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Abstract

The longstanding goal of multi-lingual learn-001
ing has been to develop a universal cross-002
lingual model that can withstand the changes003
in multi-lingual data distributions. However,004
most existing models assume full access to the005
target languages in advance, whereas in realis-006
tic scenarios this is not often the case, as new007
languages can be incorporated later on. In this008
paper, we present the Cross-lingual Lifelong009
Learning (CLL) challenge, where a model is010
continually fine-tuned to adapt to emerging011
data from different languages. We provide in-012
sights into what makes multilingual sequential013
learning particularly challenging. To surmount014
such challenges, we benchmark a representa-015
tive set of cross-lingual continual learning al-016
gorithms and analyze their knowledge preser-017
vation, accumulation, and generalization capa-018
bilities compared to baselines on carefully cu-019
rated datastreams. The implications of this020
analysis include a recipe for how to measure021
and balance between different cross-lingual022
continual learning desiderata, which goes be-023
yond conventional transfer learning.024

1 Introduction025

With more than 7,000 languages spoken around the026

globe, downstream applications still lack proper027

linguistic resources across languages (Joshi et al.,028

2020), necessitating the use of transfer learning029

techniques that take advantage of data that is mis-030

matched to the application. In an effort to simplify031

architecture complexity and energy consumption,032

it is desirable to unify multi-lingual performance033

into a single, parameter- and memory-constrained034

model, and to allow this model to evolve, learning035

on multi-lingual training data as it becomes avail-036

able. Such is the longstanding goal of language037

representation learning. Existing multi-lingual rep-038

resentations such as M-BERT (Devlin et al., 2019)039

and XLM-R (Conneau et al., 2020) are strong pil-040

lars in cross-lingual transfer learning, but if care is041

Figure 1: An overview of CLL: We use an example
of a non-stationary datastream moving from high to
low resource languages. To support this problem set-
ting, we evaluate the cross-lingual capabilities of con-
tinual approaches such as model expansion, regulariza-
tion, replay, and distillation. Those capabilities include
knowledge preservation on old languages, accumula-
tion to the current language, generalization to unseen
languages, and model utility at the end of training.

not taken when choosing how to train, they can ne- 042

glect to maximize transfer and are subject to forget- 043

ting (French, 1993), where performance decreases 044

after exposure to some new task or language. 045

Most previous work that attempts to deal with 046

the challenge of transfer exploitation and forget- 047

ting mitigation focuses on the problem of sequen- 048

tially learning over different NLP downstream tasks 049

or domains (Sun et al., 2020; Han et al., 2020; 050

Madotto et al., 2021), rather than on language shifts. 051

Indeed, the current literature for learning over se- 052

quences of languages is rather scarce, and mostly 053

focuses on cross-lingual transfer learning between 054

a pair of languages. Previous works that fall into 055

that category include Liu et al. (2021) and Garcia 056

et al. (2021). Liu et al. pre-train a (parent) language 057

model and then fine-tune it on a downstream task 058

in one of several different (child) languages. This 059

“two-hop” case conflates task transfer and language 060

transfer, and confuses analysis – the interference 061
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between the pre-trained language model ‘task’ and062

the fine-tuned task along with the parent and child063

languages cannot be disentangled. Garcia et al. fo-064

cus on sequentially learning over two sets of parent065

and children language pairs in machine translation.066

However, this still focuses on the ‘two-hop’ case;067

the effect of multiple shifts in the datastream is not068

trivially generalizable to more than two hops. Gar-069

cia et al. also constrain their focus to the mitigation070

of forgetting with the objective of adapting bet-071

ter to new languages. This is an almost exclusive072

focus in continual learning literature (Lopez-Paz073

and Ranzato, 2017; Hayes et al., 2018). However,074

there is more than forgetting while sequentially075

learning over multiple languages. We need a more076

robust and balanced evaluation between differ-077

ent cross-lingual continual learning desiderata078

that balance the dynamics of transfer and gen-079

eralization in addition to forgetting.080

In this paper, we prescribe a multi-hop contin-081

ual learning evaluation that simulates sequentially082

learning a single task, as the multi-lingual model is083

exposed to training data from different languages.084

We formulate the Cross-lingual Lifelong Learning085

challenge and experiment with balanced streams086

of n data scenarios for n > 2. Unlike previ-087

ous work, this paper defines comprehensive goals088

including knowledge preservation, accumulation,089

generalization, and model utility as guidelines for090

analyzing the cross-lingual capabilities of multilin-091

gual sequential training. To measure them, we de-092

fine evaluation metrics and tweak data distribu-093

tions and language permutations to investigate094

(1) the capabilities and obstacles of a multi-lingual095

language model in preserving and accumulating096

knowledge across different languages and (2) the097

effectiveness of different continual learning algo-098

rithms in mitigating those challenges.099

We apply this test bed to a six-language task-100

oriented dialogue task and analyze a wide vari-101

ety of successful continual learning algorithms in102

that context. We cover a representative set of ap-103

proaches spanning over: (a) model-expansion ap-104

proaches (Pfeiffer et al., 2020b), (b) regularization-105

based (Kirkpatrick et al., 2017), (c) memory re-106

play (Chaudhry et al., 2019b), and (d) distillation-107

based (Hinton et al., 2015; Aguilar et al., 2020).108

Our findings confirm the need for a multi-hop anal-109

ysis and the effectiveness of continual learning al-110

gorithms, especially model expansion and mem-111

ory replay approaches, in enhancing knowledge112

preservation and accumulation of M-BERT. We ad- 113

ditionally demonstrate the robustness of different 114

continual learning approaches to variations in indi- 115

vidual data setup choices that would be misleading 116

if presented in a traditional manner. 117

Our main contributions are: (1) We are the first 118

to explore and analyze cross-lingual continual fine– 119

tuning1 across multiple hops and show the impor- 120

tance of this multi-hop analysis in reaching clearer 121

conclusions with greater confidence compared to 122

conventional cross-lingual transfer learning (§4.5). 123

(2) We evaluate the aggregated effectiveness of a 124

range of different continual learning approaches 125

(Figure 1) at reducing forgetting and improving 126

transfer (§4.2). (3) We show that that the order of 127

languages and data set size impacts the knowledge 128

preservation and accumulation of multi-lingual se- 129

quential fine-tuning and that certain continual learn- 130

ing approaches bridge that gap (§4.3). (4) We make 131

concrete recommendations on model design to bal- 132

ance transfer and final model performance with 133

forgetting (§4.2). (5) We analyze zero-shot gener- 134

alization trends and their correlation with forget- 135

ting (§4.4). 136

2 Cross-lingual Continual Learning 137

We first formally define cross-lingual lifelong learn- 138

ing, its goals and challenges, the downstream tasks 139

and datastreams, the analysis setup goals, and the 140

evaluation protocols that support them. 141

2.1 Problem Formulation 142

We define cross-lingual lifelong learning as 143

the problem of sequentially fine-tuning the 144

Transformer-based model θ for a particular down- 145

stream task over a cross-lingual data stream. Let 146

L = {`1, `2 · · · `N} be a set of labeled languages, 147

let S(L ) be the set of all permutations of L , and 148

without loss of generality let p ∈ S(L ) be one 149

such permutation and let p[i] ∈ L be the ith lan- 150

guage in p . In this case, a training data stream 151

is made of N labeled and distinct datasets D1···N , 152

each consisting of separate train and test portions. 153

The language of Di is p[i]. Let hop i be the stage 154

in cross-lingual lifelong learning where θi−1 is op- 155

timized to θi via exposure to Di. Let D<i and D>i 156

refer to a sequence of dataset (train or test portions, 157

depending on context) used in hops from 1 to i and 158

i to N (excluding i), respectively. 159

1To encourage future research in this direction, we release
our github repository in the camera-ready version.

2



2.2 Goals160

We define the goals for our study of cross-lingual161

lifelong learning as follows (also depicted in Fig-162

ure 1): 1) Cross-lingual preservation. This is the163

ability to retain previous knowledge on seen lan-164

guages. 2) Cross-lingual accumulation. This is the165

ability to accumulate knowledge learned from pre-166

vious languages to benefit the learning on current167

language. 3) Cross-lingual generalization. This168

goes beyond learning for the current languages to-169

wards generalizing uniformly well to unseen lan-170

guages. 4) Model utility. This tests how well we171

can use one final model for all languages.172

2.3 Challenges173

Learning sequentially from a non-stationary data174

distribution (i.e., task datasets coming from differ-175

ent languages) can impose considerable challenges176

on the goals defined earlier: 1) Catastrophic for-177

getting. This happens when fine-tuning a model178

on D≥i leads to a decrease in the performance on179

D<i. 2) Negative transfer. This happens when180

fine-tuning a model up to D≤i leads to a lower per-181

formance on Di than training on it alone. 3) Low182

zero-shot transfer. This happens when fine-tuning183

on D≤i gives a low performance than on unseen184

D>i. 4) Low final performance. This happens185

when fine-tuning on all D≤N gives a low perfor-186

mance when tested on D≤N at the end of training.187

2.4 Downstream Tasks and Datastreams188

Here, we describe the downstream tasks and multi-189

lingual sequential datastreams used.190

Downstream Tasks. We choose task-oriented di-191

alogue parsing as a use case and consider the192

multi-lingual task-oriented parsing (MTOP) bench-193

mark (Li et al., 2021). Task-oriented dialogue pars-194

ing provides a rich testbed for analysis, as it en-195

compasses two subtasks: intent classification and196

slot filling, thus allowing us to test different task197

capabilities in cross-lingual continual learning.198

Data Stream Construction. For a set of N lan-199

guages L , our study considers a permutation sub-200

set P ⊂ S(L ) according to the following proper-201

ties:2202
• |P | = |L | = N , where ∀`i ∈ P appears exactly203

once in each stream.204

• ∀`i ∈ L , ∀j ∈ 1 . . . N , there exists some p ∈ P205

such that p[j] = `i.206

2Details of the different language permutations used for
the data streams can be found in Appendix B.1.

