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Abstract: Mobile manipulation is the fundamental challenge for robotics in as-
sisting humans with diverse tasks and environments in everyday life. Conventional
mobile manipulation approaches often struggle to generalize across different tasks
and environments due to the lack of large-scale training. However, recent ad-
vances in manipulation foundation models demonstrate impressive generalization
capability on a wide range of fixed-base manipulation tasks, which are still limited
to a fixed setting. Therefore, we devise a plug-in module named MoTo, which can
be combined with any off-the-shelf manipulation foundation model to empower
them with mobile manipulation ability. Specifically, we propose an interaction-
aware navigation policy to generate robot docking points for generalized mobile
manipulation. To enable zero-shot ability, we propose an interaction keypoints
framework via vision-language models (VLM) under multi-view consistency for
both target object and robotic arm following instructions, where fixed-base ma-
nipulation foundation models can be employed. We further propose motion plan-
ning objectives for the mobile base and robot arm, which minimize the distance
between the two keypoints and maintain the physical feasibility of trajectories.
In this way, MoTo guides the robot to move to the docking points where fixed-
base manipulation can be successfully performed, and leverages VLM generation
and trajectory optimization to achieve mobile manipulation in a zero-shot manner,
without any requirement on mobile manipulation expert data. Extensive experi-
mental results on OVMM and real-world demonstrate that MoTo achieves success
rates of 2.68% and 16.67% higher than the state-of-the-art mobile manipulation
methods, respectively, without requiring additional training data.
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1 Introduction

Mobile manipulation empowers robots with the ability to perform complex manipulation tasks
across large spaces, which requires controlling both the mobile base and the robotic arm [1, 2, 3].
With the increasing popularity of intelligent robotic systems, several fields such as household ser-
vice [4, 5], manufacturing [6], and logistics [7] are in urgent demand of mobile manipulation capa-
bilities since robots need to perform cross-space manipulations autonomously. However, the require-
ments to perform diverse tasks in unstructured environments (e.g., assisting humans in their daily
lives) present significant challenges. Therefore, designing a general mobile manipulation framework
for real-world deployments is desirable.

Existing mobile manipulation approaches [8, 9] propose end-to-end frameworks to jointly search
the navigation and manipulation action spaces to improve performance. However, the end-to-end
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Figure 1: MoTo can be plugged into any fixed-base manipulation model and transferred to mobile
manipulation tasks in a zero-shot manner, enabling generalized mobile manipulation.

mobile manipulation policy models lack training on large-scale mobile manipulation datasets due
to extremely expensive collection costs for mobile manipulation demonstration, which results in
low generalization across tasks and environments. On the other side, the emerging manipulation
foundation models [10, 11, 12] have demonstrated high generalization capabilities across different
manipulation tasks and diverse deployment scenes. However, these models are not able to pre-
dict the movement of the base and thus are limited to fixed-base manipulation tasks. A natural
idea is to build a mobile manipulation framework by directly patching together the LLM or VLM
with the manipulation foundation models. Conventional mobile manipulation frameworks employ
navigation [13, 14] and fixed-base manipulation [15, 16] modules separately to accomplish mobile
manipulation tasks. However, naive combining navigation and manipulation results in compounding
errors since the large gap between the goals of navigation and manipulation [17]. Finding suitable
navigation docking points for interaction remains a huge challenge in mobile manipulation tasks.

In this paper, we propose to solve the problem of mobile manipulation with an interaction-aware nav-
igation policy, namely Move and Touch (MoTo). MoTo is a zero-shot plug-in that can be combined
with any off-the-shelf fixed-base manipulation model and empower it with mobile manipulation
ability. The proposed interaction-aware navigation policy generates suitable base docking points for
the robot to successfully perform manipulation, which are inspired by the fact that the robot can
perform subsequent fixed-base manipulation actions on the docking points where its arms can reach
the target object interaction region. We prompt the vision-language model (VLM) to generate task-
related keypoints on the target object and robotic arm to enable zero-shot mobile manipulation. We
can control the robot by solving an optimization problem that minimizes the distance between the
two keypoints and considers several additional constraints, including collision avoidance, smooth-
ness, and arm margin. Figure 1 illustrates the proposed approaches. MoTo efficiently transfers
manipulation foundation models to diverse mobile manipulation tasks, where the mobile base and
the robot arm coordinately perform actions with physically feasible trajectories. Extensive experi-
mental results on OVMM [18] and real-world demonstrate that MoTo achieves 2.68% and 16.67%
higher success rates compared to state-of-the-art mobile manipulation techniques, respectively.

