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Abstract

Artificial agents’ adaptability to novelty and alignment with intended behavior is crucial for
their effective deployment. Reinforcement learning (RL) leverages novelty as a means of
exploration, yet agents often struggle to handle novel situations, hindering generalization.
To address these issues, we propose HackAtari, a framework introducing controlled novelty
to the most common RL benchmark, the Atari Learning Environment. HackAtari allows
us to create novel game scenarios (including simplification for curriculum learning), to
swap the game elements’ colors, as well as to introduce different reward signals for the
agent. We demonstrate that current agents trained on the original environments include
robustness failures, and evaluate HackAtari’s efficacy in enhancing RL agents’ robustness
and aligning behavior through experiments using C51 and PPO. Overall, HackAtari can
be used to improve the robustness of current and future RL algorithms, allowing Neuro-
Symbolic RL, curriculum RL, causal RL, as well as LLM-driven RL. Our work underscores
the significance of developing interpretable in RL agents. 1

1 Introduction

Deep reinforcement learning (RL) agents struggle to adapt to environments with slightly perturbed goal, while
neurosymbolic (NS) agents learn isolated explicit skills, that can easily be combined or adjusted to adapt to
environments’ modifications. Furthermore, learning agents are prone to shortcut learning, occurring when a
model exploits superficial correlations in the training data, resulting in poor generalization to novel situations.
To identify if agents base their decision on the wrong input parts, eXplainable AI (XAI) methods, such as
importance maps have been used (Schramowski et al., 2020; Ras et al., 2022; Roy et al., 2022; Saeed and
Omlin, 2023). In deep reinforcement learning (RL), such shortcut learning behavior is refereed to as goal
misgeneralization (Koch et al., 2021; Shah et al., 2022; Tien et al., 2022), i.e. to solving a sub-goal aligned
with the true objective. Such misalignments can be difficult to identify, as exemplified by di Langosco et al.
(2022), who showed that agents trained on Coinrun learn to run to the end of the level (sub-goal) instead of
learning to reach the coin (true objective) (cf. Fig. 1, Left) and by Delfosse et al. (2024b), with agents trained
on Pong that learn to follow the enemy’s paddle position instead of the ball’s one (cf. Fig. 1, Right). They
show that hiding the enemy or changing its policy (i.e. preventing it to move after it returns the ball) lead
to agents incapable of catching the ball. Importance maps highlight the player’s and enemy’s paddles, and
the ball, luring external observers into thinking that the agents “understood” that it needs to return the ball
behind the enemy’s paddle. Map-based explanations indicate the importance of an input element for a decision
without indicating why this element is important, or how it is used within the decision process (Kambhampati
et al., 2021; Stammer et al., 2021a; Teso et al., 2023).

1Code available at https://github.com/k4ntz/HackAtari, ∗ Equal Contribution
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Figure 1: Examples of misaligned agents. In Coinrun (left), agents learn to reach the end of the level, instead
of the coin. In Pong (right), agents learn to follow the enemy instead of the ball. Importance maps (top) are
not enough for detecting such misalignments, environment variations are necessary.

The lack of generality of deep RL agents has previously been identified by Cobbe et al. (2020), who introduced
Procgen, a set of procedurally generated environments, with varying assets (for the backgrounds and depicted
objects) and level designs. The previously mentioned Coinrun game, with misaligned agents is part of Procgen,
showcasing that varying the assets and procedural generation might not be enough. The authors also underline
that the Atari Learning Environments (Bellemare et al., 2013) is the by far most used RL benchmark. This test
bench completely dominate the test of deep RL agents (cf. Fig. 8 in the Appendix), as it incorporates a diverse
set of challenges, does not require extensive computations, nor suffer from any experimenter bias. However,
Atari games do not provide any variations, making it impossible to test for generality or misalignment.

In this work, we propose HackAtari, a framework that introduces novelty to the Atari Learning Environments.
HackAtari contains a set of in total 50 variations on 16 Atari Learning Environments. We show that these
variations can be used to test identify RL agents’ potential misgeneralizations, as well as to help in curriculum
learning settings, by introducing simpler and more complex versions.

To learn robust policies, recent interpretable algorithms explicitly separate the extraction of neurosymbolic
states from raw, pixel-based inputs (Lin et al., 2020; Delfosse et al., 2023c; Zhao et al., 2023) from the action
selection process. This allows for transparent action selection process, based on e.g. first order logic (Delfosse
et al., 2023b), on concept bottlenecks (Delfosse et al., 2024b), or on polynomial equations, later explained in
natural language by an LLM (Luo et al., 2024). To efficiently train these methods, HackAtari incorporates the
Object-Centric Atari framework (OCAtari) (Delfosse et al., 2023a), that provides object-centric representations
of the games, to allow for training and comparing both deep and interpretable NS agents. HackAtari also
allows for the development of Continual RL method, as many environments provide different level of difficulty,
based on the mastering of different skills, each trainable in a curriculum learning fashion. Specifically, our
contributions are:

(i) We introduce HackAtari, a set of modifications applied to different Atari environments, that allow for
testing variations of the games. It allow to test generalization capabilities of RL agents, as well as training
agents in curriculum learning settings.

(ii) We demonstrate that our environments can be used to test already trained agents, as well as to train other
agents on our variations.

(iii) We use HackAtari to show the misgeneralisation of existing RL agents.
(iv) We use show that HackAtari allows for learning LLM-defined reward functions.

We start off by introducing the HackAtari framework. We experimentally evaluate the generalization and
learning capabilities of RL agents. Before concluding, we touch upon related work.
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2 HackAtari: Altered Atari Environments

In this section, we first explain how to create variations of the Atari Learning environments, then describe the
4 alteration categories, that can be used to train and test different RL agents’ capabilities.

2.1 HackAtari: step, reset and reward modifications

+= 1

Original Modified
RAM 

alteration

RAM

0

Figure 2: RAM alteration allows for modified
environments. Exemplified on Freeway. Altering
the some RAM cells leads to color and speed
changes.

While being -by far-, the most used benchmark for train-
ing and testing RL agents, the Atari Learning environ-
ments do not openly provide any source code. We thus
cannot directly modify the source code of these environ-
ments. However, Anand et al. (2019) have identified that
the many useful information about the depicted objects
can be observed in the RAM, and proposed AtariARI, a
wrapper that augments the info dictionary with pointers to
the parts of the RAM responsible for e.g. the position of
the agent. Inspired by this work, Delfosse et al. (2023a)
created OCAtari, a set of augmented Atari environments
that directly provide neurosymbolic (object-centric) states
of the games. They identify which part of the RAM are
responsible for the object’s properties (e.g. visibility, posi-
tion, color, orientation). They are thus able to provide both RGB and neurosymbolic states.

In our work, we use the mappings of RAM values to object states to understand the inner working of the
game. We then can alter these RAM values to modify the behaviors of the objects. This is depicted in Fig. 2
on Freeway. For this game, the cars colors are encoded at the RAM cells 77 to 86 . By setting each of
their values to 0, we change the colors of each car to black. Furthermore, we identified the RAM position
responsible for the movement of each cars (from 33 to 43 ). By setting all of them to the same number, we
can modify the speed of all the cars, such that they e.g. now drive in columns. For some game, some object’s
properties can be encoded at multiple RAM cells. This is the case for the enemy’s paddle position in Pong,
encoded both at RAM cells 21 and 50 . If we overwrite the RAM cell 50 (to modify the behavior of the
enemy’s paddle, as shown in Fig. 3), the value will not be used by the program and will be overwritten at the
next time step by the game. Altering the RAM cell 21 allows for modifying the enemy’s policy.

