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Abstract

We develop an analytical framework to character-
ize the set of optimal ReLLU neural networks by
reformulating the non-convex training problem
as a convex program. We show that the global
optima of the convex parameterization are given
by a polyhedral set and then extend this charac-
terization to the optimal set of the non-convex
training objective. Since all stationary points of
the ReLU training problem can be represented
as optima of sub-sampled convex programs, our
work provides a general expression for all criti-
cal points of the non-convex objective. We then
leverage our results to provide an optimal prun-
ing algorithm for computing minimal networks,
establish conditions for the regularization path of
ReLU networks to be continuous, and develop
sensitivity results for minimal ReLU networks.

1. Introduction

Neural networks have transformed machine learning. De-
spite their success, little is known about the global optima
for typical non-convex training problems, the solution path
of regularized networks, or how to prune networks without
degrading the model fit. This is in stark contrast to general-
ized linear models with /5 or ¢; penalties; for example, it
is well-known that the lasso (Tibshirani, 1996) has a piece-
wise linear path (Osborne et al., 2000; Efron et al., 2004),
a polyhedral solution set (Tibshirani, 2013), and admits
efficient algorithms for computing minimal solutions (Tib-
shirani, 2013). In this paper, we close the gap by studying
neural networks through the lens of convex reformulations.

One of the main challenges of neural networks is non-
convexity. For non-convex problems, stationarity of the
training objective does not imply optimality of the network
weights and so, to the best of our knowledge, no work has
been able to derive an analytical expression for the optimal
set. Convex reformulations provide a solution by rewriting
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Figure 1. Convex vs non-convex solution spaces for two-layer
ReLU networks. We plot the first feature of three different neurons;
the non-convex parameterization maps the compact polytope of
solutions for the convex parameterization into a curved manifold.

the non-convex optimization problem as a convex program
in a lifted parameter space (Pilanci & Ergen, 2020). We fo-
cus on the convex reformulation for two-layer networks with
ReLU activation functions and weight decay regularization.
The resulting problem is related to the group lasso (Yuan &
Lin, 2006) and induces neuron sparsity in the network.

Let Z € R™*4 be a data matrix and y € R™ associated targets.
The prediction function for two-layer ReLU networks is

m

fwiw, (Z) = Z (ZW1i)  wa,

=1

where W, € R™*4 1, € R™ are the weights of the first
and second layers, m is the number of hidden units, and
(), = max{-,0} is the ReLU activation. Fitting fy, .,
with convex loss L with weight decay (¢3) regularization
leads to the standard non-convex optimization problem:

. A
ain Ly (2).9) + 5 (WAl + wal3). 0

R(Wl ,'wz)

The regularization path or solution function of this training
problem is the mapping between the regularization parame-
ter A and the set of optimal model weights,

A
0" (N) = argmin L fis,ua(2) y) + RV, w). @)
Wi,we

In general, the optimal neural network is not unique and
O*(\) will be set valued. Indeed, there are always at least
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m/! solutions since any permutation of the hidden units yields
an identical model. We call the solution to a ReLU training
p-unique when it is unique up to permutations.

We study O* by re-writing Equation (1) as an instance of
the constrained group lasso (CGL). We make the following
contributions by analyzing CGL:

* We derive an analytical expression for the solution set
of two-layer ReLU networks and simple criteria for the
solution to be p-unique, i.e. unique up to permutation.

¢ We extend this characterization to show that the set of
stationary points of a two-layer ReLU model is exactly

C>\ = {(Wlan) . 2Ajg,Z)Za fW17w2(Z)::gﬁ7
Wi = (@/0)20;(D), wa; = (aiN)'2, (3)
; >0,i€m]\S = «a; =0},

where D is a set of sub-sampled activation patterns, {5
is the unique optimal model fit using those patterns,

and v;(D) are uniquely given by optimal parameters
for the dual of the convex reformulation. See Figure 1.

* We provide an optimal pruning algorithm that can be
used to compute minimal models — the smallest-width
neural networks which are optimal for a given dataset
and regularization parameter — and an intuitive exten-
sion for pruning beyond minimal models.

* We prove that the regularization path of ReL.U net-
works is discontinuous in general and establish suffi-
cient conditions for path to be closed/continuous.

* We give a simple algorithm for computing the unique
ReLU network corresponding to the min-norm model
in the convex lifting and, under additional constraint
qualifications, develop differential sensitivity results
for minimal ReLU networks.

In many cases, we obtain strictly stronger results for gated
ReLU networks (Fiat et al., 2019), which correspond di-
rectly to an unconstrained group lasso problem (Mishkin
et al., 2022). In particular, we give new sufficient conditions
for (i) the group lasso to be unique, (ii) global continuity of
the group lasso model fit, and (iii) weak differentiability of
the solution function for gated ReLU networks.

The paper is structured as follows: we cover related work in
Section 1.1 and introduce notation in Section 1.2. Then we
provide details for convex reformulations of neural network
in Section 2. Section 3 analyzes CGL and Section 4 inter-
prets these results in the specific context of two-layer ReLU
networks. Section 5 concludes with experiments.

1.1. Related Work

The Lasso and Group Lasso: Our work is most similar to
Hastie et al. (2007), who consider homotopy methods, and
Tibshirani (2013), who characterize the lasso solution set.

Limited results exist beyond the lasso. Tibshirani & Taylor
(2011) analyze the generalized lasso, while Yuan & Lin
(2006) show the group lasso is piece-wise linear when X
is orthogonal. Roth & Fischer (2008) partially characterize
the group lasso solution set, while Vaiter et al. (2012) derive
stability results and the degrees-of-freedom.

Convex Reformulations: Convex reformulations for neu-
ral networks have rapidly advanced since Pilanci & Ergen
(2020); convolutions (Ergen & Pilanci, 2021b; Gupta et al.,
2021), vector-outputs (Sahiner et al., 2021), batch-norm (Er-
gen et al., 2021), and deeper networks (Ergen & Pilanci,
2021a) have all been explored.

Neural Network Solution Sets: Characterizations of solu-
tion sets are largely empirical. Mode connectivity has been
studied extensively, Garipov et al. (2018); Draxler et al.
(2018). Nguyen (2019); Kuditipudi et al. (2019) attempt to
theoretically explain mode connectivity. Sensitivity is con-
nected to differentiable optimization layers (Agrawal et al.,
2019) and hypergradient descent (Baydin et al., 2017) We
refer to Blalock et al. (2020) for an overview on pruning.

1.2. Notation

We use lower-case a to denote vectors and upper-case A for
matrices. Ford € N, [d] = {1, ..., d}. Calligraphic letters
C denote sets. For a block of indices b; C [d], we write
Ay, for the sub-matrix of columns indexed by b;. Similarly,
ap, is the sub-vector indexed by b;. If M is a collection of
blocks, then A 4 is the submatrix and a4 the sub-vector
with columns/elements indexed by blocks in the collection.
Finally, | M| is cardinality of the union of blocks in M.

2. Convex Reformulations

Now we introduce background on convex reformulations.
Convex reformulations re-write Equation (1) as a convex
program by enumerating the activations a single neuron in
the hidden layer can take on for fixed Z as follows:

Dy = {D = diag(1(Zu > 0)) : u € R?} .

This set grows as |Dz| < O(r(n/r)"), where r := rank(Z)
(Pilanci & Ergen, 2020). Each “activation pattern” D; € Dy
is associated with a convex cone,

Ki={ueR*: (2D; — I)Zu = 0}.
If u € K;, then u matches D;, meaning D; Zu = (Zu)_, .

For any subset D C D, the convex reformulation is,

min L( 3 DiZ(v—us), y) +A D oilla+ il
’ D;eD D;eD 4)
s.t. v, u; € K.

Pilanci & Ergen (2020) prove that this program and Equa-
tion (1) are equivalent in the following sense: if D = Dy
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and m > m™ for some m* < n + 1, then the two programs
have the same optimal value and every solution to the con-
vex program can be mapped to a solution of the non-convex
training problem and vice-versa. Given a solution (v*, u*),
optimal weights for the ReLU problem are given by

Wi = o7 /\/I[o7 [l wai = \/[lv] ]
Wi = ui/\[lluill,  wa; = —/llwil],

where we use the convention that 0/0 = 0.

In practice, learning with Dy is intractable except when
the data are low rank. Mishkin et al. (2022) provide refined
conditions on D which are sufficient for Equation (4) to
be equivalent to the non-convex problem, while Wang et al.
(2021) show that the minimum of every sub-sampled convex
program is a stationary point of the ReLU training problem.

2.1. Gated ReLU Networks
An alternative is the gated ReLU activation function,

¢g(Z,u) = diag(1(Zg > 0))Zu,

where g € R? is a “gate” vector, which is also optimized.
The gated ReLU activation modifies the ReLU activation to
decouple the thresholding operator from the neuron weights.
Two-layer gated ReLU networks predict as follows:

h‘Wl,w2 (Z) = Z¢gl (Z, Wli)w2i' (6)
=1

Mishkin et al. (2022) show that this gated ReLU neural
network has the convex reformulation,

min L( 3 DiZwi,y) A Y Jwilles

D;eD D;eD

where decoupling the activations from the neuron weights
allows wu;,v; € K, to be merged. The solution mapping
for w* and conditions for for the convex program to be
equivalent to Equation (6) are similar to the ReLU case.

3. The Constrained Group Lasso

In this section, we develop properties of CGL, a generalized
linear model which captures both the convex ReLU and
convex gated ReLU programs. Let B = {by,...,b,,} be a
disjoint partition of the feature indices [d]. Given regulariza-
tion parameter A > 0, CGL solves the program:

) 1
pr(N)=min Fy(w):= 2 [ Xw=yllF + A > w2
b,eB ®)

s.t. Klj;wbi < Oforall b; € B,

where K, € RIP:I%a;  Solutions to Equation (8) are block
sparse when A is sufficiently large, meaning wy, = O subset

of ;. This is similar to the feature sparsity given by the
lasso, to which CGL naturally reduces when b; = {¢} and
Ky, = 0 for each b; € B. Although we consider squared-
error, our results generalize to strictly convex losses — see
Appendix C for comments.

The convex reformulations introduced in the previous sec-
tion are instances of CGL using the basis function X =
[D1Z ...D,Z], where p = |Dy|. For gated ReLU models,
K, = 0 while ReLU models set K;, = —Z " (2D; — I).
For both problems, block sparsity from the group ¢; penalty
induces neuron sparsity in the final solution.

Our goal is to characterize the solution function of CGL,

W*(A) := argmin F)(w)

. T,
w.Kbi Wy,

For a general data matrix, F\ is not strictly convex and
CGL may admit multiple solutions — these correspond to
networks which are not related by permutation. As such, W*
is a point-to-set map and we must use a criterion to define a
function; for instance, the min-norm solution mapping

w*(A) = argmin {||lw|]2 : w € W*(A\)},
defines a function for all A > 0.

Now we introduce notation that will be used throughout this
section. Let j(\) = Xw for w € W*(X) denote the optimal
model fit, which is the same for any choice of optimal w
(Lemma A.1). Similarly, define the optimal residual () :=
y — g(A) and ¢, (A) = Xb—:r()\) as the correlation vector
for block b;. We write ¢ € R¢ for the concatenation of these
block-vectors. Finally, let py, be the dual parameters for the
constraint K l]; wyp, < 0, p their concatenation, and K the
block-diagonal matrix with blocks given by Ky, .

The Lagrangian associated with Equation (8) is

1
L(w,p) = 5[ Xw—y|5+A > e,
b, eB

2+ (Kp,w). (9)

The constraints are linear, strong duality attains if feasibility
holds, and the necessary and sufficient conditions for primal-
dual pair (w, p) to be optimal are the KKT conditions:
Xy (Xw —y) + Ky, pv, + 55, =0
Kl;';wbi S 0
[pr]J ’ [Kbl];rwln =0 Vj € [abi]
Pb; >0,

(10)

where sp, € OM||wy,||2. Since the KKT conditions hold
for every combination of optimal primal-dual pair (Boyd
& Vandenberghe, 2014), we always use the min-norm dual
optimal parameter p* with no loss of generality. To sim-
plify our notations, we define vy, := ¢, — Ky, pj, . In what
follows, all proofs are deferred to Appendix A.
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3.1. Describing the Optimal Set
Stationary of the Lagrangian implies the equicorrelation set

&\ = {bi eB: ||Ub,i||2 = )\}

contains all blocks which may be active for fixed A. That is,
the active set Ay (w) = {b; : wp, # 0} satisfies Ay (w) C
&y for every w € W*(X). However, not all blocks in &)
may be non-zero for some solution. Thus, we define

S, = {bi eB:dwe W*(A),wbi 75 O},
which is the set of blocks supported by some solution.

Our first result combines KKT conditions with uniqueness
of §(A) to characterize the solution set for fixed A > 0.