Train / Dev / Test
Lang ISO Original Version Balanced Version
English EN 15,667 / 2,235 / 4,386

9,219 / 1,285 / 2,299

German DE 13,424 / 1,815 / 3,549
French FR 11,814 / 1,577 / 3,193
Hindi HI 11,330 / 2,012 / 2,789
Spanish ES 10,934 / 1,527 / 2,998
Thai TH 10,759 / 1,671 / 2,765

Table 1: Statistics of MTOP per language and split.

• high2low ∈ P , the permutation from most high- 207

resource to most low-resource fine-tuning data 208

sets, based on the training dataset size. 209

• low2high ∈ P , the permutation from most low- 210

resource to most high-resource fine-tuning data 211

sets, based on the training dataset size. 212

We use MTOP which is a multi-lingual dataset cov- 213

ering 6 typologically diverse languages and span- 214

ning over 11 domains. In this evaluation, we use 215

only the decoupled representation. We use the orig- 216

inal data for most experiments. For one additional 217

ablation study, we fix the distribution of the train- 218

ing, development, and testing sentences following 219

a balanced distribution over the intents for all lan- 220

guages. Table 1 shows a summary of the statistics 221

per language and split for both versions. 222

2.5 Analysis Setup 223

We provide an extensive analysis in the form of 224

different ablation studies. These revolve around 225

the continual learning goals, described in §2.2. 226

Q1. Can a multi-lingual language model learn 227

to preserve and accumulate knowledge across 228

different languages? Specifically, we investi- 229

gate whether multi-lingual sequential fine-tuning 230

can accumulate and retain knowledge and how well 231

its final checkpoint can be used for all languages at 232

the same time. This is a fundamental question to 233

help us determine if the use of continual learning 234

is needed at all to perform sequential cross-lingual 235

fine-tuning. We investigate the performance of 236

the baseline and reference models (§3.1) using the 237

meta-metrics (§2.6), on the average over language 238

permutations and the original version of the dataset 239

set shown in Table 1 (§2.4). 240

Q2. Are continual learning algorithms effec- 241

tive in boosting knowledge preservation and ac- 242

cumulation compared to naive sequential fine- 243

tuning? We compare different continual learning 244

algorithms, analyze their accumulation capabilities 245

and final model utility in reaching a compromise be- 246

tween them and retaining previous knowledge. For 247

that purpose, we compare the performance of the 248

3



algorithms (§3.2) using the second and third met-249

rics (§2.6) and analyze their relationship to knowl-250

edge preservation (first metric), taking the average251

over language permutations (§2.4).252

Q3. Which language permutations impose253

more challenges on knowledge preservation254

and accumulation? We wish to understand the255

role of language order in knowledge preservation,256

accumulation, and final model utility of multi-257

lingual sequential fine-tuning and which continual258

learning approaches bridge the gap between dif-259

ferent language permutations. We use the same260

experiment plan as in questions Q1 and Q2 with261

respect to different languages permutations and the262

original version of the dataset (§2.4). For additional263

ablation studies on the role of fine-tuning data set264

size, we use the balanced dataset.265

Q4. How do different continual learning mod-266

els generalize to unseen languages? We anal-267

yse the zero-shot generalization to unseen lan-268

guages in the stream. For that purpose, we look269

at several continual learning models and compare270

them to the baseline over the average of different271

language permutations in terms of the last met-272

ric (§2.6). We also analyze the relationship be-273

tween generalization and preservation to check for274

any correlations or trade-offs.275

Q5. How is a multi-hop different from two-hop276

continual learning analysis? Finally, we wish277

to investigate which insights a multi-hop analysis278

over multiple languages in the stream provides us279

with that is different from the conventional two-280

hop cross-lingual continual transfer learning from281

a source to a target language. For this purpose, we282

conduct several experiments involving only the first283

and last language in each stream (§2.4) to compare284

them to the corresponding full stream involving the285

remaining languages in between.286

2.6 Evaluation Protocols287

Let R be some metric for evaluating K and Ri,≤j288

be the evaluation on test set for language `i using289

a model trained on D1···j , we define the following290

meta-metrics (which are inspired, but slightly dif-291

ferent from the metrics defined in Lopez-Paz and292

Ranzato (2017) and Chaudhry et al. (2019a)):293

• Forgetting (F) ↓. This is the average for-294

getting over all hops (excluding the first hop295

as no forgetting occurred yet) computed as:296

F = 1
N−1

∑N
j=2 F≤j (1), such that F≤j = 297

1
j−1

∑j−1
i=1 Fi,≤j (2) is the average forgetting 298

that occurred at hop i. We compute Fi,≤j = 299

maxk⊆[1,j−1]Ri,≤k − Ri,≤j (3), where Fi,≤j is 300

the degree to which performance on Di has suf- 301

fered by continuing to train up to Dj instead of 302

stopping before Dj−1. 303

• Transfer (T) ↑. This is the average forward trans- 304

fer computed as: T = 1
N−1

∑N
i=2 Ti (4), such 305

that Ti = Ri,≤i−Ri (5), whereRi denotes evalu- 306

ation of a model fine-tuned only on Di. Ti is thus 307

the incremental impact of sequentially training 308

on datasets prior to seeing Di. 309

• Final performance (FP) ↑. This is the average 310

performance after training on all datasets in the 311

studied stream: FP = 1
N

∑N
i=1Ri,≤N . (6) 312

To measure generalization to new languages, we 313

add a zero-shot transfer (T 0↑) metric, which is 314

measured as: T 0 = 1
N−1

∑N
i=2 T

0
i (7), where 315

T 0
i = 1

i−1

∑i−1
j=1Ri,≤j − R̄i (8) is the average per- 316

formance of a model on the forward transfer to a 317

language `i after seeing all datasets before and not 318

including it compared to the random performance 319

R̄i before even fine-tuning on any language. 320

3 Methods 321

We use the same architecture as in Castellucci et al. 322

(2019); M’hamdi et al. (2021) to jointly learn in- 323

tent classification and slot filling subtasks on top 324

of M-BERT.3 In this section, we describe several 325

baselines and continual learning algorithms of how 326

this architecture is trained sequentially or jointly 327

on multiple languages. 328

3.1 Baselines & Reference Models 329

Before delving into continual learning approaches, 330

we consider simple baselines,4 which either train 331

in a sequential multi-hop or a joint one-hop manner 332

and are either language-specific or multi-lingual. 333

Lower-bound Baseline. This consists of naive 334

sequential fine-tuning (Naive Seq FT), which se- 335

quentially fine-tunes with no continual learning. 336

Upper-bound Models. These are stronger refer- 337

ence models, as they either train from scratch for 338

3More details about the architecture can be found in Ap-
pendix A.

4All those baselines and reference models use the same
base model architecture and its loss with no further additions
or special optimizations to the architecture.
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Figure 2: A comparison between different variants of model expansion for this problem setting: either at the side
of the input (Lang-Spec Trans), the output (Lang-Spec Task), or using adapters (Lang-Spec Ada).

each new language or have access to all languages:339

340 • Language-specific fine-tuning (Lang-Spec FT).341

This is the baseline that trains a model on the342

data set for each language D`i independently.343

• Multi-lingual learning (Multilingual). This trains344

one model jointly across all data sets D1···N .345

• Incremental joint learning (Inc Joint). This incre-346

mentally trains adding the data set for each lan-347

guage in the stream. This consists of the follow-348

ing hops: 1) D`1 , 2) D`1,`2 , · · · , and N) D1···N .349

350
3.2 Continual Learning Approaches351

To continually fine-tune on different tasks, we es-352

tablish several strong approaches from the follow-353

ing categories:5354

Model Expansion. We consider the following355

approaches shown in Figure 2. We either expand on356

the input side, i.e. M-BERT representations, (Lang-357

Spec Trans) or on the output side, i.e. the task-358

specific prediction heads (Lang-Spec Task) for each359

language, while sharing the rest in each case (the360

output and input respectively). We also separately361

add MAD-X adapters (Pfeiffer et al., 2020b). We362

either fine-tune the adapter layers and freeze the363

rest of M-BERT (Lang-Spec Ada(F)) or tune them364

both (Lang-Spec Ada(T)).365

Regularization. We focus on elastic weight con-366

solidation (EWC) (Kirkpatrick et al., 2017), which367

tackles catastrophic forgetting by reducing the368

changes in parameters that are deemed critical to369

past tasks. We use the online version of EWC370

(EWC-Online) for efficiency purposes.371

Memory Replay. We use experience replay372

(ER) (Chaudhry et al., 2019b), which alleviates for-373

getting by maintaining a fixed-size memory equally374

balanced between the different languages and regu-375

larly drawing examples from the memory to replay.376

377
5More details about the approaches can be found in Ap-

pendix A and the hyperparameters used can be found in B.2.

Distillation-based. On top of ER, we distill 378

dark knowledge from previous model checkpoints. 379

We explore two variants: logit distillation (KD- 380

Logit) (Hinton et al., 2015) and representation dis- 381

tillation (KD-Rep) (Aguilar et al., 2020), which 382

optimize the minimum square error loss between 383

either the output logits or M-BERT representations 384

between the current and previous models. 385

4 Results & Analysis 386

In this section, we present our results and findings 387

for the different analysis questions raised in §2.5. 388

For §4.1, scores are reported using accuracy (Acc) 389

and F1-score (F1) for intent classification and slot 390

filling, respectively.6 All experiments are run for 391

one single seed and then bootstrap sampling is used 392

to compute the average and confidence intervals 393

over either just the random shuffling of the test data 394

(§4.3) or also averaging over language permuta- 395

tions. More details can be found in Appendix B.3. 396

4.1 Multi-lingual Sequential Learning 397

Model Acc F1

Naive Seq FT 90.52 ±1.42 69.10 ±1.24
Lang-Spec FT 93.20 ±0.08 73.59 ±0.81
Inc Joint 94.20 ±0.15 74.97 ±0.51
Multilingual 94.25 ±0.07 76.34 ±0.82

Table 2: The average final performance across differ-
ent language permutations for the baseline compared to
reference models. We highlight the best scores in bold
and underline the second best across models.

