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ABSTRACT

Many methods aim to explain deep neural networks (DNN) by attributing the pre-
diction of DNN to its input features, like Integrated Gradients and Deep Shap,
which both have critical baseline problems. Previous studies pursue a perfect but
intractable baseline value, which is hard to find and has a very high computational
cost, limiting the application range of these baseline methods. In this paper, we
propose to find a set of baseline values corresponding to Shapley values which
are easier to be found and have a lower computation cost. To solve computation
dilemma of Shapley value, we propose Effective Shapley value (ES), a propor-
tional sampling method to well simulate the ratios between the Shapley values
of features and then propose Shapley Integrated Gradients (SIG) to combine In-
tegrated Gradients with ES, to achieve a good balance between efficiency and
effectiveness. Experiment results show that our ES method can well and stably
approximate the ratios between Shapley values, and our SIG method has a much
better and more accurate performance than common baseline values with similar
computational costs.

1 INTRODUCTION

Deep Learning (DL) has exhibited significant success in various tasks, such as computer vision
and reinforcement learning. Unfortunately, under the curse of transparency-performance trade-off,
it’s difficult to understand the intrinsic working logic of DL. Attributing the prediction of a deep
network to its input features is one of the most popular methods in DL evaluation domain, such as
DeepLift (Shrikumar et al. (2017)), Integrated Gradients (Sundararajan et al. (2017)) and Deep Shap
(Lundberg & Lee (2017)). All these methods have a crucial problem how to choose a perfect baseline
as a benchmark for input. As mentioned in Frye et al. (2020), the quality of baselines determines
the quality of explanations for DL. Ren et al. (2021) considers there are two key requirements: (i)
baseline values should remove all information represented by origin variable values and (ii) baseline
values shouldn’t bring in new/abnormal information.

Some studies provide empirical baseline values based on actual experience. Ancona et al.
(2019) set baseline values as zero, Dabkowski & Gal (2017) set baseline values as mean value
over many samples and usually people randomly select some samples from datasets. While other
studies try to find a more reasonable baseline value. Fong & Vedaldi (2017) makes baseline values
smoothed by blurring the input image with Gaussian noise. Frye et al. (2020) sets the baseline value
of a pixel with surrounding pixels. Ren et al. (2021) learns baseline values corresponding to a set of
features. Those methods try to approximate the perfect baseline value. However, it’s difficult to find
a baseline value that perfectly satisfies the two principles for various inputs in practice. For example,
in the field of computer vision, zero baseline value is a common baseline value, seen as bringing no
additive information. But in facial expression code task for Asian people whose eyes are black is
no longer suitable for zero baseline value, owing to the black area around the eyes bringing additive
information. It’s ideal to use a transparent image as baseline, which is impossible to achieve in
computer. Therefore, though many methods try to find a perfect baseline value, most people still use
empirical baseline values based on experience, which leads to unsatisfactory and unstable results.

Instead of finding a perfect baseline value, we propose to find a set of informative baseline
values, which can be found easier and have a much low computation. Shapley value (Shapley
(1951)) is computed as summation of marginal difference for all coalitions and Shapley value can
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accurately reflect the contributions of features. Aas et al. (2021) holds the view that Shapley value
can explain the difference between prediction and global average prediction. What’s more, most
coalitions in Shapley value are informative and we can simply remove some features to get an
informative coalition, which means can be found easier. So we propose to find a set of informative
baseline values associated with Shapley value.

However, the computation of Shapley value needs to iterate over all combinations, which is
exponential with respect to the number of features. For the computation dilemma of Shapley value,
we propose a proportional sampling method to approximate the ratios between Shapley value and
propose Shapley Integrated Gradients (SIG) to combine Shapley value and Integrated Gradients,
achieving a good balance between efficiency and effectiveness. Integrated Gradients has a much
faster computation process compared with Shapley value but we discover that though Ren et al.
(2021) has pointed out that Integrated Gradients is a simulation of Aumann Shapley value alongside
a special calculation path, Integrated Gradients takes a shortcut compared with calculation path of
Shapley value and it will lead to an unsatisfactory and unstable explanation.

