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Abstract

The dual-use potential of language models in the chemical sciences presents a
significant biosecurity challenge. We investigate a foundational aspect of this risk:
whether LMs possess an intrinsic knowledge bias that favors toxic compounds
over non-toxic ones. To address this, we systematically audit the latent chemical
knowledge of twelve open-weight language models. We measure per-compound
perplexity across a balanced dataset of 2,000 chemicals, comprising 1,000 toxic
and 1,000 non-toxic compounds classified by the GHS08 "Health Hazard" standard.
Our results reveal a consistent and statistically significant pattern: every model
tested assigns lower perplexity, and therefore higher certainty, to the structures
of toxic compounds. This finding demonstrates a systemic vulnerability across
the current open-weight ecosystem, suggesting the risk is not merely a function
of misuse but is embedded in the models’ core knowledge. This intrinsic bias,
possibly stemming from patterns in the training data, has profound implications for
Al safety, as it may enhance model performance on a range of downstream tasks
involving hazardous materials. Our work sheds light on this intrinsic vulnerability,
and we make our code publicly available to support further research into this
emergent risk.

1 Introduction

The rapid advancement of language models (LMs) has catalyzed a paradigm shift across scientific
disciplines; they offer unprecedented capabilities in information synthesis, reasoning, and knowledge
generation [24]. In the chemical and life sciences, this presents a dual-use dilemma of profound
significance. Although LMs have an immense potential to accelerate beneficial research, such as
biomolecular discovery [28l 8] and toxicological risk assessment [13l], their ability to internalize and
regurgitate specialized knowledge also reduces barriers to accessing information relevant to creating
hazardous agents [11} 24} 23| 3]. This convergence of democratized expertise and inherent model
capabilities necessitates that we rigorously and systematically evaluate the latent risks embedded
within these systems. Our current understanding remains limited; we possess only a fragmented view
of the chemical proficiencies of LMs, a critical prerequisite for enhancing models and alleviating
potential harm [[18]].

The core of this biosecurity challenge lies in the hypothesis that LMs may internalize and recall
information about hazardous materials differently from benign knowledge. Prior work argues that
malicious actors can repurpose Al-powered tools to generate blueprints for novel toxic chemicals [26]]
and that chatbots can guide non-experts through complex biological protocols [24]]. These studies,
however, often focus on a model’s ability to generate novel information upon request. We investigate
a more fundamental question: do LMs skew their intrinsic knowledge representations? If models
encode or access structural information for toxic compounds more readily than for their benign
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counterparts, it could indicate a systemic bias in the model’s parameters that exacerbates misuse
potential, independent of any overt malicious prompting.

These limitations in the current research landscape highlight a critical gap. We currently have no
reliable way to forecast the trajectory of LM advancement, nor to understand how the convergence
of specialized Al tools might synergistically amplify future biosecurity threats [20]. Therefore, we
urgently need to develop robust, generalizable risk assessment benchmarks [11]]. Our work addresses
this need by moving beyond capability elicitation in single models to a large-scale, ecological analysis
of knowledge representation across a diverse suite of state-of-the-art LMs. In this paper, we aim to
determine whether a differential in recalling structural information, which we quantify through robust
probabilistic metrics, is a consistent and generalizable phenomenon across the current open-weight
model ecosystem.

To this end, we employ a multi-stage computational pipeline that integrates large-scale bioinformatics
data acquisition, controlled model interrogation via sequence scoring, and rigorous non-parametric
statistical analysis. We construct a balanced dataset of toxic and non-toxic compounds, which we
meticulously classify according to international standards to focus on substances with significant
misuse potential. We then interrogate a heterogeneous cohort of twelve instruction-tuned LMs, mea-
suring their intrinsic certainty in recalling the precise structural representations for these compounds.
We explicitly design our analysis to control for key confounds, such as molecular complexity, to
ensure the integrity of our conclusions. We make three primary contributions:

1. We introduce a novel, reproducible methodology for auditing latent chemical knowledge in
LMs;

2. we provide the first ecosystem-level analysis of differential knowledge regurgitation for
toxic compounds; and

3. we offer a critical framework for evaluating this specific vector of Al-powered chemical
risk.