2 Related Works

Mobile Manipulation Frameworks: Existing mobile manipulation frameworks can be categorized
into end-to-end and modular based on the model structure. The end-to-end approaches [19, 20,



21, 22] directly map visual observations to the mobile manipulation action space. M?Diffuser [23]
guides the diffusion process with various energy terms to ensure that the trajectory of the mobile
manipulation follows the physical constraints. However, end-to-end approaches require extensive
training data leading to high costs [24]. The modular mobile manipulation framework [18, 25, 26]
benefits from off-the-shelf navigation and manipulation frameworks exhibiting outstanding data effi-
ciency. IALP [27] leverages LLM reasoning capability to generate manipulation actions in a closed-
loop interactive manner. MoManipVLA [3] achieves data-efficient generalized mobile manipulation
via optimization of the base waypoints to ensure that the VLA prediction trajectories are feasible.
AMR [28] and LIMP [29] leverage language instructions to guide robots to target poses, demon-
strating the potential of vision-language navigation for mobile manipulation. However, naively
combining navigation and manipulation complicates instructions and leads to compounding errors,
as humans may not know optimal base positions for manipulation.

Trajectory Optimization: Trajectory optimization is important for robots to perform precise ma-
nipulation actions. Early research [30, 31, 32] due to the hand-crafted cost terms restricts deploy-
ment in diverse and complex environments. To improve scalability, researchers focus on data-driven
learnable methods. Contact-GraspNet [33] and O20-Afford [34] generate trajectories with learned
grasping poses and object affordances, respectively. Diffusion policy-based methods [35, 36] learn
collision-free trajectories directly from expert episodes and achieve promising performance. More
recently, foundation-model-based frameworks like VoxPoser [37] and ReKep [38] leverage pre-
trained priors to infer physical constraints, which significantly improve generalization. Inspired by
ReKep, we propose a multi-view voting strategy to generate scene-level interaction keypoints to
fine-grain guide mobile manipulation trajectory generation.

3 Problem Statement

Our goal is to enable robots to perform long-horizon mobile manipulation tasks with strong gener-
alization ability to unseen environments and goals. The task is described by a free-form language
instruction 7. For example, “I need to drink water”, the robot should first pick up a bottle, put the
bottle on a water dispenser, add water to the bottle, and place the bottle on a table near the human.

We consider a wheeled robot equipped with single or dual arms and RGB-D cameras. At each time
step ¢, the robot receives RGB-D observations (s¢, {s¥}), and executes actions (a??*¢, {a¢"™}),
where s{ is the observation from the exterior camera which captures the scene in front of the robot,
{5} is the observation from wrist camera, a?**¢ is a 2-DoF robot base movement and {a?"™} is

6-DoF arm pose and gripper status for each robotic arm.

Note that this work focuses on a general plug-in framework for mobile manipulation. We assume
off-the-shelf fixed-base manipulation policies are available, which can complete low-level language
instruction 7T;,. Here, the task specified in 7y;, must be completed with the fixed robotic base.

This work addresses the problem of determining base docking points from which the robotic arm
can reach and manipulate the target object successfully.

T
min > O(07**¢, {07 })
1=0 (D
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This equation represents the overall optimization objective O for the mobile manipulation trajectory.

With the fast development of manipulation foundation models [37, 11, 12, 38], we believe this
assumption is reasonable and feasible. And what we should accomplish is a general plug-in that
can be combined with any off-the-shelf fixed-base manipulation model and empower it with mobile
manipulation ability.
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Figure 2: The pipeline of MoTo. Based on robot scanning RGB-D observation to get 3D scene point
clouds and graphs, we utilize VLM and multi-view consistency voting to get interaction keypoints,
and generate mobile manipulation trajectories via proposed cost constraint optimization.

4 Approach

4.1 Interaction-aware Navigation

Most mobile manipulation tasks can be decomposed into subtasks, each involving a single target
object. For example, 7 "I want to drink milk.” can be divided into: (1) pick up a bottle; (2) place
the bottle on the table; (3) pick up the milk, etc. Each subtask has one target object (in bold). Two
objects are involved in subtask (2): one in the robot’s gripper and another to be interacted with,
the latter being defined as the target object. We assume each subtask can be completed by first
navigating and then manipulating with a fixed base'. Since fixed-base manipulation policies are
available, the main challenge for our work is how and where to move, i.e., the last-mile challenge.