To verify the effectiveness of our sample methods, we conduct experiments on three typical
tasks: human-defined function to verify the validity of our method to simulate ratio between Shapley
value of players. facial expression code & image classification, to verify that our methods have better
performance compared to zero baseline method or mean baseline methods;

Our contributions can be summarized as follows: (1) We discover that Integrated Gradients
takes a shortcut compared with calculation path of Shapley value; (2) We propose an effective
proportional sampling method Effective Shapley value to approximate the ratios between Shapley
values and design experiments to verify the effectiveness and preciseness of our methods; (3) We
propose Shapley Integrated Gradients which combines Integrated Gradients with Effective Shapley
value and achieve a balance between efficiency and effectiveness.

2 RELATED WORK

Most previous studies focused on finding a perfect baseline value, while our proposed method
try to find a set of baseline values that are informative and easier to obtain. In our proposed methods,
the selection of baseline values is based on the calculation path of Shapley value.

Shapely value. Shapley value (Shapley (1951) was proposed to distribute contributions to
players, assuming that they are collaborating. It’s the only distribution with desirable properties,
linearity, nullity, symmetry, and efficiency axioms. Aumann & Shapley (2015) extended the concept
of Shapley value to infinite game. Some previous studies used Shapley value for model explana-
tion. Lundberg & Lee (2017) proposed Shapley Additive exPlanations(SHAP), a model explanation
method with Shapley value. The SHAP regards the feature as a player in game, regards model as
utility function, and uses chain rule to reduce computational complexity. Based on SHAP, Lundberg
et al. (2018) continued to propose TreeSHAP, a method for tree model reducing complexity from
O(TL2M̂) to O(TLD2̂). It’s worth noting that there is also a baseline problem in SHAP. To simplify
computation, Ghorbani & Zou (2019) used Monte Carlo Sampling and gradient-based methods to
efficiently estimate data Shapley values. Ancona et al. (2019) sampled from distribution of coalition
size of k and then average all these marginal contributions as an approximation of Shapley value.
Ghorbani & Zou (2020) proposed a new multi-armed bandit algorithm to explain Neuron’s Shapley
value.

Integrated Gradients. Integrated Gradients was proposed by Sundararajan et al. (2017) to
combine implementation invariance of gradients along with the sensitivity of techniques, which also
needs a crucial baseline value. Merrick & Taly (2020); Kumar et al. (2020); Binder et al. (2016);
Shrikumar et al. (2017) provided their experiential guidance of selecting baseline values, without
providing any theoretical guidance. And Chen et al. (2021) regarded baseline values as background
distribution, which is similar to our view.

3 PRELIMINARIES

Shapley value. Let us consider a game with n players and F = S|S ⊆ 2n means all subsets
of players. Game will return a reward corresponding to the coalition S through utility function v.
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For coalition S and player xi where xi /∈ S, the marginal contribution of player xi with coalition
S is v(S ∪ xi) − v(S). Shapley value of player xi is the summation of all coalition S ∈ F/i with
probability of selecting coalition, as follows:

f(xi) =
∑

S∈F/{i}

|S|!(|F | − |S| − 1)!

|F |!
(v(S ∪ xi)− v(S)). (1)

Aumann Shapley value. With the expansion to infinite game, Aumann Shapley value was
proposed with definition that ds represents infinitely small player in game, I represents the complete
set of players and tI is a perfect sampling with scale t. Aumann Shapley value can be written as
follows:

f(ds) =

∫ 1

0

v(tI + ds)− v(tI)dt. (2)

Integrated Gradients. Integrated Gradients was proposed to attribute the prediction of a deep
network to its input features. It integrates the gradient of the prediction with respect to input features
along a straight path between input x and baseline x′. Integrated Gradients for model F can be
written as follows:

IntegratedGradi(s) = (xi − x′
i)×

∫ 1

α=0

ϕF (x′ + α(x− x′))

αxi
dα. (3)

4 OUR METHOD

4.1 PROBLEM OF INTEGRATED GRADIENTS

4.1.1 THE CONNECTION BETWEEN INTEGRATED GRADIENTS AND SHAPLEY VALUE
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Figure 1: (a) The calculation paths of Integrated Gradients and Shapley value in two features input.
Path P1 is the calculation path of Shapley value while P2 is Integrated Gradients; (b) Orange path is
the calculation path of Shapley value while blue path is the calculation path of Integrated Gradients;
(c) The calculation path of permutations between (x1, x2) and (x1, x2, x3).

We suppose that there are two dimension features as shown in Figure 1(a), baseline sample
x′ = (r1, r2) and input sample x = (s1, s2). Integrated Gradients computes feature’s contribution
alongside path P2 according to Sundararajan et al. (2017). Baseline sample x′ is considered as
not containing any information and all points in path P2 can be regarded as joining the calculation
of contribution for each feature. We make the hypothesis that baseline sample x′ is considered as
background in game and all points alongside P2 are considered as complete set I in game. We can
find that Integrated Gradients is the same to Aumann Shapley value under this hypothesis. The same
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can be extended to n dimensions. Formally, Integrated Gradients is an approximation of Aumann
Shapley value along Path P2. The Proof of theorem 1 is shown in Appendix A.1.

Theorem 1: Integrated Gradients is an approximation of Aumann Shapley value alongside path
that starts from baseline value (r1, r2, ..., rn) and directly connect with end point (S1, S2, ..., Sn).

4.1.2 THE LIMITS OF INTEGRATED GRADIENTS

Integrated Gradients simulates Atumann Shapley value among points in P2. However, let’s
consider Shapley value. In Figure 1(a), we regard baseline sample x′ as ∅ in Shapley value and S1

as a player and points (r1, r2), (r1, S2), (S1, S2) as coalition. Shapley value of player S2 is defined
as:

f(s2) =
1

2
(v(r1, s2)− v(r1, r2)) +

1

2
(v(s1, s2)− v(s1, r2)). (4)

When computing Shapley value, we will walk through points (r1, r2), (r1, S2), (S1, S2). We
call points to be walked through when computing Shapley value calculation path of Shapley value.
Path P2 is a shortcut for Shapley value, conflicting with path P1.

Now, let’s take a closer look at computation on coalitions. As a matter of fact, marginal differ-
ence between S ∪xi and S is made up marginal difference between permutations in S ∪xi and per-
mutations in S. Points in combinations is permutations of combinations and factor |S|!(|F |−|S|−1)!

|F |!
can be seen as proportion of connections/lines between S ∪ xi and S for all connections/points
since permutations wouldn’t affect utility value due to nature of Shapley value. In Figure 1(c),
we simulate computation between (x1, x2) and (x1, x2, x3). Factor 2∗2

24 = 1
6 means lines between

(x1, x2) and (x1, x2, x3) take a proportion of 1
6 for all lines in the computation of Shapley value for

x3. For simplification, we hide the computation process of permutations, just show computation of
combinations and set weight to combination according to the factor.

In conclusion, the calculation path of Shapley value is the weighted points walked through
when calculating Shapley value. As shown in Figure 1(b), the calculation paths of Shapley value
are presented with orange dotted lines, and the blue dotted curve represents the calculation path of
Integrated Gradients.