2 Background

2.1 The Dual-Use Dilemma in AI for Science

The transformative potential of artificial intelligence in the life sciences is undeniable; it drives ad-
vances in genomic understanding, protein design and antibiotic discovery [23]. Concurrently, national
governments and multinational bodies have identified the mitigation of AI misuse for chemical, bio-
logical, nuclear or radiological (CBRN) threats as a high-priority concern [20]. This dual-use nature
means that the same capabilities that empower health security can also lower barriers to biological and
chemical weapon development [[23|[9]. LMs, which train on vast scientific corpora, sit at the epicenter
of this concern. By disseminating specialist knowledge in an accessible format, they democratize
research [[24]; conversely, this also makes it increasingly likely that actors with nefarious intentions
could leverage these models to access capabilities previously confined to experts. Consequently,
leading Al developers have explicitly committed to researching safety in areas including the misuse
of models for bio and chemical weapons development [9].

2.2 Evaluating Chemical Knowledge and Risks in LMs

The evaluation of chemical knowledge in LMs is an emerging field. One primary line of inquiry
assesses a model’s ability to understand and reason about chemical concepts, often finding that while
performance is impressive, it remains reliant on external tools and databases that human experts also
use [18]]. A more security-focused line of research probes the potential for LMs to actively assist
in designing hazardous agents. Seminal work illustrates that we can repurpose Al-powered drug
discovery tools to design highly toxic molecules [26]. Furthermore, studies demonstrate that LMs
can provide dual-use information that could have enabled historical biological weapons efforts to
succeed [23]] and can guide non-experts through the process of manufacturing risky pathogens [24].
These studies compellingly illustrate that LMs already possess dangerous capabilities. However,
they primarily test a model’s generative output in response to adversarial or leading prompts. Our
work diverges by investigating a more foundational property: the structure of the model’s internal



knowledge landscape. We ask not what the model will generate when pushed, but what it knows best
by default, a property we measure using its intrinsic probabilistic confidence.

2.3 Methodological Gaps and the Need for Ecosystem Analysis

A critical limitation of the current biosecurity literature is its narrow scope. The limited published
studies assess different risks using differing assumptions and, crucially, largely focus on individual,
often proprietary, models [20]]. This approach fails to capture whether a discovered capability is
a general feature of modern LMs or an idiosyncrasy of a specific architecture or training dataset.
Furthermore, we are not yet certain how advances in Al will exacerbate risks, and we recognize an
absence of studies assessing how foundation models specifically trained on biological data or the
“stacking” of Al tools will change the risk landscape [20]. Our methodology directly addresses the
first part of this gap; we systematically evaluate a deliberately diverse suite of twelve open-weight
models to ensure our conclusions reflect trends across an ecosystem rather than a single data point.
This provides a necessary baseline for understanding the current state of risk before more advanced,
specialized systems become widespread.

3 Methods

In this study, we employ a multi-stage computational pipeline to systematically evaluate whether
LMs internalize and recall structural information for toxic chemical compounds more readily than for
benign counterparts. Our central objective is to determine whether this differential knowledge regur-
gitation is a generalizable phenomenon observable across a heterogeneous model ecosystem. Our
methodology integrates large-scale bioinformatics data acquisition, controlled model interrogation via
sequence scoring, and robust non-parametric statistical analysis to interrogate latent knowledge repre-
sentations. We implement all experiments in a version-controlled pipeline to ensure reproducibility
and include explicit checks for confounds.

3.1 Compound Curation and Balanced Dataset Construction

Our investigation’s validity hinges on a high-quality, balanced chemical dataset. We source com-
pounds programmatically from PubChem [14]] via its PUG-REST API and augment them with known
toxicants from the Toxic Exposome Database (T3DB) [[15]. We base our toxicity classification
on the internationally recognized Globally Harmonized System of Classification and Labelling of
Chemicals (GHS). Specifically, we focus on compounds that present a serious health risk, as defined
by the presence of the GHS08 “Health Hazard” pictogram, which identifies substances with chronic
hazards such as carcinogenicity or reproductive toxicity. This focus directly aligns with our study’s
biosecurity objectives because it filters for compounds with significant misuse potential, and we
deliberately exclude other categories such as acute toxicity or physical hazards.