Our analysis begins with an investigation of how 398

well different baselines and reference models learn 399

to preserve and accumulate knowledge across dif- 400

ferent languages, by looking at the average over 401

language permutations (Q1 in §2.5). Since not all 402

reference models are sequential, we start by com- 403

paring them all to the baseline using their final 404

6For the remaining sections, all results are reported for
intent classification for space efficiency and more results for
slot filling can be found in Appendix C.
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performances. The final performance is indicative405

of how well a single final model can encapsulate406

the knowledge across languages. From Table 2, we407

notice that Naive Seq FT and Multilingual have408

the worst and best final performances, respectively.409

This suggests that a multilingual joint model is410

more beneficial than sequential models, but in411

practical scenarios having access to all languages412

at the same time might be costly or prohibitive.413

While Lang-Spec FT improves only over Naive414

Seq FT by 2.68% and 4.49%, it falls behind Inc415

Joint by 1% and 1.38% and Multilingual by 1.05%416

and 2.75% on intent classification and slot fill-417

ing, respectively. Therefore, training sequentially418

is more beneficial than training a model from419

scratch, to exploit cross-lingual transfer capabili-420

ties.421

Model F ↓ T ↑
Acc F1 Acc F1

Naive Seq FT 2.99 ±1.20 6.22 ±0.95 0.76 ±0.09 1.42 ±0.33
Inc Joint 0.15 ±0.10 0.93 ±0.38 0.85 ±0.12 1.33 ±0.83

Table 3: Forgetting (F) and transfer (T) performance
averaged across different language permutations for se-
quential baseline and reference models. We highlight
the best models in bold and underline the second best.

We focus, thereafter, more on Naive Seq FT and422

its forgetting and transfer trends compared to Inc423

Joint, which is a sequential variant of the refer-424

ence model Multilingual. Inc Joint exhibits signif-425

icantly less forgetting which also causes its final426

performance to be higher than Naive Seq FT . This427

suggests that recalling previously used training428

data is helpful in knowledge preservation. How-429

ever, the difference between the two, in terms of430

their transfer performance, is not statistically sig-431

nificant.7 We hypothesize that this could be due to432

exposing Inc Joint to all resources from previously433

seen languages, so it is likely that the data distri-434

bution between all these languages may distract435

the model from learning on the new one.436

4.2 The Effectiveness of Continual Learning437

To investigate the effectiveness of continual learn-438

ing approaches in improving knowledge preserva-439

tion and accumulation, we compare them to the440

baseline using the average over language permu-441

tations (Q2 in §2.5). We show, in scatter plots 3442

and 4, the transfer and final performances of differ-443

7We report the p-values from pairwise Tukey’s HSD analy-
sis to gain a reliable unified view that individual t-tests may fail
to convey. More explanation can be found in Appendix B.3.

ent approaches, respectively, as functions of their 444

negative forgetting. In general, we observe that 445

continual learning approaches mitigate forgetting, 446

improve transfer, and final performance compared 447

to Naive Seq FT (except for EWC-Online, where 448

even the small improvement in transfer is not sta- 449

tistically significant (Appendix D)). 450

From Figure 4, we notice that model expan- 451

sion approaches8(Lang-Spec Trans and Lang-Spec 452

Enc[0-8]) are the best in mitigating forgetting and 453

improving the final performance unlike Lang-Spec 454

Task. This proves that M-BERT, when trained in a 455

language specific manner, is responsible for encap- 456

sulating the cross-lingual representations necessary 457

for enabling knowledge preservation, whereas any 458

changes to the downstream task-specific layers do 459

not make much of a difference. This implies that 460

in cross-lingual continual learning more attention 461

should be paid to how to train those representa- 462

tions in a language-specific manner efficiently. 463

Lang-Spec Ada(T) are one way to do it more effi- 464

ciently, but its performance still lags behind. ER 465

achieves a performance closer to Lang-Spec Trans 466

and Lang-Spec Enc[0-8]9 and this suggests that 467

even tiny bits of memory are beneficial.

Figure 3: Transfer versus negative forgetting for intent
classification task. Outliers are in red. 468

In the baseline approach which suffers from the 469

lowest forgetting, we also notice the lowest transfer 470

and final performance in Figures 3 and 4. As con- 471

tinual learning approaches reduce forgetting, they 472

also improve the final performance and some of 473

them also improve transfer but not to the same de- 474

gree. This suggests that the lower the forgetting 475

a model can achieve, the easier it gets for it to 476

8We include a full analysis of the expansion over several
subsets of M-BERT components in Appendix C.2.

9This trains M-BERT encoder layers ∈ 1 . . . 9 in a
language-specific manner, while sharing the embeddings, the
rest of the layers ∈ 10 . . . 12, and prediction heads.
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Figure 4: Final performance versus negative forgetting
for intent classification task.

accumulate knowledge. There are some outliers477

like Lang-Spec Trans which is the best model in478

terms of reducing forgetting but also the worst in479

terms of transfer. This could be due to the fact480

that Lang-Spec Trans exhibits a similar behavior481

to Lang-Spec FT thus the transfer, which is the482

difference with Lang-Spec FT , is almost null.483

4.3 Analysis across Different Language484

Permutations485

Model F ↓ T ↑ FP ↑
high2low low2high high2low low2high high2low low2high

Naive Seq FT 1.74 ±0.02 5.42 ±0.04 0.83 ±0.02 0.85 ±0.01 91.87 ±0.02 87.65 ±0.02
Lang-Spec Trans 0.39 ±0.01 0.62 ±0.02 0.71 ±0.02 0.28 ±0.02 93.86 ±0.01 93.38 ±0.01
Lang-Spec Enc[0-8] 0.59 ±0.01 1.08 ±0.02 1.13 ±0.01 0.95 ±0.01 93.77 ±0.01 93.16 ±0.01
Lang-Spec Task 1.55 ±0.01 5.47 ±0.04 0.98 ±0.02 0.63 ±0.01 91.97 ±0.02 87.66 ±0.02
Lang-Spec Ada(T) 1.13 ±0.01 4.73 ±0.04 0.94 ±0.02 0.74 ±0.01 92.44 ±0.01 88.91 ±0.02
Lang-Spec Ada(F) 0.95 ±0.02 1.18 ±0.04 3.30 ±0.02 2.10 ±0.02 90.87 ±0.02 89.84 ±0.02
EWC-Online 2.01 ±0.02 6.35 ±0.04 0.94 ±0.02 0.59 ±0.01 90.72 ±0.02 87.79 ±0.02
ER 0.93 ±0.02 1.81 ±0.03 0.87 ±0.01 0.56 ±0.02 93.24 ±0.01 92.68 ±0.02
KD-Logit 1.82 ±0.02 4.57 ±0.04 0.76 ±0.02 0.76 ±0.02 91.25 ±0.02 89.53 ±0.02
KD-Rep 1.87 ±0.02 3.78 ±0.04 0.80 ±0.02 0.93 ±0.01 90.86 ±0.02 89.75 ±0.02

Table 4: Performance on intent classification compar-
ison between the baseline and continual learning algo-
rithms across two language permutations. We highlight
the lowest forgetting (F), highest transfer (T), and final
performance (FP) of accuracy scores among high2low
and low2high in bold, whereas the best and second best
scores across approaches for high2low and low2high
separately are underlined and italicized, respectively.

So far our analysis has focused on the average486

over different language permutations, but are the487

same patterns observed for different language per-488

mutations? To shed the light on that, we analyze489

the performance of different continual learning al-490

gorithms and baselines in terms of their forget-491

ting, transfer, and final performance over high2low492

and low2high permutations (Q3 in §2.5), in Ta-493

ble 4.10 In general, we observe that for Naive Seq494

FT and some continuous learning approaches,495

it is more challenging to learn from low to high496

10Full results for slot filling, more language permutations,
and the balanced data can be found in Appendix C.3.

resource languages, as there is a huge differ- 497

ence in forgetting and final performance and to 498

a lesser degree a decrease in transfer. On the other 499

hand, model expansion and memory replay ap- 500

proaches reduce the forgetting and final gap 501

between language permutations. We hypothe- 502

size that low2high being more challenging than 503

high2low could be due to the fine-tuning training 504

data size that is different between languages. 505

Model F ↓ T ↑ FP ↑
high2low low2high high2low low2high high2low low2high

Original Data 1.74 ±0.02 5.42 ±0.04 0.83 ±0.02 0.85 ±0.01 91.87 ±0.02 87.65 ±0.02
Balanced Data 1.25 ±0.02 5.81 ±0.05 0.89 ±0.02 0.75 ±0.02 89.33 ±0.02 85.81 ±0.02

Table 5: Performance on intent classification compar-
ison between two versions of the data: original data
version and balanced data for Naive Seq FT across the
same permutations as (Table 4). We embolden the best
among high2low and low2high for each metric.

To verify this hypothesis, we dig deeper to check 506

if the differences among training fine-tuning data 507

sizes between languages is the main factor by per- 508

forming an ablation study on that. Therefore, we 509

use the same amount of training resources for each 510

language and report the results on Naive Seq FT 511

in Table 5. We can see that there is still a gap 512

between these two language permutations for for- 513

getting and final performance. This suggests that 514

the difference in fine-tuning training data size is 515

not what accounts for the differences between 516

the two language permutations. There are per- 517

haps biases in the pre-training or other linguistic 518

artifacts that need to be studied in future work. 519

4.4 Zero-Shot Generalization in 520

Cross-lingual Continual Learning 521

To analyze the zero-shot transfer to unseen lan- 522

guages, we plot the performance on zero-shot trans- 523

fer as a function of negative forgetting for the base- 524

line and continual learning approaches, to investi- 525

gate any relationship between generalization and 526

preservation (Q4 in 2.5). In Figure 5, we infer 527

that most continual learning approaches don’t 528

substantially improve the generalization com- 529

pared to Naive Seq FT. We notice that model 530

expansion approaches (in red), in particular, hurt 531

the generalization performance even if they signif- 532

icantly reduce forgetting. This zero-shot trans- 533

fer versus interference trade-off is referred to as 534

the stability-plasticity dilemma (Mermillod et al., 535

2013), where the weights responsible for improv- 536

ing on new tasks are often responsible for the for- 537

getting on previous tasks. If we exclude model 538

7



expansion approaches (sub-figure on the right), we539

notice that approaches which reduce forgetting also540

improve generalization compared to Naive Seq FT .541

Better approaches to balance between the two can542

be investigated in future work.543

Figure 5: Zero-shot generalization versus negative for-
getting for intent classification. Outliers are high-
lighted in red. We zoom over the rest of the models
in the upper right corner subplot.