Modifying Pong to obtain a Lazy Enemy Pong version is more complicated than the previously illustrated
changes. Our goal is to have the enemy static after it touches the ball to return it (and a moving enemy after
the agent returned the ball). For this, we need to keep track of the position of the ball and of the enemy. By
comparing the ball’s positions at the previous and current timestep, we can decide whether to enforce the
enemy to remain static, or not. If the ball is going to the agent’s side, we overwrite the enemy’s position to the
one it had when it touched the ball.

Our framework incorporates several modification types, that can be combined (e.g. altering the cars’ color and
the cars’ speed on Freeway). To make these modifications, 3 types of functions can be used:

(i) state modification at each step, e.g. when the position of an object is being altered, or when objects are
being disabled (i.e. the corresponding RAM cells are constantly being overwritten).

(ii) state modification at reset time, e.g. when the level layout is being swapped, or when the agent is spawning
at a randomized initial position.

(iii) reward modification (at each step), when reward is changed to modify the goal in the environment, such
as encouraging peaceful policies in shooting games (or discouraging the use of AMO).

We have explained how to alter the RAM to obtain a resource efficient way of altering the learning environments.
For implementation details on other environments, please look at our open-source repository, that we release
together with this paper. In the following, we explain how we categorize the environments’ modifications
based on the type of training and/or testing that they allow for.
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Figure 3: HackAtari provides variations of Atari environments. These include color changes (Freeway and
Boxing), gameplay shifts (Boxing, MsPacman), continual learning settings (Kangaroo and Frostbite). The
original games (top) are compared to HackAtari’s modified versions (bottom). Superposed frames show the
game dynamics.

2.2 Testing visual and dynamics robustness, curriculum RL and adaptability.

Table 1: HackAtari variations. ✓ mark at least
one existing variation of the environment within
HackAtari.
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Color ✓ ✓✓
Gameplay ✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓

Skill ✓✓ ✓✓✓✓✓✓✓ ✓✓✓ ✓
Goal ✓✓ ✓ ✓✓ ✓

HackAtari environments alterations aim at testing differ-
ent capabilities of RL agents. We thus categorize these
modifications into the 4 following paradigms.

1. Visual Domain Adaptation. Altering the RAM al-
lows changing the colors of the depicted objects in many
environments. This is showcased in Fig. 2 on Freeway.
These shifts can be used to test simple shortcut learning.
For this type of shortcut learning, neural networks learn
to associate specific pixel values to actions, as identified
by Stammer et al. (2021b) on classification tasks. We also
provide a general way of modifying any pixel color for
any ALE game, exemplified in Fig. 3 on Boxing, using
simple pixel values mapping and replacement. HackAtari incorporates a testing script, that automatically
randomly swap the present pixel values. We however advise RL practitioners to use these settings to test their
agents only, or to build offline RL datasets, as the color processing of the frame is resource intensive. For
faster execution, we recommend using the color swaps done by our RAM alterations techniques for training
agents. We mark them in the Color line of Tab. 1.

2. Dynamics Adaptation. For this changes, we alter the gameplay, and agents have to adapt to small
perturbations. These games can be used to test the robustness and adaptability of RL agents. Examples of
gameplay shifts are: small drifts in ball games (e.g. Breakout and Tennis), gravity slightly pulling the agent
downwards (in e.g. Boxing, Pong, Seaquest), level layout change e.g. in MsPacman (cf. Fig. 3), velocity
modifications (e.g. on cars in Freeway, on the projectiles in Carnival). For this category of games, there is no
distribution shift in term of pixel values, but the agents have to adapt to novel situations. They also allow to
detect another shortcut learning type, such as the one described in introduction on Pong, where the agent learns
to follow the enemy instead of the ball (Delfosse et al., 2024b; Kohler et al., 2024). HackAtari incorporates a
version of Pong, where the enemy is static after returning the ball (cf. Fig. 3). Some games, such as MsPacman,
Kangaroo, Montezuma’s Revenge also include multiple levels or level parts, that are usually accessible if the
first level is completed. For these, we provide one type of modification that randomly select one level/part
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after each death, or each reset of the environment. This allows the agent to learn more generalizable policies
(or to be tested), for abilities such as navigate another maze layout, cf. MsPacman in Fig. 3).

3. Curriculum Reinforcement Learning (CRL). In this learning paradigm, the task complexity is incremen-
tally increased. CRL environments are used to assess the agents’ ability to learn different skills in a structured
manner with incremental complexity. For example, we created versions of Kangaroo with disabled monkeys
and disabled thrown coconuts, of Seaquest without enemy and with unlimited oxygen, or Freeway with stopped
cars. These can be used to separately learn navigations from other skills (Mirowski et al., 2016; Sharifi et al.,
2023), or to learn different options (i.e. high level action) using small networks (Stolle and Precup, 2002;
Bacon et al., 2017). Novel research is also looking into neural merging (Kirkpatrick et al., 2016; Brahma et al.,
2021), lately brought to continual RL (Gracla et al., 2023). Finally, neurosymbolic methods often explicitely
learn separated skills (Kimura et al., 2021; Delfosse et al., 2023b) on their logic-based RL agents.

4. Reward Signal Adaptation. We also incorporate an easy reward modification implementation, to test the
agent’s ability to rapidly adapt to new objectives, potentially using large language models (LLMs) to generate
the reward signals (Ma et al., 2023; Xie et al., 2023), or to evaluate how well RL agents align with human
societal values (Pan et al., 2021). HackAtari enables users to specify rewards defined by large language models
(LLMs) and to incorporate alternative reward structures that change the game’s objectives. For example, in the
game Kangaroo, the agent can be rewarded more for punching monkeys than for saving the joey. By reducing
the reward for aggressive actions and increasing it for reaching the joey, a different policy is created that is
more aligned with the original game’s goals (Delfosse et al., 2024b). More broadly, this approach can be used
to decrease incentives for aggressive behaviors, such as in shooting games (Pan et al., 2021), or to leverage
LLMs for generating various reward types in skill acquisition tasks. A comprehensive example of modifying
and adjusting the reward function is provided in App. D.

3 Experimental Evaluation

In our evaluation, we investigate several benefits of using HackAtari over the original Atari Learning Environ-
ments. Specifically, we aim at answering the following research questions:

(Q1) Are our HackAtari variations usable for training RL agents?
(Q2) Can HackAtari variation reveal misalignment and be used to correct it?
(Q3) Can alternative reward functions allow for adjusting learned behaviors?
(Q4) Can some HackAtari environments be used for curriculum learning?

Experimental Setup. We compare PPO (Schulman et al., 2017) and C51 (Bellemare et al., 2017) agents’
on our modified environments to ones trained on the original ones (all averaged over 3 seeds). We also let
human agents train on the original environments, and test them on both the original and modified versions
(cf. App. B.4 for details on this user study). We average human scores across at least 3 human users. All agents
use the classical DQN input representation (Mnih et al., 2015), i.e. process 4×84×84 frame stack and are
trained on 10M frames, on a 40 GB DGX A100 server. We used PPO implementation of Huang et al. (2022)
with its default hyperparameters (cf. App. C.1). We focus the evaluations on robustness of the used policy,
rather than achieving the best possible scores.