Proposition 3.1. Fix A > 0. The optimal set for the CGL
problem is given by

W*()\):{wERd:Vbie‘S’)\,wbi =Qp, Vp, , O, > 0,

(11)
Vbj S B\S;waj =0, Xw= Q}

Since this characterization is implicit due to the dependence
on Sy, we also give an alternative and explicit construction
in Proposition A.2, which shows that when K = 0 we may
replace Sy with £,; We prefer Proposition 3.1 to Proposi-
tion A.2 since it better mirrors this simpler setting. However,
Proposition A.2 can be substituted wherever desired.

Now that we know “shape” of the solution set, it is possible
to obtain simple conditions for existence of a unique solu-
tion. As an immediate consequence of Proposition 3.1, the
solution map is a subset of directions in Null(X¢, ).

Corollary 3.2. Ifw,w’ € W*(\) and 2’ = w — W/, then
zg, € Nx:=Null(Xg, ) N {ze, : Vb € Ex, zp, =0, vy, } -
As a result, the group lasso solution is unique if N, = {0}.

Corollary 3.2 extends a similar result for the lasso to CGL
(Tibshirani, 2013, Eq. 9) and implies the solution is unique
for all A > 0 if the columns of X are linearly indepen-
dent. The corollary also provides a simple check for primal
uniqueness given a primal-dual solution pair.

Lemma 3.3. Fix A > 0. The solution to CGL problem is
unique if and only if { Xy, vp, } s, are linearly independent.

Note that a dual solution p is necessary to compute v in
general; By uniformizing over vp,, we obtain a stronger
condition that can be checked whenever £, is known, yet is
still weaker than linear independence of the columns of X.

Corollary 3.4. If the columns of Xg, are linearly indepen-
dent, then CGL problem has a unique solution.

Finally, we consider the special case when there are no
constraints and K = 0. In this setting, vy, = ¢, — the dual
parameters are trivially zero — and we can provide a global
condition which is much stronger than linear independence.

Proposition 3.5. [Group General Position] Suppose for
every £ C B, || < n+ 1, there do not exist unit vectors
2, € RI%| such that for any j € &,

ijzb]. S aﬁ?ne({Xbizbi i b, €€ \ bj})

Then the group lasso solution is unique for all X > 0.

We call this uniqueness condition group general position
(GGP) because it naturally extends general position to
groups of vectors. General position itself is an extension
of affine independence and is sufficient for the lasso solu-
tion to be unique (Tibshirani, 2013). GGP is strictly weaker
than linear independence of the columns of X, but neither
implies nor is implied by general position (Proposition A.3).

3.2. Computing Dual Optimal Parameters

The main difficulty of Lemma 3.3 is that knowledge of
a dual optimal parameter is required to check if a unique
solution exists. A dual optimal parameter is also required
to fully leverage our characterization of the optimal set. As
such, now we turn to computing optimal dual parameters.

We give one Lagrange dual problem for CGL in Lemma A 4.
A nice feature of this dual problem is vy, attains an alterna-
tive interpretation as dual variable. However, evaluating the
dual requires computing (X " X)*, which may be difficult
even if X is structured, as in the convex ReLLU program.
Instead, we focus on computing p given a primal solution.

Let w € W*(A). If wy, # 0, then KKT conditions imply

= 12)
2

Ko, po; = o,

- Hwbz
so that the “dual fit” dAb,- = Ky, py, 1s easily computed. Re-

covering the dual parameter is a linear feasibility problem:

pb; € {pb,, >0 Kp,py, = Jbi}. (13)

If wp, = 0, then complementary slackness is trivially sat-
isfied and we compute the min-norm dual parameter by
solving the following program:

min {|[pp, [|2 ¢ llco, = Ko, pv,ll2 < A, pp, 2 0} (14)

In general, however, we only need some dual optimal pa-
rameter for our results to hold; thus, is is typically easier to
find p by solving the following non-negative regression:

Sip, >0} (15)

pb; = argmin { HKbipbi — Cb,

See Proposition A.5 for details.

3.3. Minimal Solutions and Optimal Pruning

Often we want the most parsimonious solution, i.e. the one
using the fewest feature groups. We say a primal solution
w is minimal if there does not exist w’ € W*(\) such that
Ay (w') € Ax(w). Building on the previous section, we
start with a sufficient condition for w to be minimal.
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Algorithm 1 Optimal Solution Pruning

Input: data matrix X, solution w.

k<« 0.

wh — w.

while 35 # 05.6. 32, 4. (k) Bo, Xp,w, = 0 do
1 b; € A,\(wk)}

bi" «— arg max;, {|B,
e 1/1,]
Wl wh(1—4,)
k+—k+1

end while

Output: final weights w*

Proposition 3.6. For A\ > 0, w € W*()) is minimal if and
only if the vectors { Xy, wp, }A(w) are linearly independent.

Linear independence of { Xy, wy,} 4, also identifies w
as a vertex of W*(\) (Bertsekas, 2009), meaning mini-
mal models are exactly the extreme points of the optimal
set. Combining this characterization with our condition for
uniqueness of a solution (Lemma 3.3) shows that minimal
solutions are the only solution on their support.

Corollary 3.7. Suppose w is a minimal solution. Then w is
the unique solution with support Ay (w).

Furthermore, all minimal solutions are equivalent in the
sense that they have the same number of active blocks.

Proposition 3.8. Let V==Span({Xy,wy, }) for w € W*(X).
Every minimal solution has ¢ = dim(V) active blocks.

Algorithm 1 gives a procedure which, starting from any
optimal solution w, computes a optimal model with the
smallest possible number of active blocks in O((n3l + nd)
time, where [ is the number active blocks in w. (see Proposi-
tion A.6). Our algorithm can also be used to verify a minimal
solution, since if w minimal then it is unique on its support
and Algorithm 1 must return w immediately. This procedure
also implies the existence of at least one minimal solution.

Corollary 3.9. There exists w € W*(\) for which the
vectors { Xp,w(X) : b; € A(w)} are linearly independent.

Corollary 3.9 will be useful tool later when we study sensi-
tivity of the model fit to perturbations in y and A.

A disadvantage of Algorithm 1 is that it cannot continue
beyond a minimal solution. However, minimal models may
still be quite large. We can perform approximate pruning in
such cases using the least squares fit to approximate 3,

B = argmin || A8 — Xp,wy, ||§,

where A = [ X4, ws, ] 4,\s, and b; € Ay is chosen randomly.
Using 3 in Algorithm 1 is optimal when { X, wp, } 4, are
dependent and chooses the update parameters to minimize
degradation of the model fit otherwise.

3.4. Continuity of the Solution Path

A major concern when learning with regularizers is how to
tune the parameter \. Typical strategies like grid-search on
the (cross) validation loss are effective only if the solution
function satisfies basic continuity properties. For example, if
W* is single-valued but discontinuous in A, then the sample
complexity of grid-search can be made arbitrarily poor by
“hiding” the optimal )\ in a discontinuity (Nesterov et al.,
2018, Sec. 1.1). In this section, we justify grid-search for
CGL by proving several continuity properties of the solution
function, particularly when the solution is unique. We start
with basic definitions of continuity for point-to-set maps.

Definition 3.10 (Closed). T : X — 22 is closed if {x}} C
X,z — Tand 2z, € T(x), 2, — Z implies z € T(T).

Definition 3.11 (Open). 7 : X — 2% is openif {z}} C X,
xp — T and zZ € T(Z), implies there exists k' € N, z;, €
T (xy) for k > K/, such that z;, — Z.

We say that 1" is continuous if it is both closed and open. If
T'(x) is a singleton for all x € X, then openness/closedness
are equivalent and imply continuity. We start with (func-
tional) continuity of the optimal objective.

Proposition 3.12. \ — p*()\) is continuous for all A > 0.

While standard sensitivity results imply that WW* is closed,
unfortunately openness is not possible in the general setting.

Proposition 3.13. While W* is closed on R, it is open 0
if only if X is full column rank. However, if the solution is
unique on A C R, then W* is open at every X € A.

As a corollary of Proposition 3.13, W* is open on R if and
only if X is full column rank. Continuity of WW* is impossi-
ble in general because, as Hogan (1973) shows, openness is
a local stability property; since W*(0) is unbounded, many
“unstable” solutions exist at A\ = 0 which are not limit points
of other solutions. Continuity of the unique solution path is
an immediate corollary of Proposition 3.13.

Corollary 3.14. [fthe CGL solution is unique on an interval
A C Ry, then it is also continuous on A.

In particular, if K = 0 and GGP holds, then the group lasso
solution is continuous for all A > 0. We can strengthen
our continuity results when K3, = 0 in another way: by
analyzing the dual of the group lasso problem, we extend
continuity from p* to the optimal model fit.

Proposition 3.15. If K = 0, then §j(\) is continuous on R,
and the penalty >, g |[wp, (A)||2 is continuous for A > 0.

3.5. The Min-Norm Path

Now we turn our attention to the min-norm solution path.
Min-norm solutions are typically used in under-determined
problems and the norm of the solution is connected to
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generalization performance (Neyshabur et al., 2015; Gu-
nasekar et al., 2017) Furthermore, the min-norm solution
is a function of A, unlike W*. Throughout this section,
A} = Ay (w*) denotes the active set of the min-norm solu-
tion.

Unfortunately, studying the min-norm path immediately en-
counters a surprising difficulty: as opposed to least-squares
problems or the lasso (see Tibshirani (2013)), the min-norm
solution may not lie in the row space of the active set.

Proposition 3.16. Suppose K;, = 0. There exists (X,y)
and X > 0 such that w- (A) & Row(X a3).

Since the min-norm solution is not given by projecting onto
Row (X A ), how can we compute and study it? Again, our
characterization for the solution set provides a way forward.

Proposition 3.17. Let A\ > 0 and consider the program:

Z abq‘,Xbivbi = :l] (16)

o* = argmin||a||? s.t.
a0 b; €S

Then the min-norm solution is given by wy. = ay vp,.

Equation (16) is a quadratic program (QP) that can be solved
with off-the-shelf software like CVXPY (Diamond & Boyd,
2016). If |B| and d are large, this QP may be too expensive
to handle directly. In such situations, we propose to the solve
the following elastic-net-type problem

1 g
min §|\Xw — |3+ )\bZG:B l|lws, [|2 + 5”“’”%

st. Ky wy, <0forallb; € B.

This ¢5-penalized CGL problem is equivalent to CGL with
modified dataset (X, ) (Lemma A.14). Since the optimiza-
tion problem is strongly convex (X is full column rank),
invoking Proposition 3.13 implies the solution w? () is con-
tinuous for all A > 0. Moreover, as 6 — 0, the penalized
solution converges to the min-norm solution to CGL.

Proposition 3.18. The solution to the {5-penalized problem
converges to the min-norm solution as 6 — 0. That is,

. ) _ *
élir(l)w (A =w* ().

Uniqueness and continuity of the solution path for the pe-
nalized CGL problem mean we may prefer to solve Prob-
lem (17) with small § > 0 when tuning A. Proposition 3.18
guarantees that the bias induced by ¢ will be small and a
polishing step with § = 0 can always be used. Finally, non-

zero § ensures the objective is strongly convex, meaning we
can use linearly convergent methods to solve the problem.

3.6. Sensitivity

Now we move onto the problem of sensitivity of a solution
w € W*(A, y) to perturbations, either in A or the targets .
The main tool for measuring such perturbations are the gra-
dients, for example V yw(\, y). However, since the solution
path of the group lasso is non-smooth, we must cope with
the fact that gradients are not available everywhere.

We show that the gradients of minimal solutions exist almost
everywhere under additional constraint qualifications (CQs).
We do so by considering a reduced problem and showing
that the solution to this reduced problem is exactly w4, .
Define the reduced problem as follows:

1
min o | X, wa, —yl3+A Y lws
wa, 2
b, €A

st. Kj wa, <0

If Ay(w) is the support of a minimal solution, then w is
the only solution with support Ay and Equation (18) can be
used to compute the unique active weights.

Proposition 3.19. Let w € W*(\,y) be minimal. The ac-
tive blocks w 4, are the unique solution to Problem (18).

We use this fact to obtain a local solution function for CGL
using the implicit function theorem. Given a solution w, let

B(w) = U {J € [a‘bi] : [Kbi];wbi = 0}7

b, €A
be the active constraints. We now need two classical CQs.

Definition 3.20 (LICQ). weW*()\,y) satisfies linear inde-
pendence CQ if {[K], : j € B(w)} are linearly independent.

Definition 3.21 (SCS). Primal solution w € W*(\) sat-
isfies strict complementary slackness if there exists a dual
optimal parameter p such that [p]; > 0 for every j € B.

Now we can state our main differential sensitivity result.