4.5 Multi-Hop vs Two-Hop Cross-lingual544

Continual Learning545

Figure 6: Comparison between forgetting trends for
intent classification using two-hop (crossed boxplots)
and multi-hop analysis (dotted boxplots), on the left
and right respectively for each approach, showing the
variance over different language permutations.

To motivate this cross-lingual continual learning546

work further, we dig deeper into how a multi-hop547

analysis is different from a conventional transfer548

learning analysis (Q5 in §2.5). Figure 6 shows a549

comparison between the two in terms of forgetting550

for different approaches aggregated over different551

language permutations. More results for slot fill-552

ing and other metrics can be found in Figure 11 in553

Appendix C.5. Lang-Spec Trans tends to have the554

least forgetting and Naive Seq FT the most, but im- 555

portantly the variance for a multi-hop analysis 556

is much smaller than that for two-hop analysis. 557

5 Related Work 558

Continual learning approaches have found favor 559

especially among the computer vision community, 560

including regularization-based (Kirkpatrick et al., 561

2017; Zenke et al., 2017; Li and Hoiem, 2016; Rit- 562

ter et al., 2018), memory-based (Shin et al., 2017; 563

Chaudhry et al., 2019b,a), etc. Only recently, it has 564

started gaining more interest in the NLP commu- 565

nity. Current approaches often fail to effectively 566

retain previous knowledge and adapt to new infor- 567

mation simultaneously (Biesialska et al., 2020; Han 568

et al., 2020; de Masson d'Autume et al., 2019). 569

Existing continual learning work for cross- 570

lingual NLP is even more scarce, either focusing on 571

proposing cross-lingual approaches that indirectly 572

support lifelong learning, such as Artetxe et al. 573

(2020), on the transfer-ability of monolingual mod- 574

els. Other approaches derive a cross-lingual contin- 575

ual learning problem directly from cross-lingual 576

transfer learning, such as Garcia et al. (2021), 577

which investigate a lexical approach for cross- 578

lingual continual machine translation. Liu et al. 579

(2021) explore continual techniques to fine-tune on 580

downstream applications for new languages, while 581

preserving the original cross-lingual ability of the 582

pre-trained model. However, they focus on a two- 583

hop analysis from high to low resource language 584

pairs or from pre-training to fine-tuning tasks, un- 585

like our work, which analyzes across multiple hops. 586

5876 Conclusion 588

We formulate the cross-lingual lifelong learning 589

problem setup. We show that simple naive sequen- 590

tial fine-tuning is prone to catastrophic forgetting 591

and has poor accumulation and generalization capa- 592

bilities sensitive to different language permutations. 593

To address these issues, we provide the first bench- 594

mark to compare the effectiveness of different con- 595

tinual learning algorithms for the cross-lingual case. 596

We show that continual learning models improve 597

cross-lingual knowledge preservation, which also 598

contributes to facilitating knowledge accumulation, 599

but to a lesser degree on generalization. We also 600

discuss the challenges of sequentially training for 601

certain language permutations. We hope that this 602

study will encourage more analyses in the same 603

spirit to gain more insights that go beyond conven- 604

tional cross-lingual transfer learning. 605
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A More Details about Approaches830

A.1 Base Model Architecture831

We use the same architecture as in Castellucci et al.832

(2019); M’hamdi et al. (2021) to jointly learn intent833

classification and slot filling subtasks. As shown in834

Figure 7, we leverage features from Transformer835

(Vaswani et al., 2017) encoder and add classifica-836

tion prediction heads on top of it. More specifically,837

a multi-lingual pre-trained model is used to encode838

the input. Then, to predict the intent and slot spans,839

we add task-specific prediction heads. For intent840

prediction, this takes the form of a linear layer plus841

softmax on top of the [CLS] token representation.842

For slot filling, we use a sequence labeling layer843

in the form of a linear layer plus CRF respectively.844

We use the sum of both intent and CRF based slot845

losses to optimize the model parameters.846

Figure 7: Architecture of base-task oriented dialogue.

A.2 Adapters847

Adapters consist of downsampling layers followed848

by upsampling layers inserted between layers of849

our Transformer encoder in addition to their in-850

vertible components. We don’t add task-specific851

adapters which, according to our ablation stud-852

ies, didn’t prove beneficial. We add adapter853

components to every encoder layer following854

MAD-X configuration and using their pre-trained855

weights obtained from AdapterHub (Pfeiffer et al.,856

2020a).11 We either fine-tune the weights for the857

languages available in AdapterHub or train from858

scratch for languages for which there are no pre-859

training adapter weights. At inference time, we use860

adapter layers fine-tuned independently for each861

language in the datastream.862

11https://adapterhub.ml/explore/text_
lang/

A.3 Online Elastic Weight Consolidation 863

(EWC-Online) 864

To penalize changes in the parameters crucial to 865

previous languages, we use EWC, which adds a 866

regularization term to the loss applied only after 867

the first data set Di in the language stream is seen. 868

∀i ∈ 2 . . . N , we compute the total loss as follows: 869

870

Litotal = Licur + λLireg, (9) 871

where Lcur is the usual loss of the downstream 872

task on the current data Di and Lreg is the regular- 873

ization term and λ is a hyperparameter to control 874

the regularization strength. For efficiency purposes, 875

we use the online version of EWC (EWC-Online), 876

which number of quadratic terms in the regular- 877

ization terms doesn’t increase with the number of 878

languages seen so far. Following that, our regular- 879

ization term is computed as, based on the formula- 880

tion in van de Ven and Tolias (2019): 881

Lireg =

Np∑
j=1

F̃
(i−1)
jj (θj − θkj )2, (10) 882

where θ are the parameters of the transformers 883

model in addition to the downstream prediction 884

heads, Np is the total number of parameters, and 885

F̃
(i−1)
jj is the Fisher information matrix on the last 886

language just before training on Di. This is com- 887

puted as the running sum of the ith diagonal ele- 888

ments of the Fisher Information matrices ofDj , for 889

all j ∈ 1 . . . (i − 1). F̃ (i)
jj = γF̃

(i−1)
jj + F i

jj and 890

F̃ 1
jj = F 1

jj . In practice, F i is simply the gradients 891

all parameters flattened into one single matrix. 892

A.4 Experience Replay (ER) 893

After training for each Di for all i ∈ 1 . . . N , we 894

populate the memory with randomly sampled ex- 895

amples fromDi. For eachDi for all i ∈ 2 . . . N , af- 896

ter training for every k = 100 mini-batches and op- 897

timizing for the current loss separately, the model 898

randomly samples an equal batch from the memory 899

for each Dj such that j ∈ 1 . . . (i− 1) and replays 900

them using the current model checkpoint used for 901

training on Di. We retrieve an equal amount of 902

memory from each language and at each step and 903

hop. The loss from the current Di and the loss on 904

the memory on the Dj are interleaved as the replay 905

on the memory only happens every k steps. This 906

prioritization of the current language helps make 907

the training more stable without over-fitting on the 908

small memory from previous languages. 909
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A.5 Knowledge Distillation (KD-Logit &910

KD-Rep)911

We use the same strategy explained in §A.4 to se-912

lect the memory to be replayed using a knowledge913

distillation loss. For each Di for all i ∈ 2 . . . N ,914

after training for every k = 100 mini-batches, we915

randomly samples an equal batch from the memory916

for eachDj such that j ∈ 1 . . . (i−1). We also load917

the model checkpoints for each hop j and use that918

model and the memory for Dj to compute either919

the intent and slot logits in the case of KD-Logit920

or the multilingual representations of M-BERT in921

the case of KD-Rep. We do the same thing using922

the current model checkpoint this time. Then, we923

use the minimum square error loss to minimize the924

distance between the intent logits obtained using925

the previous and current model checkpoints and do926

the same thing for slot logits for KD-Logit. Then,927

we take the same over intent and slot distillation928

losses across different language retrieved from the929

memory. The same is done for computing the dis-930

tillation loss over the multilingual representations931

in KD-Rep.932

B Experimental Setup Details933

B.1 Datastreams934

Order 1 Order 2 Order 3 Order 4 Order 5 Order 6
English Thai Spanish French Hindi German
German Spanish Hindi Thai English French
French Hindi English German Spanish Thai
Hindi French German English Thai Spanish
Spanish German Thai Hindi French English
Thai English French Spanish German Hindi

Table 6: Simulated language permutations.