Game variations details. We here concisely present the games’ variations that we refer to in this section. A
more detailed list can be found in App. B.1 and a list of all modifications in App. E.
One Armed (Boxing): The agent can only punch its opponent with its right arm (instead of both).
No Barrel (DonkeyKong): We cancel falling barrels that the agent must avoid.
Aligned Cars (Freeway): All cars have identical speed, and thus travel aligned.
Mono-Colored (Freeway): All the cars have identical colors (e.g. black, cf. Fig. 3).
Stopped Cars (Freeway): All the cars are visible but static, allowing any agent to safely cross.
No Danger (FrostBite): The horizontally traveling enemies (in between the ice blocks) are canceled.
Static Ice (FrostBite): The ice blocks are static instead of moving sideways (cf. Fig. 3).
No Danger (Kangaroo): We cancel both monkey enemies and deadly falling coconuts.
Safe and Close (Kangaroo): No Danger + The agent randomly spawns on 1st, 2nd or 3rd floor.
Swap Level (MsPacman): The agent spans in a level with a different maze layout (cf. Fig. 3).
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Figure 4: RL agents can learn on altered environments, exemplified on One armed Boxing, Mono-Colored
Freeway and Lazy Enemy Pong, by PPO and C51 agents. These agents are able to progressively improve from
random to (or beyond) the human level. Freeway’s high variance is due to the number of frames needed before
each seeded agent reaches the top.

Lazy Enemy (Pong): The enemy stands still after returning the ball instead of following it (cf. Fig. 3).
Infinite Oxygen (Seaquest): The level of oxygen does not decrease (stays at 100%).
No Shield (SpaceInvaders): Shield that cancel missiles from the agents and the enemies are removed.

HackAtari modified environments can be used for learning (Q1). Before other investigations, we need to
verify that our environments are usable to train RL agents, i.e. that they do not lead to games impossible to
complete. After training on our modified versions, PPO and C51 agents consistently demonstrate the ability to
master the introduced changes (cf. learning curves in Fig. 4, PPO vs. Random in Tab. 2 and the additional
curves in App. B.2), i.e. are able to increase their scores in our variants. Our findings confirm that these game
variants can be used to train policies and evaluate the generalization capabilities of agents trained on the
original environments (to e.g. compare them to humans or agents directly trained on the variations).

HackAtari can help uncover flaws of trained agents (Q2). Let us now test the generalization capabilities
of artificial agents using HackAtari’s variations. PPO’s performances remarkably drop on all of our tested
variations, whereas humans’ ones increase in all but Boxing (cf. Tab. 2). For this game, the PPO agents trained
on this variation are able to adapt their policies and achieve comparable performances, even with the absence
of the second arm. For Kangaroo and DonkeyKong, the lack of enemies/barrels simplifies the game, allowing
humans to safely reach the end of the level, a behavior that PPO agents have not learned, as they were not able
to observe reward for this behavior during this training. These results show that autonomous agents could
benefit from incorporating other learning or planning modules, e.g. (vision) language models, to guide the
agent in constantly changing environments. We can also confirm the findings of Delfosse et al. (2024b): RL
agents trained on Pong learned misaligned behavior, heavily relying on the enemy’s position (instead of the
ball’s one). Rearranging the walls also lead to performance drops in MsPacman, showing that these agents
follow a remembered pattern instead of learning navigation (Sukhbaatar et al., 2018; Burda et al., 2018).
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Figure 5: LLM can guide RL agents. Per-
formances of PPO agents trained using an
LLM-provided reward function (blue) and
the original reward (orange).

HackAtari allows to learn alternative behaviors (Q3). We
make use of the integration of alternative reward function of
HackAtari to test if agents can learn based on e.g. LLM provided
guidance (detailed in App. D) instead of the original score, in-
cluded in the ALE games. The original Seaquest game does not
reward agents for saving divers, but only for shooting enemies. In
this experiment, we encourage this more pacifist behavior by re-
warding for rescuing them. The LLM provided us with a reward
signal aligned with this goal (cf. App. D), that we used to train
PPO agents (blue line in Fig. 5). The LLM was able to produce
a useful reward function, allowing the agents to learn. Similarly,
expert defined functions can be used, as done by Delfosse et al.
(2024b), who redefine reward signals in Pong (adding a penalty
on distance between the ball and the player), Kangaroo (reward-
ing the progress of the mother kangaroo towards its joey), and on
Skiing (fixing the reward ill-defined reward, by directly rewarding the agents when they pass in between the
poles). We were able to reproduce their results by integrating their provided reward function to the HackAtari
environments.

Figure 6: Curriculum learning, using a
simplified version. C51 agent learn to
reach the top (for 7M steps on easier vari-
ant), before learning to avoid cars.

Simplifications enable skill learning (Q4). As shown in
Tab. 2, agents are able to learn the game of Freeway within
10M steps. However, in our experiment, we observed that C51
agents fail to do it if we do not use the frame skipping optimiza-
tion (slightly increasing the sparsity). To observe reward, the
randomly playing agent needs to cross the 10 lines, knowing that
it is pushed back down when hit by a car. Using our Stopped
Cars variation of Freeway, we decrease this sparsity, allowing the
agents to observe reward in less than a million steps. We were
thus able to first train the agent for 7M steps on this simpler vari-
ation, allowing it to learn that reaching the top provides reward,
before continuing learning for the last 3M steps, that allow it to
adjust to avoid cars (cf. Fig. 6). These experiments showcase that
HackAtari gameplay simplifications can be used to now evaluate
curriculum RL techniques on ALE.
Our next experiments demonstrate the usability of HackAtari for
parallel skills’ acquisition.
In Frostbite, the agent has to collect ice blocks to build its igloo (cf. Fig. 3), by jumping on moving ice

Figure 7: Alternate versions allow to learn different skills: (i) In Frostbite, RL agents can learn to safely
collect ice blocks and fishes on the No Danger variant, then to avoid the enemies on a simpler Static Ice second
variant (left), (ii) with Safe and Close agents learn to reach the joey, while they learn to punch Monkey in
the original game (center), (iii) in Infinite Oxygen Seaquest, agents can also learn to kill enemies (as in the
original), but also to collect divers’ group (right).
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platforms, while avoiding enemies. It can also collect fishes, which provides additional reward. Collecting
blocks without falling in the water can be more easily learned, using our first No Danger variant, while the
enemy-aware navigation skill can be acquired on the second Static Ice variant (cf. Fig. 7, left). Merging these
overlapping skills could be achieved using neural merging techniques.
In Kangaroo, Delfosse et al. (2024b) identified that agents learn to punch monkeys instead of saving the
joey, as this originally intended goal is more difficult to reach, and use an alternate reward signal to further
incentivize for saving the joey. We here identify that fighting monkeys leads to 4.5 times higher scores than
the goal described in the game manual2 (cf. Fig. 7, center). Indeed, the agents learn to reach the joey on our
Safe and Close variation, that cancels the monkey enemies. Interpretable skill-based agents could learn these
two behaviors in a curriculum learning manner, as well as when to select each, and alternate reward signals
could also boost the learning speed of the saving behavior.
Finally, in Seaquest, the agents usually learn to shoot enemies until their oxygen bar is depleted. Our Infinite
Oxygen version allows it to learn to kill more enemies, as well as surfacing when enough divers have been
saved (cf. Fig. 7, right). We also provide a way to cancel the enemies (even if not used here). Again, this
demonstrates that HackAtari’s gameplay simplications can allow for controlled separate skill learning (or
options (Bacon et al., 2017)). Other environments, such as MsPacman with Caged Ghosts, could allow for first
learning to navigate the different mazes, before releasing the ghosts and have the agent learning to adapt its
behavior to avoid getting killed by them (or to collect the superpower pills that allow to chase them). We leave
this for future work.

Overall, our experimental evaluations have demonstrated that HackAtari can be used to train and evaluate
agents on alternate tasks within the same (or similar) environment, for which humans require no retraining.
We also demonstrated that they can be used to emphasize the acquisition of alternative skills, or of curriculum
learning (on simplified environments e.g. Stopped Cars Freeway).