Proposition 3.22. Let w € W*()\, §) be minimal and sup-
pose w satisfies LICQ on the active set Ay and SCS on the
equicorrelation set €. Then w has a locally continuous
solution function (X, y) — w(A,y). Moreover, if

A

_[X A X+ M(@) K4
diag(KI‘Aw;\A) ’

D _
pas © Ka,

where © is the element-wise product, up, = u is the

wbi
T lwe, ll22
concatenation of these vectors, and M is block-diagonal
projection matrix in Equation (26), then the Jacobians of

w(, ) with respect to \ and y are given as follows:
VAw(/_\vg) = 7[‘D71]AXU.A>\ vyw(j‘vg) = [Dil].AAXIM

where [D;&]Ak is the |Ax| x | Ax| dimensional leading
principle submatrix of D.



Optimal Sets and Solution Paths of ReLLU Networks

Algorithm 2 Approximate ReLU Pruning
Input: data matrix Z, weights W7, ws, score function s.
m <+ | Ax(W7)|
(Wlovwg) — (le wQ)'
@) — (XWP) 4wy
fork=0tom — 1do
g% = arg mine 4, (wk) s(WE)
B* = argming || 3,5 Biaf — ¢ |13
i¥ < arg max; {\51\ (i€ AA(Wﬁ)}
t* < 1/|8|
(WEF wi ™) = (W why) - (1 — 14 ) 1/
gt gb (1 tRB))
end for
Output: final weights W, w5

4. Specialization to Neural Networks

Now we specialize our results for CGL to two-layer neural
networks with ReLU or gated ReLU activations. We state
and prove our results for ReLU networks, but they are easily
adapted to gated ReLUs. We start by interpreting conditions
for uniqueness in the context of non-convex ReLLU models
and then move on to discussing optimal pruning for ReLU
networks and continuity properties of the solution function.
Proofs are deferred to Appendix B.

Optimal Sets and Uniqueness: Combining the mapping
between solutions for the convex reformulation and the
original non-convex training problem (Equation (5)) and
Proposition 3.1 immediately allows us to characterize the
solution set for the full ReLU problem:

Corollary 4.1. Suppose m > m* and D = Dy (no sub-
sampling), with p = |Dz|. Then the optimal set for the
ReLU problem is
Ox= {(lewQ) : fW1,w2 (Z) =y, W= (Oéi/)‘)l/zwi7 (19)
Wo; = (ai)\)l/Q,ai >0,1€ [2p]\8)\:>04i:0},
Eq. (19) abuses notation slightly by using S, as a subset set
of the neuron indices {1, ...2p}, where indices {1,...p}
index the positive neurons (neurons corresponding to blocks
D;Z in the convex program) and {p + 1, ..., 2p} index the
negative neurons (—D; 7). Figure 1 plots the first feature
of three neurons as they vary over this solution set. The
mapping from convex to non-convex parameterization trans-
forms the flat polytope of solutions into a curved manifold.

Choosing a sub-sampled set of patterns D C Dy corre-
sponds to finding a stationary point of the non-convex train-
ing problem (Wang et al., 2021). Using this fact with Corol-
lary 4.1 finally justifies description of all stationary points
of the ReL.U problem given in the introduction.

Proposition 4.2. The set of stationary points of two-layer
ReLU networks is given by

Cr = {(Wi,w2) : DC Dz, fw,ws(Z) =05
Wii = (0/3) 70i(D), wa; = (i\),
>0,i€2|D]]\ Sy = a; =0},

where D are sub-sampled activation patterns, i3 is the op-

timal model fit using those patterns, and v;(D) = cy, (D) —
Ky, pv, (D) is determined by the fit and the dual parameters.

We note that since deeper networks are also related to CGL
through convex reformulations (Ergen & Pilanci, 2021a),
Proposition 4.2 may also be applied beyond two layers.

Recall that the solution set for a two-layer ReLU network is
typically not unique due to permutation symmetries. How-
ever, if the convex solution is unique, then the non-convex
ReLU training problem is p-unique. Combining this with
our results for CGL gives the following sufficient conditions.

Proposition 4.3. Let A > 0 and suppose that the convex
ReLU problem has a unique solution. Then the ReLU model
solution is p-unique. In particular, if {D;Zvy, }¢, are lin-
early independent, then the non-convex solution is p-unique.

For gated ReLLU networks, it is also sufficient to check the
blocks [D; Z], o to see if they satisfy GGP. By looking at
the structure of D; X, we give simple sufficient conditions
for sub-sampled convex ReLU programs to be unique.

Proposition4.4. Let A > Qandp = |15\ Suppose Z follows
a continuous probability distribution and nnz(D;) > p - d
for every D; € D. If €y does not contain two blocks with
the same activation pattern, then the sub-sampled convex
ReLU program has a unique solution almost surely.

Proposition 4.4 requires n to be much greater than d to be
useful due to the trivial bound nnz(D;) < n. In practice,
the condition on activation patterns can be enforced by con-
straining v; = 0 or w; = 0 for each activation pattern before
solving the convex reformulation.

Pruning: If (v, ) is a minimal solution to the convex re-
formulation, then the corresponding ReLU network is the
p-unique model using only those activation patterns (Propo-
sitions 3.6 and 4.3). Thus, Algorithm 1 can be used to
prune any solution to obtain the “narrowest” neural net-
work achieving the optimal training objective. Algorithm 2
specializes our pruning algorithm to the ReLU problem
and extends it to support approximate pruning. Note the
resulting procedure is completely independent of the convex
reformulation. The complexity of this method is as follows.

Proposition 4.5. Suppose r = rank(X). Then an optimal
and minimal ReLU network with at most m* < n non-zero
neurons can be computed in O (d3r3(n/r)®") time.

As a consequence, the complexity of computing an optimal
and minimal ReLU network is fully polynomial when r
is bounded. We also have a more sensitive statement for
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Figure 2. Pruning neurons from two-layer ReLU networks on binary classification tasks from the UCI repository. We compare our
theory-inspired approach (Optimal/LS), against removing the neuron with smallest /2 norm (Neuron Magnitude), removing the neuron
with the smallest weighted gradient norm (Gradient Magnitude), and random pruning (Random). For Optimal/LS, we use Algorithm 2,
which begins with optimal pruning and then switches to a least-squares heuristic. We plot test accuracy against number of active neurons.
Optimal/LS dominates the baseline methods on every dataset and even improves test accuracy on breast-cancer and fertility.

Table 1. Tuning neural networks by searching over the optimal set.
We fit two-layer ReLU networks on the training set and compute
the minimum ¢> norm solution (Min L2). Then we tune by finding
an extreme point approximating the maximum ¢2-norm solution
(EP), minimizing validation MSE over the optimal set (V-MSE),
and minimizing test MSE over the optimal set (T-MSE). Results
show median test accuracy; Max Diff. reports the difference be-
tween the best and worse models found. Exploring the optimal set
reveals a huge disparity in the performance of optimal networks,
with the generalization gap exceeding 20 points on four datasets.

Dataset Min L, EP V-MSE T-MSE Max Diff.
fertility 0.66 0.69 0.65 0.64 0.05
heart-hung. 0.75 0.75 0.71 0.85 0.14
mammogr. 0.77 0.77 0.57 0.78 0.21
monks-1 0.67 0.66 0.49 0.57 0.17
planning 053 0.52 0.53 0.7 0.17
spectf 0.64 0.64 0.56 0.58 0.08
horse-colic  0.75 0.59 0.74 0.85 0.26
ilpd-indian  0.59 0.59 0.53 0.72 0.19
parkinsons  0.74 0.74 0.65 0.88 0.23
pima 0.68 0.68 0.68 0.87 0.2

the minimal width: if (W7, w3) are optimal weights for the
ReLU model, then m* is exactly the dimensional of the span
of the optimal activations {(XW;);}, (Proposition 3.8).
We experiment with pruning ReLU networks using this
approach in Section 5 and that show it is more effective than
naive pruning strategies.

Continuity: First we give a negative result for singular
networks, that is, models where m < m* and no convex
reformulation exists. In this setting, the solution map can be
made to behave arbitrarily poorly.

Proposition 4.6. There exists (Z,y) for which O* is not
open nor is the model fit fy, ., (Z) continuous in .

Combined with the next result, Proposition 4.6 indicates that

the threshold m* may be crucial for continuity to extend to
the non-convex parameterization.

Corollary 4.7. Suppose m > m*. Then the optimal model
fit for two-layer gated ReLU networks is continuous at all
A > 0. Similarly, if the (gated) ReLU solution is p-unique
on an open interval A, then the regularization path is also
continuous on \ up to permutations of the weights.

Together, Corollary 4.7 and Proposition 4.4 are concrete
conditions for the model fit and regularization path of a
sub-sampled problem to be continuous.

Min-Norm Solutions: In Section 3.5, we examined the min-
imum ¢5-norm solution to CGL. However, all optimal ReLU
networks have the same ¢5-norm when A > 0. Minimizing
the Euclidean norm of solutions to the convex reformulation
instead selects for the network which minimizes the sum of
neuron norms to the fourth power.

Lemma 4.8. The minimum {5-norm solution to the convex
reformulation of a (gated) ReLU model corresponds to the
p-unique optimal neural network which minimizes

m
r(Wi,wa) = Wil + [lwasll3.
i=1
As aresult, we can compute the r-minimal optimal ReLU
network by solving Problem (16). If Sy is unknown, then
using A (w) for some solution w as an approximation gives
the r-minimal network using a subset of those activations.

Sensitivity: Proposition 3.22 extends similar results for the
group lasso by Vaiter et al. (2012) to CGL using standard
CQs. Since K is block-diagonal, LICQ will be satisfied
whenever the rows of Z are linearly independent. SCS is
more challenging; while the classical theorem of Goldman
& Tucker (2016) establishes that SCS is satisfied for linear
programs, it is known that SCS can fail for general cone
programs (Tungel & Wolkowicz, 2012). As such, SCS must
be checked on a per-problem basis in general.
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Figure 3. Pruning neurons from two-layer ReLU networks on two
binary classification tasks drawn from the CIFAR-10 dataset. We
compare our method (Optimal/LS) against baselines; see Figure 2
for details. Our approach, which makes use of a weight correction
after pruning, outperforms every baseline.

In the context of gated ReLU problems, i = 0 and there
is no requirement for CSC/LICQ. Minimal models w(A, y)
are weakly differentiable, which Vaiter et al. (2012) uses to
compute the degrees of freedom of w via Stein’s Lemma
(Stein, 1981). It is straightforward to extend this calculation
to the gated ReLU weights using the chain rule, which can
then be used to calculate Stein’s unbiased risk estimator.

5. Experiments

Through convex reformulations, we have characterized the
optimal sets of ReLU networks, minimal networks, and
sensitivity results . Our goal in this section is to illustrate
the power of our framework for analyzing ReLU networks
and developing new algorithms.

Tuning: We first consider a tuning task on 10 binary clas-
sification datasets from the UCI repository (Dua & Graff,
2017). For each dataset, we do a train/validation/test split, fit
a two-layer ReLU model on the training set, and then com-
pute the minimum /5-norm model. We use this to explore
the optimal set in three ways: (i) we compute an extreme
point that (approximately) maximizes the model’s ¢5-norm;
(ii) we minimize the validation MSE over W*(\); (iii) we
minimize test MSE over W*(\). These procedures select
for different optimal models, have no effect on the training
objective, and are only possible because we know W*.

The results are summarized in Table 1. We see that optimal
models can perform very differently at test time despite
having exactly the same training error and model norm.
Indeed, 9/10 datasets show at least a 10 percent gap between
the best and worst models and 4/10 have a gap exceeding 20
percent accuracy. We conclude that the training objective is
badly under-determined even for shallow neural networks,
implying that implicit regularization is critical in practice.
See Appendix D for results on additional datasets.

Pruning: We also consider several neuron pruning task. We
use two-layer ReLLU networks and start pruning from the
model given by optimizing the convex reformulation. We
compare four strategies: (i) pruning neurons optimally using
Algorithm 2 until {(XW7;)4} 4, are linearly independent
and then approximately using least-squares fits; and (ii) by
removing the neuron with the smallest magnitude, ||W¥7; -
wo;||; (iii) by remove the neuron with the smallest weighted
gradient; and (iv) by random pruning.

Figure 2 shows test performance of the two methods for five
UCI datasets. Our theory-based pruning method has better
test performance than the baselines on every dataset con-
sidered; on hill-valley, the gap between our approach
and magnitude-based pruning is approximately 40%. Fig-
ure 3 presents similar results for two binary tasks taken from
the CIFAR-10 dataset (Krizhevsky et al., 2009). We provide
experiments on additional datasets, including MNIST (Le-
Cun et al., 1998), and experimental details in Appendix D.