Determining how and where to move is a non-trivial problem that cannot be solved by a pure nav-
igation policy. A robot must stop at a docking point for feasible manipulation, where the target
object is at a suitable orientation and distance with no significant obstacles. Since high-quality
mobile manipulation data is limited, we tackle this problem in a zero-shot manner by introducing
interaction-aware navigation. We observe that a subtask becomes easy with a fixed base if (1) the
robot can reach the interaction-relevant keypoints of the target object and (2) the arm retains suffi-
cient motion margin. The keypoints must be part-level. Imagine the robot is going to open a fridge.
The robot cannot open without moving the base if it reaches the back of the fridge. Similarly, the
robot must choose context-specific interaction points. If the gripper is empty, the end-effector can
be used; if holding a tool, such as a broom, the relevant part (e.g., broom tip) must engage with the
environment (e.g., contacting trash on the floor). Based on this insight, interaction-aware navigation
decomposes the movement problem into two subproblems: (1) identifying the target keypoint (TK)
on the object and the arm keypoint (AK) on the manipulator, and (2) controlling the robot to move
until TK and AK are aligned for interaction.

Approach Overview. To accurately ground instruction 7 to objects in the scene, we first let the
robot scan the whole scene and reconstruct a 3D point cloud P € RY*3 along with a 3D scene
graph G = (N, €). Each object node in N stores the 3D coordinate, 3D instance mask and several

'Navigation is optional; if the robot can operate the target object with its arm without moving the base, this
step is unnecessary. We do not consider tasks requiring simultaneous base and arm movement, such as opening
a door with a rotating handle.



object-centric images {I}, ..., I¥ } of an object o;,. The edge in & indicates the spatial relationship
between two objects, such as “inside” and “on top of””. With G, we can prompt an LLM to perform
task planning based on the existing objects and their relationship:

{(71’01)7"'7(7;“071)} :LLM(T,Q) (2

where Ty, is the k-th subtask. o, € A is the corresponding target object, which should be explic-
itly referred to in the language description of 7. We can also query the object-centric image set
{IF, ..., IF} from G with 0. Based on these, we leverage vision-language models (VLM) to obtain
target keypoint PkT and arm keypoint 7?,? in the world coordinate system:

PL = V(VLM(Ti. {1}, ..., I5}), P)

3
P, = D(VLM(Ts, {s°}), Ex) @

where we consider the scene point clouds P in the world coordinate system. I' represents
the mapping function from the robot arm coordinate system to the camera coordinate system.
VLM(Ty, {IF,...,I¥}) generates target keypoint proposals in different images, which are then ag-
gregated with a voting module V. VLM(Ty, {s¥’}) first generates arm keypoint in the robot’s coor-
dinate system, which is then transformed to the world coordinate system via the mapping function
T" using the robot-to-world transformation F, acquired with off-the-shelf SLAM method. Note that
P,ét is a function of the position and pose of the robot base and arm. Therefore, the robot’s action
(abe¢ {ag™™}) can be solved as an optimization problem, which aims to minimize the distance
between TK and AK as well as following several constraints:

T
argmin Y [|Pf — P, (67, {67 })|| + Ce )

ayipe {afii 1=1

where 02%*¢ and {#¢"™} represent the position and pose of robot base and arm respectively. C; is
the additional constraints. We will detail Eq (3) and (4) in Section 4.2 and 4.3 respectively.

4.2 VLM-based Keypoint Generation

Since high-quality data on instruction-affordance pairs is limited, training a model to generate rea-
sonable TK and AK according to text description 7 is very challenging. However, we notice that
although current models are unable to directly generate task-related keypoints on an object, VLMs
demonstrate great ability to select a proper keypoint among a set of candidates given the task descrip-
tion. Therefore, we propose a two-stage VLM-based method to generate keypoints for an image,
which is divided into keypoint proposal stage and keypoint selection stage.