We use the following data streams for all our935

experiments as summarized in Table 6. The936

MTOP dataset has been released by Facebook (Li937

et al., 2021) under Creative Commons Attribution-938

ShareAlike 4.0 International Public License which939

allows its usage.940

B.2 Implementation Details941

For all experiments, we use M-BERT(bert-base-942

multilingual-cased)12 with 12 layers as our pre-943

trained Transformer model. We use the dev set944

to pick the hyperparameters of the optimizer to945

12github.com/huggingface/transformers
version 3.4.0 pre-trained on 104 languages, including all
languages evaluated on in this paper.

be used. We perform a search for the most op- 946

timal learning rate over a range [1e− 4, 3e− 4, 947

1e− 5, 3e− 5] for Adam optimizer (Kingma and 948

Ba, 2015) and finally fix the learning rate to 3e− 5 949

for all experiments for a fair comparison. We use 950

ε = 1e− 8, β1 = 0.9, β2 = 0.99, batch size of 16, 951

γ = 0.1 for EWC Online, 6000 memory size for 952

ER and knowledge distillation. For all experiments, 953

we run for 10 epochs maximum and pick the best 954

model based on dev data. We also fix a seed of 955

42 for the random initialization of numpy, random, 956

and torch over all experiments. All experiments 957

are run using the same computing infrastructure 958

Pytorch version 1.7.1, using one Tesla P100 GPU 959

of 16280 MiB of memory CUDA version 11.2. 960

The runtime and the number of parameters de- 961

pend on the approach used and the mode of train- 962

ing are detailed in Table 7. With the exception of 963

model expansion approaches, all approaches have 964

the same number of parameters coming from the 965

sum of M-BERT and prediction head parameters. 966

Lang-Spec Trans has the highest number of parame- 967

ters which is six times more than Naive Seq FT but 968

only requires two times more runtime as only one 969

frac16 part of language-specific M-BERT is up- 970

dated at each hop for each whereas the rest is used 971

in evaluation mode only. Lang-Spec Ada(F) has 972

the smallest number of parameters which around 973

24% and takes 2 times less than the usual runtime 974

of Naive Seq FT (while exhibiting lower forgetting 975

and higher transfer than Naive Seq FT , as shown 976

in Table 8). Memory replay and knowledge dis- 977

tillation approaches have more runtime (slightly 978

more than Lang-Spec Trans) as they store and han- 979

dle memory and compute the replay or distillation 980

losses interleaved with the main loss which makes 981

them time-consuming. 982

B.3 Bootstrap Sampling & Statistical 983

Significance 984

We run all experiments over one fixed seed of 42. 985

We then use bootstrap sampling (Koehn, 2004) to 986

compute the mean and confidence intervals for each 987

of the metrics described in §2.6 over a single ap- 988

proach. For each language permutation, and for 989

each Ri,≤j , representing some performance metric 990

on language `i after training on D1···j , we sample 991

with replacement 600 sentences from the testing 992

data over 600 iterations. By using this number of 993

iterations and sampling sentences, we ensure and 994

also double check that all sentences in the test set 995

12

github.com/huggingface/transformers


Model Runtime # Param
Naive Seq FT 3h16min 178,081,402
Lang-Spec FT 52min 178,081,402
Inc Joint 1d22h51min 178,081,402
Multilingual 16h45min 178,081,402
Lang-Spec Embed 7h46min 639,123,322
Lang-Spec Enc[0-2] 7h52min 284,399,482
Lang-Spec Enc[3-5] 7h12min 284,399,482
Lang-Spec Enc[6-8] 7h8min 284,399,482
Lang-Spec Enc[9-11] 7h20min 284,399,482
Lang-Spec Enc[0-8] 8h1min 497,035,642
Lang-Spec Trans 7h15min 1,067,348,602
Lang-Spec Enc[0-11] 7h53min 603,353,722
Lang-Spec Enc[0-5] 7h16min 390,717,562
Lang-Spec Enc[6-11] 7h10min 390,717,562
Lang-Spec Task 6h18min 179,221,212
Lang-Spec Ada(T) 4h34min 222,301,402
Lang-Spec Ada(F) 1h57min 44,447,962
EWC-Online 1d3h17min 178,081,402
ER 8h55min 178,081,402
KD-Logit 7h23min 178,081,402
KD-Rep 8h 178,081,402

Table 7: Runtime and parameters statistics.

are covered in the evaluation ensuring a uniform996

evaluation across approaches. Let x be the list997

of results we get for each iteration independently.998

Then, we compute the mean and standard deviation999

x̄ and std(x) respectively and the 95% confidence1000

interval size CI using the following equation:1001

CI =
1.9639× std(x)√

600
,

std(x) =

√∑
(x− x̄)2

600
.

(11)1002

This computes x and CI for each language per-1003

mutation separately. To aggregate this across dif-1004

ferent language permutations, we simply take the1005

average and the standard deviation.1006

To compute the statistical significance between1007

different approaches, we use ANOVA and per-1008

form a multiple pairwise comparisons analysis us-1009

ing Tukey’s honestly significant difference (HSD)1010

test13 over different language permutations for each1011

metric.1012

C More Results & Analysis1013

C.1 Full Average Results1014

Table 8 shows the full results and confidence in-1015

tervals for different continual learning approaches.1016

Compared to intent classification, we observe a1017

higher forgetting and slightly higher transfer but a1018

lower zero-shot transfer and final performance in1019

13We use bioinfokit library https://github.com/
reneshbedre/bioinfokit

the case of slot filling. This could be due to the 1020

nature of the task of slot filling which is more chal- 1021

lenging to learn. In general, we can observe the 1022

same forgetting, transfer, zero-shot transfer, and 1023

final performance trends between intent classifica- 1024

tion and slot filling. In other words, if a model a has 1025

higher forgetting of intent classification than model 1026

b then the same thing applied to slot filling. Some 1027

exceptions include ER which the highest zero-shot 1028

transfer on slot filling, while having not the highest 1029

but the second highest zero-shot transfer on intent 1030

classification. This could be due to the transfer 1031

between intent classification and slot filling that is 1032

maximized when training them jointly. 1033

C.2 Per M-BERT Components Analysis 1034

Table 9 shows ablation studies for the analysis of 1035

M-BERT components following four different cat- 1036

egories: groups of 12 layers with or without em- 1037

beddings, groups of 3 layers, 6 layers, and 9 layers 1038

at a time trained in a language specific manner 1039

and the rest shared between languages. We no- 1040

tice that training the full Lang-Spec Trans has the 1041

best in terms of forgetting. Training only the first 1042

8 encoder layers Lang-Spec Enc[0-8], excluding 1043

embeddings, in a language-specific manner comes 1044

next with the second lowest forgetting, a better 1045

transfer, an even better one for zero-shot forward 1046

transfer, but a slightly better final performance. An- 1047

other good model reaching a good compromise 1048

between zero-shot transfer and forgetting with less 1049

language-specific layers is Lang-Spec Enc[0-5]. 1050

Naive Seq FT is still the best compared to those 1051

model-expansion approaches in terms of zero-shot 1052

performance, but has a lower final performance and 1053

higher forgetting. We also notice the same trend for 1054

language-specific embeddings Lang-Spec Embed 1055

which reaches the second best zero-shot transfer 1056

performance, but with also a high forgetting. This 1057

suggests that language-specific knowledge is less 1058

likely to be encoded in the embeddings and more at 1059

the encoder layers. This shows that there is a real 1060

plasticity-stability tradeoff between zero-shot trans- 1061

fer and knowledge preservation (which we explain 1062

in more details in §4.3). 1063

C.3 Full Results on Language Permutations 1064

Full results for all language permutations can be 1065

found in Tables 10, 11, and 12. By looking at 1066

additional language permutations, low2high (Thai 1067

→ Spanish→ Hindi→ French→ German→ En- 1068

glish) is still the most challenging one in terms 1069

13
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Model F ↓ T ↑ T0 ↑ FP ↑
Acc F1 Acc F1 Acc F1 Acc F1

Shared {Trans, Task} Baselines

Naive Seq FT 2.99 ±1.20 6.22 ±0.95 0.76 ±0.09 1.42 ±0.33 49.21 ±3.21 36.10 ±2.15 90.52 ±1.42 69.10 ±1.24
Lang-Spec FT 93.20 ±0.08 73.59 ±0.81
Lang-Spec FT + Ada(T) 93.26 ±0.08 73.01 ±0.86
Lang-Spec FT + Ada(F) 88.81 ±0.13 65.79 ±0.90
Inc Joint 0.15 ±0.10 0.93 ±0.38 0.85 ±0.12 1.33 ±0.83 50.12 ±2.50 36.34 ±2.59 94.20 ±0.15 74.97 ±0.51
Multilingual 94.25 ±0.07 76.34 ±0.82

Model Expansion Baselines

Lang-Spec Trans 0.49 ±0.08 1.28 ±0.21 0.42 ±0.16 1.26 ±0.15 -0.43 ±0.15 0.42 ±0.06 93.52 ±0.18 74.71 ±0.15
Lang-Spec Enc[0-8] 0.78 ±0.16 1.95 ±0.48 1.00 ±0.09 1.74 ±0.64 24.23 ±1.75 12.33 ±1.25 93.49 ±0.21 74.16 ±0.85
Lang-Spec Task 2.89 ±1.24 5.27 ±1.02 0.85 ±0.12 1.50 ±1.05 0.10 ±0.25 0.07 ±0.02 90.85 ±1.47 69.48 ±1.54
Lang-Spec Ada(T) 2.30 ±1.18 4.68 ±0.86 0.79 ±0.07 1.87 ±0.72 49.04 ±3.10 35.80 ±2.27 91.50 ±1.27 70.25 ±1.78
Lang-Spec Ada(F) 1.04 ±0.19 2.85 ±0.96 2.64 ±0.39 4.74 ±0.49 8.36 ±1.19 3.63 ±0.81 90.32 ±0.34 67.98 ±0.73

Other continual Learning Algorithms

EWC-Online 3.23 ±1.45 6.16 ±1.03 0.79 ±0.12 1.54 ±0.31 49.02 ±2.98 36.06 ±2.23 90.49 ±1.35 69.34 ±1.58

ER 1.26 ±0.32 3.20 ±0.39 0.82 ±0.13 1.92 ±0.54 49.69 ±3.28 36.58 ±2.09 92.96 ±0.21 73.37 ±0.74

KD-Logit 2.67 ±0.92 5.83 ±0.81 0.76 ±0.11 1.62 ±0.55 49.32 ±2.95 36.20 ±2.34 91.17 ±0.80 69.54 ±1.34
KD-Rep 2.43 ±0.62 5.60 ±0.72 0.76 ±0.09 1.67 ±0.56 48.80 ±3.01 36.15 ±2.23 91.20 ±0.74 69.64 ±1.56

Table 8: A summary of results for different continual learning approaches over the average across language order.
For each metric and score, we highlight the best score in bold and underline the second best score.

