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ABSTRACT

Precipitation nowcasting plays a pivotal role in socioeconomic sectors, espe-
cially in severe convective weather warnings. Although notable progress has been
achieved by approaches mining the spatiotemporal correlations with deep learn-
ing, these methods still suffer severe blurriness as the lead time increases, which
hampers accurate predictions for extreme precipitation. To alleviate blurriness,
researchers explore generative methods conditioned on blurry predictions. How-
ever, the pairs of blurry predictions and corresponding ground truth need to be
generated in advance, making the training pipeline cumbersome and limiting the
generality of generative models within blur modes that appear in training data. By
rethinking the blurriness in precipitation nowcasting as a blur kernel acting on pre-
dictions, we propose an unsupervised postprocessing method to eliminate the blur-
riness without the requirement of training with the pairs of blurry predictions and
corresponding ground truth. Specifically, we utilize blurry predictions to guide the
generation process of a pre-trained unconditional denoising diffusion probabilis-
tic model (DDPM) to obtain high-fidelity predictions with eliminated blurriness.
A zero-shot blur kernel estimation mechanism and an auto-scale denoise guid-
ance strategy are introduced to adapt the unconditional DDPM to any blurriness
modes varying from datasets and lead times in precipitation nowcasting. Exten-
sive experiments are conducted on 7 precipitation radar datasets, demonstrating
the generality and superiority of our method.

1 INTRODUCTION

Precipitation nowcasting, which mostly depends on radar echo data, plays a vital role in predicting
local weather conditions for up to six hours (CLIMA & TE). Accurately predicting precipitation
events is one of the core tasks in weather prediction. It could mitigate the socioeconomic impacts of
extreme precipitation events and serve as a critical tool for transportation management, agricultural
productivity, and other aspects. Hence, many excellent methods have been proposed in recent years.

Traditional methods for radar-based precipitation nowcasting rely on statistical models and physi-
cal assumptions (del Moral et al., 2018; Woo & Wong, 2017). Although these methods have the
advantage of computational efficiency and high explainability, the chaotic and nonlinear nature of
short-term precipitation means that various physical and statistical assumptions introduced in tradi-
tional methods have inherent limitations. These methods are only suitable for cases with smooth and
simple motion patterns over short periods. Therefore, researchers explore the use of deep learning to
mine the spatiotemporal correlations in precipitation nowcasting. These methods treat precipitation
as a task of spatiotemporal prediction, predicting future radar echoes given the sequence of historical
observations. By designing modules to better model the spatiotemporal dynamics in precipitation
nowcasting, many attempts have provided solid improvements in the evaluation of Critical Success
Index (CSI) (Shi et al., 2015; Wang et al., 2022; Gao et al., 2022b;a). However, they often suffer
from severe blur when the lead time of predictions increases (Gong et al.). Such blur hinders the
predictions from containing local patterns that represent small-scale weather systems which are usu-
ally correlated to extreme precipitation events (Ravuri et al., 2021). Over the past 50 years, these
extreme precipitations have caused 1.01 million related deaths, and over US$ 2.84 trillion economic
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Figure 1: Left: Previous methods require two stages to generate predictions with local weather
patterns, which generate (GT, blurry prediction) pairs in stage 1 and apply these pairs to supervise
the training of conditional generative models in stage 2. Right: We propose to directly train an
unconditional DDPM to convert blurry predictions into the distribution of ground truths.

losses. It results in continuous efforts to mitigate the blur in long-term predictions (Douris & Kim,
2021).

To avoid blurry predictions, researchers have proposed to utilize probabilistic methods to gener-
ate future radar echoes. Probabilistic methods, such as generative adversarial networks (GAN) or
diffusion models (DM), sample different latent variables to express the stochasticity of chaotic fu-
ture weather systems, enabling them to capture local weather patterns instead of the smooth mean
value predicted in deterministic methods mentioned above (Ravuri et al., 2021; Gao et al., 2024;
Zhao et al., 2024). Furthermore, to simultaneously take advantage of probabilistic and deterministic
modeling, recent methods utilize blurry predictions to capture the global movement of precipitation
cloud clusters and harness probabilistic components to predict small-scale systems (Gong et al.; Yu
et al., 2024; Zhang et al., 2023). However, these deterministic and probabilistic coupling methods
also have several challenges. First, the modeling of local patterns is formulated as a prediction task
given historical observations and blurry predictions. This formulation introduces the probabilistic
model to solve a complex problem including the spatiotemporal correlations between historical ob-
servations and blurry predictions. As this formulation raises a complex spatiotemporal modeling
task, previous methods train separate probabilistic models for different datasets, different determin-
istic models, and different lead times, which hampers the generalization capabilities of models. For
instance, these methods require retraining when transferred from Shanghai to Hong Kong, as the
deterministic models and observations applied by the local Meteorological Bureaus are different.
Second, the coupling nowcasting methods have a complex training process. To train the probabilis-
tic component, the blurry predictions and the corresponding ground truth are required to be provided
in advance (Gong et al.; Yu et al., 2024; Zhang et al., 2023). As a result, the training process usually
contains two or three stages to prepare blurry predictions for the probabilistic model as shown in Fig-
ure 1. In summary, the flexibility of predicting precipitation with a deterministic and probabilistic
coupling method is limited.

Instead of capturing local patterns by probabilistic predicting, we propose to rethink the blurry
predictions from a direct perspective. The blurry predictions could be recognized as the results
of blur kernels acting on the predictions with the distribution of real-world data. As shown in
Appendix A.2, the blur kernels KS,T,M are related to sample S, lead time of predictions T and
deterministic model M . Thus, we could obtain predictions without blurriness by solving the inverse
of blur kernel KS,T,M . This perspective can lead to a totally different training paradigm to recover
local weather patterns.

Motivated by the idea of deblurring, we propose our PostCast. The blur kernel KS,T,M can be ob-
tained by unsupervised estimation, which alleviates the burden of generating blurry predictions by
complex spatiotemporal modeling. Besides, the process of obtaining the inverse solution of blur
kernel KS,T,M is generalizable, enabling our method to be flexibly applied in various datasets, de-
terministic models, and time steps. Specifically, our PostCast is a unified framework that integrates
the generative prior inherent in the pre-trained diffusion model with zero-shot blur kernel estima-
tion mechanism and auto-scale denoise guidance strategy to tackle blurry predictions across various
datasets, models, and prediction lengths. Firstly, we utilize the pre-trained unconditional diffusion
model on ImageNet from (Nichol & Dhariwal, 2021) for better initialization and fine-tune this dif-
fusion model on five precipitation datasets to enrich it with generative prior that can be utilized to
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generate high-quality precipitations. After the unconditional diffusion model is finetuned, we can
utilize blurry predictions to guide the sampling process. In every sampling step, the diffusion model
first generates a clean precipitation image x̃0 from the noisy precipitation image xt by estimating the
noise in xt. We can add guidance with blurry predictions given by spatiotemporal prediction models
on this intermediate variable x̃0 to control the sampling process of the diffusion model. Since blurry
prediction undergoes unknown degradation, a zero-shot blur kernel estimation mechanism and an
auto-scale denoise guidance strategy are formulated to adaptively simulate this unknown degradation
by kernel KS,T,M at any blur modes. The parameters of the optimizable blur kernel are randomly
initialized and optimized by the gradient of the distance metric between blurry prediction and the in-
termediate variable x̃0 after the optimizable blur kernel. In this way, clean precipitation predictions
guided by blurry predictions will be obtained after the sampling process of the diffusion model. Ad-
ditionally, our method could also obtain the blur kernels that convert clean precipitation predictions
into blurry ones, demonstrating the effectiveness of our optimized blur kernel. We demonstrate that
our PostCast enhances the blurry predictions of existing methods on several precipitation datasets.
Moreover, our PostCast can be adapted to a wide range of sample S, lead time of predictions T , and
deterministic model M .