Keypoint Proposal. In this stage, we exploit visual cues in the given image to generate several key-
point proposals. Without any language information, we aim to find out all representative actionable
points in an image as proposals. Note that this is more challenging than part segmentation, because
actionable points may not have significant color or texture differences. For example, to close a lap-
top we should push the back of the screen, to lift a table we should hold both centers of its opposite
edges. These points to be interacted with do not belong to a specific part. Current segmentation
models can only segment a laptop into screen and keyboard, and a table into surface and legs, which
cannot provide detailed, actionable locations. Inspired by ReKep [38], we adopt DINOv2 [39] to
extract pixel-wise representation of the image, where semantically meaningful regions show larger
activations. Then we apply SAM [40] to extract fine-grained part-level masks. Finally, in each seg-
mented mask, we apply clustering on the DINOv2 features normalized with depth information, and
select the center of each cluster as the keypoint proposal’.

Keypoint Selection. Given the extracted keypoint proposals, we index and plot them on the image.
We then prompt VLM with this modified image as well as the task description 7. VLM will select
the most suitable keypoint from the proposals.

2If no keypoints are provided, the end-effector’s proprioceptive position is used as the default.



We adopt a two-stage pipeline to obtain AK. Firstly, extracting the wrist keypoint from the RGB-D
observation s3’, then projecting it to 3D space using E;. If the gripper is empty, we skip this process
and directly set the end-effector’s 3D position as AK. For dual-arm robots, both arms may output
keypoints, which confuses the following optimization process. To address this, we adopt VLM as a
binary classifier to select a specific arm for the current subtask, ensuring only one AK contacts TK.
The VLM is prompted with 7, the Euclidean distances from each end-effector to the target, and the
gripper contents (“empty” or object category) to determine the appropriate arm.

Multi-view Voting for TK. Different from AK, TK should be generated on the target object, which
may be far away from the robot and is harder to be backprojected accurately. So we further propose
a voting module V to aggregate multi-view predictions into the final TK in 3D space.

To enable robust voting, we modify the keypoint selection prompt to let VLM select the top V' most
relevant keypoint proposals. In this way, we generate V x m keypoints for the image set {IF, ..., I* }
of target object. These keypoints are projected to 3D space with corresponding depth images and
camera parameters, which are denoted as Px € R(Vxm)x3  We then utilize Pk to vote for the
points P in the scene:

Vxm

V(P P) = argmax Y I(||P(i) = Px(j)|l2 — 7) )
K2 j:1

where [ is an indicator function that converts negative values to 1 and others to 0, and 7 is a Euclidean
distance threshold. We use the voting result to index P and obtain the 3D point of TK.

4.3 Keypoint-guided Optimization

With the generated TK and AK, now we solve an optimization problem to make them touch with
each other to control the robot moving to a right point. Since the robot-to-world transformation Ej,
depends on the position and pose of robot base and arm, the arm keypoint P,?t can be written as a

function of #2*5¢ and {#?"™}. Note that we have:
a?ase _ Aai)ase’ {aztzrm} — A{a;zrm} (6)
Therefore by formulating C; as the function of §2°¢ and {#3"™}, we can solve Eq (4) to obtain

the optimal trajectories of robot base and arm, from which the actions can be easily derived with
Pinocchio IK solver [41].

In addition to making TK and AK touch each other, we also need to design constraints C; to ensure
the smooth execution of the control, including collision avoidance, control smoothness, and the
margin of the robotic arm. We formulate three cost functions to achieve this:

Ce(07° {0™Y) = Ff + FY + T (7

Collision Cost. The robot is required to avoid any collision with objects in the scene to ensure safety
during the mobile manipulation process. We uniformly sample N, query points on the robot surface
Q to evaluate the collision cost:

N(I
Fi =Y max(0, e — D(qf, P)), qf € Q6. {6;"™}) (8)
j=1

where q§ means the j-th query point, €y is a hyperparameter that controls the safety margin for
collision avoidance. D(qﬁ-7 P) means the distance between q§ and the scene point clouds P. We
expect the distance between the robot surface and the scene can be maximized if it is within the
safety margin. Otherwise, the collision cost will not influence the control of the robot.

Smoothness Cost. This cost keeps continuous and smooth changes for joint angles of the robot arm
and translation and rotation of the base, where sudden changes are avoided to maintain the safety of
the motor and the embodiment. We define trajectory smoothness as the difference of joint angles 8*
of the arm and proprioception of the base between consecutive poses in the candidate trajectory:

Fi = 116023 — 002 + > 11655 — 07 |2 ©)



Table 1: Comparison results on the OVMM benchmark. Partial success rates indicate the execution
of each stage, conditioned on the success of the preceding one. “RL” and “Heuristic” refer to object
placement methods based on RL and heuristics, respectively. The RL method is used by default.