4.2 EFFECTIVE SHAPLEY VALUE

For Shapley value of player xi, if we collect all coalitions without xi, we can get accurate
Shapley value with the formula of Shapley value, which will bring a large computation. We notice
that not all coalitions contribute to Shapley value for player xi. Coalitions that satisfies v(S ∪
xi) − v(S) = 0 actually don’t influence Shapley value for player xi. We call coalitions satisfy that
v(S ∪ xi)− v(S) ̸= 0 effective coalitions for player xi. So we just need to collect effective samples
for player xi and then can get accurate Shapley value. However, it still needs to iterate over all
effective coalitions, still having an extensive computational cost. Considering that in actual cases
we are usually concerned about which player/feature has more contribution than others, not the exact
Shapley value of each player. We transform our goal from accurate Shapley value to ratio between
Shapley value of each player. We can collect proportional coalitions from effective coalitions.

When we classify effective coalitions according to number of players in the coalition, in
formula S ∈ N and N is effective coalitions for player xi, we can easily simulate ratio be-
tween Shapley value of players through proportional sampling. Let’s consider the influence of
factor |S|!(|F |−|S|−1)!

|F |! . In the analysis of section 3.1, factor represents proportion of the coali-
tion’s permutations in all permutations. In theory, we can directly multiply factor with marginal
difference of coalition S, which will be slow if we iterate one by one. For set djk that satisfies
v(S ∪ xi) − v(S) = j&|S| = k, S ∈ djk, its contribution to Shapley value consists of factor
|S|!(|F |−|S|−1)!

|F |! and number of coalitions in djk. In order to seep up calculation, we hope to reflect
influence of factors through numbers of sampling coalitions. Concretely, we set mj as coalition set
that satisfies v(S ∪ xi) − v(S) = j, normalization as normalization function and |T | as sample
number for player xi. The sampling number Cjk of set djk is

Cjk = normalization(
mj∑
mj

|k|!||F | − k − 1||!
|F |!

)|T |. (5)
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The overall algorithm of our Effective Shapley value (ES) is shown in algorithm 1. We first
randomly select partial coalitions A and then classify them by marginal difference v(S ∪ xi) −
v(S), S ∈ A, recorded as M = (m1, ...,mj , ...). For mj , we then classify by players of coalition
|S|, S ∈ mj , recorded as D = (d1j , ..., djk, .., ). Lastly according to equation 1, sample from djk.
Theorem 2 gives the probability of correct results. The Proof of Theorem 2 is shown in Appendix
A.2.

Theorem 2: Make nj considered to be all combinations without player j, ej considered
to be effective coalitions in nj , bj considered to be randomly selected coalitions in nj , aj con-
sidered to be effective coalitions in bj , amin = min(aj) ∈ [1, A] that the range of mini-
mum of aj . The correct probability of proportional sampling for Shapley value of player j is:
P =

∑A
k=1

∏
j C|ej ||aj |C

|bj |−|aj |
|nj |−|ej |.

Algorithm 1 Effective Shapley value
INPUT: player set n, utility function and constant T
OUTPUT: baseline coalitions for each player
Randomly select samples from subsets grouped by length
for xi in player set n do
A← select effective sample set of player xi

classify S into mi according to v(S ∪ xi)− v(S) = i S ∈ A
for mj in M do

Classify S according to |S| = k S ∈ mj

end for
Get D = (dj1, ..., djk)
Randomly sample according to equation 1

end for

Algorithm 2 Shapley Integrated Gradients
INPUT: player set N , utility function and constant T
OUTPUT: baseline samples for each player
Set m players as a single player and get new player set M = (m1, ...,mn)
for mi in player set M do

Sample effective coalitions Di for mi according to algorithm 1
Set Di as baseline values and set coalition with all players as input
Compute Integrated Gradients over these baseline coalitions

end for
Average all values of Integrated Gradients as each player’s n ∈ N contribution

