
PyTOD: Programmable Task-Oriented Dialogue with Execution Feedback

Anonymous ACL submission

Abstract

Programmable task-oriented dialogue (TOD)001
agents enable language models to follow struc-002
tured dialogue policies, but their effectiveness003
hinges on accurate state tracking (DST). We004
present PyTOD, an agent that generates exe-005
cutable code to track dialogue state and uses006
policy and execution feedback for efficient er-007
ror correction. To achieve this, PyTOD em-008
ploys a simple constrained decoding approach,009
using a language model instead of grammar010
rules to follow API schemata. This leads to011
state-of-the-art DST performance on the chal-012
lenging SGD benchmark. Our experiments013
show that PyTOD surpasses strong baselines in014
both accuracy and stability, demonstrating the015
effectiveness of execution-aware state tracking.016

1 Introduction017

TOD agents provide natural language interfaces018

which enable users to control their digital environ-019

ment to complete daily tasks. Such agents typically020

include a dialogue state tracking (DST) component,021

which maps the conversation history to a symbolic022

representation of the task-relevant information com-023

municated during the exchange. At each turn, a di-024

alogue manager (DM) uses this information to take025

system actions1 necessary to help the user complete026

the task. The agent behaviour is controlled by a027

dialogue policy defined by application developers.028

Adapting to new domains has long been a chal-029

lenge for state tracking (Jacqmin, 2022), dialogue030

management (Mosig et al., 2020a) and end-to-end031

(Zhao et al., 2023) agents, as it often requires de-032

velopers to collect and annotate new datasets for re-033

training. To address this challenge, fine-tuning pre-034

trained language models (PLMs) (Radford et al.,035

2019; Raffel et al., 2020) within the schema-guided036

paradigm (Rastogi et al., 2019; Mosig et al., 2020a)037

has emerged as a powerful approach. Schemata038

1For example, retrieving information from a knowledge
base or prompting the user to provide task constraints.

Action
Parser (AP) Dialog

Manager
(DM)

Parser
Supervisor

(PS)
to_city =
"San Diego"

Schema
Supervisor

(SS)

to_city ->
destination_city

7th of
this month

1. to_city is not part of schema
2. Possibly missing departure_date

u1

Dialogue
history

x1.to_city =
"San Diego"

Date of
departure
flight?

Previous
system
actions

a1
u2

u1

u2
a1

x2

x4
x3

A

A

Figure 1: PyTOD overview. The action parser generates
python instructions (x1.to_city = "San Diego") repre-
senting the actions the user took at the current turn (u2)
given API schemata (A), dialogue history (u1, a1) and
previous user actions (x1). The dialogue manager (DM)
executes the user action in a simulated environment.
A schema supervisor is invoked by the DM to correct
errors if predicted instructions contain slot names that
are not part of the API schema (e.g., the slot to_city is
mapped to destination_city, a member of the schema).
Given knowledge of previous system actions (x2, x3)
the DM detects slot omissions and invokes a parser su-
pervisor to correct them (e.g., flight date is recovered).

define the APIs accessible to the agent, including 039

textual descriptions of their functions and param- 040

eters (commonly referred to as slots). Mosig et al. 041

(2020a) extend schemata by including descriptions 042

of the actions that TOD agents can perform. Zhao 043

et al. (2023) build on these advances, proposing 044

a neuro-symbolic approach to design AnyTOD, a 045

state-of-the-art (SOTA) agent capable of following 046

1

dialogue policies unseen during fine-tuning2.047

AnyTOD uses the schema and dialogue history048

to first generate a symbolic state sequence. This049

sequence identifies the API the user wishes to inter-050

act with and the slot values the user has mentioned.051

A second symbolic sequence - encoding the actions052

the user3 and system have taken - is generated se-053

quentially after the state sequence. Both sequences054

are subsequently interpreted by a deterministic pol-055

icy program which recommends the next system056

action. State sequence is thus critical: prediction er-057

rors can prevent the system from taking the correct058

actions, leading to breakdowns in the interaction.059

Despite its strengths, AnyTOD has some limi-060

tations. First, it re-estimates the state and action061

history at every dialogue turn solely based on the di-062

alogue history and schema, which increases gener-063

ation length and amplifies the risk of state-tracking064

errors. Second, it fails to exploit previous system065

actions to verify the correctness of the state se-066

quence. Finally, its reliance on symbolic repre-067

sentations of state and action sequences requires068

additional system components to translate them069

into executable code, adding deployment complex-070

ity. We present PyTOD, a programmable dialogue071

system that addresses these challenges by directly072

communicating with its execution environment and073

policy programs to perform accurate state tracking074

for unseen APIs and domains, as discussed next.075

PyTOD overview PyTOD incrementally gener-076

ates dialogue states as code, using policy- and exe-077

cution feedback for accurate state estimation (Fig-078

ure 1). It operates as follows: (1) an action parser079

(AP) (§2.1) processes the user query to produce080

one or more python instructions; (2) the dialogue081

manager (DM) (§2.2) executes these instructions;082

(3) any attribute errors raised during execution are083

resolved by the schema supervisor (SS) (§2.2.2),084

a language model that constrains code generation085

according to the decoding schema; and (4) the DM086

evaluates the constrained output by comparing ex-087

pected and current environment states, invoking a088

parser supervisor (PS) (§2.2.3) to recover from pos-089

sible omissions or semantic errors. The dialogue090

state is derived by executing the complete program091

generated by PyTOD at each turn.092

Contributions Unlike PyTOD, TOD agents093

often optimise DST and DM independently in094

pipeline architectures (Neelakantan et al., 2019),095

2See Appendix A.1 for a detailed description.
3For example, providing a slot value or requesting infor-

mation about a knowledge base item retrieved by the system.

overlooking how policy information can enhance 096

state generation accuracy. We further demonstrate 097

that feedback from the execution environment en- 098

ables language models to constrain decoding with- 099

out requiring additional training data, with minimal 100

developer effort and only a slight increase in sys- 101

tem latency. PyTOD achieves SOTA performance 102

on the challenging Schema-Guided Dialog (SGD) 103

dataset (Rastogi et al., 2019). 104

As an additional contribution, we release 105

pytodlib, a python library that simulates SGD 106

APIs, including database responses and API be- 107

havior. This toolkit addresses the scarcity of con- 108

versational tool-use corpora, providing a valuable 109

resource for benchmarking large language models’ 110

ability to handle complex, multi-task, goal-oriented 111

conversations while following predefined policies. 112

2 PyTOD 113

2.1 Action parser 114

The AP parses user utterances into python expres- 115

sions, which are executed to carry out the user’s ac- 116

tions. The prompt consists of: (1) a header contain- 117

ing task-specific instructions, a linearised schema, 118

a list of completed tasks, and entities (e.g., flights) 119

returned by them (§2.1.1); (2) a session transcript, 120

where user and system turns are interleaved with 121

python code snippets representing user actions 122

and execution outputs (§2.1.2); and (3) context- 123

dependent instructions, dynamically rendered to 124

provide additional task guidance and entity defini- 125

tions as the conversation progresses (§2.1.3). 126

2.1.1 Header 127

At the start of the conversation, the header (Fig- 128

ure 1, top) provides instructions prompting the 129

model to identify the API that aligns with the user’s 130

intent and extract any arguments specified by the 131

user (Figure 6a, App. B.1). Schema API definitions 132

are presented next, linearised as python function 133

signatures (Figure 1, lines 4–14). Each API name 134

is followed by an intent description summarising 135

its function (line 5), while arguments are annotated 136

with their types and descriptions (lines 6–10). For 137

categorical slots, which take closed values from a 138

predefined set, the argument descriptions are pre- 139

fixed with the list of valid options (line 10). Return 140

types specify the entities produced by APIs, exclud- 141

ing their properties (line 12), which are displayed 142

dynamically as entities are returned (§2.1.3). 143

As tasks are completed, the header is updated 144

2

Figure 2: Transcript example. User actions, expressed
in natural language, are parsed as program statements
which implement a pre-determined dialogue policy.
Their execution results - recommended system actions
(x2, x7, x13, x16) - are executed via say, which calls
the call the NLG module. The NLG module generates
the next agent utterance given information contained in
the objects passed as positional arguments to the say.
NLG calls are shown only for turns 1 and 3, for clarity.

with descriptions of completed tasks and relevant145

entity definitions (Figure 6b, App. B.1).146

2.1.2 Session transcript147

The session transcript records the dialogue history,148

interleaved with program statements that capture149

user and system actions (Figure 2). To model incre-150

mental updates to the dialogue state according to151

user actions, PyTOD programs employ intermedi-152

ate variables (Stacey et al., 2024).153

User actions PyTOD defines user actions as ex-154

ecutable commands that update the dialogue state.155

API calls (Figure 2, x1, x10, x12) model task ini-156

tiation, with their output stored in variables that can157

later be referenced in assignments (x14). The latter158

are semantic representations of utterances where159

the user provides task constraints or corrects slot160

values. Iterations (x3, x5) handle search results,161

fetching the top-ranked item (x3) and allowing the162

user to navigate through them (x5).163

Selection (x6) and confirmation (x15) statements164

track user acceptance of system-provided entities4165

and of slot values provided by the agent. Unlike166

4For example, selecting a restaurant (Figure 2, turn 3).

SOTA DST approaches, which extract slot values 167

from both agent and user utterances, these com- 168

mands track system-mentioned slots by executing 169

the dialogue policy. Specifically, executing a selec- 170

tion updates the referenced command based on the 171

chosen entity5 whereas executing a confirmation as- 172

signs system-provided values to the corresponding 173

parameters of the referenced command6. 174

Variables enable PyTOD to handle complex con- 175

versations. For example, context switching is repre- 176

sented by resume/suspend commands (x9, x11). 177

These commands prevent omission errors when 178

copying parameters from the dialogue history7. Un- 179

like SOTA TOD agents, PyTOD mitigates trans- 180

formers’ vulnerability to copying errors (Liu et al., 181

2024; Barbero et al., 2024) by representing nega- 182

tion, conversation pauses as executable and hierar- 183

chical slots as executable commands (App. B.1). 184

System actions are inserted into the transcript by 185

the DM to provide additional cues for state track- 186

ing. For example, database call markers (Figure 2, 187

x2) signal the retrieval of results, guiding the lan- 188

guage model to predict subsequent iteration (x3, 189

x5) and selection (x6) statements. Additionally, 190

Hint messages (x13) are recommended system ac- 191

tions showing missing required slots8, and the DM 192

uses these actions to verify AP output (§2.2.3). Ad- 193

ditional system actions are described in App. B.1. 194

2.1.3 Context-dependent instructions 195

Context-dependent instructions list properties of 196

retrieved entities along with natural language de- 197

scriptions of their meaning. This allows PyTOD 198

to answer user queries while reducing system la- 199

tency9. These instructions appear after iteration 200

or confirmation calls and may also include system 201

policy details relevant to state tracking (App. B.1). 202

2.2 Dialogue manager 203

The DM coordinates interaction with the user by 204

taking actions recommended by the dialogue policy 205

upon AP output execution. To ensure successful ex- 206

5Executing select(x5, from_results=x1) is equiva-
lent to search_restaurant.restaurant="Nando’s Oval".