4 Related Work

Novelty in RL. In general, novelty can be attributed to the characteristics of an object, to an event involving
the object, or to an act of manipulation with an object. Although there is no strict definition of novelty in RL
or ML, it often relies on either novelty detection (Markou and Singh, 2003a;b; Schmidhuber, 2008; Pimentel
et al., 2014) or intrinsic-motivation-based exploration Oudeyer and Kaplan (2007); Singh et al. (2010); Barto
et al. (2013); Siddique et al. (2017). The latter, as described by Harlow (1950), describes intrinsic motivation
as the drive to manipulate and explore features, i.e. explore uncertain or novel elements of the environment.
While HackAtari works as a benchmark or test suite for novelty detection, in this work, we focus on the aspect
of HackAtari as a valuable tool for identifying and addressing misalignment within reinforcement learning
environments.

Evaluating Generalization and Robustness. Assessing generalization and robustness gets increasing
attention Tec et al. (2023); Linial et al. (2023); Busch et al. (2024), particularly in RL, as it ensures that AI
agents can apply their learned behaviors effectively. Recently, some started to develop special benchmarks
to grapple with this in multiple ways (Nichol et al., 2018; Justesen et al., 2018; Juliani et al., 2019; Cobbe
et al., 2019). Procgen (Cobbe et al., 2020), provides a standardized platform to evaluate generalization and
robustness across diverse, procedural generated environments. This innovation addresses critical challenges,
e.g. , overfitting or studying transfer learning capabilities effectively and plays a pivotal role in advancing RL
algorithms (Cobbe et al., 2020; Mohanty et al., 2021). Atari (Bellemare et al., 2013) on the other hand, as
stated by Cobbe et al. (2020), is the gold standard for benchmarking in RL but lacks variety in the state spaces
to be used to evaluate generalization and robustness. While the first steps have been done in this direction
(Farebrother et al., 2018; Tomilin et al., 2024), with HackAtari, we start adding more of the needed variety
to the ALE by generating new versions of already known games. Other work have looked into plasticity to
help agents to adapt to change. Thus, Delfosse et al. (2024a) categorize Atari games based on their amount of
change during the learning phase, but do not evaluate agents on unseen data.

2www.retrogames.cz/play_195-Atari2600.php

www.retrogames.cz/play_195-Atari2600.php
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Continual reinforcement learning benchmarks. Atari games serve as crucial testing grounds for increas-
ingly complex RL methods (Hessel et al., 2018; Hafner et al., 2020; Badia et al., 2020; Fan et al., 2021;
Farebrother et al., 2022; Xuan et al., 2024). Despite achieving superhuman performance, challenges such as
efficient exploration, algorithmic efficiency, planning with sparse rewards, sample inefficiency, and generaliza-
tion failures persist. The need for expanded Atari benchmarks is recognized by researchers such as Toromanoff
et al. (2019) and Fan (2021), who propose additional metrics for accurate performance assessment. Further,
efforts like the Atari 100k benchmark by Kaiser et al. (2020), curated subsets of Atari Learning Environment
(ALE) environments by Aitchison et al. (2023), and the Mask Atari benchmark for POMDPs by Shao et al.
(2022) contribute to advancing Atari as a benchmarking tool in RL research even further. HackAtari follow
on from here and offers a wide range of applications, such as benchmarking for generalization, to help with
explainable RL tasks or create new tasks for continuous RL approaches. We believe that comparison methods
between different continual methods (Mundt et al., 2021) should be brought to RL.

5 Limitations

While HackAtari provides a robust framework for evaluating RL agents, it is currently limited to the set
of Atari Learning Environments. This restricts the ability to fully assess transfer learning and adaptability
across a broader spectrum of tasks. The findings may not always generalize to more complex or varied
environments, highlighting the need to extend HackAtari to incorporate a wider variety of scenarios, including
3D environments and more complicated real-time strategy games.

Additionally, we believe that further research is needed to integrate human learning principles more effectively
into RL frameworks. Moreover, while large language models and vision models show promise for enhancing
RL agents, they introduce complexities and require significant computational resources, posing challenges for
seamless integration. Addressing these limitations will be crucial for realizing the full potential of agents able
to adapt to HackAtari variations in driving autonomous agents’ innovation. To better evaluate the gap between
such agents and human ones, we are conducting a broader user study investigation, that involve more subjects
on more game variations.

6 Conclusion

In this study, we introduce HackAtari, a framework designed to test the generalization, robustness, and
curriculum learning capabilities of RL agents on the most commonly used set of Atari Learning Environments.
By offering a wide range of modifications to existing Atari games, HackAtari will enable researchers to
create more human-like and adaptive agents, addressing key challenges. It also serves as a valuable tool for
studying the behavior and decision-making processes of RL agents, offering insights into how agents adapt to
novel environments and tasks, and helping to uncover various shortcut learning behaviors, such as RL agents
following the enemy on Pong, or learning a navigation path on MsPacman. Through a series of experiments,
we evaluate the efficacy of HackAtari in uncovering such misalignments, testing RL agents’ adaptability to
novel environments, and enabling curriculum learning in the Atari games.

7 Ethical Consideration and Broader Impact

The development and use of HackAtari raise ethical considerations. Researchers must be vigilant about the
potential misuse of adaptive agents. Furthermore, while our variations are lightweight, the computational
resources required for advanced models may have environmental impacts, necessitating efforts to develop
more energy-efficient algorithms. HackAtari also has potential for broader impacts. By facilitating the creation
of more human-like and adaptable autonomous agents, it can drive advancements in various fields, from
autonomous systems to interactive entertainment. However, it is essential to balance innovation with ethical
responsibility, ensuring that these technologies benefit society as a whole and do not exacerbate existing
inequalities or create new ethical dilemmas.
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A On the impact of Atari games in RL.

Figure 8: RL research needs diverse Atari environments. The Atari Learning Environments is, by far, the
most used RL benchmark among the ones listed on paperswithcode.com .

B Details on and Additional Results

This section provides supplementary information to support the findings presented in the paper. We include
descriptions of the game variations and additional results to further validate our conclusions. This information
ensures transparency and reproducibility, offering deeper insights into our research methodologies and
outcomes.

paperswithcode.com
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B.1 Game Variants/Modifications used in our Evaluation (Section 3

These are the environments, used in our evaluation. We shortly state the changes we made as well as the
modifications (cf. Section E) we used to create these environments. A shorter version can be found in Section 3
and additional environments follow in the next section.

(i) One Armed Boxing. In Boxing, the agent controls the white boxer that has to punch an automated
opponent (while avoiding getting punched). In the original game, both boxers can hit their opponents
with both arms. We introduce One armed, where the agent can only use its right arm, forcing the agent
to adapt its behavior. This variates the gameplay instead of modifying the color shift, for which human
players also might face performance changes.

(ii) No Barrel DonkeyKong. This version of DonkeyKong, we removed the barrels, making it easier to get to
Peach. We use the no_barrel modification here.

(iii) Aligned Cars Freeway This variant aligned the cars so that each car has the same speed. The first 5 cars
are driving from left to right in one line. The last 5 from right to left. We used the modification stop2 for
this game variant.

(iv) Mono-colored Freeway. In Freeway, the agent controls a chicken targeted with crossing a road and is
rewarded only after reaching the other side of the road. At every contact with an incoming car, the agent
is pushed back down, making the probability of crossing (while playing randomly) quite low. Freeway’s
rewarding system can thus be considered sparse. To test for generalization and robustness, we provide
multiple color variations, where all cars are colored with the same color using the color modification. In
Table 2 we used color1, resulting in black.

(v) Stopped Cars Freeway. While Aligned Cars Freeway aligns the cars to move with the same speed, this
version stops the cars to make crossing the street even easier. The modification for this variant is stop3
and can be seen in Figure 4.

(vi) No Danger Frostbite. In Frostbite there are birds pushing you into the water. To remove this danger and
enable skill learning, we used the modification enemies1.