6. Conclusion

We study the structure and properties of solution sets for
shallow neural networks with (gated) ReL.U activations. Un-
like previous work, we avoid non-convexity of neural net-
works by studying the constrained group lasso, a generalized
linear model which unifies the convex reformulations of
both ReLLU and gated ReLU networks. We derive analytical
expressions for the optima and all stationary points of the
training objective for two-layer ReLU networks. Building on
this characterization, we develop conditions for the optimal
neural network to be permutation unique, an algorithm for
optimal pruning of neural networks, and sensitivity results.
We demonstrate the utility of our framework in experiments
on MNIST, CIFAR-10, and UCI datasets.

There is still much work to do in this area. For example, we
conjecture that the min-norm CGL solution, which corre-
sponds to the network minimizing a fourth-power penalty,
always has a continuous regularization path. More generally,
it remains to extend our characterization of the solution set
to deeper networks and vector-output models.
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A. Constrained Group Lasso: Proofs
A.1. Describing the Optimal Set

Lemma A.1. The model fit is the same for all optimal solutions to the CGL problem. That is,
Xw=Xw forall w,w' € W*"(\).

As a consequence, the sum of group norms is also constant when \ > 0.

Proof. This follows in a similar fashion to the classic result for the group lasso. Let w, w’ € W*(X), @ = %w + %w’ ,and
suppose p* is the optimal value of the constrained program. By convexity, we have

1 1 .
zﬁip’”rgp*:p,

1 _ _
L -yl 4 Y
b, eB

where the inequality is strict if Xw # Xw' by strong convexity of f(u) = ||u — y||3. Since w, w’ are both feasible, W is
also feasible and clearly w cannot obtain an objective value less than p*. Thus, Xw = Xw’ must hold.

To see the second part of the result, observe that
_ « 1.
A Z [y, |2 = p* — §||y(/\) - y||§7
b;eB

is also constant over W*(\). ]

Proposition 3.1. Fix A > 0. The optimal set for the CGL problem is given by

W*(A):{weRd:VbieS%wbi =y, Vp,, ap, >0,

(1D
Vbj € B\S,\,wbj =0, Xw Zg]}

Proof. Fix A > 0 and let w € W*(\). If wp, # 0, then the KKT conditions require

Wy,

= Up; = Wp; = O Vp,,

k3

2

[,
for ac > 0. If wy, = 0, then wy,, = ay,vp, holds trivially for o, = 0. Since w is optimal, it must satisfy
Xw =y,
by Lemma A.1. Finally, A)(w) C S so that w satisfies the characterization.

For the reverse direction, we start by defining
X = {w S Rd :Vb; € S)\, Wy, = O, Vp, , Ay, > 0,
Vbj S B\S,\,wbj =0, Xw gj}

Take any w’ € X If wj, # 0, then

/

/ wbi Vb,
Wor = A0 Tyl A
A
= A——— = Up,
wj o~

where we have used the fact that ||vy, |2 = A for all b; € E,. That is,

T wl[h‘ *
X, (Xw—y)+ AH’i + Kb, py,, = 0,
wbiHQ

12



Optimal Sets and Solution Paths of ReLLU Networks

which is exactly stationarity of the Lagrangian.
If wgi =0, then

Xu' =9 = | X, (y— Xw') + Kpj |2 < A,
which also implies the Lagrangian is stationary.

Now we show optimality of w’ by checking feasibility and complementary slackness. If wg = 0 then wl’) = z:l wy, for

i

some other optimal solution w with ay, > 0. This follows since wg # 0 implies b; € Sy. Thus,

o
T,/ _ b
Ky, wy,, = o Wb <0

i — )

by feasibility of wy,. Similarly, we find that complementary slackness is satisfied as follows:

/
_ A,

(00,15 - Kb, wy, [ov.]; - [Ky,]] wp, = 0.

i

If wy, = 0, then both feasibility and complementary slackness are trivial. Since (w’, p*) are feasible and p* is dual optimal,
we conclude the KKT conditions are satisfied and thus w’ € W*(\). This completes the proof. O

Proposition A.2. Fix A\ > 0. The optimal set for CGL problem is given by

W*(A\) = {w € RY:Vb; € Ex, wy, = ap,vp,, ap, > 0,
VbjEB\E)\,wbj =0, Xw=yg, (20)

KTw<o, <p*,KTw> = 0}

Proof. Fix A > 0 and let w € W*(\). If wp, # 0, then the KKT conditions require

Wy,
)\ 2

= Up; = Wp; = Qp,Vp,,

i

Hwbi 2
for a > 0. If wy, = 0, then wy, = ay,vp, holds trivially for a;, = 0. Since w is optimal, it must satisfy
Xw=4g,

by Lemma A.1. Finally, (p*, Kw) = 0 and is feasible by KKT conditions so that w satisfies the characterization.

For the reverse direction, we start by defining

X = {w S Rd Vb € Ey, Wy, = Qup,Vp,, Oy, > 0,
Vbj EB\E,\,wbj =0, Xw =y,

K'w<0, <p*,KTw> = 0}

Take any w’ € X; If w,’h # 0, then

! = —— 71” = /Ubi
’LUbi QUp, ”,w;)L”2 A
w)
- /i b
[[wy, 2

13
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where we have used the fact that ||vp,

o = Aforall b; € £,. That is,

/
wbi

Xy (Xw—y)+ A + Ky, p;, =0,

[[wy, ll2
which is exactly stationarity of the Lagrangian.

If wl'] = 0, then
Xu' =9§ = |X,,(y — Xw') + Kpj |2 < A,

which also implies the Lagrangian is stationary.

Since (p*, K"w') = 0 and K "w < 0, i.e. w is feasible, it is clear that complementary slackness must also hold. We
conclude that (w’, p*) are primal-dual optimal by the KKT conditions and the proof is complete. O
Lemma 3.3. Fix A\ > 0. The solution to CGL problem is unique if and only if { Xy, v, } s, are linearly independent.

Proof. Suppose by way of contradiction that w, w’ € W*(X) such that w # w’. By Proposition 3.1, we have

0=X(w-—-w)= Z Xy, (wp, —wy,)
b; €Sy

Z (abi - agi)Xbi'Ubﬁ

b; €S

which implies that the vectors { Xy, v, } 5, are linearly dependent.

Necessity follows from Algorithm 1, which shows that, given a solution w € W?*(\), linear dependence of
{Xp,w(A) : b; € A(w(A))} implies the exist of at least one additional solution. O
Proposition 3.5. [Group General Position] Suppose for every £ C B, |E] < n+ 1, there do not exist unit vectors zp,, € RIb:|
such that for any j € &,

ijzbj € aﬁine({Xbizbi 1 b, €€ \ bj}).

Then the group lasso solution is unique for all X > 0.

Proof. Suppose the group Lasso solution is not unique. Then, Corollary 3.2 implies
NA = Null(XgA) ﬂ {Z 1 2p; = Oy, Cp, b, € 5)\},

is non-empty. That is, there exist o, > 0 such that

ij ij = E O‘bi ij, be;
bieEx\Jj

— ijcbj = E abiXb,iCbi-
b €EX\J

Taking inner-products on both sides with the residual r,

= N = Z o N

bi€EXN\J
= 1= Z Qp, -
bi€Ex\J
Thus, we deduce that
Xp;cp; = Z B, X b, » 21
bi€€Ex\J

14
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where 3, o \; B, = 1. Now, suppose that [€y| > n + 1. Then, {Xy,cs, : b; € Ex\ j} are linearly dependent and, by
eliminating dependent vectors Xj,cp,, we can repeat the above proof with a subset £’ of at most n + 1 blocks. Noting
|lcp, |2 = A for each b; € £, and rescaling both sides of Equation (21) by X implies the existence of unit vectors z,, which
contradict GGP. This completes the proof. O

Proposition A.3. Group general position does not imply the columns of X are in general position. Similarly, general
position of the columns of X does not imply group general position.

Proof. Consider the simple case where we have two groups: by = {1} and b, = {2,...,d}. Group general position is
violated if there exists a unit vector zp, such that

T = szzbz.
<~ I € Xb2Bd,1,

where B,,_1 = {z € R"! : ||z||2 < 1}. In contrast, general position is violated if

X1 Eafﬁne(acg,...,gcd)
— x1€ X{z:(z1)=1}.

Taking X, = I, it is trivial to see that group general position can hold when general position is violated and vice-versa. [

A.2. Computing Dual Optimal Parameters
Lemma A.4. One Lagrange dual of CGL is the following:

1 1
max — —(n+Kp—X"y)(X " X)"(n+Kp—XTy)+ =|lyll3
7,0 2 2 (22)

st. n+ Kp e Row(X), ||n,|l2 <AV €B,

where ny, = cp, — Ky, pp, shows that the vectors vy, are, in fact, dual variables. Moreover, if K = 0, then p* = 0 and 1 has
the unique solution n,, = X ZI (y — Xw) = cp,. That is, the dual parameters are the (unique) block correlation vectors.

Proof. We re-write the group Lasso problem as follows:

1
Irgn §||Xz—y||% +A Z w2 stz =w, K, 2, <O0.

b, eB

The Lagrangian for this problem is
1
‘C(wVZvn?p) = §||XZ - y”% + <77aZ - ’LU> + <pa KTZ> + A Z ||wbiH2
b, eB

1
= 31Xz —yl3 + i+ Kp.2) — (nw) + A Y [lun,
b, eB

2.

Minimizing over 2, we find that stationarity implies
X (y—Xz)=n+ Kp,
so that n + K p € Row(X). Solving this system, we find
X'Xe=X"y—-n-Kp = 2=(X"X)"[XTy—n—Kp|] +e,
where ¢ € Null(X). Let us minimize over w similarly. The Lagrangian decouples block-wise in w, so that we must solve

mln)\”w[L HQ - <77bia ’UJbi> P
wp,

15
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for each b; € B. The minimum value is achieved by the (negative) Fenchel conjugate of A|jwy, ||2 evaluated at 7, ; that is,

rlrulin/\Hwbi 2~ <nbi7wbi> = —]l(||77bi 2 < )‘)

i

Combining this with the expression for z, we obtain

1
Llenp) = =5+ EKp = XTy)(XTX) (+ Kp = XTy) + (n+ Kp.c) = 3 ]2 <A

b, eB

1
=51+ Kp=XTy)(XTX) (n+ Kp—XTy) = > Lllm. [l < ),
b;eB

where the second equality follows since  + Kp € Row(X) and ¢ € Null(X) are orthogonal. (Alternatively, one can
observe that the dual problem is unbounded below whenever {c,n + Kp) # 0.) Thus, the dual problem is equal to
1
max ——(n+ Kp— X Ty)(XTX) " (cp = X Ty) = D7 (lImpJl2 < A) = 1(n + Kp € Row(X)),
7,p Pt
which completes the derivation.
Recalling z = w for any primal-dual optimal pair and
XT(y—Xz)=n+Kp,

shows that 75, = cp, — K p as claimed. Moreover, if X = 0, then we may assume without loss of generality that he
corresponding dual vectors pp, are zero. In this case, 75, = cp, and, since cp, is unique, the dual solution must also be
unique. O

Proposition A.5. Let A > 0 and w € W*(\). If wy, = 0, then any solution to Equation (15) is dual optimal for block b;.

Proof. Let py, be a solution to Equation (15). Since w is optimal and strong duality holds, there exists some min-norm dual
optimal vector p*. Moreover p* satisfies p; > 0 and

156, 6, — cv,ll3 < |1 Ko, 5, — enll3 < A%,
so w is both feasible satisfies stationarity of the Lagrangian, Finally, because w;, = 0, complementary slackness,
[ov.); - [Kb, )] we, =0,
is verified for every j € [ap,]. Since the KKT conditions are sufficient for primal-dual optimality, we conclude that py, is
dual optimal. This completes the proof. O
A.3. Minimal Solutions and Optimal Pruning
Proposition 3.6. For A > 0, w € W*(X) is minimal if and only if the vectors { Xp,wp, }.A(w) are linearly independent.

Proof. Let w € W*()) and assume that the vectors {Xy,ws, } 4, are linearly independent. By way of contradiction,
assume there exists w’ € W*(\) with strictly smaller support. By Proposition 3.1, we have

wl/)L = Bbiwbm
for some 3, > 0. This holds for each b; € Ay (w) (with 8y, = 0 when b; € Ay (w) \ Ax(w')) so that
Xw=Xvw = Z (]‘_ﬁbi)Xbiwbi =0,
bi€Ax (w)
which is a contradiction.

For the reverse direction, assume that w is minimal, but that { X, wp, } A(w) are not linearly independent. Then the correctness
of Algorithm 1 (see Proposition A.6) implies w is not minimal. O

16



Optimal Sets and Solution Paths of ReLLU Networks

Proposition A.6. Algorithm I returns a minimal solution to the constrained group lasso problem in at most O(n31 + nd)
time, where [ is the number of non-zero groups in the initial solution.