6Executing confirm(x12) is equivalent to
book_table.people=2, book_table.date="tomorrow".

7An omission of the restaurant parameter in the
book_table call (Figure 2) can be corrected since the name
of the restaurant is known after select (x6) execution.

8These are all the call parameters that must be specified
for the API to perform its intended function.

9Since generation latency increases with prompt length,
entity definitions are only included when relevant—after the
entities have been retrieved—to optimise efficiency.

3

ecution, it constrains and validates the AP outputs207

as described in the reminder of this section.208

2.2.1 AP output constraints209

AP-generated statements must be valid python210

expressions with declared variables to execute.211

The DM enforces these constraints, inserting212

parse_errors into the transcript if parsing fails.213

Additionally, it restricts generated API names to214

those listed in the AP header, correcting errors by215

minimizing edit distance. Once constrained, state-216

ments are executed. If the AP predicts a slot name217

outside the decoding schema, the DM invokes its218

SS component to constrain it accordingly.219

2.2.2 Schema supervisor220

The SS generates a prompt using the schema and221

the AP output, based on three generic templates222

(App. B.2.1). It follows a multiple-choice question223

answering (MQA) format (Figure 3), where the224

question and options depend on the AP error. If the225

AP predicts an unknown slot, the prompt lists the226

all the slot names in the schema with descriptions10227

as answer choices, instructing the model to select228

the option corresponding to the slot which best229

matches the AP output (Figure 3a). If the slot name230

is unknown but its value is listed in the schema, the231

prompt includes only categorical slot definitions232

and possible values (Figure 3b). For cases where233

the AP outputs a slot from a training schema but234

not the current task schema, the model is presented235

with slot descriptions from the task schema and in-236

structed to select the closest paraphrase (Figure 3c).237

238

2.2.3 Parser supervisor239

The DM invokes the PS when SS-constrained AP240

assignment expressions do not provide values for241

slots PyTOD previously requested from the user.242

In response, the PS generates a prompt using the243

schema and dialogue history, based on a simple244

template (App. B.3). The prompt follows an ex-245

tractive QA format (Figure 4), where the questions246

correspond to the schema descriptions of the omit-247

ted slots (e.g., Departure date of the flight? in Fig-248

ure 1); the context for answering them is limited to249

the dialogue history of the current task.250

The PS corrects slot omissions and semantic er-251

rors. First, it extracts values for all requested slots252

missing from the AP output. Then, for open-value253

10Descriptions are replaced with data type for integer-
valued slots and value enumeration for categorical slots.

(a) Unknown slot name. The SS output is converted to
destination_city, replacing to_city in the AP output.

(b) Unknown slot name (closed value). The SS output
is converted to subtitle_language = none, replacing
subtitle_free = true in the AP output.

(c) Memorised slot name. The SS output is converted to
pickup_date, replacing pickup in the AP output.

Figure 3: Illustration of prompts generated by the SS to
constrain AP generations to the decoding schema.

Figure 4: Illustration of the prompt generated by
the PS to handle AP omissions and semantic errors.
The expected SS output is 1) San Diego 2) 7th of
this month. The second answer is used to correct
an omission by extending the constrained AP output
in Figure 1 (x1.destination_city = "San Diego") with
x1.departure_date = "7th of this month". The ellipsis
indicates truncated, irrelevant dialogue history.

slots, if a predicted answer exactly matches a value 254

already assigned to a slot in the constrained AP 255

output, the system assumes a semantic error and re- 256

places the predicted slot name with the correspond- 257

ing omitted one. If no such match is found, the 258

PS appends assignment expressions that bind the 259

predicted answers to the omitted slots and updates 260

4

the current task (viz departure_date, Figure 1).261

3 Experimental Setup262

We evaluate PyTOD on schema-guided DST. While263

Zhao et al. (2023) also evaluate their system on264

next-action prediction, PyTOD is designed such265

that, given the correct dialogue state, it is guar-266

anteed to take a correct action according to the267

dialogue policy. As a result, next-action prediction268

performance is correlated with DST performance269

and does not provide additional insight into system270

behavior. Turn-based evaluations often fail to re-271

flect a system’s ability to satisfy complex user goals272

in real interactions, as demonstrated by Takanobu273

et al. (2020) and recently by Elizabeth et al. (2024).274

3.1 Datasets and metrics275

Datasets SGD consists of 21, 106 dialogues span-276

ning 26 service schemata11 in the training split.277

The test set comprises 4, 201 dialogues covering278

21 service schemata. Designed to assess TOD gen-279

eralization, the dataset is challenging: among the280

90 distinct task sequences in the test set, 85.6% in-281

volve a task grounded in a schema unseen12 during282

training, corresponding to 77% of the dialogues.283

Additionally, the dialogues exhibit complex con-284

versational phenomena such as context switching,285

cross-turn corrections, and frequent goal changes,286

making DST particularly demanding.287

Metrics We evaluate performance using joint288

goal accuracy (JGA), which measures the percent-289

age of dialogue turns where all slot-value pairs are290

predicted correctly. To assess generalization, we291

report JGA separately for seen and unseen services.292

This distinction highlights each model’s ability to293

generalize to unseen slots and values and to cor-294

rectly interpret API descriptions that were not en-295

countered during training. We compute JGA using296

the official evaluator13 but extend the SGD state297

annotations (App. C.1) for fair comparison.298

While JGA evaluates slot extraction accuracy, it299

does not account for state consistency across turns.300

If a slot predicted in an earlier turn is later omit-301

ted when the state is re-estimated, the agent may302

unnecessarily prompt the user to repeat previously303

provided information, degrading interaction quality.304

We introduce C-JGA, a stricter metric that enforces305

state consistency: a turn contributes to the JGA306

11A service expose multiple APIs representing user intents.
12Unseen APIs may either introduce new functionality

within known domains or belong to entirely new domains.
13Available at https://bit.ly/3B7jD1c.

only if the state at all previous turns in the same 307

task is jointly correct. 308

3.2 Baselines 309

T5DST (Lee et al., 2022) jointly encodes the dia- 310

logue history alongside a slot description to gen- 311

erate the corresponding slot value. Each slot is 312

processed independently, so T5DST requires mul- 313

tiple forward passes per turn - one for each slot 314

in the schema. D3ST (Zhao et al., 2022) opti- 315

mises T5DST by predicting all active slot values 316

in a single pass. SDT-Seq (Gupta et al., 2022) 317

takes a demonstration-based approach, encoding 318

the dialogue history alongside a sample conversa- 319

tion and its target state sequence to learn DST via 320

in-context finetuning. We replicate SDT-Seq and 321

D3ST (App. C.2). 322

3.3 State Tracking with PyTOD 323

API retrieval Consistent with prior work on SGD 324

and our baselines, we assume that the services the 325

user interacts with are known at each turn. Accord- 326

ingly, PyTOD retrieves APIs from the AP header 327

(§2.1.1) and not the entire assistant schema. In con- 328

trast, user actions are tied to the dialogue policy 329

and are learned during finetuning rather than being 330

explicitly defined in the prompt. 331

Action parser We execute the AP-generated 332

programs using pytodlib (App. D.1). The li- 333

brary simulates: (1), the 58 APIs in the SGD de- 334

velopment and test sets, complete with simulated 335

databases and API responses; (2) the system pol- 336

icy of all 88 SGD APIs; (3) user actions (§2.1.2, 337

App. B.1). An execution engine runs PyTOD pro- 338

grams in a sandbox environment, tracking the dia- 339

logue state. We open-source pytod-lib, address- 340

ing the limitations of popular resources like Multi- 341

WOZ (Budzianowski et al., 2018) (App. D.2) and 342

providing a high-quality resource (Lu et al., 2024; 343

Farn and Shin, 2023) for evaluating LLMs’ ability 344

to engage in complex, goal-oriented, conversations. 345

Schema supervisor The SS constrains the AP 346

output based on the decoding schema (Figure 3). 347

We use MQA prompts and PLM knowledge for 348

zero-shot schema supervision with FlanT5 (3B) 349

(Chung et al., 2024), eliminating the need for slot 350

paraphrase collection. This makes PLM-guided 351

constrained decoding simple to implement. 352

Parser supervisor The PS corrects slot omis- 353

sions and semantic errors (Figure 4), with finetun- 354

ing prompts constructed from the same dialogues 355

5

https://bit.ly/3B7jD1c

as those used for AP finetuning. We perform mul-356

titask learning for action parsing and parsing su-357

pervision. This allows PyTOD to function as a358

single model which performs corrections on DM359

request, with schema supervision handled by an360

off-the-shelf PLM. See training details in App. C.361

4 Main Result362

Since TOD agents are often deployed in resource-363

constrained settings, we implement PyTOD’s AP364

and PS components using a small PLM and com-365

pare against SOTA models of similar size. Table 1366

shows that PyTOD closely matches or outperforms367

all baselines, while also achieving higher consis-368

tency across turns. In particular, PyTOD (B) sur-369

passes D3ST (#2) and T5DST by absolute margins370

of 5.6% and 4.2%, respectively, with stronger per-371

formance on unseen services. PyTOD (L) achieves372

a similar improvement over D3ST (#7&11).

Size Model JGA C-JGA JGA (Seen) JGA (Unseen) #

220M

D3ST (Zhao et al., 2022) 72.9 – 92.5 66.4 1
D3ST (Flan-T5, ours)† 71.2 62.2 93.2 63.8 2
T5DST (Lee et al., 2022) 72.6 – 89.7 66.9 3
SDT-Seq (Gupta et al., 2022) 76.3 – – – 4
SDT-Seq (Flan-T5, ours)† 77.5 68.7 93.5 72.2 5

780M

D3ST (Zhao et al., 2022) 80.0 – 93.8 75.4 6
D3ST (Flan-T5, ours)† 76.5 67.7 93.8 70.8 7
SDT-Seq (Gupta et al., 2022) 83.3 – – – 8
SDT-Seq (Flan-T5, ours)† 82.7 74.2 94.1 78.9 9

220M PyTOD (Base) 76.8 72.7 91.0 71.8 10
780M PyTOD (Large) 82.2 78.4 92.1 78.9 11

Table 1: PyTOD DST performance. Rows marked with
† report the results of our replication study in App. C.2.