Model F ↓ T ↑ T0 ↑ FP ↑
Acc F1 Acc F1 Acc F1 Acc F1

Naive Seq FT 2.99 ±1.20 6.22 ±0.95 0.76 ±0.09 1.42 ±0.33 49.21 ±3.21 36.10 ±2.15 90.52 ±1.42 69.10 ±1.24

Lang-Spec FT 93.20 ±0.08 73.59 ±0.81
Lang-Spec Trans 0.49 ±0.08 1.28 ±0.21 0.42 ±0.16 1.26 ±0.15 -0.43 ±0.15 0.42 ±0.06 93.52 ±0.18 74.71 ±0.15

Lang-Spec Enc[0-11] 0.48 ±0.07 1.32 ±0.16 0.43 ±0.19 1.08 ±0.27 -0.30 ±0.18 0.57 ±0.08 93.51 ±0.13 74.50 ±0.25
Lang-Spec Embed 3.12 ±1.34 5.89 ±0.95 0.95 ±0.16 1.62 ±0.68 50.66 ±2.97 36.61 ±1.89 90.68 ±1.28 69.59 ±1.26

Lang-Spec Enc[0-2] 1.90 ±0.77 4.33 ±0.66 0.97 ±0.13 1.61 ±0.56 52.18 ±3.26 37.41 ±1.99 92.25 ±0.75 71.56 ±1.51
Lang-Spec Enc[3-5] 1.46 ±0.64 2.90 ±0.35 0.98 ±0.19 1.95 ±0.4 47.82 ±2.98 34.65 ±1.77 92.72 ±0.67 73.04 ±0.95
Lang-Spec Enc[6-8] 1.43 ±0.55 3.08 ±0.57 0.89 ±0.15 1.64 ±0.41 38.33 ±3.01 23.67 ±2.35 92.44 ±0.76 72.25 ±1.08
Lang-Spec Enc[9-11] 2.21 ±0.88 4.10 ±0.87 0.67 ±0.2 1.63 ±0.55 41.37 ±2.13 20.05 ±1.92 91.41 ±1.06 71.16 ±1.13

Lang-Spec Enc[0-5] 1.29 ±0.67 2.99 ±0.65 1.07 ±0.11 1.95 ±0.56 45.25 ±2.56 31.22 ±2.19 92.90 ±0.52 73.30 ±1.07
Lang-Spec Enc[6-11] 1.66 ±0.36 3.33 ±0.67 0.51 ±0.3 0.96 ±0.59 6.04 ±1.13 4.52 ±0.96 91.97 ±0.38 71.62 ±1.18

Lang-Spec Enc[0-8] 0.78 ±0.16 1.95 ±0.48 1.00 ±0.09 1.74 ±0.64 24.23 ±1.75 12.33 ±1.25 93.49 ±0.21 74.16 ±0.85
Lang-Spec Enc[9-11] 2.21 ±0.88 4.10 ±0.87 0.67 ±0.2 1.63 ±0.55 41.37 ±2.13 20.05 ±1.92 91.41 ±1.06 71.16 ±1.13

Table 9: Per group layer analysis: ablation studies of different M-BERT’s components. Best, second best, and
third best scores for each metric are emboldened, underlined, and italicized respectively.

of knowledge preservation, accumulation, general-1070

ization, and model utility. High2low (English→1071

German→ French→ Hindi→ Spanish→ Thai)1072

is still the easiest to learn. Order 5(Hindi → En-1073

glish → Spanish → Thai → French → German)1074

is the second most challenging language permuta-1075

tion to train. In general, the same trends regarding1076

the more challenging nature of training for certain1077

language permutations are observed for both intent1078

classification and slot filling uniformly. Table 13 in-1079

cludes the results for more language permutations1080

for the balanced data.1081

C.4 Per Language Analysis1082

Tables 14, 15, and 16 show the full results for for-1083

getting, transfer, and zero-shot transfer respectively,1084

across different languages averaged over different 1085

language permutations. We notice that languages 1086

like English, German, French, and Spanish have 1087

constantly lower forgetting than languages like 1088

Hindi and Thai for both intent classification and 1089

slot filling for Naive Seq FT compared to the ref- 1090

erence model Inc Joint for which the forgetting is 1091

low and nearly equal. Approaches like Lang-Spec 1092

Trans, Lang-Spec Enc[0-8], Lang-Spec Ada(F), 1093

and to a certain degree ER also reduce that gap. 1094

We also notice that approaches that lower forget- 1095

ting for a particular languages do so uniformly for 1096

all languages. The performance in terms of zero- 1097

shot transfer is significantly lower in the case of 1098

Thai. 1099
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Model
high2low low2high

Test Intent Accuracy On
F ↓ T ↑ T0 ↑ FP ↑ F ↓ T ↑ T0 ↑ FP ↑

Shared {Trans, Task} Baselines

Naive Seq FT 1.74 ±0.02 0.83 ±0.02 49.1 ±0.03 91.87 ±0.02 5.42 ±0.04 0.85 ±0.01 44.73 ±0.02 87.65 ±0.02
Lang-Spec FT 93.20 ±0.08 93.20 ±0.08
Lang-Spec FT + Ada(T) 93.26 ±0.08 93.26 ±0.08
Lang-Spec FT + Ada(F) 88.81 ±0.13 88.81 ±0.13
Inc Joint 0.28 ±0.01 0.98 ±0.02 50.61 ±0.03 94.04 ±0.01 0.13 ±0.01 0.93 ±0.01 45.84 ±0.03 94.31 ±0.01
Multilingual 94.25 ±0.07 94.25 ±0.07

Model Expansion Baselines

Lang-Spec Trans 0.39 ±0.01 0.71 ±0.02 -0.48 ±0.00 93.86 ±0.01 0.62 ±0.02 0.28 ±0.02 -0.53 ±0.00 93.38 ±0.01
Lang-Spec Enc[0-8] 0.59 ±0.01 1.13 ±0.01 21.97 ±0.02 93.77 ±0.01 1.08 ±0.02 0.95 ±0.01 22.49 ±0.01 93.16 ±0.01
Lang-Spec Task 1.55 ±0.01 0.17 ±0.00 0.98 ±0.02 91.97 ±0.02 5.47 ±0.04 -0.11 ±0.00 0.63 ±0.01 87.66 ±0.02
Lang-Spec Ada(T) 1.13 ±0.01 0.94 ±0.02 49.27 ±0.03 92.44 ±0.01 4.73 ±0.04 0.74 ±0.01 43.79 ±0.02 88.91 ±0.02
Lang-Spec Ada(F) 0.95 ±0.02 3.30 ±0.02 9.21 ±0.01 90.87 ±0.02 1.18 ±0.04 2.10 ±0.02 8.63 ±0.01 89.84 ±0.02

Other continual Learning Algorithms

EWC-Online 2.01 ±0.02 0.94 ±0.02 49.77 ±0.03 90.72 ±0.02 6.35 ±0.04 0.59 ±0.01 44.26 ±0.02 87.79 ±0.02

ER 0.93 ±0.02 0.87 ±0.01 49.15 ±0.03 93.24 ±0.01 1.81 ±0.03 0.56 ±0.02 44.37 ±0.02 92.68 ±0.02

KD-Logit 1.82 ±0.02 0.76 ±0.02 49.17 ±0.03 91.25 ±0.02 4.57 ±0.04 0.76 ±0.02 44.45 ±0.02 89.53 ±0.02
KD-Rep 1.87 ±0.02 0.80 ±0.02 49.34 ±0.03 90.86 ±0.02 3.78 ±0.04 0.93 ±0.01 43.91 ±0.03 89.75 ±0.02

Test Slot Filling On
F ↓ T ↑ T0 ↑ FP ↑ F ↓ T ↑ T0 ↑ FP ↑

Shared {Trans, Task} Baselines

Naive Seq FT 4.63 ±0.23 1.36 ±0.16 37.02 ±0.06 69.46 ±0.14 7.73 ±0.25 0.89 ±0.19 32.64 ±0.04 66.94 ±0.14
Lang-Spec FT 73.59 ±0.81 73.59 ±0.81
Lang-Spec FT + Ada(T) 73.01 ±0.86 73.01 ±0.86
Lang-Spec FT + Ada(F) 65.79 ±0.9 65.79 ±0.9
Inc Joint 1.11 ±0.14 2.16 ±0.18 37.66 ±0.05 75.82 ±0.13 0.25 ±0.12 -0.12 ±0.16 32.75 ±0.03 75.15 ±0.14
Multilingual 76.34 ±0.82 76.34 ±0.82

Model Expansion Baselines

Lang-Spec Trans 0.99 ±0.12 1.12 ±0.17 0.33 ±0.00 74.76 ±0.14 1.14 ±0.14 1.05 ±0.17 0.39 ±0.00 74.77 ±0.13
Lang-Spec Enc[0-8] 2.37 ±0.15 2.08 ±0.16 10.58 ±0.01 72.59 ±0.13 1.97 ±0.15 0.93 ±0.18 12.67 ±0.01 74.08 ±0.14
Lang-Spec Task 4.09 ±0.18 0.06 ±0.00 2.08 ±0.17 68.99 ±0.13 7.24 ±0.24 0.06 ±0.00 -0.40 ±0.18 66.39 ±0.14
Lang-Spec Ada(T) 4.15 ±0.20 2.74 ±0.19 37.66 ±0.05 70.11 ±0.13 6.29 ±0.22 1.41 ±0.17 31.69 ±0.03 67.21 ±0.13
Lang-Spec Ada(F) 2.25 ±0.18 4.93 ±0.18 4.44 ±0.00 68.35 ±0.15 4.93 ±0.24 3.82 ±0.18 2.52 ±0.00 66.43 ±0.15

Other continual Learning Algorithms

EWC-Online 4.77 ±0.2 1.22 ±0.17 37.71 ±0.06 67.61 ±0.12 8.12 ±0.27 1.14 ±0.18 32.61 ±0.03 66.80 ±0.14

ER 2.58 ±0.15 1.92 ±0.15 38.08 ±0.06 72.44 ±0.13 3.69 ±0.25 0.96 ±0.18 33.40 ±0.03 73.0 ±0.13

KD-Logit 4.65 ±0.20 1.71 ±0.16 37.91 ±0.06 68.30 ±0.13 6.91 ±0.25 0.62 ±0.16 32.42 ±0.03 67.77 ±0.13
KD-Rep 4.35 ±0.18 1.29 ±0.17 37.85 ±0.06 68.49 ±0.14 6.85 ±0.25 0.7 ±0.19 32.80 ±0.03 67.04 ±0.13

Table 10: Per language permutation view: a pairwise comparison between high2low (English → German →
French→ Hindi→ Spanish→ Thai) and low2high (Thai→ Spanish→ Hindi→ French→ German→ English).
We highlight the best forgetting (lowest), transfer (highest), zero-shot transfer (highest), and final performance
(highest) of accuracy and f1 scores among those two orders for each approach in bold, whereas the best scores
across approaches for the two orders separately are underlined.