Proof. Correctness: Let w € W*()\) and A be the associated active set. If w® = w is minimal, then Proposition 3.6 implies
{Xu, wy, } 4 are linearly independent the algorithm returns a minimal solution.

k

Let £ > 0 and suppose w"” is not minimal. Then there exist weights 5, such that

Z BbiXbiwk =0.

b;eA

Let wfh = (1 — B, )wy, and let t* be as defined in the algorithm. By construction, ¢* is the smallest magnitude ¢ such that
(1 —t83p,) = 0 for some b; € A. We assume without loss of generality that t* > 0.

Fix 0 < t < t*. Let’s show that w? is a solution to the constrained problem. Firstly, we have

Xw' = Xwh — ¢ Z ,BbiXbiwzli. = Xw,
b;eA

showing that the model fit preserved. Moreover,
wiqﬂ = (1 - tﬁbi)wll)i = (1 - tﬁbi)abivbi,

where (1 — ¢/, ), > 0 by the choice of t. We conclude that w! is optimal by Proposition 3.1.

By construction,
lim w? = wh*!.
1tk

Since w' is an optimal solution, it has the (unique) optimal squared error and sum of group norms. Taking limits as ¢ 1 ¢*,
we see that

Xt = Xwk, Y lwptla = Y fwplla, KT <0,
b;eB b;eB

which implies that w"**! obtains the optimal objective value and is feasible. Thus w**! is also a solution. Finally, A(w**1)
is strictly smaller than A, as required.

Arguing by induction now implies that Algorithm 1 returns an minimal solution in a finite number of steps.

Complexity: First, observe that we can pre-compute the block-wise model fits g,, = X}, w;, before running the algorithm.
The complexity is at most O(nd). At iteration iteration of the algorithm, we must do two things: (i) compute a non-trivial
solution to a homogeneous equation and (ii) update the weights of the model fits. For (i), it is clear that any set of n 4 1 g5,
vectors will be linearly dependent, so that we compute a non-trivial solution to the homogeneous equation using the SVD in
an at most O(n?®) operations. For (ii), updating at most n of the /3, s requires O(n) time. Since the algorithm runs at most /
iterations, we obtain a final complexity o f O(n3l + nd), as claimed. O

Lemma A.7. Each step of the Algorithm I preserves the span of {Xbi wf } That is, only linearly dependent vectors are
removed.

Proof. Let V = Span { X}, wyp, } be the span of the initial solution. Since w° = w by definition, the base case holds trivially.

17
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Suppose Span(Xp, wl]fi) = V.Let v € V and observe that

k
v = g ozbiXbiwbi
bie Ax(wk)

. Qp; k+1 k
- Y () wetts Y axal

bi €A (wht1) bi € AN (wF)\ Ay (whkt1)

_ Qp; k1 1 k1
- 2 (S wedtegs, 2 oo

b; € Ax(whktt) b €A (wh+1)

1 By k+1
= E N — L) Xy wit
Qp; <1 _ tkﬁbi + ﬁbik > b Wy,

b €A (whtl)

where we have used the fact that 3,, = (3, « for every block that is pruned at iteration k. Thus, Span(Xj, wfi“) =W
Arguing by induction completes the proof. O

Lemma A.8. Let X = {x1,..., 2k} be a set of linearly dependent vectors. Every linearly independent subset of X obtained
by iteratively removing linearly dependent vectors has the same cardinality.

Proof. Let Y, Y’ C X be linearly independent subsets obtained by pruning linearly dependent vectors from X and assume
|V'| < |V]. Since Y and )’ are obtained by pruning only linearly dependent vectors, it must be that

Span (') = Span () = Span (X) .
Let ¢ = dim (Span (X)). Only a set of ¢ linearly independent vectors can span Span (X'); thus, || = ¢ must hold and )’
cannot span Span (X). This is a contradiction. We conclude |)’| = || as claimed. O

Lemma A.9. There exists a solution to CGL with support exactly S.

Proof. By definition, there exists w € W*(X) such that wj, # 0 for every b; € S,. Taking convex combination of these
solutions yields w’ with support exactly Sy. Since W*(\) is convex, w’ is also a solution. This completes the proof. ~ [J

Lemma A.10. Let w be a minimal solution and w be a solution with support Sy, which exists by Lemma A.9. Then, w can
be pruned step to obtain w.

Proof. Suppose w is minimal. Then { Xy, 1wy, } s, are linearly independent, which implies { X3, vp, } 5, are also linearly
independent. We conclude w is the unique solution to CGL by Lemma 3.3 and the claim holds trivially.

Suppose w is not minimal. Since Ay (w) C S, Span {X;,wp, } C Span {X;,wy, } so that every vector X, wyp, can be
written as a linear combination of vectors in { X3, @y, }. Thus, we find that

Z Xy, wp, =9 = Z X, we,

biEA,\(’J}) biE.A,\(w)
= > Xpaw + Y B X, =0,
b-;GS,\\A)\(w) biEA)\(w)

where 5, = 1 — (f”’_' for wy, = ap, vy, Wy, = ap,vs,. Thus, {Xp,ws, } are linearly dependent and it is possible to prune the

ap
solution.

[e3

Now we show that we can, in fact, prune all vectors in Sy \ A (w) in one pruning step. First, observe that

ap

“i > () so that
Bp, < 1 forevery b; € Ay (w). Following the proof of Proposition A.6, define
wgi = (1 - tﬁbi)wbi = (1 - tﬂbi)@bﬂ}b”

for 0 < ¢ < 1. Since 3, < 1 for every b; € S, it is straightforward to deduce that w,t] is optimal by Proposition 3.1.
Arguing as in Proposition A.6, we can show w! is also optimal. It remains only to notice that w,}i =0forb;, € Sy \ Ax(w)
and wii = wy, for b; € Ay (w). Thus, the pruning algorithm can move from @ to w in one step. O
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Proposition 3.8. Let V =Span({ Xy, ws, }) for @ € W* (). Every minimal solution has ¢ = dim(V) active blocks.

Proof. Suppose w and w’ are two minimal solutions. Both can be obtained by pruning the maximal solution with support Sy
(Lemma A.10). Thus, w and w’ both span Span({ X}, wp, }) by Lemma A.7. Lemma A.8 now implies w and w’ have the same
number of active blocks. This number must be ¢, otherwise there would be a linearly dependent vector in { X}, wy, }( Ay (w))
and w would not be minimal. This completes the proof.

A.4. Continuity of the Solution Path
Lemma A.11. Every solution to the constrained group lasso problem is bounded by an absolute constant independent of \.

Specifically, every w € W*()\) satisfies
S w2 <Y

b;eB b, eB

2.

where W € W*(0) is the least-squares solution with minimum {s-norm.

Proof. Let h(w) =3, g |lws,
is,

2, and define W, to be the set of least squares solutions with minimum group norm. That

Wy = argmin {h(w) : w € W*(0)}.
Let w, € Wy, and suppose that h(wg) < h(w(A)) for some A > 0, w € W*(\). Since

1 1
S1Xw, — yll3 < S1Xw() vl

we deduce ) .
51 Xwg — yll3 + Ah(wy) < I Xw(d) = yll5 + Ah(w(X)),

which is a contradiction. So h(w(X)) < h(wy) for all A > 0. Observing h(wy) < h(w) since w may not be in W, gives the
result. Since h(w) is independent of A, we conclude that YW*(\) is bounded independent of A. O

Proposition 3.12. )\ — p*(\) is continuous for all A > 0.

Proof. Define the joint objective function

2.

1
flw,A) = 5l Xw - yl3 + /\b% [[ws,

Clearly f(w, \) is jointly continuous in w and A. By Lemma A.11, minimization of f(w,\) subject to K,/ wp, < 0 is
equivalent to the constrained minimization problem,

p*(\) =min f(w, ) st Y w2 < C, Kwy, <0,
b, eB

where C is a finite absolute constant. Note that this expression is also valid when A = 0 as the min-norm solution to the
unregularized least squares problem obeys the constraint.

Thus, W* is a continuous optimization problem over a continuous (constant in this case) compact constraint set and the
classical result of Berge (1997) (see also Hogan (1973)[Theorem 7]) implies p* is continuous. O

Proposition 3.13. While W* is closed on Ry, it is open 0 if only if X is full column rank. However, if the solution is unique
on A C RT, then W* is open at every \ € A.

Proof. Joint continuity of the objective

1
flw,A) = 5[ Xw - yll3 + /\b% [[wp, |2,
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combined with continuity of the (constant) constraint allows us to use Robinson & Day (1974, Theorem 1) to obtain that
that YWW* is upper semi-continuous. Since YW* is convex and bounded, it is compact. It is thus also uniformly compact and
lower semi-continuity is equivalent to closedness (Hogan, 1973)[Theorem 3]. We conclude that YW* is closed as claimed.

If X is full column rank, then the constrained group lasso solution is unique for all A > 0. The solution map is a singleton
on R, and closedness and openness are equivalent properties for singleton maps. Since we have already shown it is closed,
the solution map must also be open. An identical argument shows that the solution map is open at on any interval over which
the solution is unique.

Now we show the reverse implication by proving the contrapositive. Assume X is not full column-rank and suppose K, = 0
for each b; € B. The solution map at A = 0 is the solution set to the least squares problem,

1
min 2| Xw — g,
which is known to be W*(0) = {w*(0) + 2 : z € Null(X)}. While W*(0) is unbounded, it holds that W*(\) C C for
some bounded C for every A > 0 (Lemma A.11). As a result, there exist uncountably many solutions in Y*(0) which are
not limit points of solutions in W* () as A, — 0. In other words, YW*(0) is not open at 0. O
Proposition 3.15. If K = 0, then () is continuous on R and the penalty ), s ||ws, (N)]|2 is continuous for X > 0.
Proof. Consider the dual problem from Lemma A .4,
1 1
max — 5 (n =X Ty)(X T X) = XTy) + S lyll3

s.t. 1€ Row(X), ||ns,

2 <AVb €B.
The objective function is a convex quadratic and continuous in 7. The constraint set is

CA)={n:neRow(X),: [|m,|la <AV b € B}.
Let’s show that C is continuous.

Let A\x > 0, A, — X and 7, € C(\.) such that i, — 7. Since 17, € Row(X), 7 € Row(X). Moreover,

[7elb:ll2 < A,
so that taking limits on both sides implies || ||2 < A. Thus, 77 € C()\), showing that C is closed.

Hogan (1973, Theorem 12) states that C()) is open at \ if for each b; € B, gy, (A, 1) = ||, ||2 — \ is continuous on A x C()),
convex in 7), and for fixed A, and there exists 77 such that such that g(\,77) < 0.

Let us check these conditions. First, observe that g, is continuous and convex in 7 for any choice of A. Taking 77 = 0, we
find
b, ()‘70) =-A< 0,

as long as A > 0. Thus, C()) is open at each A > 0.

At A =0, C(\) = {0}. Since C is closed everywhere, we conclude it is open at A = 0. Putting these results together proves
that C is continuous.

Recall that the dual solution satisfies 7y = ¢, , so that it is always unique. Combining this fact with Robinson & Day (1974,
Theorem 1) implies that A — n*(\) is a continuous function. Since we have

(V) = e(A) = X T (y — Xw*(\),

it must be that the model fit §(A) = Xw*(A) is continuous as well (any discontinuities must be in Null(X), but § is
orthogonal to Null(X)).

Finally, using Proposition 3.12, we have

* 1.
p*(A) = 515N = yl3 =AD" llwslla,
b,eB

20



Optimal Sets and Solution Paths of ReLLU Networks

is a sum of continuous functions and thus continuous. Writing
1
g0 = 3 Il = [A > |bz-||2] 5]
b;eB b, eB

as the product of continuous functions shows g(\) is continuous at every A > 0. O

A.5. The Min-Norm Path

Proposition A.12. Consider the min group-norm interpolation problem,

min Z lwp,ll2 st Xw =y.
v b, eB

There exist X,y such that the minimum {s norm solution to this problem is not in Row(X Ax ).

Proof. We provide a counter-example where the solution is not the row space of the active set. Consider the problem given

by
1 210 1
x=[1 o)z ] =l

where the vertical line indicates the block structure, i.e., by = {1,2} and by = {3}.

Clearly a solution using only b cannot interpolate the data, so the active set must be {b1, ba} or {b; }. If the active set is by,
then the minimum norm interpolating solution can only be w = [1 0 0] T, which has group norm 1.