2 RELATED WORK

2.1 PRECIPITATION NOWCASTING

Notable progress has been achieved by applying deep learning in precipitation nowcasting (Chen
et al., 2023; Han et al., 2024b; Xu et al., 2024; Han et al., 2024a; Gong et al., 2024). The ini-
tial attempts are deterministic methods focusing on spatiotemporal modeling. Researchers explore
different spatiotemporal modeling structures such as RNN (Shi et al., 2015; Wang et al., 2022),
CNN (Gao et al., 2022a; Tan et al., 2023), and Transformer (Gao et al., 2022b). Specifically, Earth-
Former (Gao et al., 2022b) is proposed to capture spatial-temporal features in earth system evolution
by cuboid attention. However, these methods have a shortage of blurry predictions, which hamper
the nowcasting of extreme events. Probabilistic methods are proposed to alleviate blurriness (Ravuri
et al., 2021; Gao et al., 2024; Zhao et al., 2024). DGMR (Ravuri et al., 2021) applies GAN to
produce realistic and spatio-temporally consistent predictions to reduce blurriness. To further en-
hance precipitation nowcasting with accurate global movements, later methods combine blurry pre-
dictions with probabilistic models. DiffCast (Yu et al., 2024), and CasCast (Gong et al.) exploit
how to generate small-scale weather pattern conditioning on the blurry predictions. Although these
deterministic-probabilistic coupling methods achieve both global accuracy and local details, they
suffer from repeating training for different contexts and require blurry predictions as data for
training. From the perspective of deblur, Our method is proposed to simplify the complex training
process and enhance the generality for wide use in different contexts.

2.2 IMAGE DEBLUR WITH DIFFUSION MODELS

Diffusion-based models have been widely investigated in image deblurring tasks since it is capable
of generating high-quality clean images (Song & Ermon, 2019; Ho et al., 2020; Song & Ermon,
2020; Fei et al., 2023). As a pioneering work, a U-Net architecture is trained in (Ho et al., 2020) with
a denoising objective to iteratively refine the generated image starting from pure Gaussian noise.
For instance, Austin et al. (2021) introduced Discrete Denoising Diffusion Probabilistic Models
(D3PMs) as a way to generalize the multinomial diffusion model by incorporating non-uniform
transition probabilities. Diffusion models can be conditioned on class labels or blurry images to fur-
ther enhance the performance of deblurring effects (Dhariwal & Nichol, 2021; Saharia et al., 2022a).
Ren et al. (2023) proposes the icDPM, which can better understand the blur and recover the clean
image with the blurry input and guidance from the latent space of a regression network. However,
these methods merely use the blurry image as a form of guidance, rather than attempting to simu-
late the blurriness itself, which renders them incapable of achieving a more precise and complete
removal of the blur. Our model attempts to simulate and update the blur kernel and guidance scale in
real-time by introducing the guidance of blurry predicted images to form an unconditional diffusion
model. The simulation of blur makes our model suitable for the general dataset while generating
clean precipitation images with rich and accurate details.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of PostCast for diffusion-based precipitation predictions deblurring. (a)
Unconditional diffusion model trained on 5 datasets is used to eliminate noise and estimate x̃0 at
every reverse step t, while an optimizable blur kernel is utilized to simulate the blur contained in the
blurry image y′. PostCast introduces a distance metric at each step of the reverse process to quantify
the loss between the blurry image y′ and the generated image x̃0 after the blur kernel. (b) The
Sampling process integrates a pre-trained diffusion model with guidance from the distance function.
The gradient could be employed for updating and simulating a more accurate blur kernel.

3 METHOD

In precipitation nowcasting, the increasing blurriness with lead time is a crucial problem to be
solved, as the blurriness impedes the accurate spatiotemporal modeling of small-scale weather pat-
terns, which are related to most extreme precipitation events. Previous methods, utilizing the pairs
of blurry predictions and observations to train models for the predictions of local weather patterns,
are challenged to generalize well to blur modes that do not appear in training. Instead of directly
predicting small-scale weather patterns by conditioning on historical observations and blurry predic-
tions, we propose a new pipeline composed of estimating the blurriness in precipitation nowcasting
directly and deblurring the blurry predictions with an unconditional diffusion model.

3.1 EXPLICITLY MODELING OF THE BLURRINESS IN PRECIPITATION NOWCASTING

There are many blur modes in blurry predictions of precipitation. On the one hand, the blurriness
in predictions varies depending on the changes in lead time or fluctuations in weather conditions,
influencing both the future probabilities and magnitudes of future changes. On the other hand,
demonstrated by the visualizations in Appendix A.2, the differences in spatiotemporal modeling
also have impacts on blurriness.

We first propose to explicitly model these blur modes in precipitation nowcasting with a unified
formulation:

y′ = conv(KS,T,M , y). (1)

The above equation means that the blurry prediction y′ is recognized as implementing a convolution
operation on the prediction y with local weather patterns similar to observations. KS,T,M , repre-
sented by a n × n learnable matrix, is the kernel of convolution. The parameters of KS,T,M vary
according to sample (S), lead time (T ), and prediction model (M ), as blur modes are influenced by
weather conditions, lead time, and spatiotemporal modeling.
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3.2 UNSUPERVISED DEBLUR FOR ANY BLUR MODES IN PRECIPITATION NOWCASTING

Inspired by the formulation of Equation 1, fuzzy prediction could be tackled by solving the fuzzy
inverse problem K−1

S,T,M . However, in precipitation nowcasting, weather conditions vary with space
and time, lead time changes in different application scenarios, and spatiotemporal modeling con-
tinuously advances. As a result, it is prohibited to generalize to all blur modes in precipitation
nowcasting by supervised training with pairs composed of blurry predictions and observations.

To cope with countless blur modes in precipitation nowcasting, we proposed an unsupervised de-
blurring method based on a pre-trained unconditional diffusion model. Specifically, there is a zero-
shot blur estimation mechanism and an auto-scale gradient guidance strategy to generalize our
method to any blur modes in precipitation nowcasting.

3.2.1 ZERO-SHOT BLUR ESTIMATION MECHANISM

As shown in Figure 2, our method adds guidance with the blur kernel KS,T,M and blurry prediction
y′ in each reverse step of the pre-trained diffusion model. The parameter of KS,T,M is randomly
initialized and dynamically optimized at each step of the sampling process. In each reverse steps,
there are two parts named “Adding Guidance” and “Parameter Update”, respectively.

Adding Guidance. As shown in Figure 2(a), during this process, the generated radar image x̃0 from
pre-trained DDPM, which is calculated by estimating and eliminating the noise contained in xt, un-
dergoes convolution function with blur kernel Kt

φ
1 to establish a distance metric L = L(Kt

φ(x̃0), y
′)

with blurry prediction y′. Detailed introduction of x̃0 can be found in the Appendix A.4. Distance
function quantifies the discrepancy between deblurred maps convolved with the blurry kernel and
the blurry prediction map, aiming to generate outputs that are closer to y′ after being subjected to
the simulated blurry effect. And the guidance from the blurry prediction ensures the accuracy of the
model’s deblurring process through “Parameter Update”, while the blur kernel connects the blurry
prediction y′ and the generated radar image x̃0.

