM size of the AP increases, the cost
of correcting semantic errors and omissions rises,
prompting us to explore separate models for PS
and AP.

Table 11 shows that reducing PS size from 780M
to 220M results in a negligible performance drop
for PyTOD (Large), regardless of the SS size (cf.
rows 1 - 3 vs. 4 - 6). This holds even though the
780M PS outperforms the 220M PS by 1.9 exact
match points as it adapts better to unknown ques-
tions”!. However, the overall system performance
is marginally worse compared to jointly training a
single model for action parsing and parsing super-
vision, indicating a small benefit from multi-task
learning.

pssie EM M EM g, jga JGA JGA
Seen Unseen Seen Unseen

220M 80.0 90.6 76.4

220M 915 96.7 90.3 770M 80.7 90.5 77.4
3B 81.8 91.7 78.5

220M 80.1 90.6 76.5

770M 934 96.5 92.8 780M 80.8 90.5 77.6
3B 81.9 91.7 78.7

Table 11: Performance of PyTOD (Large) when the
parser supervisor (PS) is implemented with a specialised
Flan-T5 model. EM denotes exact match answer accu-
racy, evaluated on the SGD test set. Bracketed numbers
represent absolute JGA deviation with respect to the
corresponding PyTOD models where the AP and PS
models are jointly trained (Table 3, v/-marked rows).

E.2 Annotation errors

Table 12 presents sample errors identified in our
analysis in §5.3, showing intent paraphase errors

2! For comparison, the EMs for PyTOD (Large) and PyTOD
(Base) in Table 1 are 92.5% and 91.0% ,respectively.

19

afternoon. utterance

The utterance semantics
is better represented as MUS_3
intent=PlayMedia.

I’'m in the mood for

2 some music and
would like to play
some songs.

intent=LookUpMusic

The utterance semantics
is better represented as
intent=GetTrainTickets.

I need a train ticket
with a fully
refundable feature.

w

intent=FindTrains
class="Flexible’

TR_1

intent=FindAtractions
category="Place of
Worship"

Okay, what about
attractions there. 1

need Place of No good_for_kids=True Tp Al

mention in utterance.

Worship, and free_entry=True
something withno ~ 800d_for_kids=True
entry fee.

Table 12: Sample annotation errors identified during the
error analysis. RC_3=RentalCars_3, MUS_3=Music_3,
TR_1=Trains_1, TRA_I=Travel 1.

in #2&3. While our DM performs argument-based
disambiguation to identify intent, GetTrainTickets
and FindTrains, the two Trains_1 intents, share all
their arguments. Consequently, misparaphrased in-
tent annotations prevent PyTOD from retrieving
train schedules, leading to degraded DST perfor-
mance. Analysis of 30 additional dialogues from
this domain, we found that intent confusion cased
state errors in 20 out of 50 cases.

Table 12 highlights some utterances contain slots
mentions without corresponding user action anno-
tations (#1) while others sometimes fail to para-
phrase actions parametrised by boolean or cate-
gorical slots(#4). These issues were difficult to
identify with the methods available to Rastogi et al.
(2019). During PyTOD development we, however,
identified 451 dialogues across the train, develop-
ment and test releases>> while experimenting with
fault-tolerant execution. This suggests that pro-
grammable dialogue systems, while challenging
to develop, can serve as valuable tools for dataset
quality improvements.

E.3 Overcoming copy errors with PyTOD

§5.3 identified slot propagation from search queries
to transactions (e.g., Figure 14) as a key Py-
TOD failure mode. These errors can be miti-
gated by training PyTOD to pass object refer-
ences to follow-up tasks (e.g., predicting mu-
sic_3_play_media(entity=x5, device=patio) in-
stead of enumerating all slots to be copied). The
state could then be robustly tracked by execution.
Note PyTOD is fine-tuned to predict entity selec-
tion in the symbolic form shown in (x5, Figure 14)

2We include dialogue IDs in our code release.

1 want to find a song now, and i know that there are some really good
songs in the album called we are not your kind, also i enjoy rock-and-roll songs
which are from the '19.
x1 music_3_lookup_music(album = 'we are not your kind', genre = 'rock-and-roll',

year = 2019)
x2 show(x1)
x3 next(x1)
x4 say(x2)
agent: there is 1 song which you might like. how would you like listening to the
birth of the cruel by slipknot from the album called we are not your kind?

yes, that is the song i want.
x5 select(x3, from_results = x1)
x6 suggest(task = 'music_3_play_media')
agent: do you want this song to start playing now?

yes, i do. play the song on the patio speaker
x7 music_3_play_media(track = 'the birth of the cruel', device = 'patio')

Figure 14: A Music_3 copy error. The slot album is not
copied to to the music_3_play_media call (x7).

and these symbolic representations are rendered
in the dialogue history to provide relevant entity
information (i.e., song(track, optional=["album’])).
This facilitates robust slot propagation by reason-
ing over entity types, a topic future research will
explore.

E.4 C-JGA breakdown

To support future comparisons, we provide a break-
down of C-JGA metrics for our models and repli-
cated baselines across seen and unseen services.
Upon public release, we plan to contribute the C-
JGA implementation to the official SGD evaluation
code.

Size Model C-JGA JGA (Seen) JGA (Unseen) #
220M D3ST (Flan-T5, ours) 62.2 86.0 54.3 1

SDT-Seq (Flan-T5, ours) 68.7 86.6 62.8 2
780M D3ST (Flan-T5, ours) 66.5 87.9 61.0 3

SDT-Seq (Flan-T5, ours) 74.2 88.0 69.6 4
220M PyTOD (Base) 72.7 87.3 67.8 5
780M PyTOD (Large) 78.4 89.1 749 6

Table 13: Breakdown of C-JGA reported in Table 1 by
seen/unseen service.

20