(vii) Static Ice Frostbite. Another way to loose the game is to jump into the water when missing a floating ice
shelf. To make the game a little easier, we use the modification static60 to fixate the ice shelves.

(viii) No Danger Kangaroo. In Kangaroo the agent has to learn to deal with monkeys and coconuts that are
thrown by the monkeys or are falling from the top floor. In this variant, we removed these elements by
using the modifications disable_monkeys and disable_coconut.

(ix) Swap Level MsPacman MsPacman has multiple levels to play, however, most agents only train on the
first level. The difference between the levels primarily changes the layout of the maze. This game variant
does now really change the gameplay but lets the agents train or test their ability on another level. We
used the change_level1 modification for this.

(x) Lazy Enemy Pong. Also explained already in Section 3, this variant let the enemy stop after hitting the
ball and only allows movement again after the player hits the ball with its paddle. The used modification
is lazy_enemy.

(xi) Infinite Oxygen Seaquest This version has a similar goal as No Enemy Seaquest by removing the
necessity to get to the surface to refill oxygen. The player can concentrate on the other tasks. We used the
modification unlimited_oxygen.

(xii) No Shields SpaceInvaders. In SpaceInvaders the user has 3 shields to hide behind. These shields can be
removed, using the modification disable_shields.

B.2 Additional Game Variants

In addition to the variants presented in the paper, we also conducted experiments on the following game
variations to show the variety of possible environments, that can be created using HackAtari. This is by no
means an exhaustive list and more variants can be created using the modifications, described in Appendix E.
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(xiii) Drunken Boxing. An alternative to One-Armed Boxing is our Drunken Boxing version. In this variant
the player is moved into a random position at each timestep, making the move actions more challenging.
For this, we used the drunken_boxing modification.

(xiv) Gravity Breakout In Breakout you have to hit the ball before it reaches the bottom of the screen. To make
the game more challenging, we added gravity, pulling the ball downwards using an artificial strength. We
used the modification strength1 and gravity.

(xv) Easy FishingDerby In Fishing Derby the player has to dodge the sharks while catching the fish. In this
variant we stopped the sharks from moving and enhanced the amount of fish on the players side. We used
the modifications fish_mode0 and shark_mode0.

(xvi) No Ghosts MsPacman. MsPacman has four ghosts trying to catch the player. When catched the player
looses one of its lives. In this version of the game, we cage the ghosts to their square in the middle of the
maze using caged_ghosts. This version enables the agent to ignore the ghosts completely.

(xvii) No Fuel Riverraid This versions removes the necessity to collect fuel within the game. The player
always have a full tank. The modification is no_fuel.

(xviii) No Enemy Seaquest In Seaquest the player has multiple tasks, like saving divers, always have oxygen
in the tank and shooting as well as dodging the enemies. In this version we removed the enemies with
disable_enemies.

(xix) Relocated Shields SpaceInvaders Instead of removing the shields completely, HackAtari also enables us
to relocate them. In this version the shields behave like in the original game but are moves aside slightly.
We used relocate40.

Similar to Figure 4, Figure 9 displays the training process of a PPO agent in these additional environments as
well as environments from App.B.1. It can be seen that PPO agents are able to learn in all of them, except No
Enemy Seaquest. A reason for the latter can be seen in their sparsity regaring rewards. Without enemies to
shoot, the only way to gain rewards is to save 6 divers. This is similar Kangaroo in Table 2.

B.3 Extended Experimental Setup

In Table 2, we compared agents trained in the original environment against their performance in some of
HackAtari’s new variants. The performance of a similar agent, trained in the game variation instead of the
original environment, is also added to show that higher scores are reachable. The performances were measured
over a span of 30 episodes. Next to ending an episode naturally by winning or failing the game, we also add a
maximum number of 100000 frames after which the episode is truncated as well as a maximum reward of
50000 after which the game is also truncated. As error we displayed the standard deviation over all episodes.

Fig. 4 to 7 display training runs over 10M frames/steps. The exact hyperparameters can be found in App. C.1.
As rewards we used the internal ones given by the Atari games and for Fig. 5 added our own reward
function as additional axis. To mitigate noise and fluctuations, we use exponential moving average (EMA)
smoothing over the mean of all seeds. We use an effective window size of 50, resulting in a smoothing factor
α = 2/(1 + 50) ≈ 0.039 used in the following formula:

EMAt = (1 − α) · EMAt−1 + α · yt . (1)

To manage irregular training intervals due to rewards are not always being reported in the same timestep, we
ignore missing values when computing the average, relying on the EMA smoothing to provide a continuous
curve. For the error bands we used the standard deviation of your data within a rolling window over all seeds.

B.4 Evaluating Human Performance on HackAtari Environments

All experiments conducted in this study that involve evaluating human performance strictly adhere to ethical
guidelines. We place the utmost importance on the anonymity and confidentiality of all participants. Data
collected during the study is anonymized, ensuring that no personal information can be linked back to the
participants.

The goal of this small study was to investigate, how humans react to unknown changes in familiar Atari games
and the impact of these changes on game outcomes. The data collected, including game interaction data and
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Figure 9: Addtional environments RL agents can learn in. PPO agents are able to progressively improve in
these new game variants over 10M training steps.

results, will be used solely for scientific purposes. We are committed to conducting this research with the
highest ethical standards, respecting the privacy and rights of all participants.

Participants were asked to make themselves familiar with a selected set of games by playing them until they felt
comfortable in them. Games were chosen randomly per participant. Then we evaluated their performance in
each of the original environments for 5 minutes before switching to the HackAtari variant of that specific game.
We also set a cap in reward to 50000 in games like Kangaroo or DonkeyKong where our game variant removed
the natural cause of death and truncated the game if a player reaches this reward. Note that participants have
not seen or played the variant before and had no prior training time in it, compared to the original environment.

The results in Table 2 show the mean over all participants. All participants were informed about the study
before taking part in it. This includes potential risks, usage of information recorded (i.e. the performance),
the tasks within the study. The were also informed that withdrawal was possible at all times, resulting in the
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removal of all personal information (i.e. the performance scores recorded until withdrawal). All participants
had to give their consent before taking part. There was no compensation for participation.

The study was taken under the guidelines of the institutional ethics committee.

C Reproducing Training and Train new Models

Hackatari provides a robust environment for training reinforcement learning agents on a wide range of game
modifications. By keeping it modular and near the original gymnasium environment, we emphasize leveraging
frameworks like Stable Baselines and CleanRL, to develop and fine-tune agents to excel in customized game
scenarios. This section will walk you through the steps to set up training processes and adapt to various game
dynamics using Hackatari. We emphasize the importance of reproducibility, ensuring that experiments can be
reliably replicated and validated. For this, we will also provide any needed information of our specific training,
starting with the hyperparameters.

C.1 Hyperparameter Configuration for Training

In this section, we provide a detailed overview of the hyperparameters employed during the training and
optimization of our models. Hyperparameters play a pivotal role in determining the performance and general-
ization ability of machine learning models. In our experiments, we followed the parameter set by Huang et al.
(2022) for both our C51 and PPO agents. We do not provide any grid search or hyperparameter optimization.

C.2 Hardware Specification and Computational Costs

The experiments were run on a setup, described in Table 5, using the NVIDIA GPU Cloud (NGC) docker
container for pytorch3. As stated before, all needed data is openly available.

For the PPO agents, the main load of training these networks was done on the CPU. While training the process
did 400 to 600 steps per second (SPS), resulting in a overall runtime of 5-7h per agent per seed. Since we were
running the experiments on a shared server, this of course was highly depending on the general load of the
machine. For this paper we trained round about 70-100 agents (including failed runs). C51 agents were trained
using the GPUs to accelerate. When training an agent on one of the V100 GPUs, training took about 10-12h.
Since C51 were only used as an alternative to PPO for some experiments, we only trained about 15 agents.
Overall this results in about 750 hours of training time.