We apply a stringent preprocessing filter to all compounds based on the length of their Simplified
Molecular-Input Line-Entry System (SMILES) [27] string representations. We discard strings shorter
than 50 or longer than 250 characters. This maintains a focus on molecules of non-trivial complexity,
ensures sequences remain tractable for LM evaluation, and crucially, controls for inherent differences
in molecular complexity that could act as confounds [[10].

Our technical implementation utilizes custom classes for efficient data processing. An automatic
data extractor parses PubChem XML dumps to extract 2000 Compound Identifiers (CIDs) and apply
length constraints in situ (150 + 100 SMILES characters). A collector then queries the PubChem
PUG View API to retrieve comprehensive JSON objects, from which we extract properties including
compound name, SMILES, and GHS classifications. We programmatically categorize compounds as
toxic_health (GHS08 present), toxic_physical (other hazards only, which we purposefully discard),
or non-toxic (no hazard codes). We engineer the sampling algorithm to procure equal numbers of
toxic_health and non-toxic compounds, which enables a balanced case-control analysis [12].

3.2 Model Ecosystem Selection and Interrogation Paradigm

Reflecting our study’s core objective to evaluate an ecosystem rather than individual models,
we select a deliberately diverse suite of twelve state-of-the-art LMs for evaluation. This cohort



includes widely recognized models such as Meta’s Llama-3.2-3B-Instruct and Microsoft’s
Phi-4-mini-instruct, alongside a range of competitively-sized models from IBM, Google, Al-
ibaba, and European research consortia, with parameters spanning from 1B to 4.5B. This strategic
selection ensures our analysis captures trends across the current open-weight landscape rather than
idiosyncrasies of a single model. We provide a full inventory in Table[I}

Table 1: Inventory of the instruction-tuned language models we evaluated.

Model Name Parameters (Billion) Origin / Developer
OLMo-2-0425-1B-Instruct [19] 1.0 AllenAl
EuroLLM-1.7B-Instruct [16] 1.7 Utter Project
Qwen3-1.7B-MegaScience [7] 1.7 MegaScience
gemma-3n-E2B-it [25] 2 (effective) / 6 (brute) Google
granite-3.3-2b-instruct [22] 2 IBM
Instella-3B-Instruct [5] 3 AMD
SmolLM3-3B [6]] 3 Hugging Face
Llama-3.2-3B-Instruct [1]] 3 Meta

MediPhi [4] 3.8 Microsoft
Phi-3.5-mini-instruct [17] 3.8 Microsoft
Qwen3-4B-Instruct-2507 [29] 4 Alibaba (Qwen)
AFM-4.5B [2] 4.5 Arcee Al

We probe model knowledge using a controlled next-token prediction task, which provides a direct, con-
tinuous measure of internal certainty over open-ended generation. For each compound, we construct a
prompt using the model’s native chat template: “‘Give me the SMILES for {compound_namel}’’,
followed by the assistant’s response prefix. We measure the models’ intrinsic knowledge by the
probability they assign to the token-by-token completion of the ground-truth SMILES string within
this fixed context [21]. We derive a principal metric from the output logits: perplexity, which we
calculate as the exponential of the average cross-entropy loss across the target sequence, quantifying
the model’s uncertainty. To ensure metric fidelity and control for sequence length, we calculate
perplexity for all compounds only up to the length of the shortest SMILES string in our dataset. This
prevents longer sequences, which tend to have lower perplexity, from confounding the results.

3.3 Statistical Analysis and Mitigation of Confounds

Our resultant dataset, which comprises perplexity metrics for each compound-model pair, we subject
to a rigorous statistical analysis protocol. We test the central hypothesis of whether the distributions
of perplexity differ significantly between compounds we classify as toxic (for health) and those we
classify as non-toxic. Given the expected non-normality of the metrics, we employ non-parametric
tests. We utilize the Mann-Whitney U test to determine if a statistically significant (p < .00417
after Bonferroni correction for 12 comparisons) difference exists in the median values of perplexity
between the two groups. To complement null-hypothesis significance testing and to quantify the
magnitude and direction of any observed effect, we calculate Cliff’s Delta. This robust measure of
effect size is independent of sample size and provides a standardized interpretation of the difference’s
magnitude, which offers a more nuanced understanding of the practical significance of our findings.