Partial Success Rates Overall Average

Method Step
FindObj (1) Pick (1) FindRec (1) SR SR
Home-Robot (RL) 66.60% 61.10% 50.90% 14.80%  48.30%  1132.5
Home-Robot (Heuristic) 65.40% 54.80% 43.70% 7.30% 42.80% 1009.8
UniTeam [43] 66.13% 62.65% 54.69% 17.96%  50.36%  1027.7
Home-Robot w/ L3MVN 68.10% 60.14% 57.46% 1528%  50.25%  1084.3
OpenVLA w/ L3MVN 68.28% 60.68% 58.00% 16.09%  50.76%  1191.5
Home-Robot w/ MoTo (Ours) 65.24% 60.23% 50.40% 18.32%  48.55% 11522
OpenVLA w/ MoTo (Ours) 66.67% 60.95% 49.87% 20.64%  49.53%  1195.1
Table 2: Ablation experiments for optimization cost terms and keypoint generation variants.
Method Partial Success Rates Ovselliall Avgliilge
FindOb;j (1) Pick (1) FindRec (1)
w/o Collision 66.93% 60.95% 49.24% 18.50% 48.91%
Cost w/o Smoothness 66.76% 61.48% 49.60% 19.75% 49.40%
w/o Margin 65.95% 60.77% 50.04% 17.87% 48.66%
SAM+CLIP 66.31% 58.36% 50.58% 20.29% 48.88%
K int SAM+ViT 65.95% 57.19% 49.87% 20.46% 48.37%
eypo w/o Fusion 66.13% 56.21% 49.96% 15.19%  46.87%
Single View 66.49% 58.27% 50.04% 17.61% 48.19%

We leverage the joint angle solved via IK for smoothness constraint instead of the proprioception of
the arm, because small changes in the arm pose cannot guarantee slight difference in joint angles.

Margin Cost. When AK and TK make contact, a large margin is required for the robotic arm to
enable subsequent fixed-base manipulation. We define the horizontal distance between the end-
effector and the robot base center as the arm radius r, bounded by constants 7, and 7,,4.. Given
the robot’s design, 7 is a function of the arm pose r = g(6¢"™). The margin cost is defined as:

Tmin + T
Ft =1l = g0l (10)
In this way, the robotic arm will not be too curved or too extended, ensuring that it has a large margin
to operate.

In the process of optimization solving, the decision variables include the robotic arm joint angle
{6¢™™} and base pose 622%¢. Specifically, we generate initial solution proposals for the next time
step from the search space and calculate the cost relative to the optimization objective for each
proposal. Using the Dual Annealing [42] algorithm, we iteratively update the initial solutions based
on the change in cost, continuing this process until the cost is reduced below a predefined threshold.

S Experiment

5.1 Comparison with State-of-the-art Methods

Table 1 demonstrates the performance of MoTo on the OVMM [18] validation set compared to the
baseline, decomposing it into four sequential stages: finding the target (FindObj), grasping (Pick),
finding the container (FindRec), and placing (Overall SR). Our training and testing methods fully
comply with the OVMM baseline settings (Home-Robot). The implementation details are in Ap-
pendix A.l. The similar success rates in stages FindObj and Pick are due to MoTo’s focus on
interaction-aware navigation, which is invoked only after finding a container without exploring it.
As shown in Table 1, Home-Robot w/ MoTo outperforms Home-Robot (RL), achieving a 3.52%
higher overall success rate. With a stronger manipulation foundation (e.g., OpenVLA [11]), MoTo’s
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Figure 3: Real-world experimental results. All methods are run 10 times on the three types of mobile
manipulation tasks, where the dots represent the performance of each test (Best view in color).

success rate further improves by 2.32%. We also compare MoTo with the conventional navigation
framework L3MVN [44]. Since L3MVN only ensures proximity to the target while ignoring the
feasibility of subsequent manipulations, it yields only a marginal overall success rate gain of 0.48%,
despite a 6.65% improvement in the FindRec stage.