Now, consider when the active set is {b1, b2 }. The interpolating solution in Row(X) satisfies the following system

1 1

1 20} ol2| 180 H
{102 0 5 1

Sa+ A3 |1
a+54] |1’
Solving for « and 3 yields & = 1 — 53 and 243 = 4, which implies 8 = 1/6 and & = 1/6. The optimal w* is thus

1/3
w* = [1/3],
1/3

and group norm of w* is

D lwilla = V2/9+1/3 = (1+v2)/3.

b;eB

Now let’s see if we can reduce the norm by including directions in Null(X'). The Null space is orthogonal to both rows of
X, from which we conclude

—2/3
Null(X)=<¢yz:2=| 1/3 | ,v€R
1/3

Any vector w’' = w* + vz is an interpolating solution, so it only remains to check if there is a choice of v that decreases the
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group norm. Assuming v > —1,

D i llz < D s,

b;eB b,eB

2

H
"
=

)2 (since v > —1)

1+vV2 147 \/1 2y 1
S — < -
3 3 = ( 3

2
1+v2 1 1 2
<:><+3f ;7) < y

The left-hand side satisfies

2
(\/ﬁ—fy) =2 - 2v2y + 42,
while the right-hand side is
(1272 4+ (147 =14y +4y2 +1+2y+~9> =2 — 2y + 592

As a result,

D i llz < D Il 2

b, eB b, eB
= 2-29+572—2-724+2/2y>0
= 2(V2-1)y+ 4942 >0.

However, it is easy to check that this fails for v € ((1 — v/2)/2,0). So the minimum £5-norm interpolating solution is not in
ROW(XA; ) O

Lemma A.13. Let W, be the set of least squares solution with minimum group norm. That i,

W,y = argmin { Z ||wp,

b, eB

0 X Xw = XTy} )
Then every limit point of the min-norm group lasso solution lies in W,.

Proof. Let A\, — 0 and observe that w*()\;) has at least one limit point since it is bounded (Lemma A.11). Since
chl (/\k)HQ < A, we see that limy, ||Cbi ()\k)H? = 0 and thus limy, Cbi(/\k) =0.

FO optimality conditions imply
(XTX)w"(\) = X Ty —c(N), (23)

which, taking limits on both sides, gives
lilgn(XTX)w*()\k) =Xy (24)

That is, every limit point @ of w*(\y) is a least squares solution satisfying h(w) < h(w,). We conclude that @ € W, as
claimed. O

Proposition 3.16. Suppose K;,, = 0. There exists (X, y) and A > 0 such that wj}lf\ (A) & Row(X a3).
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Proof. Consider the setting of Proposition A.12, with

1 2|0 1
=[] o=l
where the vertical line indicates the block structure, i.e., by = {1, 2} and b2 = {3}. We have shown that the min group norm

interpolant is unique, is supported on b; and by, and does not lie in Row(X). Let w, be this solution.

Let A\ | 0. By Lemma A.13, every limit point of w* () = wgy. Thus, limj w* () exists and is exactly w,. Moreover,
w* (A ) must be supported on by and bs for all k sufficiently large.

Decomposing w, = a + b and w*(\g) = ri, + ny where a, 7, € Row(X) and b, ny, € Null(X), we see that
lwg —w* Me)lI3 = lla = rell3 + 16— nell3 — 0,

implying that nj # 0 for sufficiently large k. In other words, the min-norm solution to the group lasso problem fails to fall
in Row(X) for some A > 0. O
Proposition 3.17. Let A > 0 and consider the program:

o* = argmin||a|? s.t. Z ap, Xp,Vp;, = U (16)

a>0
= b; €S

Then the min-norm solution is given by wy = oy vp,.

Proof. Letw € W*(\). By Proposition 3.1, wy, = ayp, v, where ap, > 0. Moreover, ap, = 0 for every b; € B\ Sy. As a
result,

[wll3 = [Jwe, |3

Z ||abivbi
b; €Sx

= A3,

2
2

where the last equality follows from b; € Sy, = b; € £, which implies ||vp,

2= A

Now suppose a* is optimal for the cone program and let w € R? such that wy,, = ay, vp, . By construction, ;. = 0 for all
b; € B\ Sy (or it could not be optimal) so that wp, = 0 for all b; € B\ Sx. Moreover,

Xw = E aZbeiUbi =9,
bi €S

Thus, w solves
: 2
argmin ||w]]z s.t. Vb; € Sx, wy, = ap, vy, ap; > 0,
w

Vbj EB\S)\,wb]. =0, Xw=y.

Invoking Proposition 3.1 now proves that w is the min-norm solution. [

Lemma A.14. The {5-penalized group lasso problem in Equation (17) is equivalent to the following group lasso problem:

1~ -
rrgn§||way||§+)\ E [|wp, ||2
=t (25)

s.t. K,I_wbm <0 forallb; € B.

where we have defined the extended data matrix and targets

- X ~ y
=l -l
Moreover, X is full column-rank and thus the group lasso solution is unique.
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Proof. It is straightforward to show the equivalence by direct calculation. For any w € R?,
1, < e 1 9 1 NG 2
SIXw = 3l = 1 Xw =yl + V6w — 0}
1 0
= SIXw -yl + Sl

Substituting this identity into Equation (25) establishes the equivalence.

It is clear by inspection that X is full column rank. Then Null(X¢) = ) for all C C B and the solution is unique by
Proposition 3.1. O

Proposition 3.18. The solution to the {5-penalized problem converges to the min-norm solution as § — 0. That is,

. ) _ *
élir(l)w (A =w* ().

Proof. First we show that [[w®(\)||2 < ||w*(\)||2. Suppose by way of contradiction that [[w®(\)||2 > ||w*()\)||2 for some
0 > 0. Since

1
—|| X = X
10 )~y 43 3 i ()l = o ozl by
< §||Xw —yll3 A wp, (Ml
b;eB
we deduce
1 1
I Xw () ~ yll3+ 2D flw, (A ||2+*Hw PVI[ERS §||Xw )= yll3+ A D (W], |I2+*Hw N3,
b,eB b;eB

which contradicts optimality of w®()). So [[w?(A)[|2 < [[w*(A)||2 for all § > 0. As a result, the sequence {w’* (A)}ék,

where Jj, | 0, is bounded and admits at least one convergent subsequence. Let w(\) be the limit point associated with one
such subsequence; clearly ||@(A)]|2 < [Jw(A)*||2.

Let’s show that w(\) is a solution to the group lasso problem by checking the KKT conditions. Suppose A > 0. Stationarity
of the Lagrangian is
XT (X (3) =)+ Kp%(A) + 5™ (N) + 6™ (1) = 0,

where sp*(\) € OA[[wp" ||2. Since ||sp* (A)[|2 < A and w?* (A) is bounded, clearly K p%*()) is also bounded.

Dropping to a subsequence if necessary, let limy, w® (\) = w and limy, K, pgf = Zp,. Define

_ 1
Rl/" = {pbi : HKbi,pbi - quuoo < ﬁvpbi, 2 O}
The sequence of sets R/, is polyhedral and thus retractive. Moreover, for each n € N, there exists k such that
||Kb'ipg,,: - zbiHOO < l/n’

since K bipgf — Zp,. Recalling pif > 0 shows that R, /,, is non-empty. The limit of a sequence of nested, non-empty,
retractive sets is also non-empty (Bertsekas, 2009, Proposition 1.4.10). Moreover, since the limit is exactly

R= {pbi : Ko, pv; = Zb,5 P, = O}a
we deduce that there exists p > 0 such that K3, pp, = 2, .

Taking limits on either side of the stationarity condition, we find

Xl;[(y - X’lI)()\)) - Kblﬁ(A) = gb-n
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where the limit point 5, satisfies ||5p,

< A Ifb; € B\ Ax(w(N)), then wy, satisfies stationarity.

Let b; € Ax(w())). Since w’ (\) — w(N), ||w,‘i’“ — wp, |2 — 0 and it must happen that wgf > 0 for all £ sufficiently large.
That is, A(w’ (X)) 2 A(w) for all k > k’. Using b; € A(w’*(\)) provides a closed-form expression for sif:

which shows that 53, is a subgradient of A|jwy, ||2. We conclude that the Lagrangian is stationary in @, as well.

Let us check the remainder of the KKT conditions. For feasibility, it is straightforward to observe that

Kjwpr(A) <0 Yk = K@, (\) <0.

Similarly,
(o KLupr ) =0 Yk = (g, Kj[my, ) <0,

which, combined with p > 0, is sufficient to establish complementary slackness. We have shown the subsequential limits
(w, p) satisfies the KKT conditions and thus w is a solution to the constrained group lasso problem.

Since the min-norm solution is unique and [|@(A)||2 < [|w* (N\)||2, it must be that @(\) = w™* (). Noting that this holds for
every limit point implies limg} w®(\) exists and is w*(\). This completes the proof for A > 0.

If A\ = 0, then the proposition follows similarly with the additional observation that 5% (0) = 0 for all . O

A.6. Sensitivity

Proposition 3.19. Let w € W*(\,y) be minimal. The active blocks w 4, are the unique solution to Problem (18).

Proof. Let w be as in the theorem statement. We starting by showing that w obtains the optimal objective value for the
reduced problem:

1 9 . 1 9
plXaswas =yl + 3 3 Mwnllz = min 51w =yl +2 3 llwnlz
b; €Ay ¢ ¢ b;eB
1
< min XA wa, —yll2+ X wy,
S o 1K =N 3 bl
1
< iHX-A)\w-A)\ _y”§+)‘ Z [[we, [|2

b, €A

where the last inequality makes explicit use of feasibility of w4, . Since w 4, is feasible for the reduced problem and attains
the minimum objective value, it must be optimal. Note that it is straightforward to check that the active blocks of the
min-norm dual parameter p’ are dual optimal for the reduced problem.

Now, let w;h be an optimal solution to the reduced problem. Since p7, is dual optimal for the reduced problem, Proposi-
tion 3.1 implies
wy, = oy, Uy,

for every b; € Ay, with o > 0. Since X 4, 'y, = X4, w4, , we deduce

> (b, — aj,) Xp,b; =0,
b;eAx

which contradicts minimality of w unless o, = agi. That is, w;h = w4, . We conclude that the reduced problem provides
the unique minimal solution with support A. O
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Lemma A.15. Let w € W*(\) be minimal. Then w is a second-order stationary point of the reduced problem (Equa-
tion (18)).

Proof. Define M (w) to be the block-diagonal projection matrix given by

1 Dy W
M (), = — [— b b ) (26)
||wb1', 2 ||wbi 2 Hwbq 2

The Hessian of the Lagrangian of the reduced problem with respect to w is exactly

2 T
vwﬁ(w«‘\)\ ) p«A)\) = X.AA X-A)\ + /\MAA (w)
A sufficient condition for w to be second-order stationary is that this Hessian is positive-definite. We now shows this fact
holds.
Clearly V2 L(w.a, , pa, ) is positive semi-definite as it is the sum of a PSD projection matrix and a Gram matrix, which is

always PSD. Let w € RI“I such that @ # 0. Suppose that

0= WTVZ,E(U)AMPAQ’@
=0 X, X4,©+ w0 AM (D)0
= [ Xaywl3 + Mo T M(@)w.
Since M (w) is PSD, it must hold that
w" M(w)w =0,
which is true if and only if wy, = Bp,ws,, Bp, € R, for each b; € Ay. As a result, we find that
Xaw= Y B, Xpwp, =0,
b;eAx

which is a contradiction with the fact that w is a minimal solution. We conclude that the Hessian is positive-definite as
desired. O

Proposition 3.22. Let w € W*(\,9) be minimal and suppose w satisfies LICQ on the active set Ay and SCS on the
equicorrelation set Ex. Then w has a locally continuous solution function (\,y) — w(A,y). Moreover, if

D— XIXX_AAJrM(ID) KJ‘?A
pay O Kay - diag(K 4, wa,)]”
where © is the element-wise product, up, = ”:;% u is the concatenation of these vectors, and M is block-diagonal

projection matrix in Equation (26), then the Jacobians of w(\, §j) with respect to X and y are given as follows:
V)\W(X,g) = _[Dil]Aqux vyw(;\vg) = [Dil]AAX:AF)J
where [D;&]AA is the | Ax| x | Ax| dimensional leading principle submatrix of D.

Proof. Recall from Proposition 3.19 that w 4, is the unique solution to the reduced group lasso problem. In fact, as we
show in Lemma A.15, w 4, is a second order stationary point for the reduced problem. Now, combining this fact with LICQ
and SCS and using standard results on differential sensitivity from optimization theory (see, e.g. Fiacco & Ishizuka (1990,
Theorem 5.1) and the references therein) we obtain the following:

For (A, y) in a neighborhood of \, 7, there exists a unique once continuously differentiable function

i) =[50

such that A(\, 7) = wa,, §(A, ) = Py, - and I(\,y) is a primal-dual solution to the reduced problem.
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Now we show that [ can be extended from the reduced problem to obtain a local solution function for the constrained group
lasso. Define (), y) such that fig, (A, y) = h()\,y) and hg\ 4, (A, y) = 0. We shall show how to extend g shortly. For
b; € Ay, the pair hy, (A, y), gp; (A, y) verifies the KKT conditions (which are separable over block) since it verifies them for
the reduced problem. So, we need only consider b; € B\ A,.