373
Both D3ST and T5DST re-estimate the entire di-374

alogue state at each turn, meaning their JGA can in-375

crease when early errors are later corrected. In real-376

world interactions, however, these errors would377

alter the dialogue flow, so the JGA increases due378

to error recovery overestimate real-world perfor-379

mance. When adjusted for consistency, D3ST JGA380

drops sharply: 9% (220M, #2) and 8.8% (780M,381

#7). In contrast, PyTOD incrementally predicts382

user actions based on its predicted past actions, re-383

sulting in smaller JGA drops of 4.1% (Base, #10)384

3.8% (Large, #11). These smaller decreases stem385

from two key factors. First, when users change386

goals mid-task, incorrect states are sometimes cor-387

rected. Second, parameters incorrectly copied from388

previous tasks at the start of a new task are later389

overridden by their correct values.390

PyTOD retrieves the correct API from the391

prompt whiles D3ST and T5DST JGA is invari-392

ant to intent parsing errors, making the figures less393

sensitive to annotation errors (§5.3) but less reflec-394

Size PS SS Multitask JGA JGA Seen JGA Unseen #

220M

✓ ✓ ✓ 76.8 91.0 72.1 1
✗ ✓ ✗ 75.8 90.1 71.0 2
✗ ✗ ✓ 64.2 88.2 56.2 3
✗ ✗ ✗ 64.4 88.8 56.3 4

780M

✓ ✓ ✓ 82.2 92.1 78.9 5
✗ ✓ ✗ 80.6 91.5 77.0 6
✗ ✗ ✓ 74.6 90.8 69.2 7
✗ ✗ ✗ 74.1 90.4 68.6 8

Table 2: Contribution of parser supervisor (PS) and
schema supervisor (SS) to PyTOD performance. Mul-
titask indicates joint training of the action parsing and
parsing supervision tasks. Rows 10&11 from Table 1
are repeated in rows 1&5 to facilitate comparisons.

tive of real-world TOD performance. PyTOD’s 395

JGA more accurately reflects practical deployment 396

scenarios where intent errors impact conversation 397

quality. 398

Descriptions vs demonstrations Beyond sur- 399

passing schema-guided baselines, PyTOD per- 400

forms competitively with approaches requiring ad- 401

ditional developer effort, such as SDT-Seq. The 402

JGA gap between PyTOD and SDT-Seq is minimal: 403

0.7% (Base, #5&10) and 0.5% (Large, #9&11), 404

with SDT-Seq performing better on seen domains. 405

However, SDT-Seq requires developers to manu- 406

ally craft example demonstrations for each intent in 407

addition to service schemas, increasing deployment 408

overhead. Furthermore, SDT-Seq does not perform 409

API retrieval, requiring an external intent detec- 410

tion model. Finally, PyTOD demonstrates substan- 411

tially higher consistency, outperforming SDT-Seq 412

by 5.0% (#5&10) and 4.2% (#9&11) in C-JGA, 413

reinforcing its stability in multi-turn interactions. 414

5 Analysis and Discussion 415

5.1 Ablation study 416

Parser supervisor The PS improves PyTOD per- 417

formance by an average of 1.0% (Base, #1&2) and 418

1.6% (Large, #5&6). Analysing 210 errors cor- 419

rected by the PS in the best-performing PyTOD 420

(Large) run (82.6% JGA) reveals that slot omis- 421

sions occur more frequently than semantic errors 422

(61% vs. 39%). The most common semantic er- 423

ror stems from confusion between similar slots 424

(e.g., start date vs. end date). Jointly training the 425

model for action parsing and parsing supervision 426

has a negligible effect on parsing accuracy (#3&4, 427

#7&8), simplifying PyTOD deployment. 428

Schema supervisor While the AP occasionally 429

generates slot names absent from the decoding 430

schema, the predicted slots often retain the cor- 431

rect semantics. For instance, the AP produces new 432

6

AP Size SS Size PS JGA JGA Seen JGA Unseen #

220M

3B
✓ 76.8 (+5.6%) 91.0 72.1 1
✗ 75.8 (+4.6%) 90.1 71.0 2

780M
✓ 75.1 (+3.9%) 89.9 70.2 3
✗ 71.3 (+0.1%) 88.8 65.4 4

220M
✓ 74.1 (+2.9%) 89.7 68.8 5
✗ 70.8 (-0.4%) 89.0 64.7 6

780M

3B
✓ 82.2 (+5.7%) 92.1 78.9 7
✗ 80.6 (+4.1%) 91.5 77.0 8

780M
✓ 81.2 (+4.7%) 91.2 77.9 9
✗ 78.6 (+2.1%) 90.3 74.7 10

220M
✓ 80.5 (+4.0%) 91.2 76.9 11
✗ 77.9 (+1.4%) 90.3 73.7 12

Table 3: PyTOD performance as function of SS size.
Checkmarks (✓) and crosses (✗) indicate PS presence or
absence, respectively. Rows 10 and 11 from Table 1 are
repeated in rows 1 and 7, for easy comparison. Brack-
eted numbers represent absolute improvements with
respect to our implementation of D3ST (Table 1, #2&7)

slot names such as number_passengers instead of433

num_passengers or travel_starts_from instead of434

journey_starts_from. Other times, the AP outputs435

slots seen in a training schema implementing the436

same domain as an (unseen) decoding schema (e.g.,437

outputs hotel_name instead of place_name), reflect-438

ing real-world challenges where TOD agents must439

support integration of services similar to the ones440

they have been trained on without further finetun-441

ing. The SS effectively mitigates both of these442

challenges: it improves JGA by 11.4% for Py-443

TOD (Base) (#2&3) and 6.0% for PyTOD (Large)444

(#6&7). Notably, the SS reduces system latency445

while improving performance: the 220M AP+SS446

system (#2) runs 1.89 times faster compared to the447

780M AP (#8) while being 1.7% more accurate.448

Beyond performance gains, PLM-constrained449

decoding simplifies deployment compared to450

grammar-based approaches. Unlike the latter,451

which require re-engineering to align with new452

backbone PLM tokenization schemes, PLM-based453

constrained decoding allows seamless AP updates.454

Grammar-constrained decoding poses an additional455

challenge for PyTOD: some of its grammar rules456

depends on dynamically generated variables14 and457

have to be generated dynamically during inference.458

5.2 Schema supervisor analysis459

Table 3 shows that PLM-constrained decoding re-460

mains effective even as the SS sizes decreases: JGA461

drops by only 2.7% (#1&5) for PyTOD (Base) and462

1.7% (#7&11) for PyTOD (Large) when reducing463

14For example, confirm’s sole positional argument can
only be a variable bound to a transaction API call.

AP Size SS Size Samples per sec Runtime (sec) Relative Latency #

220M

- 9.110 5875.12 1.00 1
220M 6.816 7919.79 1.35 2
780M 6.766 7946.26 1.35 3

3B 6.323 8588.64 1.46 4

780M

- 3.331 16269.70 1.00 5
220M 2.971 18300.93 1.12 6
780M 2.964 18341.15 1.13 7

3B 2.903 18771.32 1.15 8

Table 4: Latency of AP size and SS size, reported for
the test set. Numbers reported are for models without
PS (marked with ✗ in Table 3). Each figure is an average
of three runs of making predictions for ≈ 53k test set
turns on an NVIDIA A100 GPU.

SS from 3B to 220M parameters. The PS recovers 464

some of the errors, improving JGA by an average of 465

3.55% (PyTOD Base) and 2.6% (PyTOD Large). 466

Regardless of the AP, SS and PS configurations 467

PyTOD consistently outperforms D3ST (Table 3). 468

Table 4 confirms that SS size has a minimal im- 469

pact on PyTOD latency. Expanding SS from 220M 470

to 3B increases latency by only 11% for PyTOD 471

(Base) and just 2% for PyTOD (Large). This is 472

expected since the SS prompts are short and the 473

MQA formatting enables SS to constrain decoding 474

with a single token. Most of the latency increase 475

stems from on-demand SS model loading, which 476

can be optimized by keeping SS in memory at the 477

cost of a higher memory footprint. As discussed 478

in App. E.1, PyTOD can be further optimised by 479

decoupling the PS and AP. 480

5.3 Error analysis 481

Seen services An analysis of 20 dialogues from 482

each of the 3 services with JGA below SDT-Seq 483

average, reveals that RideSharing_2 (RS_2) and 484

Movies_1 (MOV_1) contribute most to the discrep- 485

ancy. For RS_2, 70% of the errors involve incorrect 486

slot values: the system consistently misinterprets 487

requests like cheapest ride as regular instead of 488

pool, suggesting that PyTOD could benefit by im- 489

plementing the AP and PS with a PLM that has 490

stronger world knowledge. For MOV_1, value er- 491

rors are primarily span errors, where the model 492

fails to capture the full movie title or crosses span 493

boundaries. Notably, annotation errors where the 494

annotated slot values are absent from the user utter- 495

ance largely explain the Travel_1 performance. 496

Unseen services Annotation errors significantly 497

impact unseen service performance, particularly in 498

Trains_1, where intent paraphrase errors (App. E.2) 499

prevent PyTOD from tracking state due to its 500

reliance on retrieved train schedules. When 501

7

Error
Type

RideSharing_2 Movies_1 Travel_1 RentalCars_3 Trains_1 Music_3 Messaging_1 Total
78.2

(-13.9%)
80.7

(-11.4%)
92.5

(+0.4%)
55.3

(-23.6%)
60.2

(-18.7%)
64.0

(-14.9%)
65.7

(-13.2%)
–

✓ ✓ ✓ ✗ ✗ ✗ ✗ –

Missed 15.0(3) 5.9(2) 9.5(2) 3.7(1) 9.4(3) 20.0(5) – 16(9.2)
Value 70.0(14) 32.4(11) – 22.2(6) 9.4(3) 36.0(9) – 43(24.9)
Copy 15.0(3) 29.4(10) 4.8(1) 48.1(13) 21.9(7) 28.0(7) 78.6(11) 52(30.1)
Annot. – 17.6(6) 71.4(15) 14.8(4) 40.6(13) 16.0(4) 21.4(3) 45(26.0)
Intent – – – – 9.4(3) – – 3(1.7)
Other – 14.7(5) 14.3(3) 11.1(3) 9.4(3) – – 14(8.1)

Total 20 34 21 27 32 25 14 173(100)

Table 5: Error analysis for the best PyTOD (Large) run,
including seen (✓) and unseen (✗) services. Second row
indicates service JGA and its absolute deviation with
respect to the average seen/unseen JGA in Table 1 (row
11). Percentages indicate the fraction of total service
errors and (raw counts) are shown. Missed=omitted
slot, Value=incorrect value predicted, Copy=copied
incorrect value/did not copy value, Annot.=annotation
error, Intent=incorrect intent.