A paramount concern was the potential for confounding variables, primarily the length of the SMILES
string, which could influence model performance independent of toxicity. Our analytical pipeline
automatically tests for this; it analyzes the correlation (Pearson’s r) between SMILES length and
perplexity, and formally compares the length distributions between the two groups using the same non-
parametric tests. We confirm that our truncation method successfully mitigates this confound; without
it, length-perplexity correlations are non-negligible, but with it, the mean Pearson’s r across all
models is 0.0322 + 0.0498, effectively negligible, which eliminates SMILES length as a confounding
factor. We execute the entire analytical process within a single parameterized pipeline that ensures
reproducibility.
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Table 2: Perplexity for toxic vs. non-toxic compounds.

We report median perplexity (PPL) and interquartile range (median 4= IQR) for each compound group
across all evaluated models. We use the Mann-Whitney U test to calculate p-values and Clift’s Delta
to measure effect size. All p-values are statistically significant (p < .00417).

Model Name Toxic PP Non-Toxic PPL p-value Cliff’s §
OLMo-2-0425-1B-Instruct 17.8+12.6 23.4+21.3 1.909 x 1071 —0.233
Instella-3B-Instruct 24.8 +£26.9 43.0+54.6 1.021 x 1074 -0.349
AFM-4.5B 5.58 +£2.87 7.26 +£4.39 2406 x 10733 —0.311
gemma-3n-E2B-it 27.6+31.6 48.4+62.2 1.283x 1073 -0.302
SmolLM3-3B 7.19+£4.03 8.81 £5.31 8.132x 10722 —0.248
granite-3.3-2b-instruct 6.64+3.90 8.61 £6.28 1.439x 10727 -0.281
Qwen3-1.7B-MegaScience  3.09 +1.08 3.87+1.86 1.392x 10 -0.366
Llama-3.2-3B-Instruct 6.13+3.04 6.82+4.74 4553 x107° -0.151
MediPhi 3.03+1.76 3.38+2.11 1.152x 10719 -0.166
Phi-3.5-mini-instruct 3.39+248 4.03 +£3.08 7.287x 107 -0.193
Qwen3-4B-Instruct-2507 5.26 +3.30 5.95+4.78 5.784 x 107° -0.150
EuroLLM-1.7B-Instruct 6.51+£3.29 7.04 £3.94 3368 x 107*  -0.093

(k) Qwen3-4B-Instruct-2507

(1) EuroLLM-1.7B-Instruct

Figure 1: Perplexity distributions for toxic vs non-toxic compounds across 12 open small
language models. Each subplot shows log-scaled histograms (top) and horizontal boxplots (bottom)
comparing perplexity values between toxic and non-toxic chemical compounds.

4 Results

We summarize the quantitative findings from our evaluation cohort in Table 2] and Figure[I] Across
all 12 evaluated models, the median perplexity assigned to toxic compounds is lower than for non-
toxic compounds, and the difference is statistically significant after Bonferroni correction (adjusted
threshold p < .00417) for every model reported in Table 2]

The range of observed effect sizes (Cliff’s Delta) spans from —0.366 (largest magnitude,
Qwen3-1.7B-MegaScience) to —0.093 (smallest magnitude, EuroLLM-1.7B-Instruct). The full



set of per-model means, standard deviations, Mann-Whitney U p-values, and Cliff’s Delta values
appear in Table 2]

Figure[I] provides per-model histograms and boxplots that illustrate the distributions underlying these
statistics; for instance, subplots (b) and (g) show the distributions for Instella-3B-Instruct and
Qwen3-1.7B-MegaScience, respectively, which are representative examples of the pattern reported
in Table 21

5 Discussion

Our analysis of twelve open-weight language models reveals a consistent and statistically significant
finding: every model assigns lower perplexity to toxic chemical compounds than to non-toxic ones.
As detailed in Table[2] this bias holds true across a diverse cohort of models from different developers
and of varying sizes, with effect sizes ranging from negligible to medium. This demonstrates that the
differential recall of toxic chemical information is a generalizable phenomenon in the current small
LM ecosystem.

Such a consistent finding raises two pertinent questions: (1) why is this bias so pervasive, and (2)
what are its implications for Al safety?

For the first question, we propose three non-mutually-exclusive hypotheses for this phenomenon, all
of which center on the nature of the data these models are trained on.