C.3 Training and Evaluating Agents using HackAtari

Node that HackAtari alone is more a wrapper for gymnasium which can then be included in training environ-
ments like Stable-baselines or CleanRL.

To reproduce our training, one needs to replace the gymnasium in CleanRL with HackAtari. We provide4 a
fork already doing this for C51 and PPO. (See ppo_atari.py and c51_atari.py). The training and evaluation
process follows CleanRL, using its codebase for tracking and logging results and models.

Examples on how our agents are trained and evaluated, can be found in the scripts folder, together with a
ReadMe about how to train your own agents and a small installation guide in form of a bash script. For this it
is neccessary to first download the HackAtari repository5 and add it to the subfolder.

The codebase for training will be released together with the HackAtari repository.

D Replacing the Reward Function

In this section, we demonstrate the process of replacing the reward function in HackAtari.
3https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch, accessed 2024-05-22
4https://github.com/BluemlJ/oc_cleanrl
5https://github.com/k4ntz/HackAtari

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://github.com/BluemlJ/oc_cleanrl
https://github.com/k4ntz/HackAtari
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By customizing the reward function, you can tailor the reinforcement learning environment to better suit your
research objectives and explore new dimensions of agent behavior, e.g., like being a pacifistic agent. We’ll
cover the steps needed to implement your own reward structure, ensuring you can effectively modify the
learning incentives within the game.

Example: Skiing. In the Atari game "Skiing," the reward function is based on the player’s score, which is
determined by the time taken to complete the course and the penalties incurred for missing gates. Here is a
more detailed breakdown of how the reward is typically calculated:

• Time-Based Scoring The primary goal in Skiing is to navigate through a series of gates as quickly as
possible. The faster the player completes the course, the higher the score. The game keeps track of
the time taken to finish the course. A lower time translates into a better score.

• Gate Penalties Players must pass through gates correctly to avoid penalties. Each missed gate results
in a penalty, which usually adds extra time to the player’s overall time. These penalties decrease the
score since the total time increases.

However, the result is giving to the agent as a combined score after each episode making it hard to learn that
game. The result a non-functional agent, not able to play the game at all. To enable agents to learn the game
however, we propose to change the reward function over the training process, starting with simple skills like
skiing downwards before adding poles to it.

To use an own reward function, one can provide the path to a valid python file including a function called
reward_function.

1 LAST_SCORE=32 # save the RAM value from the last turn
2

3 def reward_function(self) -> float:
4 global LAST_SCORE
5 score = self.get_ram()[107] #nr. of gates successfully passed
6 if score != LAST_SCORE:
7 reward = 100
8 else:
9 reward = 0

10 LAST_SCORE = score
11 return reward

The example above shows a simple reward function only rewarding passing successfully through gates and
sets the reward to 0 for every other turn. The number of successfully passed gates is saved as a decreasing
number from 32 to 0 in the RAM at coordinate 107. The complexity of the new reward function depends only
on the user and can also be created using LLMs or game objects.

Generating a reward function with a LLM in Seaquest. The following example of a reward function, for
the game of Seaquest, was created using ChatGPT 3.5 and the results can be seen in Figure 5. For the input to
the LLM, we used game objects, object properties and a short description of the game. The object-centric
environment context is given by the classes provided by the OCAtari framework (Delfosse et al., 2023a),
i.e., the parent game object class6 and the game-specific objects 7. The game objects related to the score
were omitted. The game description is taking from the Atari description8, the gymnasium website9 and some
shortening from us. For the game of Seaquest the description is the following

1 You a sub (Player) able to move in all directions and fire torpedoes.
2 The goal is to retrieve as many divers as you can, while dodging and blasting enemy subs
and killer sharks.

6https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/game_objects.py
7e.g., https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/pong.py
8https://www.retrogames.cz/play_221-Atari2600.php
9https://gymnasium.farama.org/environments/atari/seaquest/

https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/pong.py
https://www.retrogames.cz/play_221-Atari2600.php
https://gymnasium.farama.org/environments/atari/seaquest/
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3 The game begins with one sub and three waiting on the horizon. Each time you increase your
score by 10,000 points, an extra sub will be delivered to your base.

4 Your sub will explode if it collides with anything except your divers.The sub has a
limited amount of oxygen that decreases at a constant rate during the game. When the
oxygen tank is almost empty, you need to surface and if you don't do it in time, your sub
will blow up and you'll lose one diver.

5 Each time you're forced to surface, with less than six divers, you lose one diver as well.

The object-centric reward function created by the LLM for Seaquest:

1 from ocatari.ram.seaquest import *
2

3 def check_collision(obj1, obj2):
4 """
5 Check if two GameObjects collide based on their bounding boxes.
6 """
7 return (obj1.x < obj2.x + obj2.w and
8 obj1.x + obj1.w > obj2.x and
9 obj1.y < obj2.y + obj2.h and

10 obj1.y + obj1.h > obj2.y)
11

12 def update_game_state(objects):
13 """
14 Update positions of all game objects and check for collisions.
15 """
16 collisions = []
17 for obj in objects:
18 # Update position based on velocity
19 obj.xy = (obj.x + obj.dx, obj.y + obj.dy)
20

21 # Check for collisions with other objects
22 for other in objects:
23 if obj != other and check_collision(obj, other):
24 collisions.append((obj, other))
25 return collisions
26

27 def manage_oxygen_and_lives(player, oxygen_bar, lives):
28 """
29 Decrease oxygen levels and manage lives based on oxygen and collisions.
30 """
31 # Decrease oxygen
32 oxygen_bar.value -= 1
33 if oxygen_bar.value <= 0:
34 player.lives -= 1
35 oxygen_bar.value = 100 # Reset oxygen after surfacing or losing a life
36

37 # Check if lives are depleted
38 if lives.value <= 0:
39 print("Game Over")
40

41 def update_score_and_divers(player, divers_collected, score):
42 """
43 Update score based on collected divers and manage divers.
44 """
45 for diver in divers_collected:
46 if check_collision(player, diver):
47 score.value += 1000 # Increment score for each diver collected
48 divers_collected.remove(diver) # Remove diver from the game
49

50 def fire_torpedo(player, torpedoes):
51 """
52 Create a new torpedo at the player's location and add it to the torpedoes list.
53 """
54 new_torpedo = PlayerMissile()
55 new_torpedo.xy = player.xy
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56 torpedoes.append(new_torpedo)
57

58

59 def reward_function(self) -> float:
60 game_objects = self.game_objects()
61 reward = 0.0
62

63 # Define categories for easy identification
64 player = None
65 divers = []
66 enemies = []
67 player_missiles = []
68 enemy_missiles = []
69 oxygen_bar = None
70

71 # Classify objects
72 for obj in game_objects:
73 if isinstance(obj, Player):
74 player = obj
75 elif isinstance(obj, Diver):
76 divers.append(obj)
77 elif isinstance(obj, Shark) or isinstance(obj, Submarine):
78 enemies.append(obj)
79 elif isinstance(obj, PlayerMissile):
80 player_missiles.append(obj)
81 elif isinstance(obj, EnemyMissile):
82 enemy_missiles.append(obj)
83 elif isinstance(obj, OxygenBar):
84 oxygen_bar = obj
85

86 # Check for collisions and manage interactions
87 if player:
88 for diver in divers:
89 if check_collision(player, diver):
90 reward += 0.1 # Scaled down reward for collecting a diver
91 divers.remove(diver) # Assume diver is collected and removed from the

game↪→

92

93 for enemy in enemies:
94 if check_collision(player, enemy):
95 reward -= 0.1 # Scaled down penalty for colliding with an enemy
96