5.2 Ablation Study

Table 2 reports a systematic ablation of our full MoTo pipeline in OVMM, isolating the contribution
of each optimization cost term and keypoint design choice, where w/o Fusion denotes that no voting
is applied on the generated multi-view keypoints, and Single View means only the view with the
most target pixels is utilized. Experimental results demonstrate that each constraint cost in MoTo
can improve performance. Since the OVMM involves only the pick and place task, the margin cost is
more important than the others and determines whether the arm can reach the target position or not.
We further investigated variants of the keypoint extraction and fusion pipeline. The inconsistency of
multi-view keypoints in the “w/o Fusion” setting results in a serious performance drop (2.42% lower
success rate compared to Single View), because the cluttered keypoints fail to provide effective
guidance. Wrong interaction keypoints will result in the robot moving elsewhere due to physical
constraints that prevent it from performing fixed-base manipulation actions. The choice of visual
foundation model for keypoint extraction has little impact on MoTo; replacing DINOv2 with CLIP
or ViT still yields high performance.

5.3 Real World Experiments

The OVMM baseline cannot be directly deployed in the real world due to the sim-to-real gap. To
validate the plug-in scalability of MoTo, we integrated fixed-base manipulation models (AnyGrasp,
iDP3, RDT-1B) covering heuristics, diffusion policy, and foundation models (Fig. 3). Compared
to conventional navigation with fixed-base manipulation, MoTo consistently improves performance
across all tasks, demonstrating both efficiency and scalability. AnyGrasp, limited to grasping, per-
forms poorly on complex interaction tasks. Interestingly, iDP3 and AnyGrasp outperform RDT-1B
in mobile manipulation, owing to stronger viewpoint generalization from 3D point cloud observa-
tions. These results highlight 3D egocentric manipulation policies as a promising direction for future
mobile manipulation.

6 Conclusion

In this paper, we introduce MoTo, a plug-in interaction-aware navigation module that enables zero-
shot transfer of fixed-base manipulation models to mobile manipulation tasks. MoTo employs vision
foundation models to generate interaction keypoints and leverages multi-view consistency to fuse
them, providing accurate guidance for base and arm motion planning. We further design motion
planning objectives based on arm and goal keypoints with cost constraints to enhance trajectory fea-
sibility. Extensive experiments in both simulation and the real world demonstrate the effectiveness
of MoTo and its scalability across diverse manipulation models.



7 Limitation

Although the proposed MoTo can be plug-and-play with any off-the-shelf fixed-base manipulation
model for efficient mobile manipulation, real-world deployments still have some limitations. First,
MoTo lacks the ability to reconstruct the scene online, which prevents deployment in dynamic en-
vironments. Second, MoTo relies on interaction-aware navigation to generate docking points for
fixed-base manipulation models but does not incorporate sufficient whole-body control policies,
making it struggle with complex tasks such as door opening. Third, MoTo makes a strong assump-
tion that all relevant objects are fully observable within the agent’s current view and at sufficient
resolution to allow reliable keypoint extraction (e.g., ‘we first let the agent scan the whole scene’).
This assumption limits robustness in partially observable or cluttered settings.

In future work, we plan to equip MoTo with incremental online scene reconstruction and perception
algorithms to handle dynamic and partially observable environments. Additionally, we aim to in-
tegrate cost constraints directly into policy generation (e.g., during the denoising step of Diffusion
Policy) to produce fine-grained whole-body control trajectories, thereby enabling more challenging
mobile manipulation tasks.
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A Implementation Details
A.1 Simulator Experiment

The OVMM benchmark consists of 60 extensive indoor scenes and contains more than 18k 3D mod-
els of everyday objects. OVMM utilizes Hello Robot as an agent to perform the “Move a target object
from container A to container B” mobile manipulation task. We utilize an OVMM-heuristic base-
line to collect manipulation expert trajectories that include robot proprioception, action, and visual
observations to fine-tune off-the-shelf manipulation foundation models. The simulator experiments
are training and testing on 8 RTX 3090 GPUs. MoTo leverages ConceptGraph [45] to build 3D
scene point clouds and scene graphs from RGB-D inputs. The object nodes and edges in the scene
graph are converted into a structured description to query the VLM for target identification.