C.5 More Analysis1100

Figures 8a, 8b, and 8c plot transfer, final perfor-1101

mance, and zero-shot transfer versus negative for-1102

getting for the subtask of slot filling. The same1103

trends observed for intent classification can also be1104

observed for slot filling. Figures 9a and 9b show1105

how Naive Seq FT intent classification accuracy1106

score and slot filling F1 score, respectively, change1107

for each language separately after different hops1108

of training. We can see that although performance1109

increases as more hops are seen for high-resource1110

Latin-script languages like English, Spanish and to1111

some degree French, the same cannot be said for1112

low-resource languages Thai and Hindi, which also1113

suffer from being script isolates.1114

To analyze the zero-shot generalization to un- 1115

seen languages, we analyze the performance of 1116

each model across different hops. In other words, 1117

we consider the average performance after see- 1118

ing from 1 to 5 languages, enabled by the bal- 1119

anced datastreams we carefully curated 2.4. We 1120

can check the performance after training on each 1121

x language(s) from exactly one datastream. Fig- 1122

ures 10a and 10b show a comparison between dif- 1123

ferent approaches across different hops of training 1124

using zero-shot transfer metric for intent classifi- 1125

cation and slot filling, respectively. In general, we 1126

can observe that the average performance of the 1127

zero-shot transfer after seeing n languages, where 1128

n ∈ [1 . . 5]. In this case, after seeing one language, 1129
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Model
Spanish→ Hindi→ English→ German→ Thai→ French French→ Thai→ German→ English→ Hindi→ Spanish

Test Intent Accuracy On
F ↓ T ↑ T0 ↑ FP ↑ F ↓ T ↑ T0 ↑ FP ↑

Shared {Trans, Task} Baselines

Naive Seq FT 2.12 ±0.02 0.83 ±0.01 52.17 ±0.03 91.63 ±0.02 2.95 ±0.03 0.72 ±0.01 51.93 ±0.02 91.29 ±0.02
Lang-Spec FT 93.20 ±0.08 93.20 ±0.08
Lang-Spec FT + Ada(T) 93.26 ±0.08 93.26 ±0.08
Lang-Spec FT + Ada(F) 88.81 ±0.13 88.81 ±0.13
Inc Joint 0.10 ±0.01 0.79 ±0.02 53.85 ±0.03 94.03 ±0.01 0.22 ±0.01 0.72 ±0.01 50.53 ±0.02 94.11 ±0.01
Multilingual 94.25 ±0.07 94.25 ±0.07

Model Expansion Baselines

Lang-Spec Trans 0.44 ±0.01 0.37 ±0.01 -0.37 ±0.00 93.45 ±0.01 0.53 ±0.02 0.52 ±0.01 -0.49 ±0.00 93.65 ±0.01
Lang-Spec Enc[0-8] 0.62 ±0.01 0.88 ±0.01 26.36 ±0.02 93.67 ±0.01 0.81 ±0.02 0.92 ±0.01 25.25 ±0.02 93.57 ±0.01
Lang-Spec Task 2.24 ±0.03 0.47 ±0.00 0.81 ±0.02 91.70 ±0.02 2.98 ±0.03 -0.09 ±0.00 0.94 ±0.01 90.93 ±0.02
Lang-Spec Ada(T) 1.33 ±0.02 0.76 ±0.02 51.01 ±0.02 92.92 ±0.02 2.35 ±0.03 0.75 ±0.01 51.76 ±0.02 91.86 ±0.02
Lang-Spec Ada(F) 0.92 ±0.02 2.76 ±0.02 6.34 ±0.01 90.38 ±0.02 0.91 ±0.03 2.28 ±0.02 9.35 ±0.01 89.96 ±0.02

Other continual Learning Algorithms

EWC-Online 2.36 ±0.02 0.78 ±0.02 51.81 ±0.03 91.88 ±0.02 3.16 ±0.03 0.72 ±0.01 51.16 ±0.02 91.00 ±0.02

ER 1.01 ±0.02 0.77 ±0.01 52.80 ±0.03 93.13 ±0.01 1.55 ±0.02 0.88 ±0.02 52.48 ±0.02 92.72 ±0.02

KD-Logit 1.83 ±0.02 0.77 ±0.01 52.57 ±0.03 92.08 ±0.01 2.42 ±0.03 0.54 ±0.01 51.09 ±0.02 91.63 ±0.02
KD-Rep 2.08 ±0.02 0.72 ±0.01 52.04 ±0.03 92.10 ±0.02 2.36 ±0.03 0.66 ±0.02 50.55 ±0.02 91.46 ±0.02

Test Slot Filling On
F ↓ T ↑ T0 ↑ FP ↑ F ↓ T ↑ T0 ↑ FP ↑

Shared {Trans, Task} Baselines

Naive Seq FT 5.80 ±0.26 1.47 ±0.16 37.92 ±0.04 70.88 ±0.13 6.47 ±0.25 1.24 ±0.18 36.64 ±0.04 68.19 ±0.15
Lang-Spec FT 73.59 ±0.81 73.59 ±0.81
Lang-Spec FT + Ada(T) 73.01 ±0.86 73.01 ±0.86
Lang-Spec FT + Ada(F) 65.79 ±0.90 65.79 ±0.90
Inc Joint 0.83 ±0.14 1.60 ±0.17 37.46 ±0.04 74.82 ±0.14 0.95 ±0.13 2.32 ±0.17 37.57 ±0.04 75.25 ±0.15
Multilingual 76.34 ±0.82 76.34 ±0.82

Model Expansion Baselines

Lang-Spec Trans 1.47 ±0.16 1.42 ±0.16 0.49 ±0.00 74.72 ±0.14 1.37 ±0.15 1.26 ±0.16 0.47 ±0.00 74.59 ±0.15
Lang-Spec Enc[0-8] 1.83 ±0.16 2.11 ±0.15 13.30 ±0.01 75.06 ±0.13 1.28 ±0.15 0.76 ±0.18 13.57 ±0.01 74.59 ±0.13
Lang-Spec Task 4.93 ±0.22 0.11 ±0.00 2.35 ±0.16 71.13 ±0.13 4.69 ±0.21 0.06 ±0.00 1.72 ±0.17 70.61 ±0.14
Lang-Spec Ada(T) 3.76 ±0.21 2.40 ±0.16 37.50 ±0.04 72.62 ±0.15 4.67 ±0.19 1.14 ±0.16 36.77 ±0.04 68.93 ±0.13
Lang-Spec Ada(F) 2.18 ±0.17 5.29 ±0.18 3.81 ±0.00 68.20 ±0.14 2.58 ±0.18 4.54 ±0.16 4.34 ±0.00 68.26 ±0.14

Other continual Learning Algorithms

EWC-Online 6.16 ±0.28 1.38 ±0.16 37.89 ±0.05 70.93 ±0.13 6.10 ±0.24 1.97 ±0.17 36.25 ±0.04 69.58 ±0.14

ER 3.13 ±0.19 1.84 ±0.17 38.39 ±0.04 73.56 ±0.12 3.30 ±0.21 1.83 ±0.17 36.89 ±0.04 72.67 ±0.15

KD-Logit 5.06 ±0.24 1.58 ±0.16 38.31 ±0.05 71.26 ±0.14 6.40 ±0.25 1.67 ±0.18 36.13 ±0.04 69.21 ±0.14
KD-Rep 5.52 ±0.27 2.19 ±0.17 37.83 ±0.04 71.33 ±0.13 5.67 ±0.26 2.05 ±0.16 35.94 ±0.04 69.92 ±0.14

Table 11: Per language permutation view: a pairwise comparison between Order 3 (Spanish→ Hindi→ English
→ German → Thai → French) and Order 4 (French → Thai → German → English → Hindi → Spanish). We
highlight the best forgetting (lowest), transfer (highest), zero-shot transfer (highest), and final performance (high-
est) of accuracy and f1 scores among those two orders for each approach in bold, whereas the best scores across
approaches for the two orders separately are underlined.

the performance is equivalent to conventional trans-1130

fer learning involving two hops, whereas the per-1131

formance after seeing n >= 2 is for multi-hop1132

continual learning. We notice that as we increase1133

the number of hops, the transfer capabilities de-1134

crease nearly uniformly across most approaches,1135

making the problem more challenging and different1136

from conventional transfer learning. Figures 10c1137

and 10d show the generalization trends for differ-1138

ent continual learning approaches compared to the1139

baselines for intent classification and slot filling,1140

respectively. We can see that most continual learn-1141

ing approaches improve over Naive Seq FT and the1142

gap increases mainly as more languages are seen1143

(except at hop 4). After 5 hops, there is a clear1144

gap between Naive Seq FT and continual learning 1145

approaches on top of them Lang-Spec Ada(T) and 1146

KD-Logit. Figure 11 show more results for multi- 1147

hop versus two-hop analysis for more metrics and 1148

tasks. In general, we can observe the same trend, 1149

whereby multi-hop boxplots analysis has smaller 1150

confidence intervals than two-hop boxplots 1151

D Statistical Significance 1152

We show in Figures 12 and 13 the results for differ- 1153

ent approaches with a p-value lower than 0.05 for 1154

confidence intervals of 95%, thus rejecting the null 1155

hypothesis that they are drawn from the same dis- 1156

tribution. Figures 12a, 13a, 12c, 12b, 13a, 12d, 12e, 1157

and 12f show confusion plots of statistical signif- 1158
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Model
Hindi→ English→ Spanish→ Thai→ French→ German German→ French→ Thai→ Spanish→ English→ Hindi