search tasks succeed, copy errors - where PyTOD502

fails to propagate query parameters (e.g., album503

from LookupMusic to PlayMedia) reduce JGA in504

Movie_3 and RentalCars_3. For example, while505

GetCarsAvailable succeeds 90% of the time, Re-506

serveCar succeeds in just 26.23% of cases. This507

highlights systematic failures which could be ad-508

dressed through targeted improvements (App. E.3).509

In Messaging_1 copy errors stem from incorrect510

co-reference resolution: the location slot is incor-511

rectly resolved to cities instead of addresses, due512

to biases in training data where other services use513

this slot for city names. TOD agents that support514

multiple services are prone to similar semantic mis-515

matches when concept names differ across training516

schemas, and fine-tuning alone can lead to overfit-517

ting to schema-specific naming conventions. Fu-518

ture work will explore enhanced supervision mech-519

anisms to mitigate these biases.520

6 Related Work521

Few- and zero-shot DST Our approach and base-522

lines (§3.2) extend prior transfer learning work on523

cross-domain DST generalization via schema de-524

scriptions (Lin et al., 2021b) and QA tasks (Lin525

et al., 2021a). Recently, large-scale proprietary526

LLMs (e.g., ChatGPT (OpenAI, 2022)) have shown527

strong DST performance with no (Heck et al.,528

2023) or few (Li et al., 2024; Hu et al., 2022; Feng529

et al., 2023; Wu et al., 2023, inter alia) training530

dialogues. Like PyTOD, these approaches predict531

state updates, represented in JSON format (Wu532

et al., 2023), as SQL queries (Hu et al., 2022), func-533

tion calls (Stricker and Paroubek, 2024; Li et al.,534

2024) or code (King and Flanigan, 2023). Unlike535

PyTOD, they are not policy-guided nor do they 536

operate in a simulated environment, tracking slots 537

from both user and agent utterances - a limitation 538

that degrades performance (Wu et al., 2023). 539

These methods focus on data-efficient DST, rely- 540

ing on LLMs at inference. Recent works (Kulkarni 541

et al., 2024; Finch and Choi, 2024) use LLMs for 542

data generation, improving generalization without 543

costly per-turn inference and addressing concerns 544

over cost, resource availability, and privacy (Heck 545

et al., 2023; Feng et al., 2023). Distillation (Lee 546

et al., 2024c; Dong et al., 2024) and data augmen- 547

tation (Feng et al., 2023; Li et al., 2024) provide 548

alternatives, though they still depend on billion- 549

scale models. To improve efficiency, subsequent 550

works (Lee et al., 2024a,b) employ self-correction 551

(Xie et al., 2022; Tian et al., 2021) to maintain ac- 552

curacy. PyTOD targets stricter resource constraints, 553

achieving accurate and consistent DST with mod- 554

els an order of magnitude smaller. It eschews cor- 555

rector fine-tuning or feedback generation, using 556

readily available execution feedback and simple 557

QA prompts for zero-shot correction with one to- 558

ken. Its policy- and environment-driven corrections 559

avoid per-turn supervision, improving efficiency. 560

TOD agents Transfer learning (Zhao et al., 561

2023) and prompting (Shu et al., 2022; Zhang 562

et al., 2023; Li et al., 2023; Saley et al., 2024, in- 563

ter alia) also apply to TOD agent development. 564

pytodlib provides challenges beyond MultiWOZ 565

through policy (App. D.2) and ontology complex- 566

ity (Hudeček and Dusek, 2023; Lee et al., 2024a; 567

Gao et al., 2024), providing a testbed for advancing 568

TOD agents while addressing the dearth of conver- 569

sational tool-use corpora (Lu et al., 2024). 570

7 Conclusion 571

We introduced PyTOD, a TOD agent that gener- 572

ates code incrementally and tracks dialogue state 573

through execution, leveraging DM and execution 574

feedback to achieve SOTA DST performance on 575

the SGD benchmark. By coupling state tracking 576

with execution, PyTOD shows enhanced cross-turn 577

consistency and thus improved real-world reliabil- 578

ity. We release pytod-lib, a simulation grounding 579

the SGD dataset, to advance research on zero-shot 580

TOD agents and conversational tool use. Future 581

work will focus on enhancing robustness to copy 582

errors and integrating PyTOD with LLMs for zero- 583

and few-shot end-to-end dialogue modeling. 584

8

Limitations585

API retrieval Like most state-of-the-art ap-586

proaches on the SGD and MultiWOZ datasets, Py-587

TOD assumes knowledge of the service schema588

at each turn (but not the API). In real-world sce-589

narios, however, virtual assistants must first infer590

the schema before tracking dialogue state. This591

is particularly challenging in SGD, where multi-592

ple services within the same domain exhibit fine-593

grained differences. For instance, both Buses_1594

and Buses_2 both implement the FindBus APIs,595

yet disambiguation between the two services is only596

possible when users mention fare_type an op-597

tional slot. Similarly, Buses_3 (test set), can only598

be distinguished if the category slot is provided.599

As discussed in §5.3, PyTOD relies on accurate600

intent parsing, making it susceptible to service dis-601

ambiguation errors that will degrade performance.602

Schema robustness We have not explicitly evalu-603

ated PyTOD’s robustness to linguistic schema vari-604

ations, which are known to affect transfer learning-605

based DST systems. While AP accuracy will de-606

gradoae, PyTOD’s SS - the primary contributor607

to its performance (§5.1) - is expected to miti-608

gate this impact since it performs zero-shot cor-609

rections using MQA prompts. Future work could610

enhance AP and PS robustness using transfer learn-611

ing from QA task (Lin et al., 2021a; Cho et al.,612

2023), knowledge-seeking turn grounding (Coca613

et al., 2023a) or synthetic schemas (Coca et al.,614

2023b), none of which require additional annota-615

tion.616

Prompt optimisation While PS and AP latency617

are optimized through dialogue history truncation618

and minimal generation length, the AP prompt it-619

self remains unoptimised. The AP header already620

maintains a stack of completed tasks and retrieved621

entities, effectively summarising the dialogue his-622

tory. However, our prompts contain both the header623

and transcript, introducing redundancy and increas-624

ing system latency.625

Additionally, the API header presents an oppor-626

tunity for personalized conversational intelligence.627

Embedding and storing it in a vector database could628

enable retrieval across multi-session conversations,629

improving continuity and personalization. We will630

explore this in future work.631

Grammar-constrained decoding We opted for632

deep learning approach to constraining AP output633

to the schema due to the complexity of working 634

with dynamically generated grammar rules needed 635

to constrain decoding to a set of valid tokens. We 636

considered this advanced optimisation to be a re- 637

search topic that future work could address. 638

Interactive evaluation Our results demonstrate 639

that state-of-the-art DST models exhibit stability 640

errors when evaluated using C-JGA. As DST sys- 641

tems continue to improve, we believe that evaluat- 642

ing models in real-world user interactions will be 643

essential to assessing their practical viability. 644

Dataset choice As discussed in §3.3 and §6, we 645

conduct our experiments on the SGD, which in- 646

cludes all the MultiWOZ domains, features more 647

complex conversation flows challenges LLMs. Mo- 648

rover, the MultiWOZ policy depends on unobserv- 649

able factors such as wizard’s task interpretation 650

(Mosig et al., 2020b). Through pytod-lib we pro- 651

vide a resource for developing agents capable of 652

following pre-defined policies in a more demand- 653

ing and controlled settings. 654

References 655

Federico Barbero, Andrea Banino, Steven Kaptur- 656
owski, Dharshan Kumaran, João G. M. Araújo, Alex 657
Vitvitskyi, Razvan Pascanu, and Petar Velickovic. 658
2024. Transformers need glasses! information over- 659
squashing in language tasks. CoRR, abs/2406.04267. 660

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang 661
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra- 662
madan, and Milica Gašić. 2018. MultiWOZ - a large- 663
scale multi-domain Wizard-of-Oz dataset for task- 664
oriented dialogue modelling. In Proceedings of the 665
2018 Conference on Empirical Methods in Natural 666
Language Processing, pages 5016–5026, Brussels, 667
Belgium. Association for Computational Linguistics. 668

Hyundong Cho, Andrea Madotto, Zhaojiang Lin, Khy- 669
athi Chandu, Satwik Kottur, Jing Xu, Jonathan May, 670
and Chinnadhurai Sankar. 2023. Continual dialogue 671
state tracking via example-guided question answer- 672
ing. In Proceedings of the 2023 Conference on Em- 673
pirical Methods in Natural Language Processing, 674
pages 3873–3886, Singapore. Association for Com- 675
putational Linguistics. 676

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 677
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 678
Wang, Mostafa Dehghani, Siddhartha Brahma, Al- 679
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac 680
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex 681
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha 682
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, 683
Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, 684

9

https://doi.org/10.48550/ARXIV.2406.04267
https://doi.org/10.48550/ARXIV.2406.04267
https://doi.org/10.48550/ARXIV.2406.04267
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235
https://doi.org/10.18653/v1/2023.emnlp-main.235

Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-685
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,686
and Jason Wei. 2024. Scaling instruction-finetuned687
language models. J. Mach. Learn. Res., 25:70:1–688
70:53.689

Alexandru Coca, Bo-Hsiang Tseng, Jinghong Chen,690
Weizhe Lin, Weixuan Zhang, Tisha Anders, and Bill691
Byrne. 2023a. Grounding description-driven dia-692
logue state trackers with knowledge-seeking turns.693
In Proceedings of the 24th Annual Meeting of the694
Special Interest Group on Discourse and Dialogue,695
pages 444–456, Prague, Czechia. Association for696
Computational Linguistics.697

Alexandru Coca, Bo-Hsiang Tseng, Weizhe Lin, and698
Bill Byrne. 2023b. More robust schema-guided dia-699
logue state tracking via tree-based paraphrase rank-700
ing. In Findings of the Association for Computa-701
tional Linguistics: EACL 2023, pages 1443–1454,702
Dubrovnik, Croatia. Association for Computational703
Linguistics.704

Xiaoyu Dong, Yujie Feng, Zexin Lu, Guangyuan705
Shi, and Xiao-Ming Wu. 2024. Zero-shot cross-706
domain dialogue state tracking via context-aware707
auto-prompting and instruction-following contrastive708
decoding. In Proceedings of the 2024 Conference on709
Empirical Methods in Natural Language Processing,710
pages 8527–8540, Miami, Florida, USA. Association711
for Computational Linguistics.712

Michelle Elizabeth, Morgan Veyret, Miguel Couceiro,713
Ondrej Dusek, and Lina Maria Rojas-Barahona. 2024.714
Do large language models with reasoning and acting715
meet the needs of task-oriented dialogue? CoRR,716
abs/2412.01262.717