Wrist
Camera

Frontal
Camera

il
Cook the Food

Get Some Water

Figure 4: Real-world experimental platforms and deployment environments.
A.2 Real World Experiment

For the real-world experiments, we use HEXMOVE as the base and two PiPER robotic arms to
build a dual-arm mobile manipulation robot, which is equipped with a Femto Bolt RGB-D sensor
as the head camera to acquire high-quality scene point clouds, and two Gemini 336L. RGB-D sen-
sors as the wrist cameras to assist in the manipulation task execution. Meanwhile, an Intel tracking
camera T265 is employed to acquire the robotic camera poses to reconstruct the deployment scene.
We recognize scene target objects and task planning using GroundingSAM [46] and GPT-4o, re-
spectively, which ensure the zero-shot generalization ability of the overall framework. MoTo also
leverages ConceptGraph [45] to build 3D scene point clouds and scene graphs from RGB-D inputs.
Figure 4 further demonstrates the real-world experiment platform and environment. The real-world
experiments are all performed on a single RTX 4060 GPU.

A.3 Training Details

In the OVMM simulator, we collect expert demonstration data for pick-and-place during mobile
manipulation with heuristic baselines. To better fine-tune OpenVLA [11] to mitigate cross-robot
ontology differences, we collected a total of 20k data and fine-tuned 10k epoch on 8 RTX 3090
GPUs using the LoRA strategy. We ensured the diversity of viewpoints in the expert trajectories
during the collection process in order to achieve a higher viewpoint generalization.

For both RDT-1B [12] and iDP3 [47] manipulation policies, we collected fine-tuning data in a realis-
tic kitchen environment, spanning three long-horizon tasks—Arrange various food items, Dispense
hot water from a water dispenser and mix with cold water, and Cook food—each decomposed into 2-
5 subtasks (e.g., “pick up ingredient,” “align container,” “adjust water temperature”) with 50 expert
demonstrations per task.

99 <

RDT-1B: The RDT-1B policy uses dual-arm 6-DOF joint positions, gripper open/close angles, and
synchronized RGB streams (640x480 @ 30 Hz) from three cameras—one frontal and two mounted
on the left and right grippers—as inputs. We fine-tuned the model for 150,000 gradient steps on 8
NVIDIA RTX 4090 GPUs (total batch size 128) using the AdamW optimizer (learning rate 1x 10™%,
weight decay 1 x 10~2), following the default RDT-1B configuration.
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Table 3: Real-world task instructions. The target is the object to be interacted with, and the subgoal
is the condition that needs to be completed.

Type | Instruction | Target | Subgoal

Give me a banana Banana
Get some food for me
Bring me food |I want to eat some food

—_

Strawberry, . Grasp the target
Banana or Lemon | 2. Place the target in the plate

I am hungry
I want to eat a strawberry Strawberry
I want a cup of water Cup 1. Grasp the target
I want to drink water Cu 2. Fetch hot water
Serve me water | I need drink Mu orpéowl 3. Grasp target filled with cold water
Give me some water, please! & 4. Mix hot and cold water
5. Put down the targets
Prepare a launch 1. Grasp the target
Make some salad Banana, Strawberry | 2. Put the target in the Pan
Prepare a meal | Warm up the food or Corn 3. Grasp the bowl
Cook for a meal 4. Grasp the cooked target
5. Put the target in the Bowl

iDP3: The iDP3 policy takes dual-arm 6-DOF joint positions, gripper angles, and point-cloud
frames (640480 depth — 3D XYZRGB) from a frontal Orbbec Femto Bolt (20 Hz) as inputs.
We reduced both the agent-state vector and action vector to 14 dimensions (7 per arm) to match
our dual-arm kinematics. Training was performed for 3,000 epochs on a single RTX 4090 GPU
(batch size 64) using Adam (learning rate 1 x 10~%, weight decay 1 x 1075). Validation perfor-
mance plateaued after approximately 2,500 epochs, and we selected the checkpoint with the lowest
validation loss.

B Real World Tasks and Metrics

B.1 Task Description

In real-world experiments, we have tested three types of task instructions to verify that MoTo can
fully utilize the off-the-shelf fixed manipulation model to accomplish the task requirements. Specif-
ically, each task corresponds to multiple instructions, and the robot needs to reason about the best
interaction goal as well as action planning based on the scene information. Details of the test tasks
are demonstrated in Table 3.

B.2 Metrics

We follow the metrics of [48] and use the success rate and task completion rate to measure real-world
mobile manipulation performance. For each instruction, the robot must complete the corresponding
subtasks in Table 3 for the manipulation to succeed. Task completion rate is the ratio of completed
subgoals to those necessary to complete a task, which reflects the progress of the robot in completing
the task. For example, in the “Serve me water” task, if the robot only successfully grasps and places
the target (e.g., a cup or bowl), but there is no water in the target, the task completion rate is 0.4.