4.3 SHAPLEY INTEGRATED GRADIENTS

As a matter of fact, for coalitions sampled by algorithm 1, there is no need to apply Integrated
Gradients, just directly computing marginal difference of coalitions and average it as contribution of
player xi. However, when there are many players, like pixels in image, usually meaning 244*244
players, it’s almost impossible to compute each player’s sampled coalitions. So we set part of
image as player like 80*80 area as a player and apply Integrated Gradients to compute each player’s
contribution. Concretely, We set these sampled coalitions as a set of baseline values and set input as
origin input. Then we average contributions computed by Integrated Gradients and get each feature’s
contribution. From point of calculation path, this method starts from some points in calculation path
of Shapley value and ends with input. It’s worth pointing out that as the area decreases, the result
will get closer to ratio between Shapley value. When the area decreases to 1, result will be close
to ratio between Shapley value. The problem become that we set sampled coalitions as baseline
values and coalition containing all players as input. Under the guarantee of theorem 3, The Proof
of theorem 3 shown in Appendix A.3, result will get close to ratio of Shapley value. Shapley value
verify experiment will prove it.

The overall algorithm Shapley Integrated Gradients(SIG) is shown in algorithm 2. We first set
players coalition as a single player, like 80*80 area as a player in image. Then we select partial
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Figure 2: (a) represents human defined utility function (1); (b) represents human defined utility func-
tion (2); (c) represents represents human defined utility function (3); (d) represents human defined
utility function (4). Each row represents an independent experiment.

effective coalitions of these players according to algorithm 1. We set these selected coalitions as
baseline values and set coalitions with all players as input, like origin image to compute Integrated
Gradients. Finally, we average these values as each player’s contribution.

Theorem 3: Integrate Gradients between effective coalition S and coalition S∪xi for player xi

can exactly equal marginal difference in Shapley value under the hypothesis that in utility function
v coalition S directly connect coalition S ∪ xi.

While we can also set zero baseline value as the baseline value and set our sampled coalitions
as input. Interestingly, in ResNet(He et al. (2016)), there isn’t much difference between these two
methods as shown in Appendix B.1., which is opposite in DLN. It’s worth pointing out that our SIG
computation process is much faster due to the batch computation of gradients.
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MeanRandom ZeroOurs MeanRandom ZeroOurs

Figure 3: Integrated Gradients value produced with different baseline values on facial expression
coding task. From results, we can obviously find that our SIG method can concisely and accurately
locate relevant features.

Mean Random ZeroOurs Mean Random ZeroOurs 

Figure 4: Comparison of distribution over positive values and negative values. The distribution of
positive values is similar to negative values and our SIG achieves a better result on both distribution
of positive and negative values.

5 EXPERIMENT

To prove the validity of EG, in other words, the simulation of ratio between Shapley value of
players, we experiment with our ES method on human defined utility function, which has a few
features and much less coalitions than actual application. To verify the validity of SIG, we choose
Facial expression coding & Image classification tasks, which have 244*244 features.

Env: (1) Human defined utility function, we define a utility function v with n players; (2)
DLN(Zhang et al. (2021)) model for Facial expression coding: a model to learn compact and
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identity-invariant facial expression embedding by explicitly disentangling the identity attribute. The
model takes two pictures as input and outputs distance between two pictures; (3) ResNet a classic
computer vision model to classify image.

Baseline Sample. We choose three baseline methods that are widely used for various tasks:
(1)Mean baseline values. The baseline value of each input variable is set to mean value of this
variable over all samples; (2)Zero baseline values, baseline values of all input variables are set to
zero;(3)Random baseline samples, randomly selected baseline samples from dataset.

Shapley value verify. To verify the generality of EG, we define four utility function: (1)
12 players; (2) 12 players with different utility of coalitions; (3) 20 players; (4) 20 players with
same utility function to (2). We assume that utility function will have a much high computation
cost corresponding to actual cases so we use DNN model to simulate utility function. The DNN
model can perfectly replace utility function with partial data, with results shown in Appendix B.2.
In (1)&(2), we choose 50% coalitions as train dataset. In (3)&(4) we choose 40% coalitions as train
dataset. We set coalitions with all players as input and set our sampled coalitions as baseline values.
Considering that we randomly sample partial coalitions firstly in ES, we conduct three independent
experiments to avoid the influence of randomness.