Parameter Update. As shown in Figure 2(b), after calculating the distance function for incorpo-
rating guidance from blurry maps, the mean of xt is updated to sample xt−1, while concurrently
updating the convolution kernel parameters to more accurately simulate blurry in subsequent steps.
To implement our zero-shot blur estimation mechanism, we employ ∇φLφ,x̃0

, the gradients of
distance metric L respect to kernel parameter φt, to estimate the blur kernel from scratch by dynam-
ically updating the parameter itself. Additionally, the distance metric L also provides the gradients
respect to xt, ∇x̃0

Lφ,x̃0
, which is utilized to guide the sampling of xt−1.

Specifically, the sampling process of the diffusion model transforms distribution pθ(xt−1|xt) into
conditional distribution pθ(xt−1|xt, y

′). Previous work (Dhariwal & Nichol, 2021) have derived the
conditional transformation formula in the reverse process:

logpθ(xt|xt+1, y
′) = log (pθ(xt|xt+1)p(y

′|xt)) +N1 (2)

≈ log pθ(z) +N2 z ∼ N (z;µθ(xt, t) + Σ∇xt log p(y
′|xt)|xt=µ,ΣI), (3)

where N1 = − log pθ(y
′|xt+1), N2 is a constant related to the gradient term ∇xt

log p(y′|xt)|xt=µ.
And the variance of the reverse process Σ = Σθ(xt) is set as a constant. Detailed derivation and
proof are shown in the Appendix A.4. Based on this derivation, reverse process pθ(xt−1|xt, y

′)
integrates the gradient to update the mean µθ(xt, t) generated from the pretrained DDPM. We exploit
the gradient of distance metric L to approximate the value of ∇xt

log p(y′|xt):

∇xt log p(y
′|xt)|xt=µ = −s∇xtL(Kt

φ(x̃0), y
′). (4)

3.2.2 AUTO-SCALE GRADIENT GUIDANCE STRATEGY

Among them, s is the scaling factor employed to control the degree of guidance and plays a vital role
in the quality of radar image generation. However, as there are numerous blur modes in precipitation
nowcasting, it is difficult to set the guidance scale s for each blurry mode. Instead, we propose an

1Kt
φ represents the blur kernel KS,T,M with parameter φ at step t in the reverse progress

5
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Algorithm 1 Guided diffusion model with the guidance of blurry prediction y′. An unconditional
diffusion model ϵθ(xt, t) fine-tuned on 5 datasets is given.
Input: Blurry prediction y′, optimized blur kernel K with parameters φ, learning rate l, guidance scale s,

distance metric L.
Output: Deblurred prediction x0 conditioned on y′. Sample xT fromN (0, I)
1: for all t from T to 1 do
2: x̃0 = xt√

ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt

3: Lφ,x̃0 = L(y′,Kt
φ(x̃0))

4: s = − (xt−µ)T g+C
L(Kt

φ(x̃0),y′)

5: x̃0 ← x̃0 − s(1−ᾱt)√
ᾱt−1βt

∇x̃0Lφ,x̃0

6: µ̃t =

√
ᾱt−1βt

1−ᾱt
x̃0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt

7: β̃t =
1−ᾱt−1

1−ᾱt
βt

8: Sample xt−1 fromN (µ̃t, β̃tI)
9: φ← φ− l∇φLφ,x̃0

10: end for
11: return x0

auto-scale gradient guidance strategy to adaptively derive s for any blurry prediction from an
empirical formula:

s = − (xt − µ)T g + C

L(Kt
φ(x̃0), y′)

, (5)

where g refers to the ∇xt
log p(y′|xt)|xt=µ and C = log p(y′|xt)|xt=µ. The detailed derivation

process of s is shown in Appendix A.4.

The details of PostCast are shown in Algorithm 1. PostCast undergoes T reverse steps to gradually
restore pure Gaussian noise xT ∼ N (0, I) to high-quality precipitation images. For each reverse
steps t, mean µθ(xt, t) is integrated with ∇xt

log p(y′|xt) to sample xt−1. The blur kernel parameter
φ which is related to reverse step t is dynamically updated by the gradients of distance metric Lφ,x̃0

.
The optimizable blur kernel Kt

φ and auto-scale guidance factor s enable the model to achieve blur
simulation and flexibly eliminate blurriness for any blur modes in precipitation nowcasting.

4 EXPERIMENTS

This section includes the experiment setups and the analysis of the results. We begin with imple-
mentation details in Section 4.1, and evaluation metrics in Section 4.2. In Section 4.3, 4.4, and
4.5, we present comprehensive experiments exhibiting the high generalization ability of PostCast to
enhance the extreme part of predictions generated by classical spatiotemporal methods. Finally, the
ablation study of PostCast and further analysis of the blur kernel KS,T,M and auto-scale guidance
are presented in Section 4.6.

4.1 IMPLEMENTING DETAILS

We uniformly resize the radar images from all datasets to 256 × 256. Five datasets, including
SEVIR (Veillette et al., 2020), HKO7 (Shi et al., 2017), TAASRAD19 (Franch et al., 2020), Shang-
hai (Chen et al., 2020), and SRAD2018 (SRAD, 2018), are selected to train the unconditional
DDPM, while the other datasets (SCWDS CAP30 (Na et al., 2021), SCWDS CR (Na et al., 2021),
MeteoNet (Larvor & Berthomier, 2021)) are prepared for out-of-distribution testing to evaluate the
generalization of each method. More details of each dataset can be found in Appendix A.6. We fol-
low (Dhariwal & Nichol, 2021) to train our DDPM. We utilize the pre-trained unconditional diffu-
sion model on ImageNet for better initialization and fine-tune it on SEVIR, HKO7, TAARSARD19,
Shanghai, and SRAD2018 using AdamW with β1 = 0.9 and β2 = 0.999 in 16-bit precision with
loss scaling, while keeping 32-bit weights, Exponential Moving Average (EMA), and optimizer
state. We use an EMA rate of 0.9999 for all experiments. We use PyTorch and train the models on
NVIDIA Tesla A100. PostCast uses a blur kernel with a size of 9×9. We use the same noise sched-
ule as for training. To recover the prediction with a distribution of real observation, we implement

6
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Figure 3: Visualization of applying our PostCast on 5 datasets at time step 12 when the spatiotem-
poral prediction model is TAU.
Table 1: The CSI scores of the highest thresholds evaluated by P1 (max pooling 1), P4 (max pooling
4), and P16 (max pooling 16) at time step 12 (about 1 hour lead time), as well as HSS and POD.