Nicholas Farn and Richard Shin. 2023. Tooltalk: Eval-718
uating tool-usage in a conversational setting. CoRR,719
abs/2311.10775.720

Yujie Feng, Zexin Lu, Bo Liu, Liming Zhan, and Xiao-721
Ming Wu. 2023. Towards llm-driven dialogue state722
tracking. In Proceedings of the 2023 Conference723
on Empirical Methods in Natural Language Process-724
ing, EMNLP 2023, Singapore, December 6-10, 2023,725
pages 739–755. Association for Computational Lin-726
guistics.727

James D. Finch and Jinho D. Choi. 2024. Diverse and728
effective synthetic data generation for adaptable zero-729
shot dialogue state tracking. In Findings of the Asso-730
ciation for Computational Linguistics: EMNLP 2024,731
pages 12527–12544, Miami, Florida, USA. Associa-732
tion for Computational Linguistics.733

Haoyu Gao, Ting-En Lin, Hangyu Li, Min Yang,734
Yuchuan Wu, Wentao Ma, Fei Huang, and Yong-735
bin Li. 2024. Self-explanation prompting improves736
dialogue understanding in large language models. In737
Proceedings of the 2024 Joint International Confer-738
ence on Computational Linguistics, Language Re-739
sources and Evaluation, LREC/COLING 2024, 20-25740
May, 2024, Torino, Italy, pages 14567–14578. ELRA741
and ICCL.742

Raghav Gupta, Harrison Lee, Jeffrey Zhao, Yuan Cao, 743
Abhinav Rastogi, and Yonghui Wu. 2022. Show, 744
don’t tell: Demonstrations outperform descriptions 745
for schema-guided task-oriented dialogue. In Pro- 746
ceedings of the 2022 Conference of the North Amer- 747
ican Chapter of the Association for Computational 748
Linguistics: Human Language Technologies, NAACL 749
2022, Seattle, WA, United States, July 10-15, 2022, 750
pages 4541–4549. Association for Computational 751
Linguistics. 752

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato 753
Vukovic, Shutong Feng, Christian Geishauser, Hsien- 754
chin Lin, Carel van Niekerk, and Milica Gasic. 2023. 755
ChatGPT for zero-shot dialogue state tracking: A 756
solution or an opportunity? In Proceedings of the 757
61st Annual Meeting of the Association for Compu- 758
tational Linguistics (Volume 2: Short Papers), pages 759
936–950, Toronto, Canada. Association for Compu- 760
tational Linguistics. 761

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, 762
Noah A. Smith, and Mari Ostendorf. 2022. In- 763
context learning for few-shot dialogue state tracking. 764
In Findings of the Association for Computational 765
Linguistics: EMNLP 2022, Abu Dhabi, United Arab 766
Emirates, December 7-11, 2022, pages 2627–2643. 767
Association for Computational Linguistics. 768

Vojtěch Hudeček and Ondrej Dusek. 2023. Are large 769
language models all you need for task-oriented dia- 770
logue? In Proceedings of the 24th Annual Meeting 771
of the Special Interest Group on Discourse and Dia- 772
logue, pages 216–228, Prague, Czechia. Association 773
for Computational Linguistics. 774

Léo Jacqmin. 2022. « est-ce que tu me suis ? » : une 775
revue du suivi de l’état du dialogue (“do you follow 776
me ?” : a review of dialogue state tracking). In Actes 777
de la 29e Conférence sur le Traitement Automatique 778
des Langues Naturelles. Volume 2 : 24e Rencontres 779
Etudiants Chercheurs en Informatique pour le TAL 780
(RECITAL), pages 1–19, Avignon, France. ATALA. 781

Brendan King and Jeffrey Flanigan. 2023. Diverse 782
retrieval-augmented in-context learning for dialogue 783
state tracking. In Findings of the Association for 784
Computational Linguistics: ACL 2023, pages 5570– 785
5585, Toronto, Canada. Association for Computa- 786
tional Linguistics. 787

Atharva Kulkarni, Bo-Hsiang Tseng, Joel 788
Ruben Antony Moniz, Dhivya Piraviperumal, 789
Hong Yu, and Shruti Bhargava. 2024. SynthDST: 790
Synthetic data is all you need for few-shot dialog 791
state tracking. In Proceedings of the 18th Conference 792
of the European Chapter of the Association for 793
Computational Linguistics (Volume 1: Long Papers), 794
pages 1988–2001, St. Julian’s, Malta. Association 795
for Computational Linguistics. 796

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. 797
2024a. Correctionlm: Self-corrections with SLM 798
for dialogue state tracking. CoRR, abs/2410.18209. 799

10

https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.18653/v1/2023.sigdial-1.42
https://doi.org/10.18653/v1/2023.sigdial-1.42
https://doi.org/10.18653/v1/2023.sigdial-1.42
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2023.findings-eacl.106
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.18653/v1/2024.emnlp-main.485
https://doi.org/10.48550/ARXIV.2412.01262
https://doi.org/10.48550/ARXIV.2412.01262
https://doi.org/10.48550/ARXIV.2412.01262
https://doi.org/10.48550/ARXIV.2311.10775
https://doi.org/10.48550/ARXIV.2311.10775
https://doi.org/10.48550/ARXIV.2311.10775
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.48
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.48
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.48
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://aclanthology.org/2024.lrec-main.1269
https://aclanthology.org/2024.lrec-main.1269
https://aclanthology.org/2024.lrec-main.1269
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/V1/2022.NAACL-MAIN.336
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://aclanthology.org/2022.jeptalnrecital-recital.1
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://doi.org/10.18653/v1/2023.findings-acl.344
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://aclanthology.org/2024.eacl-long.120/
https://doi.org/10.48550/ARXIV.2410.18209
https://doi.org/10.48550/ARXIV.2410.18209
https://doi.org/10.48550/ARXIV.2410.18209

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.800
2024b. OrchestraLLM: Efficient orchestration of801
language models for dialogue state tracking. In Pro-802
ceedings of the 2024 Conference of the North Amer-803
ican Chapter of the Association for Computational804
Linguistics: Human Language Technologies (Volume805
1: Long Papers), pages 1434–1445, Mexico City,806
Mexico. Association for Computational Linguistics.807

Harrison Lee, Raghav Gupta, Abhinav Rastogi, Yuan808
Cao, Bin Zhang, and Yonghui Wu. 2022. SGD-X:809
A benchmark for robust generalization in schema-810
guided dialogue systems. In Thirty-Sixth AAAI Con-811
ference on Artificial Intelligence, AAAI 2022, Thirty-812
Fourth Conference on Innovative Applications of Ar-813
tificial Intelligence, IAAI 2022, The Twelveth Sym-814
posium on Educational Advances in Artificial In-815
telligence, EAAI 2022 Virtual Event, February 22816
- March 1, 2022, pages 10938–10946. AAAI Press.817

Seanie Lee, Jianpeng Cheng, Joris Driesen, Alexan-818
dru Coca, and Anders Johannsen. 2024c. Effective819
and efficient conversation retrieval for dialogue state820
tracking with implicit text summaries. In Proceed-821
ings of the 2024 Conference of the North American822
Chapter of the Association for Computational Lin-823
guistics: Human Language Technologies (Volume 1:824
Long Papers), pages 96–111, Mexico City, Mexico.825
Association for Computational Linguistics.826

Zekun Li, Zhiyu Chen, Mike Ross, Patrick Huber, Se-827
ungwhan Moon, Zhaojiang Lin, Xin Dong, Adithya828
Sagar, Xifeng Yan, and Paul A. Crook. 2024. Large829
language models as zero-shot dialogue state tracker830
through function calling. In Proceedings of the 62nd831
Annual Meeting of the Association for Computational832
Linguistics (Volume 1: Long Papers), ACL 2024,833
Bangkok, Thailand, August 11-16, 2024, pages 8688–834
8704. Association for Computational Linguistics.835

Zekun Li, Baolin Peng, Pengcheng He, Michel Galley,836
Jianfeng Gao, and Xifeng Yan. 2023. Guiding large837
language models via directional stimulus prompting.838
In Advances in Neural Information Processing Sys-839
tems 36: Annual Conference on Neural Information840
Processing Systems 2023, NeurIPS 2023, New Or-841
leans, LA, USA, December 10 - 16, 2023.842

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seungwhan843
Moon, Zhenpeng Zhou, Paul Crook, Zhiguang Wang,844
Zhou Yu, Eunjoon Cho, Rajen Subba, and Pascale845
Fung. 2021a. Zero-shot dialogue state tracking via846
cross-task transfer. In Proceedings of the 2021 Con-847
ference on Empirical Methods in Natural Language848
Processing, pages 7890–7900, Online and Punta849
Cana, Dominican Republic. Association for Com-850
putational Linguistics.851

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul852
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,853
Andrea Madotto, Eunjoon Cho, and Rajen Subba.854
2021b. Leveraging slot descriptions for zero-shot855
cross-domain dialogue StateTracking. In Proceed-856
ings of the 2021 Conference of the North Ameri-857
can Chapter of the Association for Computational858

Linguistics: Human Language Technologies, pages 859
5640–5648, Online. Association for Computational 860
Linguistics. 861

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran- 862
jape, Michele Bevilacqua, Fabio Petroni, and Percy 863
Liang. 2024. Lost in the middle: How language 864
models use long contexts. Trans. Assoc. Comput. 865
Linguistics, 12:157–173. 866

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au- 867
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma, 868
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming 869
Pang. 2024. Toolsandbox: A stateful, conversational, 870
interactive evaluation benchmark for LLM tool use 871
capabilities. CoRR, abs/2408.04682. 872

Johannes E. M. Mosig, Shikib Mehri, and Thomas 873
Kober. 2020a. STAR: A schema-guided dialog 874
dataset for transfer learning. CoRR, abs/2010.11853. 875

Johannes E. M. Mosig, Vladimir Vlasov, and Alan 876
Nichol. 2020b. Where is the context? - A critique of 877
recent dialogue datasets. CoRR, abs/2004.10473. 878

Arvind Neelakantan, Semih Yavuz, Sharan Narang, 879
Vishaal Prasad, Ben Goodrich, Daniel Duckworth, 880
Chinnadhurai Sankar, and Xifeng Yan. 2019. Neu- 881
ral assistant: Joint action prediction, response gen- 882
eration, and latent knowledge reasoning. CoRR, 883
abs/1910.14613. 884

OpenAI. 2022. Introducing ChatGPT. https:// 885
openai.com/blog/chatgpt. 886

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 887
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 888
Wen. 2024. Tool learning with large language mod- 889
els: A survey. CoRR, abs/2405.17935. 890