First, consider b; € B\ . In this case, we have
”Xl;l;(g - Xh(j‘a g)) + Kbipbi(j\’ g)HQ < 5"
Since this inequality is strict and B -
2\ ) = X, (5 = Xh(X, 9),
is continuous in )\, 7, there exists a neighborhood of \,% on which
12(X ) + Ky, pp, (X, 9)[l2 < A
Since pp, (A, 7) > 0 and wp, = 0, dual feasibility and complementary slackness hold. We conclude that the extension
9b; (A, y) = pp, (A, §) satisfies KKT conditions on this neighbourhood.

Now suppose b; € Ex(A, 7) \ Ax. If

then taking gy, (y, A) = 0 satisfies KKT conditions. Otherwise, observe that

must hold for some dual parameter py, (X, 7) by KKT conditions. Moreover, SCS implies that we can choose the dual
parameter to satisfy,

Pb; ()\7 g) > 03
since K,;';wbi (A, §) = 0. Finally, because
X, (y = Xh(\,y))

is a continuous function of (y, \), taking ), y sufficiently close to ), % implies there exists py, (X, %) > 0 such that

Now we choose our extension to be gy, (A, y) = pp, (A, y) so that (hy,, g», ) satisfies stationarity of the Lagrangian as well.
Since gy, is feasible and hy, is the zero function, primal feasibility, dual feasibility, and complementary slackness also hold.

Since [ = (g, h) satisfies the KKT conditions in a local neighborhood of 5\, ¥, it is exactly a local solution function. Moreover,
since gp\ 4(A, y) = 0 over this neighborhood, it is easy to see that the gradient for parameter blocks in B\ A is 0. For g 4, ,
Fiacco & Ishizuka (1990, Theorem 5.1) implies that the gradients are given as follows:

Recall from Lemma A.15, that M 4, is a block-diagonal projection matrix with blocks given by

1 oy W,
M (), = — [— O T )
||wbi 2 ||wbi 2 Hwa 2

Then, the Jacobian of V,,L(wx,, pa, ) for the reduced problem with respect to the primal-dual parameters is given by

D= |:X.;|\—,\XAA + M(IE) ) KA)\ ] )
pa, © Ka,  diag(Kj wa,)

It also holds that D is invertible. Finally, let u; = Hwifilnz and v the concatenation of these vectors. We are now able to write

the Jacobians of w(y, A) with respect to y and \ as follows:
VAw(X,g) = _[D_l]-AAu-AA vyw(;\7g) = [D_l]AAX;w
where [D;&] A, is the |Ay| x |.Ax| dimensional leading principle submatrix of D. O
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B. Specialization: Proofs
Proposition 4.2. The set of stationary points of two-layer ReLU networks is given by

CA = {(Wlan) . ﬁgDZa fW17w2(Z)::g2~)7
Wii = (2/3) P0i(D), wa; = (i)',
a; >0,i€ 2D\ Sy = a; =0},

where D are sub-sampled activation patterns, Up is the optimal model fit using those patterns, and v;(D) = ¢, (D) —
Ky, pv, (D) is determined by the fit and the dual parameters.

Proof. The proof is almost immediate.

Given any sub-sampled set of activation patterns D C Dy, Wang et al. (2021, Theorem 3) prove that the solutions to the
sub-sampled convex program are Clarke stationary points (Clarke, 1990) of the non-convex ReLU optimization problem in
Equation (1), and vice-versa. Using the expression for the CGL solution set in Proposition 3.1, which applies to sub-sampled
convex reformulations as well as the full program, we obtain a version of Corollary 4.1 for stationary points. That is, every
model (W7, w2) in

CA(D) = {(W1,w2) © fuv, wy (Z) =115, Wii = (4i/3) *0i(D), wa; = (s \)'7?,
;> 0,i€[m]\S = o =0},

is a stationary point of the non-convex ReLU program. Taking the union over all sub-sampled sets of activation patterns
gives Cy, which is guaranteed to contain every stationary point of the non-convex objective. This completes the proof. [

Lemma B.1. Let (W1, ws) and (W7, w}) be two solutions to the non-convex ReLU training problem. If for every i € [m), it
holds that
Wiiwe; = Wllzw,Zz7

and sign(wsy;) = sign(w);), then W1 = W and wy = wh. That is, the solutions are the same.
Proof. The ReLU prediction function fyy, ., is invariant to scalings of the form
Wi = aWi; o = wa/a,
where o > 0. Using this, we deduce that both solutions must satisfy the following equations:
1 = argmina® Wyl + [lwaill3/a®
1 = argmin o [|W7, 3 + [[ws,[5/a”,
@

which in turn implies that
Willz = [[waill2.

We deduce

[Wiill3 = [Whi - lwail2]]2
= [|[W1; - [lwyl2]l2

! 112
= HW11||2’
where we have used the fact that ||wa;||2 = |we;|. But this implies W1; = W/, and wq; = w};, completing the proof. I

Lemma B.2. Let (W1, ws) and (W1, w}) be two solutions to the non-convex ReLU training problem. If (W1, w2) and
(W1, wh) map to the same solution in the convex reformulation, then they are equal up to permutations of the neurons.
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Proof. We recall from Pilanci & Ergen (2020) that the mapping from solutions to the non-convex training problem to
solutions of the convex reformulation is given by

Wuwgi if wo; Z O
U = .
0 otherwise

—Whiwe; ifwe; <0
u; =
’ 0 otherwise,

Since (W7, ws) and (W7, wj) map to the same solution, the following must hold (up to orderings of the neurons):
Wliw2i = Wllz’wlm
Lemma B.1 now implies the two solutions are the same up to permutations. O

Proposition 4.3. Let A > 0 and suppose that the convex ReLU problem has a unique solution. Then the ReLU model
solution is p-unique. In particular, if {D; Zvy, } g, are linearly independent, then the non-convex solution is p-unique.

Proof. Since is only one solution to the convex reformulation, all solutions to the non-convex training problem must map to
that solution. Lemma B.2 now implies that the solution map for the non-convex problem is p-unique. O

Proposition 4.4. Let A > 0 and p = |75| Suppose Z follows a continuous probability distribution and nnz(D;) > p - d
for every D; € D. If €y does not contain two blocks with the same activation pattern, then the sub-sampled convex ReLU
program has a unique solution almost surely.

Proof. We assume without loss of generality that only indices from 1 to p are in £5. By Lemma 3.3, the constrained group
lasso admits a unique solution if and only if

U {D iZ Ub; } )

i€EN
are linearly independent. We now show that this fact holds under the proposed sufficient condition by proving the stronger
fact that J;c., {[DiZ]; : j € [d]} are linearly independent with probability one, where [D; Z]; is the j™ column of D;Z.
Since nnz(D;) > d * p and Z has a continuous probability distribution, it holds that [D;Z]; has at least d * p non-zero
entries with probability 1. Let

Sij = Span < U {[Diz]; : j € [d}\ [DiZ]j> :

i€EN

and observe that dim(S) < d * p — 1. As a result, the conditional probability [D,Z]; falls in this subspace satisfies

Pr([D;Z); € Sij| | J {[DiZ); : j € [dI}\ [D:Z];) = 0.
1€ExN

Taking expectations over the remaining vectors in Z implies
Pr([DiZ]j S Sij) =0.
Finally, using a union bound over i, j implies that | J;c¢, {[D:Z]; : j € [d]} are linearly independent almost surely. O

Proposition 4.5. Suppose r = rank(X). Then an optimal and minimal ReLU network with at most m* < n non-zero
neurons can be computed in O (dr3(n/r)3") time.

Proof. The proof follows directly from existing results.

Recall from Pilanci & Ergen (2020) that there are at most

3r
pEO(rn >,
T
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activation patterns in the convex reformulation and that the complexity of computing an optimal ReLLU model using a
standard interior-point solver is O(d®r3(n/r)3").

We know from Proposition A.6 that the complexity of pruning an optimal neural network with at most 2p neuron is
O(n®p + nd). Combining these complexities, we find that the cost of optimization dominates and overall complexity of
computing an optimal and minimal neural network grows as O(d3r3(n/r)3").

Finally, the bound on the number of active neurons follows from the fact that dim Span({(XW7;)+},) < n. This completes
the proof. O

Lemma 4.8. The minimum {s-norm solution to the convex reformulation of a (gated) ReLU model corresponds to the
p-unique optimal neural network which minimizes

m
r(Wi,we) =Y [Waill§ + lwaill3.
=1

Proof. Let (u,v) be an optimal solution to the convex reformulation. Pilanci & Ergen (2020) show that an optimal solution
to the original two-layer ReLU optimization problem is given by setting

w
Wi = ———, wa; = /||uil|2,

[[wi|2

.
Wy = W»wzj = —V/vill2,
1112

where we define % = 0. Then, the r-value of any such solution can be calculated as

and

(Wi, ws) = Z Wiz + llwaillz

=Y =13+ IVl ll3 + >~ | ———=
,;O \/H T el 2 \/H ol

D Mull3 + a3 + > llosll3 + losl3

u; #0 v; 7#0
2)|ull3 + 2[lv]3-

12 + 1V lvill212

That is, (W7, ws) is a monotone transformation of the Euclidean norm of (u, v). Moreover, since every optimal ReLU
network can be obtained as the solution to a convex reformulation, the minimum r-valued optimal ReLU network is given
by the minimum ¢5-norm solution to the convex reformulation.

Finally, let’s show that this solution is unique up to permutations. Suppose (W, w}) is a optimal ReLU model which also
minimizes r. We know from the theory of convex reformulations that W7, w, corresponds to an optimal solution of the
convex program; by reversing our calculations above, we deduce that this convex parameterization must also minimize the
{5-norm. Such the minimum ¢ — 2-norm solution to the convex reformulation is unique, we have

/

[o%)

!,k 7
=ou; = 7|/]/1,L-7

/
Wi,
QG

K2

so that each neuron in the two solutions is related by a strictly positive scaling. Lemma B.2 now implies the optimal neural
network which minimizes r is p-unique. O

Proposition 4.6. There exists (Z,y) for which O* is not open nor is the model fit fw, ., (Z) continuous in \.

Proof. Mishkin et al. (2022) show that Equation 1 has the same global optimal values as

i “}2\@ Xug)y - y||+AZHwZ||2 @)
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Moreover, the objective-preserving mapping Wy; = v;/+/||vil|2, wai = i1/ ||vi]|2 can be used to obtain an optimal ReLU
network from a solution to Equation (27). We proceed by analyzing this equivalent problem and then use the mapping to
return to the original non-convex formulation.

Consider the case p = 1. Let X,y consist of two training points, (z1,y1) = (—100, 1) and (z2,y2) = (1, 10). In what
follows, we drop the subscript for v and v since p = 1 and we consider a one-dimensional. The optimization problem of
interest is

1
min o (10) 47 = 1) + (220)47 = 52)” + A o]

Since x; < 0 and x5 > 0, we can re-write this optimization problem as

1
Igllvn §]1vgo ((Ilv’Y - y1)2 + y%) + 1y>0 ((Iﬂw - y2)2 + y%) + Alvl.

By inspection, we see that v = +1 is optimal in both cases, leading to the following simplified expression:

1
min §]1y§0 ((%U —y) + y%) + Lu>o ((LL’Q”U —2)° + yf) + Alv].
This is a piece-wise continuous (but non-smooth) quadratic with a breakpoint at v* = 0. We determine the solution to this
minimization problem via a case analysis.
Case 1: v* = 0. Then, the optimal objective is trivially f(v*) = y? + y3 = 101.

Case 2: v* < 0. First order optimality conditions are

. A
xl(mlvi—yl)—)\:O - vi:%7

which is valid only if A < |y; - 21| = 100. The minimum objective value is then

(s —)” +33) = wo” = ((wlylx; —y1> +y§> ) <?41m12>
1

1

)\2 2 yl'x1+>\
A (T A
oA (M

DN | =

A
= — +100.
100 -+ 100

Case 3: v > 0. Similarly to the previous case, we obtain

“X9 — A
JTQ(JUQUj_—yQ)—F/\:O - Uiz%a
2

which is valid only if A < |y - x2| = 10. In this case, the minimum objective is

2 <(z2”+ *y2)2+y%> T = ((552‘1/2:; y2) +yf> Y (M)

2
/\2 yQ'JZQ—)\
) T3
:Ay2

AY2 | o
. + Yl
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To combine the cases, observe that

) — fn) =292 42 [_Mﬂ Y }

T2
- ($1y2 + 372?!1) P — 2
11X
—100(10) + 1(1)
=N —M——— 1—100
( "0y )T
=9.99\ —99.

We deduce that f(v?) — f(v*) > 0 (and thus v* < 0) whenever A > 2% ~ 10 and f(v%) — f(v*) > 0 < 0 otherwise. In
this latter case, v* > 0.