Model SEVIR HKO7 TAASRAD19 Shanghai SRAD2018

P1 P4 P16 HSS↑ POD↑ P1 P4 P16 HSS↑ POD↑ P1 P4 P16 HSS↑ POD↑ P1 P4 P16 HSS↑ POD↑ P1 P4 P16 HSS↑ POD↑
TAU 0.008 0.014 0.028 0.383 0.372 0.051 0.064 0.104 0.390 0.332 0.010 0.017 0.021 0.276 0.220 0.023 0.029 0.040 0.323 0.277 0.031 0.028 0.025 0.308 0.229
+ours 0.043 0.074 0.163 0.402 0.438 0.060 0.127 0.289 0.386 0.389 0.044 0.072 0.127 0.300 0.311 0.051 0.102 0.216 0.338 0.421 0.100 0.136 0.170 0.338 0.421

PredRNN 0.013 0.014 0.017 0.378 0.358 0.006 0.008 0.018 0.352 0.304 0.008 0.010 0.012 0.237 0.178 0.009 0.012 0.020 0.268 0.216 0.025 0.044 0.051 0.289 0.221
+ours 0.059 0.083 0.161 0.397 0.432 0.050 0.110 0.266 0.350 0.371 0.038 0.064 0.138 0.279 0.275 0.031 0.069 0.167 0.303 0.349 0.086 0.139 0.256 0.303 0.349

SimVP 0.015 0.016 0.024 0.389 0.385 0.042 0.049 0.067 0.409 0.358 0.000 0.000 0.002 0.242 0.181 0.025 0.030 0.060 0.303 0.258 0.037 0.049 0.047 0.331 0.258
+ours 0.045 0.069 0.140 0.409 0.462 0.054 0.116 0.264 0.385 0.409 0.021 0.035 0.051 0.298 0.275 0.044 0.094 0.212 0.303 0.390 0.109 0.172 0.272 0.303 0.390

EarthFormer 0.032 0.024 0.023 0.374 0.357 0.025 0.025 0.035 0.390 0.334 0.019 0.021 0.028 0.266 0.204 0.021 0.029 0.055 0.304 0.253 0.036 0.034 0.040 0.311 0.244
+ours 0.045 0.070 0.131 0.403 0.427 0.066 0.125 0.257 0.392 0.395 0.044 0.067 0.143 0.286 0.283 0.048 0.098 0.226 0.321 0.396 0.095 0.155 0.276 0.321 0.396

DiffCast 0.049 0.070 0.186 0.362 0.378 0.061 0.113 0.255 0.385 0.375 0.044 0.076 0.174 0.267 0.260 0.050 0.097 0.218 0.309 0.282 0.071 0.124 0.257 0.313 0.307
CasCast 0.039 0.067 0.156 0.335 0.422 0.054 0.108 0.235 0.343 0.454 0.040 0.064 0.128 0.221 0.301 0.034 0.068 0.167 0.259 0.336 0.061 0.109 0.240 0.269 0.333
DGMR 0.003 0.010 0.062 0.122 0.235 0.018 0.055 0.210 0.210 0.182 0.015 0.038 0.120 0.097 0.091 0.007 0.028 0.132 0.105 0.103 0.022 0.066 0.213 0.114 0.147
STRPM 0.007 0.023 0.060 0.307 0.296 0.010 0.027 0.078 0.263 0.196 0.005 0.016 0.054 0.186 0.138 0.121 0.428 0.128 0.236 0.201 0.034 0.076 0.171 0.251 0.197

DGP 0.020 0.042 0.070 0.372 0.355 0.039 0.083 0.187 0.372 0.328 0.018 0.041 0.094 0.238 0.196 0.029 0.070 0.160 0.282 0.271 0.044 0.089 0.176 0.298 0.239
GDP 0.001 0.002 0.007 0.159 0.191 0.003 0.011 0.038 0.078 0.048 0.002 0.004 0.021 0.053 0.031 0.007 0.012 0.031 0.078 0.048 0.004 0.009 0.027 0.111 0.074

our method with 1000-step DDPM. The cosine learning rate policy is used with initial learning rates
0.0002 for PostCast and the βt we utilize undergoes a linear increase from β1 = 10−4 to βT = 0.02.

4.2 EVALUATION METRIC

We choose the Critical Success Index, Probability of Detection (POD), and Heidke Skill Score
(HSS) for evaluation. For each dataset, the thresholds with the highest intensity are selected to
quantitatively evaluate the accuracy of predictions for extreme events by CSI. The blurriness in de-
terministic predictions influences the modeling of small-scale patterns, which are usually correlated
to extreme precipitation events. Meanwhile, average CSI, POD, and HSS scores across different
thresholds are evaluated to provide a more comprehensive evaluation of precipitation with different
intensities. Details of evaluated threshold τ are given in Appendix. A.5. Before calculating these
scores, we set the predicted and observed pixel values less than τ to 0 otherwise 1. These binary val-
ues enable us to determine the true positive (TP), false negative (FN), true negative (TN), and false
positive (FP) counts. The formulations are: CSI = TP

TP+FN+FP . POD = TP
TP+FN . HSS =

2×(TP×TN−FN×FP )
(TP+FN)×(FN+TN)+(TP+FP )×(FP+TN) . CSI and POD values vary between 0 and 1, while HSS
value varies between -1 and 1, with values approaching 1 indicating a higher level of agreement
between the predicted and observed results.

4.3 EVALUATION ON MULTIPLE DATASETS

Table 1 presents the quantitive evaluation results of our method’s performance gain for extreme pre-
cipitation nowcasting and general predictions. Specifically, TAU (Tan et al., 2023), PredRNN (Wang
et al., 2022), SimVP (Gao et al., 2022a), and EarthFormer (Gao et al., 2022b) are all indepen-
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Observations Blurry predictions +PostCast

+30min

+60min

+90min

Observations Blurry predictions +PostCast

+30min

+60min

+90min

Figure 4: Left: Visualizations on SEVIR. Right: Visualizations on HKO7. Both blurry predictions
are given by model TAU. The lead times of predictions are 30 minutes, 60 minutes, and 90 minutes.

Table 2: The CSI scores of the highest thresholds evaluated by P16 at different lead times.
Model HKO7 SEVIR Model HKO7 SEVIR

30min 60min 90min 30min 60min 90min 30min 60min 90min 30min 60min 90min

TAU 0.216 0.104 0.082 0.029 0.028 0.013 SimVP 0.183 0.067 0.083 0.083 0.024 0.025
+ours 0.369 0.326 0.256 0.228 0.144 0.098 +ours 0.394 0.313 0.266 0.252 0.116 0.093

PredRNN 0.127 0.018 0.021 0.079 0.017 0.025 EarthFormer 0.143 0.035 0.042 0.079 0.023 0.022
+ours 0.349 0.190 0.216 0.227 0.104 0.086 +ours 0.376 0.266 0.255 0.250 0.128 0.106

dently trained on the evaluated datasets. We compare our method with four supervised GAN- or
Diffusion-based methods which are jointly trained on these five datasets (DiffCast (Yu et al., 2024),
CasCast (Gong et al.), DGMR (Ravuri et al., 2021), and STRPM (Chang et al., 2022)) and three un-
supervised GAN- or Diffusion-based methods (DGP (Pan et al., 2021) and GDP (Fei et al., 2023)).
Our unconditional DDPM is also jointly on the five datasets in Table 1, which makes this evalua-
tion in-domain. As shown in Table 1, our method can be applied to all of these prediction methods
including RNN-based, CNN-based, and Transformer-based. It demonstrates that our method is not
sensitive to the way how the spatiotemporal correlations are modeled. On each dataset, there are
significant improvements in extreme precipitation evaluation when applying our method, which is
attributed to the local weather patterns recovered by our method as exhibited in Figure 3. Besides,
it reveals the potential of our method to adapt to different blur modes in precipitation nowcasting
related to datasets. For general prediction quality evaluated by avg-HSS and avg-POD scores, it is
significantly improved after applying our PostCast. In summary, PostCast demonstrates outstanding
improvement across different prediction models and datasets, proving its effectiveness and flexibility
in recovering local weather patterns and increasing the general precipitation nowcasting.