Alec Radford, Jeff Wu, Rewon Child, David Luan, 891
Dario Amodei, and Ilya Sutskever. 2019. Language 892
models are unsupervised multitask learners. 893

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 894
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 895
Wei Li, and Peter J. Liu. 2020. Exploring the limits 896
of transfer learning with a unified text-to-text trans- 897
former. J. Mach. Learn. Res., 21:140:1–140:67. 898

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 899
Raghav Gupta, and Pranav Khaitan. 2019. To- 900
wards scalable multi-domain conversational agents: 901
The schema-guided dialogue dataset. CoRR, 902
abs/1909.05855. 903

Vishal Vivek Saley, Rocktim Jyoti Das, Dinesh Raghu, 904
and Mausam . 2024. Synergizing in-context learn- 905
ing with hints for end-to-end task-oriented dialog 906
systems. In Proceedings of the 2024 Conference on 907
Empirical Methods in Natural Language Processing, 908
pages 5596–5612, Miami, Florida, USA. Association 909
for Computational Linguistics. 910

11

https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.1609/AAAI.V36I10.21341
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/v1/2024.naacl-long.6
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
https://doi.org/10.18653/V1/2024.ACL-LONG.471
http://papers.nips.cc/paper_files/paper/2023/hash/c5601d99ed028448f29d1dae2e4a926d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c5601d99ed028448f29d1dae2e4a926d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c5601d99ed028448f29d1dae2e4a926d-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2004.10473
http://arxiv.org/abs/2004.10473
http://arxiv.org/abs/2004.10473
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://doi.org/10.48550/ARXIV.2405.17935
https://doi.org/10.48550/ARXIV.2405.17935
https://doi.org/10.48550/ARXIV.2405.17935
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320
https://doi.org/10.18653/v1/2024.emnlp-main.320

Raphael Shu, Elman Mansimov, Tamer Alkhouli, Niko-911
laos Pappas, Salvatore Romeo, Arshit Gupta, Saab912
Mansour, Yi Zhang, and Dan Roth. 2022. Dialog2api:913
Task-oriented dialogue with API description and ex-914
ample programs. CoRR, abs/2212.09946.915

Joe Stacey, Jianpeng Cheng, John Torr, Tristan Guigue,916
Joris Driesen, Alexandru Coca, Mark Gaynor, and917
Anders Johannsen. 2024. LUCID: LLM-generated918
utterances for complex and interesting dialogues. In919
Proceedings of the 2024 Conference of the North920
American Chapter of the Association for Computa-921
tional Linguistics: Human Language Technologies922
(Volume 4: Student Research Workshop), pages 56–923
74, Mexico City, Mexico. Association for Computa-924
tional Linguistics.925

Armand Stricker and Patrick Paroubek. 2024. A few-926
shot approach to task-oriented dialogue enhanced927
with chitchat. In Proceedings of the 25th Annual928
Meeting of the Special Interest Group on Discourse929
and Dialogue, pages 590–602, Kyoto, Japan. Associ-930
ation for Computational Linguistics.931

Ryuichi Takanobu, Qi Zhu, Jinchao Li, Baolin Peng,932
Jianfeng Gao, and Minlie Huang. 2020. Is your goal-933
oriented dialog model performing really well? em-934
pirical analysis of system-wise evaluation. In Pro-935
ceedings of the 21th Annual Meeting of the Special936
Interest Group on Discourse and Dialogue, SIGdial937
2020, 1st virtual meeting, July 1-3, 2020, pages 297–938
310. Association for Computational Linguistics.939

Xin Tian, Liankai Huang, Yingzhan Lin, Siqi Bao,940
Huang He, Yunyi Yang, Hua Wu, Fan Wang, and941
Shuqi Sun. 2021. Amendable generation for dialogue942
state tracking. In Proceedings of the 3rd Workshop on943
Natural Language Processing for Conversational AI,944
pages 80–92, Online. Association for Computational945
Linguistics.946

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien947
Chaumond, Clement Delangue, Anthony Moi, Pier-948
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,949
and Jamie Brew. 2019. Huggingface’s transformers:950
State-of-the-art natural language processing. CoRR,951
abs/1910.03771.952

Yuxiang Wu, Guanting Dong, and Weiran Xu. 2023.953
Semantic parsing by large language models for intri-954
cate updating strategies of zero-shot dialogue state955
tracking. In Findings of the Association for Compu-956
tational Linguistics: EMNLP 2023, Singapore, De-957
cember 6-10, 2023, pages 11093–11099. Association958
for Computational Linguistics.959

Hongyan Xie, Haoxiang Su, Shuangyong Song, Hao960
Huang, Bo Zou, Kun Deng, Jianghua Lin, Zhihui961
Zhang, and Xiaodong He. 2022. Correctable-DST:962
Mitigating historical context mismatch between train-963
ing and inference for improved dialogue state track-964
ing. In Proceedings of the 2022 Conference on Em-965
pirical Methods in Natural Language Processing,966
pages 876–889, Abu Dhabi, United Arab Emirates.967
Association for Computational Linguistics.968

Xiaoying Zhang, Baolin Peng, Kun Li, Jingyan Zhou, 969
and Helen Meng. 2023. SGP-TOD: building task 970
bots effortlessly via schema-guided LLM prompting. 971
CoRR, abs/2305.09067. 972

Jeffrey Zhao, Yuan Cao, Raghav Gupta, Harrison Lee, 973
Abhinav Rastogi, Mingqiu Wang, Hagen Soltau, 974
Izhak Shafran, and Yonghui Wu. 2023. AnyTOD: 975
A programmable task-oriented dialog system. In Pro- 976
ceedings of the 2023 Conference on Empirical Meth- 977
ods in Natural Language Processing, pages 16189– 978
16204, Singapore. Association for Computational 979
Linguistics. 980

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu, 981
Mingqiu Wang, Harrison Lee, Abhinav Rastogi, 982
Izhak Shafran, and Yonghui Wu. 2022. Description- 983
driven task-oriented dialog modeling. CoRR, 984
abs/2201.08904. 985

12

https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.48550/arXiv.2212.09946
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/v1/2024.sigdial-1.50
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/V1/2020.SIGDIAL-1.37
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.741
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.18653/v1/2022.emnlp-main.56
https://doi.org/10.48550/arXiv.2305.09067
https://doi.org/10.48550/arXiv.2305.09067
https://doi.org/10.48550/arXiv.2305.09067
https://doi.org/10.18653/v1/2023.emnlp-main.1006
https://doi.org/10.18653/v1/2023.emnlp-main.1006
https://doi.org/10.18653/v1/2023.emnlp-main.1006
http://arxiv.org/abs/2201.08904
http://arxiv.org/abs/2201.08904
http://arxiv.org/abs/2201.08904

A Background986

A.1 AnyTOD987

Figure 5: AnyTOD overview. Image reproduced from
Zhao et al. (2023) with authors’ permission.

Figure 5 shows an overview of AnyTOD (Zhao988

et al., 2023), a neuro-symbolic end-to-end TOD989

agent capable of zero-shot transfer to unseen tasks990

and domains. The prompt contains dialogue his-991

tory (prefixed by [convo] in Figure 5) and a lin-992

earised schema (above it). The schema prompt993

contains three parts, deliniated by the [params],994

[useracts] and [sysacts] tokens. The first lists995

the slot descriptions alongside slot identifiers and996

the following two parts provide natural language997

descriptions of the user and system actions, along-998

side action identifiers. This prompt is input to a999

language model (LM), which predicts a sequence1000

of slot identifiers (state sequence, in red), followed1001

by a sequence of ;-separated action identifiers (ac-1002

tion sequence, in purple). The separator indicates1003

turn-boundaries. These sequences are interpreted1004

by the dialogue policy, a program which outputs1005

a sequence of recommended actions given the cur- 1006

rent context (in orange). This sequence is appended 1007

to the prompt along with the state and action se- 1008

quences, providing context for the language model 1009

to select the next action (in green) and generate the 1010

agent response in natural language. 1011

B Prompts 1012

B.1 Action parser 1013

Header Figure 6 presents a sample AP prompt 1014

header. If no task has been completed, the prompt 1015

begins with task instructions (Figure 6a). Once a 1016

task is completed, a summary of the task and the 1017

returned entity is prepended before the task instruc- 1018

tions (Figure 6b). The entity definitions include a 1019

docstring instructing the model to retain and copy 1020

relevant argument values into subsequent API call 1021

paramater values.

(a) Task instruction

(b) Task stack

Figure 6: Action parser header prompt components.

1022

Session transcript Beyond the user and system 1023

actions described in Section 2.1, we introduce ad- 1024

ditional actions that enable PyTOD to handle more 1025

complex user interactions. 1026

User actions Conversation interruptions (Fig- 1027

ure 7, turn 7) and negations (turn 9) require TOD 1028

agents to copy the dialogue state from the history, 1029

13

Figure 7: An alternative continuation of the conversation
in Figure 2 after turn 6. Additional user/system actions
and an example of how PyTOD can handle complex
compositional utterances (turn 9) are depicted. Note
that unlike in Figure 2 where some of the say calls
were omitted for clarity, all calls to the NLG module are
shown.