Taking A = 10, we find
f(v*) =100 — 0.1 = 99.99 < 101 = y? +y2 = £(0),

so that v* is optimal and v* < 0. Moreover, v* is strictly increasing as a function of A, for all A > so that v* is

9 99
optimal and strictly negative on the interval [9 o5 10].
Now, consider A\ = % — € to see that
990
T 9.99
for all € > 0. We deduce that v’} is optimal for all € > 0 and thus v? is optimal and strictly positive on the interval [0, %].

To summarize, the solution function for this problem is as follows:

. 9¢

o5z — 0.01 if A > g%5

W A) =< {3 — 001,0.1fﬁ} it A= %5
: 99

0.1-— 100 if A < 9.99°

This point—to—.set. map is clearly not open: for every sequence )\{c T %, Vg 6 W*()\k) implies lim.k Vi F ﬁ —.0.01.
Moreover, a similar result holds for limits from above. Finally, it is clear by inspection that the optimal model fit is not
unique at A = %, cannot be continuous in the functional sense, and, since it is not open, also fails to be continuous in the
sense of point-to-set maps. O

C. Extension to General Losses

In this section, we briefly discuss how to extend our results to general loss functions. Although we use the least-squares
error throughout our derivations, this can be generalized to a smooth and strictly convex loss function L : R™ x R” — R
without difficulty. To do so, consider the more general problem,

P () =min F(w) = L I(

bieB (28)
st. Ky wy, <0forallb; € B.

If L is strictly convex, then uniqueness of the optimal model fit §()\) = Xw follows from straightforward adaption of
Lemma A.1. Indeed, the only property of the squared-error used in this lemma is strict convexity.

Since the model fit is constant in W* and L is both smooth and strictly convex, the gradient V., L(X w, y), which is given
by

XTV;L(3,y),
must also be constant over W*. Thus, it is straightforward to replace the correlation vector ¢, = X (y — Xw) with
bl v, VgL (9, y) throughout our derivations.
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Figure 4. Pruning neurons on five datasets from the UCI repository. This figure extends Figure 2 with training accuracy in addition to the
test accuracies shown in the main paper.

We form a Lagrange dual problem for CGL for one continuity-type result. Proposition 3.15 uses the Lagrange dual to show
that the correlation vector ¢, is the unique solution to a convex optimization program and applies standard sensitivity results
to obtain continuity of 4. In this same fashion, X ,;[ V4 L(9,y) is the unique solution to a Lagrange dual problem where the
dual objective uses the convex conjugate L*, rather than the dual of the quadratic penalty. If V;L(7,y) is continuous in 7,
then this is sufficient to deduce continuity of the model fit using the same argument.

D. Additional Experiments

In this section we provide additional experimental results as well as the necessary details to replicate our pruning experiments.
Code to replicate all of our experiments is provided at https://github.com/pilancilab/relu_optimal__
sets.

D.1. Additional Results

Tuning Table 2 shows results for our tuning task on an additional 7 datasets, as well as the 10 given in Table 1. We report
the interquartile range as well as median test accuracies for each method. We observe similar results as presented in the
main text. Only one dataset (t ic-tac-toe) shows no variation in test accuracy as we explore the optimal set.

Pruning: Figure 4 shows train and test accuracy for our optimal/least-squares pruning method as well as magnitude/gradient-
based pruning and random pruning on the same five datasets from the UCI repository as presented in Figure 2. Our approach
shows significantly less decay in train accuracy as neurons are pruned; this matches the intuition of the least-squares heuristic
for pruning, which selects the coefficients 3 to best preserve the model fit.
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Figure 5. Pruning neurons on five additional datasets from the UCI repository. See Figure 2 for details. Our method (Optimal/LS)
preservers test accuracy for longer than the baseline methods, leading to compact models with better generalization.

We observe that both our pruning method and pruning by neuron/gradient norm show very similar training accuracy until
most of the neurons have been pruned. While this behavior is expected from our theory-based approach, it is somewhat
surprising that pruning by neuron/gradient-norm also maintains train accuracy nearly as well. This behavior suggests that
there are many neurons with very small norm which can be eliminated without significantly affecting the model prediction.

Figure 5 presents results for neuron pruning on five additional datasets from the UCI repository, while Figure 7 shows results
for three binary classification tasks taken from the MNIST dataset. The trends are generally the same as in Figure 4, with
our approach (Theory/LS) outperforming the baselines. Finally Figure 6 extends the results on CIFAR-10 given in Figure 3
with one additional task and with training accuracies.

D.2. Experimental Details

Now we give the details necessary to reproduce our experiments. Our experiments use the pre-processed versions of UCI
datasets provided by Delgado et al. (2014), but do we do not use their evaluation procedure as it is known to have data
leakage.

34



Optimal Sets and Solution Paths of ReLLU Networks

Train Accuracy

Test Accuracy

=@- Neuron Magnitude

== Random

=@®= Gradient Magnitude
== Optimal/LS

»n 0.8
g 0.6 -
% 0.6 -
0.4
&, 0.4
[e]
(@] ! : : : : : :
" 0 5 10 15 20 0 5 10 15 20
T
E 0.75_ 0.75'
g
7 0.50 0.50 -
(0]
C
E 0l25 T T T T 0.25 T T T T
e 0 5 10 15 20 0 5 10 15 20
()]
4§ 075 0.8
So.
" 0.6
> 0.50
v 0.4
8 0.251 : : : . : : :
0 5 10 15 20 0 5 10 15 20
# Neurons # Neurons

Figure 6. Pruning experiments on binary classification tasks from the CIFAR-10 dataset. This figure reproduces results from Figure 3 with
training accuracies added and also includes results for an additional task, cats vs dogs, not presented in the main paper.
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Table 2. Tuning neural networks by searching over the optimal set. We fit two-layer ReLU networks on the training set and compute
the minimum ¢> norm solution (Min Ls). Then we tune by finding an extreme point approximating the maximum ¢>-norm solution
(EP), minimizing validation MSE over the optimal set (V-MSE), and minimizing test MSE over the optimal set (T-MSE). Max Ditf.
reports the difference between the best and worse models found. For each method we give the median and interquartile range as median

(lower/upper).

Dataset

Min L, EP V-MSE T-MSE Max Diff.

blood
breast-cancer
fertility
heart-hungarian
hepatitis
hill-valley
mammographic
monks-1
planning

spectf
horse-colic
ilpd-indian-liver
parkinsons
pima

tic-tac-toe
statlog-heart
ionosphere

0.72 (0.72/0.74) 0.72 (0.72/0.74) 0.62 (0.61/0.62) 0.7 (0.68/0.71) 0.1 (0.11/0.12)
0.64 (0.61/0.65) 0.64 (0.61/0.65) 0.61 (0.6/0.64) 0.71 (0.66/0.71) 0.1 (0.06/0.08)
0.66 (0.62/0.7) 0.69 (0.62/0.69) 0.65 (0.64/0.7) 0.64 (0.57/0.64) 0.05 (0.06/0.06)
0.75 (0.7/0.77)  0.75 (0.7/0.77) 0.71 (0.56/0.72) 0.85 (0.82/0.86) 0.14 (0.26/0.14)
0.75 (0.74/0.78) 0.75 (0.74/0.78) 0.73 (0.69/0.75) 0.77 (0.77/0.9) 0.05 (0.08/0.15)
0.64 (0.64/0.65) 0.65 (0.64/0.65) 0.64 (0.64/0.67) 0.64 (0.64/0.65) 0.0 (0.0/0.01)
0.77 (0.77/0.77) 0.77 (0.77/0.77) 0.57 (0.56/0.62) 0.78 (0.78/0.8) 0.21 (0.22/0.18)
0.67 (0.64/0.71) 0.66 (0.64/0.71) 0.49 (0.48/0.51) 0.57 (0.51/0.61) 0.17 (0.15/0.2)
0.53 (0.51/0.61) 0.52 (0.51/0.61) 0.53 (0.52/0.53) 0.7 (0.68/0.74) 0.17 (0.17/0.21)
0.64 (0.62/0.7) 0.64 (0.62/0.7) 0.56 (0.53/0.56) 0.58 (0.56/0.66) 0.08 (0.09/0.14)
0.75 (0.75/0.76) 0.59 (0.57/0.61) 0.74 (0.73/0.75) 0.85 (0.85/0.85) 0.26 (0.27/0.24)
0.59 (0.57/0.6) 0.59 (0.57/0.6) 0.53 (0.53/0.57) 0.72 (0.7/0.73) 0.19 (0.17/0.17)
0.74 (0.72/0.74) 0.74 (0.72/0.74) 0.65 (0.65/0.74) 0.88 (0.86/0.9) 0.23 (0.21/0.16)
0.68 (0.66/0.68) 0.68 (0.66/0.68) 0.68 (0.64/0.7) 0.87 (0.86/0.88) 0.2 (0.22/0.19)
0.98 (0.98/0.98) 0.76 (0.69/0.8) 0.98 (0.98/0.99) 1.0 (1.0/1.0)  0.24 (0.31/0.2)
0.71 (0.7/0.73)  0.71 (0.7/0.73) 0.7 (0.67/0.73) 0.84 (0.83/0.86) 0.14 (0.17/0.13)
0.85 (0.83/0.86) 0.76 (0.73/0.76) 0.84 (0.84/0.84) 0.88 (0.88/0.89) 0.12 (0.15/0.12)

D.2.1. TUNING

We select 17 binary classification datasets from the UCI repository. For each dataset we use a random 60/20/20 split of the
data into train, validation, and test sets. We use the commercial interior point method MOSEK (ApS, 2022) through the
interface provided by CVXPY (Diamond & Boyd, 2016) to compute the initial model which is then tuned. We modify the
tolerances of this method to use 7 = 108 for measuring both primal convergence and violation of the constraints. For each
dataset, we use fixed A = 0.001 and a maximum of 100 neurons. To compute the min £»-norm optimal model, we use the

MOSEK and the optimization problem given in Proposition 3.17.

To approximate the maximum ¢2-norm model, we solve the following program:

o = arg max E ap, s.t. E ap, Xp, 05, = 7.
az0 s, bi €S

This is a linear program which is straightforward to solve using interior point methods. Moreover, we have

w13 =AY (a3)?,

b;

sothat ), ay, acts as an approximation, where we recall o, > 0 necessarily.
; Qb

To tune each model with respect to the validation/test MSE, we solve the following optimization problem:

with respect to the parameters of the convex formulation. Here, (X ,J) is either the validation or test set. We repeat each
experiment five times with different random splits of the data and random resamplings of 500 activation patterns D;. This
guarantees that each non-convex network has at most 1000 neurons after optimization, although it may have less due to the

sparsity inducing penalty.

1.~
min{2|Xw —gl3:we W*()\)},

w
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D.2.2. PRUNING

Methods: We use the augmented Lagrangian method of Mishkin et al. (2022) to compute the starting model which is then
pruned. We modify the tolerances of this method to use 7 = 108 for measuring both primal convergence and violation of
the constraints.

Pruning by neuron magnitude is straightforward: we sort the neurons by ||WW7;ws;||2, which measures the total magnitude
of the neuron, and then drop the smallest one. For pruning by gradient norm, we compute G1; = Vi, L(fw, v, (2),y),
92i = Vs, L(fw, ws (Z), y) and then score each neuron as

5i = |[Whs - Griwaigai|2,

where - indicates the element-wise product. The neuron with smallest score is zeroed. This is consistent the existing
implementations of pruning by gradient norm (Blalock et al., 2020) and attempts to measure the variation of a linearization
of the loss in neuron ¢. For Random, we simply select a neuron from a uniform random distribution.

For Optimal/LS, we start by using Algorithm 1 to prune until no linear dependence exists amongst the neuron fits D; ZW7;.
At this point, we choose § to minimize the squared-error in the training fit. We choose the neuron to prune by selecting the
index that minimizing the residual in the least-squares fit,

1
i = arg minmﬁin §|| ZﬁiDiZwi — D; Zw;||.
J i#j

This produced the best result in all of our experiments, although you can also select ¢ using neuron magnitude or any other
rule in the literature on structured pruning.

UCI Datasets: We select 10 moderately-sized binary classification datasets from the UCI repository. For each dataset we use
a random 50/50 split of the data into train and test sets, fixed A = 0.01, and sample 25 activation patterns D;. This results
in a maximum of 50 neurons in each final model; since the datasets are low dimensional, randomly sampling activation
patterns typically results in fewer than 50 neurons. All results are repeated for five different random splits and we plot the
median and interquartile ranges of the results.

MNIST and CIFAR-10: We select three binary classification tasks from each dataset such that no task shares a target with
another task. For each dataset we use a random 50/50 split of the data into train and test sets. For MNIST, we use A — 0.01,
while we used A = 0.05 for CIFAR-10. We sample 50 activation patterns D; for each tasking, which produces a maximum
of 100 neurons in each final model. All results are repeated for five different random splits and we plot the median and
interquartile ranges of the results.
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