97 for missile in enemy_missiles:
98 if check_collision(player, missile):
99 reward -= 0.05 # Scaled down penalty for getting hit by an enemy missile

100

101 # Reward for hitting enemies with missiles
102 for missile in player_missiles:
103 for enemy in enemies:
104 if check_collision(missile, enemy):
105 reward += 0.05 # Scaled down reward for destroying an enemy
106 enemies.remove(enemy) # Assume enemy is destroyed and removed from

the game↪→

107 player_missiles.remove(missile) # Remove missile after hitting
108

109 # Manage oxygen levels
110 if oxygen_bar and oxygen_bar.value <= 20:
111 reward -= 0.05 # Scaled down penalty for low oxygen levels
112

113 # Encourage surfacing if oxygen is too low
114 if oxygen_bar and oxygen_bar.value <= 10:
115 reward -= 0.1 # Scaled down higher penalty for critically low oxygen
116

117 return reward
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Table 2: Deep RL agents’ performances drop when confronted with slightly novel situations. PPO agents
scores, trained and/or evaluated the original and variation of different Atari games. Gameplay or color changes
mostly lead to performance drop, whereas most human scores increase.

Game PPO Human Random

Training original original variation original original -
Testing original variation variation original variation variation

Boxing (OA) 90.9±1.5 1.9±10.2 82.2±9.3 0.6±2.7 -12.8±18.8 -10.8±0.9
DonkeyKong (NB) 3480±1032 0±0 0±0 7320±3961 50000±0 0±0
Freeway (AC) 31.4±1.5 20.4±0.7 29.1±1.8 21.7±4.8 22.4±1.6 0±0
Freeway (MC) 31.4±1.5 24.6±2.7 32.7±0.8 21.7±4.8 29.3±1.5 0±0
Frostbite (SI) 313±13.1 265±25.4 991±390 4916±3278 29360±19120 59.4±43
Kangaroo (ND) 1838±650 0±0 0±0 2344±1434 12200±1555 0±0
MsPacman (SL) 2312±465 456±260 2228±428 4592±3725 6149±5097 135±65
Pong (LE) 16.0±3.4 -12.6±2.4 18.1±4.4 -13.7±2.3 -12.2±6.4 -20.1±0.4
SpaceInv. (NS) 724±123 496±78 1181±292 640±368 726±616 109±32

Table 3: Hyperparameter Configuration for Experimental Settings (PPO). This table provides a compre-
hensive overview of the essential hyperparameters utilised in our experimental section.

Hyperparameter Value Hyperparameter Value

batch size 1024 Clipping Coef. 0.1
γ 0.99 KL target None
minibatch size 256 GAE lambda 0.95
seeds 42,73,91 input representation 4x84x84
total timesteps 10M gym version 0.28.1
learning rate 0.00025 pytorch version 1.12.1
more information https://docs.cleanrl.dev/rl-algorithms/ppo/

Table 4: Hyperparameter Configuration for Experimental Settings (C51). This table provides a compre-
hensive overview of the essential hyperparameters utilized in our experimental section.

Hyperparameter Value Hyperparameter Value

batch size 32 optimizer Adam
buffer size 100k loss cross-entropy loss
γ 0.99 input representation 4x84x84
seeds 42,73,91 gym version 0.28.1
total time steps 10M pytorch version 1.12.1
learning rate 0.00025
more information https://docs.cleanrl.dev/rl-algorithms/c51/

Table 5: Hardware configuration for our experimental section. (NVIDIA DGX-2 Working station)

Hardware Description

CPU Intel(R) Xeon(R) Platinum 8174 CPU @ 3.10GHz
GPU 16 × NVIDIA® Tesla V100
Memory 1.5 TB 2,133 MHz DDR4 RDIMM
Operating System Ubuntu 20.04 LTS

https://docs.cleanrl.dev/rl-algorithms/ppo/
https://docs.cleanrl.dev/rl-algorithms/c51/
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E Modifications

This chapter delves into the extensive range of modifications HackAtari offers, providing users with a versatile
toolkit to customize and enhance their reinforcement learning experiments. From changing the game dynamics
and creating new challenges to integrating novel algorithms, we explore the myriad ways HackAtari can be
adapted to meet diverse research needs.

E.1 Game-specific Modifications

E.1.1 BankHeist details

You are a bank robber and (naturally) want to rob as many banks
as possible. You control your getaway car and must navigate maze-
like cities. The police chases you and will appear whenever you
rob a bank. You may destroy police cars by dropping sticks of
dynamite. You can fill up your gas tank by entering a new city.At
the beginning of the game you have four lives. Lives are lost if you
run out of gas, are caught by the police,or run over the dynamite
you have previously dropped.

Modification Effect

unlimited_gas Unlimited gas all the enemies.
no_police Removes police from the game.
only_police No banks only police.
random_city Randomizes which city is entered next.
revisit_city Allows player to go back one city.
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E.1.2 BattleZone details

You control a tank and must destroy enemy vehicles. This game is
played in a first-person perspective and creates a 3D illusion. A
radar screen shows enemies around you. You start with 5 lives and
gain up to 2 extra lives if you reach a sufficient score.

Modification Effect

no_radar Removes the radar content.

E.1.3 Boxing details

You fight an opponent in a boxing ring. You score points for hitting
the opponent. If you score 100 points, your opponent is knocked
out.

Modification Parameter Effect

gravityX X ∈ (1, 5) Add a permanent downwards movement with strength X .
one_armed Disables the "hitting motion" with the right arm perma-

nently
drunken_boxing Applies random movements to the players input.
color_pX X ∈ (0, 4) Changes the color of the player to [Black, White, Red,

Blue, Green] by choosing a value 0-4
color_eX X ∈ (0, 4) Changes the color of the enemy to [Black, White, Red,

Blue, Green] by choosing a value 0-4
switch_p Switches the position of player and enemy
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E.1.4 Breakout details

Another famous Atari game. The dynamics are similar to pong:
You move a paddle and hit the ball in a brick wall at the top of the
screen. Your goal is to destroy the brick wall. You can try to break
through the wall and let the ball wreak havoc on the other side, all
on its own! You have five lives.

Modification Parameter Effect

strengthX X Set strength of drift to X .
driftX X ∈ {r, l} Set drift direction to left or right.
gravity Pull the ball down by changing the corresponding ram

positions
inverse_gravity Pushes the ball up by changing the corresponding ram

positions
color_pX X ∈ (0, 4) Changes the color of the player to [Black, White, Red,

Blue, Green] by choosing a value 0-4
color_bX X ∈ (0, 4) Changes the color of all blocks to [Black, White, Red,

Blue, Green] by choosing a value 0-4
color_rXY X, Y ∈ (0, 4) Changes the color of row X to color Y [Black, White,

Red, Blue, Green] by choosing a value 0-4 for both row
and color

E.1.5 Carnival details

This is a “shoot ‘em up” game. Targets move horizontally across
the screen and you must shoot them. You are in control of a gun
that can be moved horizontally. The supply of ammunition is
limited and chickens may steal some bullets from you if you don’t
hit them in time.
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Modification Parameter Effect

no_flying_ducks Ducks in the last row disappear instead of turning into
flying ducks.

unlimited_ammo Ammunition doesn’t decrease.
fast_missilesX X ∈ (1, 3) The projectiles fired from the players are faster. Uses the

values 1-3 to determine how by how much to speed the
missile up.

E.1.6 ChopperCommand details

You control a helicopter and must protect truck convoys. To that
end, you need to shoot down enemy aircraft.A mini-map is dis-
played at the bottom of the screen.