Figure 5: Experiments on Resnet and ImageNet dataset with different baseline values. We can ob-
viously find out that our SIG method is similar with random baseline which is the common baseline
method but more concerned about areas in zero and mean baseline method.
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As shown in Figure 2, we can discover that in some cases, ES achieves similar results compared
to other three baselines, but in other cases, the results of other three baselines are quite disastrous
while ES shows a relatively accurate results. It shows that ES not only performs better than other
three baselines but is more stable than other three baselines.

Baseline Verify. In computer vision tasks, if we treat each pixel as a player, there would be
244*244 players, which is acceptable computation. In order to reduce computation and compute
each pixel’s contribution, we treat 80*80 pixel area as a player and apply Integrated Gradients to
compute each player’s contribution. We set our sampled baseline coalitions as baseline values and
set coalition with all players as input.

As shown in Figure 3, we experiment with our SIG method in the facial expression codeing
task. We select positive points that values > 0 which will reduce the distance between two pictures
in our views because negative points that values < 0 which have the opposite effect. And we
discover that negative points have a similar distribution with positive points as Figure 4 shows. If
we mix positive and negative values, this will lead to poor interpretability.

Compared with other three baseline methods, our SIG results are more concentrated near hu-
man facial organs, such as eyes, lips, etc, more in line with human intuition both in negative and
positive values. Although Zero and mean baseline methods can also identify human facial organs,
they will also pay attention to other areas of human face, in some cases even focusing on areas be-
yond the scope of human faces. More excitedly, the time cost by our SIG method is close to other
baseline methods. More details are in Appendix B1.

And as shown in Figure 5, we experiment with our SIG method in the image classification
tasks based on ResNet. We set almost same configuration to facial expression coding task. The
performance of our SIG method is similar to random baseline, but more focused on areas that zero
baseline and mean baseline pay attention to while random baseline ignores.

6 CONCLUSION

In this paper, we discover that Integrated Gradients takes a shortcut compared with Shapley
value, which leads to unsatisfactory and unstable results. We propose Effective Shapley to find out
a set of coalitions, which corresponds to calculation of Shapley value. In order to reduce compu-
tation and get a more applicable DNN explainer, we propose Shapley Integrated Gradients which
combines Integrated Gradients with Effective Shapley. Experiments show that our Effective Shapley
value method can well approximate the ratios between the Shapley values of players and our Shap-
ley Integrated Gradients method can achieve better and more stable performance than Integrated
Gradients.

For future work, we will explore the connections among features, set related features as a single
player , and try to find a more reasonable coalition set. What’s more, we will improve the random
sampling method and get closer to Shapley value and apply Effective Shapley value to complex
applications.
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A PROOF OF THEOREM

A.1 PROOF OF THEOREM 1

First, we rewrite Aumann Shapley value’s formula into gradient form as follows:

f(ds) =

∫ 1

0

v(tI + ds)− v(tI)dt

=

∫ 1

0

v(tI + ds)− v(tI)

ds
dsdt

= ds

∫ 1

0

φ v(tI)

φs
dt.

Considered that coalition usually plays game on the basis of game’s background playground.
The utility of coalition can be regarded as the utility of coalition with background, v(tI) = v(tI +

∅). The Aumann Shapley can be written as:f(ds) = ds
∫ 1

0
φ v(tI+∅)

φs dt. Integrating from the
empty set/background of game ∅ to the complete set I, we can get the Aumann shapley value of the
complete set:

f(I) =

∫ I

∅

∫ 1

0

φ v(tI +∅)

φs
dtds.

.