4.4 EVALUATION AT ANY LEAD TIME

Encouraged by the generality of PostCast among datasets and models, in this section, we exhibit
the ability of PostCast to be generalized to arbitrary lead times such as 30 min, 60 min, and 90 min,
within a zero-shot manner. An example is visualized in Figure 4, showing our method enhances local
details and boosts the predictions of extreme values. As shown in Table 2, we conduct experiments
on SEVIR and HKO7. For both datasets, no matter which spatiotemporal prediction models are
used, our method consistently increases the CSI scores of the highest thresholds (32.24 kg/m2 for
SEVIR, and 30 mm/h for HKO7). Specifically, in SEVIR, the highest CSI scores of 30 min, 60
min, and 90 min reach 0.252, 0.144, and 0.106, respectively. The highest CSI scores evaluated on
HKO7 reach 0.394, 0.326, and 0.266 for the lead time of 30 min, 60 min, and 90 min. The consistent
gain indicates the generality of our method among different lead times.

4.5 DEBLURRING ON OUT-OF-DISTRIBUTION DATASETS

We compare our PostCast with other methods described in Section 4.3 on three out-of-distribution
datasets. The quantitative results are presented in Table 3. CAP30 and CR represent different
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Table 3: Evaluation on out-of-distribution datasets. The CSI scores are calculated within the highest
thresholds at a lead time of 1 hour. P1, P4, and P16 indicate max pooling 1, max pooling 4, and max
pooling 16, respectively.

Model SCWDS CAP30 SCWDS CR MeteoNet

P1 P4 P16 HSS POD P1 P4 P16 HSS POD P1 P4 P16 HSS POD

TAU 0.038 0.042 0.064 0.312 0.280 0.082 0.075 0.082 0.413 0.384 0.001 0.003 0.016 0.272 0.240
+CasCast 0.067 0.102 0.224 0.306 0.315 0.101 0.145 0.258 0.380 0.377 0.029 0.067 0.128 0.271 0.294
+DiffCast 0.023 0.050 0.166 0.157 0.235 0.051 0.101 0.245 0.232 0.554 0.006 0.015 0.063 0.079 0.065

+ours 0.075 0.126 0.269 0.345 0.428 0.143 0.214 0.338 0.444 0.549 0.024 0.059 0.182 0.288 0.344

PredRNN 0.003 0.004 0.008 0.239 0.203 0.040 0.043 0.066 0.351 0.323 0.000 0.000 0.002 0.230 0.190
+CasCast 0.035 0.056 0.129 0.252 0.231 0.086 0.139 0.283 0.337 0.390 0.010 0.030 0.101 0.249 0.238
+DiffCast 0.017 0.035 0.102 0.157 0.235 0.066 0.105 0.230 0.349 0.341 0.006 0.019 0.076 0.241 0.215

+ours 0.060 0.126 0.267 0.331 0.351 0.140 0.206 0.315 0.405 0.485 0.022 0.050 0.148 0.283 0.298

SimVP 0.025 0.026 0.035 0.312 0.276 0.056 0.046 0.041 0.410 0.373 0.000 0.000 0.002 0.281 0.245
+CasCast 0.069 0.111 0.226 0.314 0.319 0.098 0.134 0.242 0.382 0.364 0.030 0.053 0.149 0.282 0.305
+DiffCast 0.024 0.044 0.129 0.224 0.201 0.047 0.071 0.169 0.295 0.280 0.017 0.037 0.105 0.240 0.216

+ours 0.085 0.136 0.255 0.367 0.436 0.140 0.205 0.296 0.459 0.545 0.025 0.054 0.147 0.316 0.391

EarthFormer 0.021 0.024 0.036 0.298 0.258 0.072 0.065 0.063 0.417 0.406 0.000 0.003 0.008 0.259 0.219
+CasCast 0.050 0.089 0.190 0.296 0.287 0.100 0.130 0.223 0.381 0.383 0.019 0.055 0.159 0.266 0.265
+DiffCast 0.041 0.071 0.175 0.299 0.278 0.101 0.144 0.268 0.407 0.417 0.009 0.029 0.096 0.263 0.243

+ours 0.070 0.117 0.241 0.350 0.404 0.141 0.211 0.326 0.444 0.570 0.019 0.058 0.164 0.287 0.320

DGMR 0.018 0.048 0.160 0.161 0.153 0.039 0.090 0.240 0.207 0.208 0.019 0.057 0.192 0.123 0.131
STRPM 0.014 0.049 0.160 0.234 0.197 0.029 0.080 0.201 0.296 0.264 0.014 0.046 0.145 0.192 0.155

DGP 0.027 0.059 0.111 0.294 0.258 0.071 0.083 0.099 0.409 0.397 0.037 0.082 0.186 0.250 0.218
GDP 0.001 0.002 0.009 0.036 0.023 0.001 0.002 0.003 0.069 0.049 0.006 0.014 0.048 0.077 0.049

Table 4: The ablation study on the optimizable convolutional kernel and the adaptive guidance scale.
The CSI scores with the highest thresholds are calculated by P1 (max pooling 1), P4 (max pooling
4), and P16 (max pooling 16). The lead time is 60min for SEVIR and 72min for HKO7 (both 12
steps). In cells marked with a “!”, the corresponding module is employed, while cells with “%”
indicate a fixed guidance scale of 3500 or a random blur kernel with a mean value of 0.6, which is
consistent with the initial value setting of PostCast, and remain unchanged throughout each step of
the reverse process. The reason for these settings can be found in Appendix A.7

Methods Dynamic Update SEVIR HKO7

Kernel Guidance Scale P1 P4 P16 P1 P4 P16

Model A % % 0.010 0.019 0.048 0.030 0.088 0.219
Model C ! % 0.038 0.064 0.115 0.059 0.102 0.232

PostCast ! ! 0.045 0.070 0.131 0.066 0.125 0.257

modalities (constant altitude plan of 3 km and composite reflectivity) in SCWDS. These 3 datasets
are excluded from both the fine-tuning of our unconditional DDPM. Our method notably improves
the nowcasting of extreme precipitation and general precipitation nowcasting even in the out-of-
distribution datasets. Specifically, on SCWDS CAP30, the highest P16, HSS, and POD of our
method reaches 0.269, 0.367, and 0.436, respectively, while other methods only achieve 0.226,
0.314, and 0.319. On MeteoNet, PostCast fulfills the best HSS and POD across all methods. More-
over, our method achieves competitive performance when applied on SimVP and EarthFormer, while
on TAU and PredRNN, our method remarkably enhances the CSI scores, reaching 0.182 on TAU
and 0.148 on PredRNN. Such gap in performance on different spatiotemporal prediction models
further reveals the requirement for generalization to various spatiotemporal modeling approaches.
To summarize, our method exhibits superiority even on out-of-distribution datasets.

4.6 ABLATION STUDY

In this section, we conduct ablation to validate the effectiveness of our proposed zero-shot blur
estimation mechanism and auto-scale gradient guidance strategy. Additionally, further analysis
of the blur kernel estimation and the auto-scale guidance is conducted.

Table 4 presents the results of the ablation study on SEVIR and HKO7. “Kernel” stands for the
zero-shot blur estimation mechanism, and “Guidance Scale” represents the auto-scale gradient
guidance strategy. As shown in Table 4, when the deblur progress is equipped with neither “Kernel”
nor “Guidance Scale”, it exhibits relatively low CSI scores for extreme precipitation nowcasting.
When “Kernel” is solely applied, there are significant gains on both SEVIR and HKO7, especially
on the CSI-P1 evaluated pixel-wisely. In particular, the CSI-P1 of SEVIR reached 0.038 and that of
HKO7 reached 0.059, indicating the importance of estimating the blur modes. Further, “Guidance
Scale” improves the gain of “Kernel”, which suggests adaptively scaling the guidance contributes to
better guidance.