Modification Parameter Effect

delay_shots Puts time delay between shots
no_enemies Removes all Enemies from the game
no_radar Removes the radar content
invis_player Makes the player invisible
colorX X ∈ (0, 4) Changes the color of background to [Black, White, Red,

Blue, Green] by choosing a value 0-4. This also affects
the enemies colors
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E.1.7 DonkeyKong details

You play as Mario trying to save your girlfriend who has been
kidnapped by Donkey Kong. Remove rivets and jump over fire-
balls, with a score that starts high and counts down throughout the
game.

Modification Effect

no_barrel Remove barrels from the game
random_start Set the start position to a random pre-defined start position

E.1.8 FishingDerby details

Your objective is to catch more sunfish than your opponent.

Modification Parameter Effect

fish_modeX X ∈ {0, 1, 3} Allows for alterations in the behavior of the shark as spec-
ified

shark_modeX X ∈ (0, 3) Allows for alterations in the behavior of the fish as speci-
fied
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E.1.9 Freeway details

Your objective is to guide your chicken across lane after lane of
busy rush hour traffic. You receive a point for every chicken that
makes it to the top of the screen after crossing all the lanes of
traffic.

Modification Parameter Effect

stopX X ∈ (1, 3) Manipulate the move pattern of the car or let them stop.
colorX X ∈ (0, 8) Set color of cars to one of 9 pre-defined colors

E.1.10 Frostbite details

In Frostbite, the player controls “Frostbite Bailey” who hops back
and forth across across an Arctic river, changing the color of the
ice blocks from white to blue. Each time he does so, a block is
added to his igloo.

Modification Parameter Effect

colorX X ∈ (0, 3) Adjusts the colors of the ice floes bases on the specified
values.

lineX X ∈ (1, 5) Specify row/line for color change
ui_colorX X ∈ (0, 3) Adjust color of the UI
enemiesX X ∈ (0, 3) Adjusts the memory based on the specified number of

enemies selected by the user.
floesXXX X ∈ (0, 160) Adjusts the memory based on the specified new position

of the ice floes.
staticXXX X ∈ (0, 160) Adjusts the memory based on the specified new position

of the ice floes and hold it in place for the game.
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E.1.11 Kangaroo details

The object of the game is to score as many points as you can while
controlling Mother Kangaroo to rescue her precious baby. You
start the game with three lives.During this rescue mission, Mother
Kangaroo encounters many obstacles. You need to help her climb
ladders, pick bonus fruit, and throw punches at monkeys.

Modification Parameter Effect

disable_monkeys Disables the monkeys in the game
disable_coconut Disables the coconuts in the game
random_init Randomize the floor on which the player starts.
set_floorX X ∈ (0, 2) Set the floor on which the player starts.
change_levelX X ∈ (0, 2) Changes the level according to the argument number 0-2.

change_level, selects random level.

E.1.12 MontezumaRevenge details

Your goal is to acquire Montezuma’s treasure by making your way
through a maze of chambers within the emperor’s fortress. You
must avoid deadly creatures while collecting valuables and tools
which can help you escape with the treasure.

Modification Parameter Effect

random_position_start Randomize the start position within the room
levelX X ∈ (0, 9) Changes the level to a more difficult version. Level 0, 1,

2 are different versions, afterwards level determines map
layout.

randomize_items Randomize which item is found in which room.
full_inventory Adds all items to inventory.
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E.1.13 MsPacman details

Your goal is to collect all of the pellets on the screen while avoiding
the ghosts.

Modification Parameter Effect

caged_ghosts Fix the position of the ghost inside the square in the middle
of the screen.

disable_orange Fix the position of the orange ghost only.
disable_red Fix the position of the red ghost only.
disable_cyan Fix the position of the cyan ghost only.
disable_pink Fix the position of the pink ghost only.
powerX X ∈ (0, 4) Switching the specified number of power pills with normal

edible tokens.
edible_ghosts All ghost will be made edible the entire game
inverted All ghost will be edible the entire game until the player

eats a power pill. After eating a power pill the ghost will
return to "normal" for a certain amount of time

change_levelX X ∈ (0, 3) Changes the level according to the argument number 0-3.

E.1.14 Pong details

You control the right paddle, you compete against the left paddle
controlled by the computer. You each try to keep deflecting the
ball away from your goal and into your opponent’s goal.
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Modification Parameter Effect

lazy_enemy Enemy does not move after returning the shot until player
hits ball.

up_driftX X ∈ (1, 5) Makes the ball drift upwards by changing the correspond-
ing ram positions

down_driftX X ∈ (1, 5) Makes the ball drift down by changing the corresponding
ram positions

left_driftX X ∈ (1, 5) Makes the ball drift to the left by changing the correspond-
ing ram positions

right_driftX X ∈ (1, 5) Makes the ball drift to the right by changing the corre-
sponding ram positions

E.1.15 RiverRaid details

You control a jet that flies over a river: you can move it sideways
and fire missiles to destroy enemy objects. Each time an enemy
object is destroyed you score points (i.e. rewards). You lose a
jet when you run out of fuel: fly over a fuel depot when you
begin to run low.You lose a jet even when it collides with the river
bank or one of the enemy objects (except fuel depots). The game
begins with a squadron of three jets in reserve and you’re given an
additional jet (up to 9) for each 10,000 points you score.

Modification Effect

no_fuel Removes the fuel deposits from the game.

E.1.16 Seaquest details

You control a sub able to move in all directions and fire torpedoes.
The goal is to retrieve as many divers as you can, while dodging
and blasting enemy subs and killer sharks; points will be awarded
accordingly. The game begins with one sub and three waiting on
the horizon. Each time you increase your score by 10,000 points,
an extra sub will be delivered to your base. You can only have
six reserve subs on the screen at one time.Your sub will explode
if it collides with anything except your own divers.The sub has a
limited amount of oxygen that decreases at a constant rate during
the game. When the oxygen tank is almost empty, you need to
surface and if you don’t do it in time, your sub will blow up and
you’ll lose one diver. Each time you’re forced to surface, with less
than six divers, you lose one diver as well.
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Modification Effect

unlimited_oxygen Changes the behavior of the oxygen bar to remain filled
gravity Enables gravity for the player.
disable_enemies Disables all the enemies.
random_color_enemies The enemies have new random colors each time they go across

the screen.

E.1.17 Skiing details

You control a skier who can move sideways. The goal is to run
through all gates (between the poles) in the fastest time. You are
penalized five seconds for each gate you miss. If you hit a gate or
a tree, your skier will jump back up and keep going.

Modification Effect

invert_flags Switches the flag color from blue to red

E.1.18 SpaceInvaders details

Your objective is to destroy the space invaders by shooting your
laser cannon at them before they reach the Earth. The game ends
when all your lives are lost after taking enemy fire, or when they
reach the earth.

Modification Parameter Effect

disable_shield_left Disables the left shield.
disable_shield_middle Disables the middle shield.
disable_shield_right Disables the right shield.
disable_shields Disables all shields.
curved Makes the shots travel on a curved path.
relocateXX X ∈ (35, 53) Allows for the relocation of the shields via an offset.
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E.1.19 Tennis details

You control the orange player playing against a computer-
controlled blue player. The game follows the rules of tennis. The
first player to win at least 6 games with a margin of at least two
games wins the match. If the score is tied at 6-6, the first player to
go 2 games up wins the match.

Modification Effect

wind Sets the ball in the up and right direction by 3 pixles every single ram
step to simulate the effect of wind

upper_pitches Changes the ram so that it is always the upper persons turn to pitch.
lower_pitches Changes the ram so that it is always the lower persons turn to pitch.
upper_player Changes the ram so that the player is always in the upper field
lower_player Changes the ram so that the player is always in the lower field