C Optimization Algorithm

Navigation policy is one of the fundamental challenges of mobile manipulation, and it must ensure
that the generated base docking points are feasible for subsequent actions. Conventional navigation
methods only provide coarse docking point proposals that cannot be effectively applied to mobile
manipulation. For this reason, we propose the optimization objective of Eq. 1 with the cost con-
straint of Eq. 3 to ensure the feasibility of the docking point selection utilizing an optimization
search approach. Specifically, it is very difficult to search for mobile manipulation trajectories di-
rectly in large-scale scenes, and we use an existing navigation algorithm to move closer to the target
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“Serve me water.”

Manipulation Navigation

Manipulation Navigation

object to reduce the optimized search space, searching for the optimal arm joint angle {67"™} and
base pose 02?*¢ iteratively with the Double Annealing Algorithm, as illustrated in Algorithm 1.

Algorithm 1: Dual Annealing-Based Trajectory Optimization for Mobile Manipulation

Input: Initial base pose 08““, arm joint configuration {08””}, time horizon T, cost
function O, temperature schedule Ty,neai
Output: Optimized trajectory {#25¢ {erm 11T
1 fort =0toT do
Generate candidate proposals {(67%5¢, {f¢7m})F VI -
Evaluate cost for each proposal: Cj, = O(fas¢, {§arm 1) ; // Use Eq. (4)
Select best candidate (622%¢, {#¢™™}) = arg miny Cy;
repeat
Propose new candidate (éi’“se, {é;"m}) using Dual Annealing schedule Tnea;
Compute cost Cryeyy = O(O0%5¢ {3}
if acceptance criterion satisfied then
| Update current solution: (877¢, {0¢"™}) « (6y2s¢, {0¢"™});

10 Update annealing temperature Ty neq; < €00l (Tanneal);
11 until cost improvement < & or max iterations reached,

12 return {6} {677} }]

e % N R W N

D More Results

In this section, we present additional experimental results. We visualize mobile manipulation trajec-
tories for tasks “Serve me water” and “Prepare a meal” in Figure 5 to demonstrate the performance
of MoTo on mobile manipulation. We further show failure results to identify the limitations of the
existing work and better help relevant researchers to follow this work.
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Multi-view Keypoint Proposal Keypoint Voting Manipulation
Figure 6: Visualization results for keypoint generation. MoTo selects keypoint proposals (red points)
from multi-views, projects them into 3D space and votes to generate keypoints for manipulation.

Localization Failure Smoothing Failure Optimization Failure Operation Failure
Figure 7: Failure Cases in real-world experiments.

D.1 Manipulation Visualization

Figure 6 demonstrates the scene keypoint generation and mobile trajectory in task “Serve me water”.
MoTo first extracts keypoint candidates from multi-view RGB images with VLM, and then projects
them into the 3D space to vote for specific regions to be interacted with utilizing the consistency
of the viewpoints. Based on the key point guidelines, MoTo searches for mobile trajectories using
a zero-shot optimization algorithm, and generates feasible docking points for subsequent action, to
execute the subsequent fixed-base manipulation.

D.2 Failure Cases

Figure 7 illustrates 4 common failures in the experiment, which are analyzed as follows:

Smoothing Failure: In real-world experiments, the unsmoothed motion trajectory of the base re-
sults in high acceleration, triggering the protection mechanism, which leads to the failure of mobile
manipulation. The smoothing failure in Figure 7 illustrates that the neighboring waypoints on the
mobile manipulation trajectory are distant from each other, and the excessive acceleration of the
mobile base activates the protection mechanism, causing the banana to fall.

Localization Failure: SLAM is the key for the robot to reconstruct the scene, and also provides
real-time position information to the robot. Errors due to SLAM can cause the robot to stay in a
position far away from the specific target object.

Optimization Failure: Using the Dual Annealing algorithm sometimes gets stuck in a loop, causing
the robot to keep adjusting the base position repeatedly.

Operation Failure: Due to a series of errors such as SLAM, the robot stops at a different position
each time, which presents a challenge to the viewpoint generalization of the fixed-base manipulation
model. How to improve the viewpoint generalization of the manipulation policy is one of the key
bottlenecks in mobile manipulation.
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