9
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Figure 5: (a) The distribution of the mean of blur kernel at reverse step t = 0 on SEVIR dataset. (b)
The variation in the mean of the blur kernel with reverse steps on SEVIR dataset.

Figure 6: (a) Variations in the guidance scale can result in different intensities of precipitation. From
left to right, the guidance scale values are 1.25, 1, and 0.75 times our auto-scale gradient guidance
strategy; (b) Different initial values of the blur kernel parameters affect the resultant precipitation
intensity maps to varying degrees. As the initial values of parameters decrease from left to right,
the precipitation intensities correspondingly diminish. The intermediate map in the model output
represents the model’s standard parameter settings, and the results are closest to the ground truth.

Further experiments are conducted to reveal the influence of “Kernel” and “Guidance Scale”. As
shown in Figure 5 (a), for the SEVIR dataset, the mean of the kernel stabilizes around 2.65 at reverse
step t = 0. And for a single map from the SEVIR datasets, as illustrated in Figure 5 (b), the mean of
optimizable blur kernel parameters increases with the sampling process. This increase in magnitude
is influenced by the gradient of the distance metric with respect to the parameter. Ultimately, the
mean value of convolutional kernel parameters gradually converges to approximately 2.65.

The visualization of Figure 10 indicates a close resemblance between the PostCast output map con-
volved with the optimizable blur kernel at time t = 0 and the prediction map, suggesting that the
blur kernel effectively estimates the blur present within the prediction map, allowing the model to
generate high-quality outcomes with faithfulness details that are similar to the ground truth.

Furthermore, the “Kernel” and “Guidance Scale” are capable of controlling the intensity of gener-
ated precipitation predictions through parameter adjustments. As illustrated in 6, the zero-shot blur
estimation mechanism, combined with auto-scale gradient guidance strategy, enables the model
to produce results that most closely approximate the ground truth in terms of small-scale structures
and precipitation intensity. By manually increasing or decreasing the values of the guidance scale
and blur kernel, we can either enhance or diminish the precipitation intensity in the generated im-
ages. This outcome demonstrates the model’s substantial controllability, allowing it to meet diverse
usage requirements with greater flexibility.

5 CONCLUSION

In this paper, we propose PostCast, a generalizable postprocessing method for precipitation now-
casting to enhance the local weather patterns and extreme precipitation nowcasting. Specifically,
it integrates the generative prior in the pre-trained diffusion model with zero-shot blur kernel es-
timation and auto-scale denoise guidance to enhance blurry predictions. Experiments demonstrate
that our method could increase the ability of extreme nowcasting for varying datasets, different lead
times, and multiple spatiotemporal prediction models.
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A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

Our work has a certain limitation: As a postprocessing method, the effectiveness of PostCast par-
tially depends on the spatiotemporal prediction models. This may lead to poor performance if the
blurry predictions have relatively low accuracy. Motivated by the importance of an accurate pre-
diction, in the future, we will make an effort to improve our method with priors of spatiotemporal
prediction modeling.

A.2 VARING BLUR MODES

Figure 7: Visualization of predictions of different spatiotemporal prediction models at the lead time
of 1 hour on MeteoNet.

Figure 8: Visualization of predictions of EarthFormer on SEVIR at different lead times.

In this section, we visualize the blurry predictions with different blur modes. As shown in Figure 7,
TAU has a sharper prediction than other models, which indicates the blur modes vary with the
spatiotemporal modeling approaches. We also demonstrate that the blur modes change with the lead
time in Figure 8. Longer lead time results in a stronger blurry mode and weaker extreme predictions.
Figure 9 presents the different blur modes across datasets or samples. In this case, the samples of
SEVIR and TAASRAD19 suffer from a severe blurry mode compared, while those of MeteoNet
and HKO7 have more local weather patterns. In summary, the blur modes vary with spatiotemporal
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Figure 9: Visualization of 1 hour’s prediction of EarthFormer on different datasets.

modeling approaches, lead times, and weather conditions which are represented by datasets and
samples. There is an urgent requirement for a method to deal with the countless blur modes.

A.3 PRELIMINARY

Diffusion model is a generative framework that encompasses both the forward and reverse pro-
cesses. The forward process gradually destroys the original training data x0 by adding Gaussian
noise successively, which is defined as a Markov chain:

q(x1, · · · , xT |x0) =

T∏
t=1

q(xt|xt−1). (6)

Pure Gaussian noise can be obtained after T diffusion steps when T is large enough. Each diffusion
steps is defined by the given parameter series βt, which refers to the variance of the forward process.
It can be set as a known constant or learned with a separate neural network head (Nichol & Dhariwal,
2021).

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (7)

The reverse process is the inversion of the forward process, aiming to simulate noise from the noise
distribution at each diffusion step and recover data from it. However, the mean and variance of the
reverse process conditional distribution pθ(xt−1|xt) = N (xt−1;µ(xt, t),ΣI) is difficult to calcu-
late directly. Therefore, we need to learn a noise simulation function ϵθ(xt, t) parameterized by
parameter θ to approximate the mean of the conditional probabilities, which enables the model to
simulate and eliminate noise in the data sampled from the reverse process.

Bayesian formula can be utilized to transform the conditional distribution as follows: Bayesian
formulas can be employed to derive the mean and variance for each step in the reverse process
pθ(xt−1|xt).

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)

q(xt|x0)
. (8)

Directly expanding the three terms at the right-hand of Equation 8, the mean µθ and variance Σθ

can be represented by the following equation:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (9)

Σθ(xt) =
1− ᾱt−1

1− ᾱt
βt (10)

where αt = 1 − βt and ᾱt =
∏t

i=1 αt, which indicates that the variance of the reverse process
Σ = Σθ(xt) is a constant.

Diffusion model utilizes maximum likelihood estimation to obtain the probability distribution of
Markov transition in the reverse process. Specifically, the noise prediction function ϵθ(xt, t) is
trained with the purpose of optimizing the following surrogate denoising objective.

Eϵ∼N (′,I),t∼[0,T ][∥ϵ− ϵθ(xt, t)∥2]. (11)
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A.4 EMPIRICAL FORMULA OF GUIDANCE SCALE

In the reverse process of the diffusion model, we incorporated guidance from y′ to transform the
initial reverse denoising distribution pθ(xt | xt+1) into a conditional distribution pθ(xt | xt+1, y).
Proven by (Dhariwal & Nichol, 2021), this distribution can be further simplified:

pθ(xt | xt+1, y) =
pθ(xt, xt+1, y)

pθ(xt+1, y)
(12)

=
pθ(xt, xt+1, y)

pθ(y | xt+1)pθ(xt+1)
(13)

=
pθ(xt | xt+1)pθ(y | xt, xt+1)pθ(xt+1)

pθ(y | xt+1)pθ(xt+1)
(14)

=
pθ(y | xt, xt+1)pθ(xt | xt+1)

pθ(y | xt+1)
(15)

=
pθ(y | xt)pθ(xt | xt+1)

pθ(y | xt+1)
(16)

=
p(y | xt)pθ(xt | xt+1)

pθ(y | xt+1)
(17)

Distribution pθ(y | xt+1) is independent of xt, so we use the constant N instead:

pθ(xt | xt+1, y) =
1

N
pθ(xt | xt+1)pθ(y | xt) (18)

Taking the logarithm of both sides of the equation, it can be obtained that:

log pθ(xt|xt+1, y) = log (pθ(xt|xt+1)p(y|xt)) +N1, (19)

where N1 = − logN can be seen as a normalizing constant. For the first term, the posterior
q(xt|xt+1) used for sampling is hard to calculate directly. Therefore, we utilize the model with
parameter θ pre-trained on five datasets to approximate the conditional probabilities.