* Data Sourcing. Toxic compounds are over-represented or more systematically documented
in the vast corpora of text and data scraped from the internet. Sources such as patent filings,
toxicology databases, or regulatory documents contain highly structured, repetitive and
descriptive information about hazardous chemicals, which may make their properties and
structures easier for LMs to learn.

* Structural Regularity. Certain classes of toxic compounds may share common structural
motifs or functional groups that result in more predictable patterns in their SMILES repre-
sentations, independent of string length. This underlying regularity could make them easier
for a model to internalize.

* Salience. Toxic compounds may simply be more salient in human discourse; more frequently
discussed in scientific literature, news articles and policy documents, leading to a richer and
more robust representation in the models’ weights.

While we believe these hypotheses might explain the observed biases, further research is required to
disentangle these potential causes.

When it comes to the second question, the implications of this intrinsic bias are profound. Our
findings suggest that the biosecurity risk posed by LMs is not merely a function of their ability to
be steered by malicious prompts, but a foundational property of their current state. If a model’s
internal knowledge landscape is already skewed towards hazardous information, it is “primed” to
generate it, potentially lowering the barrier for misuse. This risk is magnified because our study
focuses on open-weight, small language models, which are computationally inexpensive and can be
freely accessed, downloaded and modified by any actor, regardless of their resources or intent.

Furthermore, this enhanced intrinsic knowledge may translate to higher performance on a range of
downstream tasks involving hazardous materials, not limited to the generation of chemical structures,
which broadens the potential threat surface. This challenges the efficacy of safety measures that
focus solely on input filtering or refusal mechanisms, as the vulnerability lies within the model’s core
knowledge base. And the fact that this is an ecosystem-wide phenomenon strongly suggests that the
root cause lies not in any single model’s architecture, but in the common data and methods used to
train them.

Our work introduces a complementary lens for assessing dual-use risks. While much of the existing
research rightly focuses on what dangerous capabilities can be elicited from models, our findings
demonstrate the value of also auditing for intrinsic knowledge biases. The discovery of a systemic
preference for toxic compounds suggests that the safety challenge is not limited to preventing misuse
at inference time, but is also rooted in the very data and methods used to build these models. This is a
relevant angle that ought to inform the assessment of Al biosecurity risks and mitigations.



6 Conclusion

In this work, we systematically evaluated the intrinsic chemical knowledge of twelve open-weight
language models by measuring their perplexity on a balanced dataset of toxic and non-toxic com-
pounds. Our analysis reveals a consistent and statistically significant bias: every model we tested
demonstrated greater certainty when processing the structures of toxic compounds compared to
non-toxic ones. This finding is significant because it shows a foundational vulnerability that is not
dependent on adversarial prompting but is instead embedded in the models’ core parameters. The
existence of such a systemic bias across a diverse model ecosystem suggests that the challenge of
ensuring Al safety in the chemical domain is deeply rooted in the data and methods used for training.
As Al continues to be integrated into scientific research, understanding and mitigating these intrinsic
biases will be a critical component of responsible innovation and biosecurity.

Limitations

We defined the scope of this study with several methodological constraints. Our dataset excluded
both very short and highly complex SMILES strings; this choice reduced potential confounding from
molecular complexity but also narrowed the chemical space we represented. Our evaluation focused
exclusively on small- to mid-sized, general-purpose open-weight LMs, which leaves frontier-scale
systems and domain-specialized chemical models outside our scope of analysis. Taken together,
these constraints mean that while our findings suggest that, under controlled conditions, LMs
exhibit systematic biases toward toxic compounds, we need broader investigations. Future work
should incorporate more diverse toxicity categories, larger and specialized models, varied prompting
strategies and adversarial testing to provide a more comprehensive assessment of biosecurity risks.

Ethical Statement

We conducted this study with careful consideration of the dual-use nature of chemical and biological
research. We sourced all chemical data from publicly available, internationally recognized databases,
and we included only compounds with well-documented structures. The sole purpose of our work is
to improve understanding of the current biosecurity risk landscape associated with LMs, with the aim
of supporting safe and responsible Al development, by highlighting potential vulnerabilities.

Supplementary Material

We include all relevant scripts, definitions, and configuration files and make them publicly accessible at
https://anonymous.4open.science/r/genai-biorisks-0446 to ensure reproducibility and
facilitate further research.
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