Since in Integrated Gradients baseline sample x′ is considered of containing nearly zero infor-
mation, we set baseline sample x′ as the background of game. As complete set I means all players
that join the game, points alongside P2 participate in contribution allocation problem in Integrated
Gradients. We make all points alongside P2 as I .

f(I) =

∫ I

∅

∫ 1

0

φ v(t(x− x′) + x′)

φs

= (x− x′)

∫ 1

0

φ v(t(x− x′) + x′)

φs
dtds.

Noticing that s is a vector, for each feature, we can get Integrated Gradients of feature xi:

f(si) = (xi − x′
i)

∫ 1

0

φ v(t(x− x′) + x′)

φxi
dtds.

Proof over.

A.2 THE PROOF OF THEOREM 2

We can model the problem as independent samples. So For nj , the probability of selecting k
effective sample

Pk = Ck
|ei|C

|bi|−k
|ni|−|ei|.

For perfectly proportional sampling, we limit the proportion without constraint of the number
of amin

a1 : a2 : ... : aN = e1 : e2 :, .., : eN .

The probability of sampling correct number of samples is

P =

A∑
k=1

∏
j

C
|aj |
|ej |C

|bj |−|aj |
|nj |−|ej |.
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A.3 THE PROOF OF THEOREM 3

The hypothesis means gradients between S and S ∪ xi are a constant

φv(t(x− x′) + x′)

φs
=

v(I)− v(∅)

I
, t ∈ [0, 1]

.

Following equation, we prove Theorem 3:

f(I) = I × v(I)− v(∅)

I
= v(I)− v(∅) = v(I +∅)− v(∅)

= v(S ∪ xi)− v(S).

B MORE EXPERIMENTAL RESULTS AND DETAILS

B.1 DISCUSSION ABOUT BASELINE VALUES IN COMPUTER VISION

For ResNet, we choose origin image as input of Integrated Gradients and make coalitions se-
lected by our sample method as baseline values, noted proposal 1. To test validation of our sampled
coalitions, we choose zero baseline values as baseline values and choose our sampled coalitions as
inputs and average contributions, noted proposal 2. To our surprise, there isn’t much difference be-
tween the two methods, as shown. In consideration of computational efficiency we choose coalitions
selected by our method as baseline values and choose origin image as input, since PyTorch performs
optimization of gradient calculation and it’s faster to set origin image as input. From left to right,
it’s proposal 2, proposal 1, proposal 1 + proposal 2, zero baseline, mean baseline, and random in
each picture.

Figure 6: The effect of different configuration for ResNet on ImageNet.

We set the same proposals to ResNet. Results are shown in Figure 7. From left to right, it’s
proposal 2, proposal 1, zero baseline, mean baseline and random in each picture.

From the result, we can obviously find that our method has a similar explanation to proposal 2
in ResNet, but our method has a better explanation for facial expression task. Moreover, our method
is much faster than proposal 2.
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Figure 7: The effect of different configurations for DLN on facial expression task.

B.2 DDDITIVE EXPERIMENT FOR HUMAN DEFINED UTILITY FUNCTION.

B.2.1 VERIFY OF DEEP NEURAL NETWORKS

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅

Figure 8: The effect of our trained deep neural network.

We use trained deep neural networks to replace utility function in the computation of Shapley
value, as shown. Each row represents an independent experiment. It can be obviously found that our
trained deep neural network can perfectly replace utility function, leading to almost same Shapley
value. arepresents Env (1) ; b represents Env (2); c represents Env (3); d represents Env(4).

B.2.2 DIFFERENCE BETWEEN INTEGRATED GRADIENTS AND MARGINAL DIFFERENCE

We accumulate marginal difference and Integrated Gradients between S ∪ xi and S, where
S ∈ F/i and xi represents i player. From the result, we can view that S ∪ xi linearly connect S

13
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in deep neural network and the result also proves that our correctness of Theorem 2. arepresents
Env (1) ; b represents Env (2); c represents Env (3); d represents Env(4). Each row represents an
independent experiment.

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅

Figure 9: The difference between Integrated Gradients and marginal difference based on sampled
coalitions.
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