Consider the expansion of pθ(xt|xt+1):

log pθ(xt|xt+1)pθ(y|xt) = log pθ(xt|xt+1) + log pθ(y|xt) (20)

≈ −1

2
(xt − µθ)

TΣ−1
θ (xt − µθ) + log pθ(y|xt) + C1 (21)

C1 is a constant generated from the expansion of pθ(xt|xt+1), where

C1 = − log (2π)
n
2 (|Σθ|

1
2 ) = −n

2
log 2π − 1

2
log |Σθ| (22)

Term log pθ(y|xt) reflects the guidance from blurry map y integrated in the reverse process of sam-
pling xt−1. The introduction of distance metric L and guidance scale s is exploited to characterize
the value of log pθ(y|xt) as a heuristic algorithms:

log pθ(y|xt) = −sL(Kt
φ(x̃0), y), (23)

where x̃0 is calculated by estimating and eliminating the noise contained in xt:

x̃0 =
xt√
ᾱt

−
√
1− ᾱtϵθ(xt, t)√

ᾱt
(24)

Meanwhile, taylor expansion around xt = µθ can be leveraged to estimate log pθ(y|xt). By taking
the first two terms of the Taylor expansion, it can be estimated that:

log pθ(y|xt) ≈ log pθ(y|xt)|xt=µθ
+ (xt − µθ)

T∇xt
log pθ(y|xt)|xt=µθ

(25)

= C2 + (xt − µθ)
T∇xt

log pθ(y|xt)|xt=µθ
(26)
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By combining the heuristic approximation formula and Taylor expansion mentioned above, we can
derive the empirical formula for the guidance scale:

s = − (xt − µ)T∇xt log pθ(y|xt)|xt=µθ
+ C2

L(Kt
φ(x̃0), y)

(27)

Among them, µ is obtained by pre-trained DDPM. C2 is a minor constant that can be disregarded.

By incorporating Equation 26, we can further simplify Equation 21: (Taking g to replace the gradient
∇xt

log pθ(y|xt)|xt=µθ
)

log pθ(xt|xt+1)pθ(y|xt) ≈ −1

2
(xt − µθ)

TΣ−1
θ (xt − µθ) + (xt − µθ)

T g + C1 + C2 (28)

= −1

2
(xt − µθ − Σθg)

TΣ−1
θ (xt − µθ − Σθg) +

1

2
gTΣθg + C1 + C2

(29)
= log p(z) +N2, z ∼ N (µθ +Σθg,Σθ), (30)

where N2 = 1
2g

TΣθg+C2 is a constant related to g. Equation 30 is utilized to sample xt−1 in every
reverse process t.

A.5 DETAILS OF EVALUATION THRESHOLDS

Specifically, the evaluated threshold τ for these datasets is

τ =


32.24 kg/m2 for SEVIR
30 mm/h for HKO7, TAASRAD19, SRAD2018
40 dbz for SCWDS CAP30 and SCWDS CR
47 dbz for MeteoNet

For the SEVIR dataset, we convert the VIL pixel into R with the units of kg/m2, which are the true
units of VIL images, by the following rule (Veillette et al., 2020):

R(x) =


0, if x ≤ 5
x−2
90.66 , if 5<x ≤ 18

exp(x−83.9
38.9 ), if 18<x ≤ 254

Additionally, we transform the radar reflectivity values with dBZ unit in HKO7, TAASRAD19 ,
and SRAD2018 into rainfall intensity values (mm/h) using the Z-R relationship (Shi et al., 2017;
Franch et al., 2020):

dBZ = 10 log a+ 10b logR (31)

where R is the rain-rate level, a = 58.53 and b = 1.56.

A.6 DATASET DESCRIPTIONS

SEVIR (Veillette et al., 2020) We use the data of NEXRAD which are processed into radar mosaic
of Vertically Integrated Liquid (VIL) in SEVIR. It contains image sequences for over 10,000 weather
events that cover 384 km x 384 km patches. These weather events are captured over the contiguous
US (CONUS). The VIL image has a spatial resolution of 384 x 384. We use weather events in 2017
and 2018 for training and events in 2019 for validation and testing.

HKO7 (Shi et al., 2017) In HKO7, the radar echoes are CAPPI (constant altitude plan position
indicator) images covering a 512 km2 region centered on Hong Kong, captured from an altitude of
2 km above sea level. The spatial resolution of data is 480x480. HKO7 contains observations from
2009 to 2015. Observations in the years 2009-2014 are split for training and validation, and data
from 2015 are used for testing.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

TAASRAD19 (Shi et al., 2017) It collected radar echo images from 2010 to 2019 for a total of
1258 days using the maximum reflectivity of vertical, by the weather radar of the Trentino South
Tyrol Region, in the Italian Alps. The images cover an area of 240 km with a spatial resolution of
480×480. The radar echoes from 2010-2018 are split into training part, and those of 2019 are used
for validation and testing.

Shanghai (Chen et al., 2020) It is a dataset that contains radar echoes represented by the CR (com-
posite reflectivity) collected from the dual polarization Doppler radar located in Pudong, Shanghai.
The raw data, spanning from October 2015 to July 2018, are interpolated to 0.01×0.01◦ longitude-
latitude grids with a spatial resolution of 501×501. We use data from 2015 to 2017 for training, and
2018 for validation and testing.

SRAD2018 (SRAD, 2018) This dataset covers Guangdong Province and Hong Kong during the
flood season from 2010 to 2017. The size of radar images is 501 x 501 with a spatial resolution of 1
km. We follow (SRAD, 2018) to split the dataset for training, validation, and testing.

MeteoNet (Larvor & Berthomier, 2021) MeteoNet is a dataset covering two geographical zones,
North-West and South-East of France, during three years, 2016 to 2018. The radar in MeteoNet has
a spatial resolution of 0.01◦. We crop the data to keep the top-left portion with a size of 400×400.
We train the models with images from 2016 to 2017 and validate or test the models with images of
2018.

SCWDS (Na et al., 2021) It is released by the National Meteorological Information Center of
China, including a total of 9832 single-station strong precipitation processes across Jiangxi, Hubei,
Anhui, Zhejiang, and Fujian from 2016 to 2018. We select 3km-CAPPI images as the modality
of the SCWDS dataset. Each radar image in SCWDS covers 3012 grids with a resolution of 0.01
x 0.01. Images from 2016 and 2017 are used for training, and those from 2018 are processed for
validation and testing.

For each dataset, we randomly sample 500 sequences from the test split to evaluate the effectiveness
of our proposed PostCast and other methods.

A.7 IMPLEMENTING DETAILS OF ABLATION STUDY

The ablation study regarding the effectiveness of proposed zero-shot blur estimation mechanism
and auto-scale gradient guidance strategy is conducted at the predictions of EarthFormer on HKO7
and SEVIR datasets. We utilize guidance scale s = 3500 for the fixed guidance scale model, as
this setting closely aligns with the initial value of the guidance scale calculated by the auto-scale
gradient guidance strategy for HKO7 and SEVIR datasets. Concurrently, the size of the blur kernel
utilized in the ablation study is 9 × 9, and its initial value in the fixed-kernel model is randomly
drawn from a Gaussian distribution with a mean of 0.6. This configuration is identical to that of the
kernel’s initial value in PostCast, thereby ensuring a fair comparison can be conducted in Table 4.