making them vulnerable to copying errors. PyTOD1030

mitigates this by generating special program state-1031

ments (x15, x27), ensuring the state is carried over1032

to the next turn without errors through execution.1033

In contrast, AnyTOD (Figure 5) predicts the entire1034

state and action sequences from scratch at every1035

turn, which is inefficient and error prone.1036

System actions In §2.1 we introduced hints1037

as prompts generated by a deterministic dialogue1038

policy through the execution of API calls or as-1039

signments. More broadly, the system policy can1040

be designed to generate such prompts in a wider1041

variety of contexts. As shown in Figure 7, PyTOD1042

can be programmed to prompt the user to take ac-1043

tion after a conversation pause (Figure 7, x16) or a1044

negation (x28). If the user does not respond (as in1045

turn 7), these actions are executed to continue the1046

dialogue.1047

Successful API calls are marked by perform1048

statements. These are always followed by a say1049

command call to generate an agent utterance which1050

informs the user the task has been successfully1051

completed.1052

API call failures are also included in the prompt1053

to enable PyTOD to reason about the dialogue state 1054

in such cases (Figure 7, x19). Depending on the 1055

API response, PyTOD may assist the user in recov- 1056

ering from failures by offering alternatives, repre- 1057

sented as hint messages (x20). 1058

NLG calls Unlike Figure 2, Figure 7 shows all 1059

NLG calls, illustrating how PyTOD can function 1060

as an end-to-end TOD agent. Since say commands 1061

ground agent utterances but do not provide rele- 1062

vant information for state tracking, they are omit- 1063

ted from the action parser prompt (the dialogue 1064

manager appropriately re-indexes the variables). 1065

Handling complex utterances Figure 7 1066

demonstrates how PyTOD handles compositional 1067

user utterances requiring nested function calls. 1068

Such utterances cannot represented by AnyTOD or 1069

other state-of-the-art TOD agents and DST models, 1070

which are limited to parsing slot-value pairs from 1071

user and agent utterances. 1072

Context-dependent instructions Context- 1073

dependent instructions, formatted as developer: 1074

turns, appear in the prompt after an iteration (ie 1075

next) or confirmation instructions. In the former 1076

case (Figure 8a), they provide an itemized list of 1077

entity properties that the user may inquire about 1078

along with their natural language descriptions from 1079

the schema. A brief instruction precedes this list, 1080

prompting the language model to invoke the say 1081

routine to communicate the requested information 1082

to the user. In the latter case (Figure 8b), 1083

additional system policy instructions relevant to 1084

state tracking may be included. For instance, line 1085

6-9 in Figure 8b illustrate how PyTOD can be 1086

guided to correctly parse API parameters following 1087

an API calling error. 1088

B.2 Dialogue Manager 1089

B.2.1 Schema supervisor 1090

Figure 9 shows the SS prompt generation tem- 1091

plates. A common input to these is slot_schemas, 1092

a list of dictionaries containing the names, de- 1093

scriptions, data type and possible values (for cat- 1094

egorical slots) for the active service. These 1095

are formatted by developer-defined filters (e.g., 1096

slot_definition_formatter). The template for 1097

constraining the value of a categorical slot to one 1098

of the values listed in the schema (Figure 9c) is a 1099

special case of the template for constraining un- 1100

known slot names with categorical values (Fig- 1101

ure 9b): only one slot definition corresponding 1102

14

(a) Post-iteration context-dependent instructions.

(b) Post-confirmation context-dependent instructions.

Figure 8: Sample context-dependent instructions.

to the one predicted by the AP is displayed and the1103

none option is removed to ensure the output is one1104

of the values enumerated in the schema.1105

B.3 Parser supervisor1106

Figure 10 shows the PS prompt generation tem-1107

plate. The DM filters the transcript to extract user1108

and agent relevant to the current task, ignoring ir-1109

relevant previous tasks which are not relevant for1110

predicting the current slot value. These turns are1111

processed by the conversation_formatter filter,1112

which preprends the conversation role to the ut-1113

terance. The schemata of the slots requested at1114

the previous turned are passed to the template as1115

slot_list. The question_formatter filter the1116

formats the slot descriptions by lowercasing them1117

and appending a question mark.1118

C Experimental details1119

C.1 Slot values normalisation1120

In SGD, the dialogue state updates when the user1121

either explicitly provides a slot value or accepts a1122

system-proposed value. Traditional TOD agents1123

track the latter by extracting slot-value pairs from1124

agent utterances. In contrast, as described in Sec-1125

tion 2.1.2, PyTOD updates the state by execut-1126

ing select and confirm commands. These com-1127

mands read relevant slot values from entities re-1128

trieved via database queries (for search-based inter-1129

actions) or API responses (for transactional inter-1130

(a) Unknown slot name. Sample prompt in Figure 3a.

(b) Unknown slot name (closed value). Sample prompt in
Figure 3b.

(c) Unknown categorical slot value

(d) Memorised slot name. Sample prompt in Figure 3c.

Figure 9: Schema supervisor prompt templates

actions). Since SGD system call annotations15 are 1131

canonicalised, PyTOD must normalise open-valued 1132

parameters extracted from the dialogue history be- 1133

fore making API calls and ensure that system- 1134

proposed slot values are de-normalised for eval- 1135

uation. 1136

In practice, normalisation is performed by look- 1137

ing up the surface form of a predicted value in a 1138

mapping that links surface forms to their canoni- 1139

cal counterparts. This table is easily constructed 1140

from SGD semantic annotations, as illustrated in 1141

Figure 11. Instead of de-normalising slot values 1142

copied from entities or API responses, we equiva- 1143

lently extend the corpus annotations to include their 1144

canonical forms. This ensures that slots tracked via 1145

execution are directly comparable to the reference 1146

values used by the official evaluator. 1147

15These include call parameters, entity properties, and API
responses.

15

Figure 10: Parser supervisor template

C.2 Implementation details1148

Library versions We finetune D3ST and SDT-1149

Seq using the transformers (Wolf et al., 2019)1150

library and the key software dependencies in Ta-1151

ble 6. With the exception of FlanT5 (Chung et al.,1152

2024) D3ST, which was trained on two NVIDIA1153

A100 GPUs (80GB), all models were trained on a1154

single NVIDIA RTX 3090 GPU (24GB).1155

Library Version

transformers 4.35.2
accelerate 0.24.1
torch 1.17
numpy 1.26.2

Table 6: Software dependencies used to train PyTOD.

D3ST replication We set all training parameters1156

to match those reported by Zhao et al. (2022) and1157

pre-process the data using their official script16.1158

As the original work does not specify a model se-1159

lection metric or evaluation frequency, we evalu-1160

ate every 5, 000 steps and select the best check-1161

point based on overall JGA on the development1162

set. Training is terminated early if accuracy does1163

not improve within 15, 000 steps (approximately 31164

epochs).1165

Our results show an absolute 1.7% difference1166

from the published JGA for the base model (Ta-1167

ble 7, rows 1 & 2). We observe a +1.0% improve-1168

ment on seen services, but a 2.6% drop on unseen1169

services.1170

To rule out overfitting, we increase the evalua-1171

tion frequency to 900 steps and select the model1172

maximising the unseen serivces JGA, stopping the1173

training after 1 epoch if there are no improvements.1174

However, this leads to a slight performance drop1175

(Table 7, rows 2 & 3). We finetune Flan-T5 (780M)1176

with the best settings, achieving seen services per-1177

formance on par with the published results but a1178

16Available at https://bit.ly/4aKe9KL

Figure 11: Semantic frame for the utterance I would
like it to be half past 11 in the morning. The action
annotations (line 3 - 14) are processed to extend slot-
value annotation with the corresponding canonical value
(e.g., line 29). The ellipsis in line 31 marks slot-value
pairs which were omitted for clarity.

4.6% discrepancy on unseen services (rows 4 & 5). 1179

SDT replication We set training hyperparame- 1180

ters to the values reported by Gupta et al. (2022) 1181

and use the data processing scripts from the offi- 1182

cial SDT code release17. Since the evaluation fre- 1183

quency and model selection metric are unspecified, 1184

we evaluate every 1600 steps, selecting the model 1185

with the highest development set overall JGA. We 1186

closely replicate the reported results (Table 8). 1187

PyTOD implementation details We finetune Py- 1188

TOD with the same software versions as our base- 1189

lines and the parameters in Table 9 until the de- 1190

velopment set JGA for unseen services is max- 1191

17Available at https://bit.ly/4aKe9KL

16

https://bit.ly/4aKe9KL
https://bit.ly/4aKe9KL

Size Model JGA JGA Seen JGA Unseen Setting #

220M
D3ST (Zhao et al., 2022) 72.9 92.5 66.4 - 1
D3ST (Flan-T5, ours) 71.2 93.2 63.8 (65.0/64.8/61.7) A 2
D3ST (Flan-T5, ours) 70.7 92.9 63.3 (61.9/65.3/62.7) B 3

780M
D3ST (Zhao et al., 2022) 80.0 93.8 75.4 - 4
D3ST (Flan-T5, ours) 76.5 93.8 70.8 (69.9/71.6/70.9) A 5

Table 7: D3ST replication results. Numbers in brackets
show the metric values for each experiment run, three-
runs averages are shown otherwise.

Size Model JGA JGA Seen JGA Unseen #

220M
SDT-Seq (Gupta et al., 2022) 76.3 - - 1
SDT-Seq (Flan-T5, ours) 77.5 93.5 72.2 2

780M
SDT-Seq (Gupta et al., 2022) 83.3 - - 3
SDT-Seq (Flan-T5, ours) 82.7 94.1 78.9 4

Table 8: SDT-Seq replication results.The reported num-
bers are averaged over five runs, each using a distinct set
of demonstrations to construct the fine-tuning prompts.

imised. The learning rate is constant, with no scal-1192

ing. We follow the same protocol when finetuning1193

google/flan-t5-large, except that we allocate1194

a training budget of just one epoch.1195

Hyperparameter Value

Pretrained model google/flan-t5-base
Optimizer Adafactor
Batch size 32
Learning rate 0.0001
Warmup steps 1500
Number of epochs 2
Evaluation frequency 1500 steps

Table 9: PyTOD training hyperparameters.

D pytod-lib1196

D.1 Simulation framework1197

D.1.1 Service APIs1198

Figure 12 shows a sample implementation of the1199

Buses_3 service from SGD. The service provides1200

two APIs: (1) FindBus, a search or query API1201

(Figure 12a) that enables users to query a bus1202

schedule database using natural language, and (2)1203

BuyBusTicket, a transactional API (Figure 12)1204

that allows users to purchase a ticket for an itinerary1205

proposed by the TOD agent based on FindBus1206

search results or by specifying ticket details di-1207

rectly.1208

D.1.2 Dialogue policy1209

The SGD conversations are generated by sampling1210

from a policy graph (Rastogi et al., 2019; Mosig1211

et al., 2020a), which outlines the intended flow of1212

a dialogue. Both search and transactional APIs re-1213

(a) Search API.

(b) Transactional API.

Figure 12: Implementation of the SGD Buses_3 service

quire zero or more specific slots to function. To 1214

provide them, the system processes the initial user 1215

turn and takes actions to elicit missing slot val- 1216

ues. Once all required slots are filled, search APIs 1217

can construct a valid database query, while trans- 1218

actional APIs execute an external service call (e.g., 1219

to a ticket booking service). 1220

Slot-filling is abstracted in the SearchCommand 1221

and ConfirmedCommand interfaces, which all con- 1222

crete service implementations (e.g., Buses_3) in- 1223

herit. Upon execution, the interfaces return sys- 1224

tem actions, such as show, perform, Hint and 1225

Notification (see Figure 1 in §1, Figure 2 in 1226

§2.1.2 and Figure 7 in App. B.1). For example, if a 1227

user says, I need a bus from London to Manch- 1228

ester., executing FindBus returns a system ac- 1229

tion Hint(request value: departure_date)18, 1230

which an agent can verbalise to ask for the miss- 1231

ing constraints. Unlike a majority of examples in 1232

datasets such as STAR (Mosig et al., 2020a) and 1233

STARv2 (Zhao et al., 2023), where users provide 1234

constraints only when prompted, SGD conversa- 1235

tions frequently include user-initiated constraint 1236

specification. 1237

Complex policy The SGD policy models re- 1238

alistic, multi-turn interactions beyond simple slot 1239

filling. 1240

For search APIs, it supports user goal changes, it- 1241

eration through multiple results satisfying the same 1242

constraints, and cases where no results match the 1243

user’s constraints. 1244

Transactional API policy incorporates complex 1245

error recovery, where the system may suggest alter- 1246

18The other arguments in Figure 12 are optional, so are not
requested by the system.