A.8 RECOVERING THE BLURRY PREDICTIONS BY APPLYING BLUR KERNELS

In this section, we validate whether the optimizable blur kernel effectively emulates the blur present
in the prediction map by examining the correlation between the PostCast output and the derived blur
kernel. The optimizable blur kernel is proposed to dynamically adjust its parameters in real-time
during the reverse steps to simulate blur. As illustrated in Figure 10, the simulated blur map obtained
by feeding the PostCast output after T steps into the blur kernel exhibits no significant discrepancies
with the actual prediction map. This indicates the efficacy of the blur kernel’s parameters in faithfully
replicating the blur inherent within the prediction map.

A.9 MORE QUANTITATIVE RESULTS

More quantitative results are presented in Table 5. All the metrics are evaluated with in-domain
settings which are the same as those in Section 4.3. After applying our PostCast, the CSI-avg. score
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Figure 10: Visualization of a one-hour prediction by EarthFormer on the SEVIR dataset. From left
to right, the three maps represent the PostCast output, output convolved with the optimizable blur
kernel at time t = 0, and the prediction map. The convolved map closely resembles the prediction
map, indicating that the model’s blur kernel is effective in constructing and simulating the blur in
the prediction map.

increases in SEVIR, TAASRAD19, Shanghai, and SRAD2018, while slightly decrease in HKO7.
It indicates that our PostCast boosts the accuracy of precipitation nowcasting in most cases. Image
quality scores SSIM and PSNR are also computed. However, the PSNR and SSIM scores often
penalize synthetic high-frequency details as demonstrated in Google SR3 (Saharia et al., 2022b),
such as for the small-weather systems in weather prediction, the shape and position of local patterns
may slightly deviate from the ground truth which may also result in inferior PSNR and SSIM scores
but could be tolerated in applications. Moreover, these scores are not strongly related to nowcasting
skills evaluated by the CSI. As a postprocessing method of precipitation nowcasting, our PostCast
mainly focuses on improving meteorological metrics such as CSI and HSS.

A.10 MORE VISUALIZATION RESULTS

We provide more visualizations in Figure 12 11 13 14 15 16 17.
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Table 5: The quantitive comparisons on average CSI scores, SSIM, and PSNR.
Model SEVIR HKO7 TAASRAD19 Shanghai SRAD2018

CSI-avg. SSIM↑ PSNR↑ CSI-avg. SSIM↑ PSNR↑ CSI-avg. SSIM↑ PSNR↑ CSI-avg. SSIM↑ PSNR↑ CSI-avg. SSIM↑ PSNR↑
TAU 0.294 0.666 21.98 0.271 0.642 21.59 0.179 0.799 27.38 0.221 0.739 21.52 0.198 0.635 27.51
+ours 0.305 0.648 21.92 0.266 0.682 20.66 0.192 0.708 25.27 0.231 0.750 20.60 0.231 0.750 20.60

PredRNN 0.288 0.673 22.30 0.241 0.666 20.99 0.151 0.785 26.95 0.182 0.772 21.37 0.183 0.800 27.23
+ours 0.299 0.659 21.44 0.238 0.684 19.83 0.177 0.709 25.11 0.205 0.772 19.79 0.205 0.772 19.79

SimVP 0.301 0.651 22.83 0.282 0.665 21.38 0.157 0.797 27.48 0.202 0.752 20.71 0.213 0.773 27.55
+ours 0.312 0.645 22.18 0.263 0.680 20.30 0.193 0.710 25.61 0.202 0.758 19.74 0.202 0.758 19.74

EarthFormer 0.288 0.673 22.79 0.270 0.617 21.53 0.169 0.793 26.59 0.205 0.772 21.09 0.201 0.699 27.23
+ours 0.308 0.653 21.73 0.270 0.656 20.65 0.182 0.713 25.21 0.217 0.769 18.57 0.217 0.769 18.57

DiffCast 0.270 0.628 20.27 0.263 0.594 19.90 0.167 0.759 25.15 0.205 0.674 19.94 0.198 0.627 21.65
CasCast 0.246 0.591 18.55 0.232 0.687 17.92 0.136 0.704 23.29 0.171 0.758 18.85 0.167 0.785 18.63
DGMR 0.110 0.169 15.34 0.133 0.088 14.71 0.058 0.267 14.66 0.066 0.074 12.55 0.068 0.066 10.58
STRPM 0.237 0.612 22.28 0.172 0.692 20.61 0.115 0.536 22.25 0.158 0.783 20.50 0.156 0.812 26.42

DGP 0.284 0.662 22.29 0.254 0.694 20.76 0.149 0.710 25.22 0.186 0.787 20.34 0.189 0.820 26.98
GDP 0.128 0.307 20.99 0.046 0.111 20.60 0.029 0.335 20.10 0.046 0.096 18.83 0.067 0.063 19.28

Observations 

Blurry 
predictions

+PostCast

Figure 11: Visualization of applying our PostCast on 5 datasets at time step 12 when the spatiotem-
poral prediction model is PredRNN.
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Observations 

Blurry 
predictions

+PostCast

Figure 12: Visualization of applying our PostCast on 5 datasets at time step 12 when the spatiotem-
poral prediction model is SimVP.

Observations 

Blurry 
predictions

+PostCast

Figure 13: Visualization of applying our PostCast on 5 datasets at time step 12 when the spatiotem-
poral prediction model is EarthFormer.
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Blurry predictionsObservations +PostCast +DiffCast +CasCast

(a)

(b)

(c)

Figure 14: Visualization of applying our PostCast on the out-of-distribution datasets at time step
12 when the spatiotemporal prediction model is TAU. (a): SCWDS CAP30. (b): SCWDS CR. (c):
MeteoNet.

Blurry predictionsObservations +PostCast +DiffCast +CasCast

(a)

(b)

(c)

Figure 15: Visualization of applying our PostCast on the out-of-distribution datasets at time step 12
when the spatiotemporal prediction model is PredRNN. (a): SCWDS CAP30. (b): SCWDS CR.
(c): MeteoNet.
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Blurry predictionsObservations +PostCast +DiffCast +CasCast

(a)

(b)

(c)

Figure 16: Visualization of applying our PostCast on the out-of-distribution datasets at time step 12
when the spatiotemporal prediction model is SimVP. (a): SCWDS CAP30. (b): SCWDS CR. (c):
MeteoNet.

Blurry predictionsObservations +PostCast +DiffCast +CasCast

(a)

(b)

(c)

Figure 17: Visualization of applying our PostCast on the out-of-distribution datasets at time step 12
when the spatiotemporal prediction model is EarthFormer. (a): SCWDS CAP30. (b): SCWDS CR.
(c): MeteoNet..

22


	Introduction
	Related work
	Precipitation nowcasting
	Image deblur with diffusion models

	Method
	Explicitly modeling of the blurriness in precipitation nowcasting
	Unsupervised deblur for any blur modes in precipitation nowcasting
	Zero-shot blur estimation mechanism
	Auto-scale gradient guidance strategy


	Experiments
	Implementing details
	Evaluation metric
	Evaluation on multiple datasets
	Evaluation at any lead time
	Deblurring on out-of-distribution datasets
	Ablation study

	Conclusion
	Appendix
	Limitations and future work
	Varing blur modes
	Preliminary
	Empirical formula of guidance scale
	Details of evaluation thresholds
	Dataset descriptions
	Implementing details of ablation study
	Recovering the blurry predictions by applying blur kernels
	More quantitative results
	More visualization results