17

native actions (e.g., an alternative bus time if the1247

selected bus is fully booked). The user can accept1248

or decline system-initiated changes or update their1249

constraints to resolve the issue. Additionally, the1250

system can initiate tasks (e.g., proposing a ticket1251

purchase after retrieving a bus schedule), at which1252

point the user may switch context to another task1253

and later return to complete the system-initiated1254

one. This policy extends beyond the standard slot-1255

filling approach seen in MultiWOZ, where users1256

typically accept system proposals without modify-1257

ing their constraints or declining offers in response1258

to API failures.1259

We encourage interested readers to explore the1260

documentation of the simulation package in our1261

pre-release code.1262

D.1.3 API behaviour1263

Feedback The pytod APIs define slots as1264

class variables implementing the descriptor pro-1265

tocol19, enabling advanced functionality. One such1266

function is execution error feedback: setting an1267

undefined attribute on an API returns a string de-1268

scribing the error instead of raising an exception.1269

Another example is type coercion: descriptors cast1270

slot values to the data types specified in the schema,1271

and may be configured to provide natural language1272

feedback if conversion fails.1273

Execution engine The execution engine converts1274

the dialogue manager’s output into a python ob-1275

ject. Figure 13 illustrates how a program statement1276

is interpreted as an API object implemented by1277

a service (e.g., FindBus in Figure 12a). The ex-1278

ecution process begins by parsing the statement1279

into an abstract syntax tree (AST) (line 24). If1280

the tree matches a function call signature (line 25),1281

a conversion function (string_to_py_cmd) first1282

extracts the function name and arguments (lines1283

6–10). If the function corresponds to an API im-1284

plemented by the schema (line 14), the engine re-1285

trieves the command from a registry, instantiates1286

the appropriate object (e.g., FindBus), and assigns1287

slot values (lines 15–18). For user or system ac-1288

tions, the function name is returned (lines 20–22),1289

and object instantiation is handled downstream. We1290

invite interested readers to consult the documenta-1291

tion of the execution package in our pre-release1292

code for further details.1293

19See https://bit.ly/4hLB4aU.

Figure 13: Sample execution engine code, showing how
a program statement is interpreted as a python object.

D.2 Task-oriented agents beyond MultiWOZ 1294

Endowing LLMs with tool-use capabilities has at- 1295

tracted widespread focus in the research commu- 1296

nity. While LLMs have facilitated creation of syn- 1297

thetic data to evaluate LLMs’ ability to parse in- 1298

dividual user commands into tool calls, extending 1299

this to generate high quality conversations follow- 1300

ing predefined policies remains an open challenge 1301

(Zhao et al., 2023; Stacey et al., 2024). As a result, 1302

while a plethora of corpora evaluating single-turn 1303

interactions exist20, few provide an interactive eval- 1304

uation setting for conversational use. ToolSandbox 1305

(Lu et al., 2024) is among the few notable excep- 1306

tions, yet, as Lu et al. (2024) highlight, hallucina- 1307

tions remain a key limitation in their approach to 1308

policy-grounded conversation simulation. 1309

In contrast, task-oriented dialogue corpora are 1310

collections of natural conversations following pre- 1311

defined policies. These collections are expert- 1312

curated and their dialogues are grounded in rich 1313

ontologies of user/system actions and diverse API 1314

calls. As we showed in this paper, actions and API 1315

calls can be naturally represented as tool calls. 1316

By introducing an interactive environment for 1317

SGD, the largest and most complex TOD dataset, 1318

we provide a valuable resource to both the tool- 1319

use and TOD research communities. Compared to 1320

MultiWOZ (Budzianowski et al., 2018), a widely 1321

used benchmark in both dialogue and LLM re- 1322

search, SGD presents significantly greater chal- 1323

lenges due to its complex policy (§D.1.2), richer 1324

ontology and task diversity (Table 10). These fac- 1325

20See Qu et al. (2024) for a recent review.

18

https://bit.ly/4hLB4aU

Dataset # Domains # Intents # Slots # Dialogues Avg. Turns

SGD 20 88 365 6684 20.44
MultiWOZ 7 11 35 2000 13.46

Table 10: Comparison of dataset statistics for SGD and
MultiWOZ. Dialogue counts reported are for combined
development and test sets whereas average turns is re-
ported for the training split.

tors make it a more rigorous benchmark for study-1326

ing conversational tool use and TOD agent gener-1327

alization, aligning with recent efforts to develop1328

scalable, policy-driven dialogue systems (Hudeček1329

and Dusek, 2023).1330

E Extended Analysis and Discussion1331

E.1 Parser supervisor1332

As the PLM size of the AP increases, the cost1333

of correcting semantic errors and omissions rises,1334

prompting us to explore separate models for PS1335

and AP.1336

Table 11 shows that reducing PS size from 780M1337

to 220M results in a negligible performance drop1338

for PyTOD (Large), regardless of the SS size (cf.1339

rows 1 - 3 vs. 4 - 6). This holds even though the1340

780M PS outperforms the 220M PS by 1.9 exact1341

match points as it adapts better to unknown ques-1342

tions21. However, the overall system performance1343

is marginally worse compared to jointly training a1344

single model for action parsing and parsing super-1345

vision, indicating a small benefit from multi-task1346

learning.

PS Size EM EM
Seen

EM
Unseen

SS Size JGA JGA
Seen

JGA
Unseen

220M 91.5 96.7 90.3
220M 80.0 (-0.5%) 90.6 76.4
770M 80.7 (-0.5%) 90.5 77.4

3B 81.8 (-0.4%) 91.7 78.5

770M 93.4 96.5 92.8
220M 80.1 (-0.4%) 90.6 76.5
780M 80.8 (-0.4%) 90.5 77.6

3B 81.9 (-0.3%) 91.7 78.7

Table 11: Performance of PyTOD (Large) when the
parser supervisor (PS) is implemented with a specialised
Flan-T5 model. EM denotes exact match answer accu-
racy, evaluated on the SGD test set. Bracketed numbers
represent absolute JGA deviation with respect to the
corresponding PyTOD models where the AP and PS
models are jointly trained (Table 3, ✓-marked rows).

1347

E.2 Annotation errors1348

Table 12 presents sample errors identified in our1349

analysis in §5.3, showing intent paraphase errors1350

21For comparison, the EMs for PyTOD (Large) and PyTOD
(Base) in Table 1 are 92.5% and 91.0% ,respectively.

Utterance Annotation Explanation Service

1 Today at 2 in the
afternoon.

pickup_time=’2 in
the afternoon’

start_date=’today’ in
utterance

RC_3

2
I’m in the mood for
some music and
would like to play
some songs.

intent=LookUpMusic
The utterance semantics
is better represented as
intent=PlayMedia.

MUS_3

3
I need a train ticket
with a fully
refundable feature.

intent=FindTrains
class=’Flexible’

The utterance semantics
is better represented as
intent=GetTrainTickets.

TR_1

4

Okay, what about
attractions there. I
need Place of
Worship, and
something with no
entry fee.

intent=FindAtractions
category="Place of
Worship"
free_entry=True
good_for_kids=True

No good_for_kids=True
mention in utterance.

TRA_1

Table 12: Sample annotation errors identified during the
error analysis. RC_3=RentalCars_3, MUS_3=Music_3,
TR_1=Trains_1, TRA_1=Travel_1.

in #2&3. While our DM performs argument-based 1351

disambiguation to identify intent, GetTrainTickets 1352

and FindTrains, the two Trains_1 intents, share all 1353

their arguments. Consequently, misparaphrased in- 1354

tent annotations prevent PyTOD from retrieving 1355

train schedules, leading to degraded DST perfor- 1356

mance. Analysis of 30 additional dialogues from 1357

this domain, we found that intent confusion cased 1358

state errors in 20 out of 50 cases. 1359

Table 12 highlights some utterances contain slots 1360

mentions without corresponding user action anno- 1361

tations (#1) while others sometimes fail to para- 1362

phrase actions parametrised by boolean or cate- 1363

gorical slots(#4). These issues were difficult to 1364

identify with the methods available to Rastogi et al. 1365

(2019). During PyTOD development we, however, 1366

identified 451 dialogues across the train, develop- 1367

ment and test releases22 while experimenting with 1368

fault-tolerant execution. This suggests that pro- 1369

grammable dialogue systems, while challenging 1370

to develop, can serve as valuable tools for dataset 1371

quality improvements. 1372

E.3 Overcoming copy errors with PyTOD 1373

§5.3 identified slot propagation from search queries 1374

to transactions (e.g., Figure 14) as a key Py- 1375

TOD failure mode. These errors can be miti- 1376

gated by training PyTOD to pass object refer- 1377

ences to follow-up tasks (e.g., predicting mu- 1378

sic_3_play_media(entity=x5, device=patio) in- 1379

stead of enumerating all slots to be copied). The 1380

state could then be robustly tracked by execution. 1381

Note PyTOD is fine-tuned to predict entity selec- 1382

tion in the symbolic form shown in (x5, Figure 14) 1383

22We include dialogue IDs in our code release.

19

Figure 14: A Music_3 copy error. The slot album is not
copied to to the music_3_play_media call (x7).

and these symbolic representations are rendered1384

in the dialogue history to provide relevant entity1385

information (i.e., song(track, optional=[’album’])).1386

This facilitates robust slot propagation by reason-1387

ing over entity types, a topic future research will1388

explore.1389

E.4 C-JGA breakdown1390

To support future comparisons, we provide a break-1391

down of C-JGA metrics for our models and repli-1392

cated baselines across seen and unseen services.1393

Upon public release, we plan to contribute the C-1394

JGA implementation to the official SGD evaluation1395

code.

Size Model C-JGA JGA (Seen) JGA (Unseen) #

220M
D3ST (Flan-T5, ours) 62.2 86.0 54.3 1
SDT-Seq (Flan-T5, ours) 68.7 86.6 62.8 2

780M
D3ST (Flan-T5, ours) 66.5 87.9 61.0 3
SDT-Seq (Flan-T5, ours) 74.2 88.0 69.6 4

220M PyTOD (Base) 72.7 87.3 67.8 5
780M PyTOD (Large) 78.4 89.1 74.9 6

Table 13: Breakdown of C-JGA reported in Table 1 by
seen/unseen service.

1396

20