Test Intent Accuracy On
F ↓ T ↑ T0 ↑ FP ↑ F ↓ T ↑ T0 ↑ FP ↑

Shared {Trans, Task} Baselines

Naive Seq FT 3.25 ±0.03 0.68 ±0.02 45.12 ±0.03 90.13 ±0.02 2.44 ±0.02 0.62 ±0.02 52.18 ±0.03 90.53 ±0.02
Lang-Spec FT 93.20 ±0.08 93.20 ±0.08
Lang-Spec FT + Ada(T) 93.26 ±0.08 93.26 ±0.08
Lang-Spec FT + Ada(F) 88.81 ±0.13 88.81 ±0.13
Inc Joint 0.20 ±0.01 0.99 ±0.01 48.41 ±0.03 94.42 ±0.01 -0.02 ±0.01 0.69 ±0.02 51.47 ±0.02 94.26 ±0.01
Multilingual 94.25 ±0.07 94.25 ±0.07

Model Expansion Baselines

Lang-Spec Trans 0.40 ±0.02 0.25 ±0.02 -0.58 ±0.00 93.40 ±0.01 0.52 ±0.01 0.41 ±0.02 -0.11 ±0.00 93.36 ±0.01
Lang-Spec Enc[0-8] 0.81 ±0.02 0.99 ±0.01 23.17 ±0.02 93.33 ±0.01 0.76 ±0.02 1.10 ±0.02 26.12 ±0.02 93.42 ±0.01
Lang-Spec Task 2.77 ±0.03 0.92 ±0.01 -0.20 ±0.00 91.16 ±0.02 2.32 ±0.02 0.85 ±0.01 0.36 ±0.00 91.70 ±0.02
Lang-Spec Ada(T) 2.31 ±0.03 0.82 ±0.02 46.13 ±0.03 91.42 ±0.02 1.96 ±0.02 0.74 ±0.01 52.26 ±0.02 91.43 ±0.02
Lang-Spec Ada(F) 0.88 ±0.03 2.58 ±0.02 7.15 ±0.01 90.50 ±0.02 1.41 ±0.04 2.84 ±0.02 9.45 ±0.01 90.35 ±0.02

Other continual Learning Algorithms

EWC-Online 2.97 ±0.03 0.77 ±0.02 45.63 ±0.03 89.98 ±0.02 2.5 ±0.02 0.95 ±0.02 51.51 ±0.02 91.55 ±0.02

ER 1.25 ±0.02 0.99 ±0.02 46.63 ±0.03 93.08 ±0.01 0.99 ±0.02 0.82 ±0.02 52.69 ±0.02 92.93 ±0.01

KD-Logit 2.78 ±0.03 0.89 ±0.01 46.61 ±0.03 91.11 ±0.02 2.58 ±0.03 0.84 ±0.02 52.03 ±0.02 91.41 ±0.02
KD-Rep 2.27 ±0.03 0.80 ±0.01 45.64 ±0.03 91.59 ±0.02 2.20 ±0.02 0.66 ±0.02 51.35 ±0.03 91.43 ±0.02

Test Slot Filling On
F ↓ T ↑ T0 ↑ FP ↑ F ↓ T ↑ T0 ↑ FP ↑

Shared {Trans, Task} Baselines

Naive Seq FT 6.78 ±0.25 1.94 ±0.14 33.81 ±0.04 69.51 ±0.13 5.91 ±0.24 1.64 ±0.17 38.58 ±0.06 69.64 ±0.14
Lang-Spec FT 73.59 ±0.81 73.59 ±0.81
Lang-Spec FT + Ada(T) 73.01 ±0.86 73.01 ±0.86
Lang-Spec FT + Ada(F) 65.79 ±0.90 65.79 ±0.90
Inc Joint 0.89 ±0.13 1.29 ±0.16 32.92 ±0.03 74.51 ±0.15 1.53 ±0.14 0.75 ±0.18 39.67 ±0.05 74.29 ±0.14
Multilingual 76.34 ±0.82 76.34 ±0.82

Model Expansion Baselines

Lang-Spec Trans 1.58 ±0.16 1.21 ±0.16 0.37 ±0.00 74.47 ±0.14 1.15 ±0.14 1.48 ±0.19 0.47 ±0.00 74.95 ±0.13
Lang-Spec Enc[0-8] 1.54 ±0.12 2.28 ±0.15 10.64 ±0.01 74.94 ±0.13 2.71 ±0.2 2.27 ±0.17 13.25 ±0.02 73.70 ±0.15
Lang-Spec Task 5.87 ±0.22 2.63 ±0.17 0.06 ±0.00 70.07 ±0.16 4.82 ±0.23 0.66 ±0.17 0.06 ±0.00 69.68 ±0.14
Lang-Spec Ada(T) 5.21 ±0.22 2.55 ±0.14 33.77 ±0.04 71.64 ±0.13 4.01 ±0.24 0.95 ±0.17 37.43 ±0.04 70.99 ±0.15
Lang-Spec Ada(F) 2.25 ±0.17 4.67 ±0.17 2.54 ±0.00 68.68 ±0.17 2.90 ±0.2 5.20 ±0.18 4.15 ±0.00 67.96 ±0.14

Other continual Learning Algorithms

EWC-Online 6.37 ±0.26 1.72 ±0.16 33.53 ±0.04 70.49 ±0.15 5.44 ±0.24 1.83 ±0.17 38.39 ±0.05 70.61 ±0.15

ER 3.60 ±0.18 2.76 ±0.16 34.09 ±0.04 73.96 ±0.14 2.89 ±0.21 2.20 ±0.16 38.62 ±0.05 74.56 ±0.14

KD-Logit 6.42 ±0.29 2.53 ±0.17 33.85 ±0.04 71.26 ±0.14 5.54 ±0.26 1.59 ±0.18 38.57 ±0.05 69.45 ±0.13
KD-Rep 5.62 ±0.24 2.29 ±0.17 33.70 ±0.04 71.54 ±0.15 5.58 ±0.26 1.51 ±0.18 38.78 ±0.05 69.5 ±0.14

Table 12: Per language permutation view: a pairwise comparison between Order 5(Hindi→ English→ Spanish
→ Thai → French → German) and Order 6 (German → French → Thai → Spanish → English → Hindi). We
highlight the best forgetting (lowest), transfer (highest), zero-shot transfer (highest), and final performance (high-
est) of accuracy and f1 scores among those two orders for each approach in bold, whereas the best scores across
approaches for the two orders separately are underlined.

Model F ↓ T ↑ FP ↑
Acc F1 Acc F1 Acc F1

Order 1 1.25 ±0.02 3.60 ±0.18 0.89 ±0.02 1.76 ±0.17 89.33 ±0.02 65.59 ±0.13
Order 2 5.81 ±0.05 7.89 ±0.28 0.75 ±0.02 0.11 ±0.17 85.81 ±0.02 64.18 ±0.14
Order 3 1.68 ±0.02 4.43 ±0.21 0.77 ±0.02 2.20 ±0.17 89.57 ±0.02 68.88 ±0.14
Order 4 2.70 ±0.04 4.62 ±0.23 0.71 ±0.02 1.22 ±0.17 88.59 ±0.02 68.07 ±0.14
Order 5 1.83 ±0.01 5.74 ±0.24 6.64 ±0.01 4.89 ±0.15 96.00 ±0.01 71.75 ±0.13
Order 6 1.08 ±0.01 4.44 ±0.20 7.09 ±0.01 4.86 ±0.15 96.40 ±0.01 71.81 ±0.13

Table 13: Impact of language order across the balanced dataset for Naive Seq FT . Best and second best scores for
each language for intent classification and slot filling independently across approaches are highlighted in bold and
underlined, respectively.

icance p-values for different metrics (forgetting,1159

transfer, and final performance) for intent classi-1160

fication and slot filling, respectively. For exam-1161

ple, for forgetting, we notice that improvements1162

or losses from approaches are statistically signifi- 1163

cant with 95% confidence more than 49% and 61% 1164

of the time for intent classification and slot filling. 1165

For zero-shot transfer, we notice 60% and 56% of 1166
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Model
Test Intent Accuracy On

German English French Spanish Hindi Thai

Shared {Trans, Task} Baselines

Naive Seq FT 1.52 ±0.14 1.13 ±0.10 1.75 ±0.16 1.71 ±0.13 3.26 ±0.50 5.09 ±1.24
Inc Joint 0.32 ±0.05 0.13 ±0.04 0.25 ±0.05 0.18 ±0.04 0.15 ±0.07 0.30 ±0.07

Model Expansion Baselines

Lang-Spec Trans 0.33 ±0.06 0.30 ±0.04 0.43 ±0.07 0.34 ±0.06 0.41 ±0.08 0.47 ±0.09
Lang-Spec Enc[0-8] 0.54 ±0.07 0.46 ±0.05 0.50 ±0.08 0.57 ±0.06 0.65 ±0.10 0.91 ±0.15
Lang-Spec Task 1.22 ±0.12 0.93 ±0.09 1.47 ±0.14 1.39 ±0.12 3.17 ±0.38 5.44 ±1.62
Lang-Spec Ada(T) 1.11 ±0.10 0.74 ±0.07 1.10 ±0.12 0.94 ±0.09 1.88 ±0.23 5.00 ±1.35
Lang-Spec Ada(F) 0.66 ±0.12 0.51 ±0.07 0.81 ±0.14 0.63 ±0.09 1.00 ±0.14 1.49 ±0.19

Other continual Learning Algorithms

EWC-Online 1.49 ±0.14 1.13 ±0.09 1.70 ±0.17 1.83 ±0.14 3.31 ±0.42 5.89 ±1.95
ER 0.84 ±0.07 0.56 ±0.06 0.69 ±0.09 0.70 ±0.06 1.00 ±0.11 2.37 ±0.25
KD-Logit 1.46 ±0.14 0.89 ±0.08 1.77 ±0.16 1.65 ±0.13 2.47 ±0.28 4.75 ±0.84
KD-Rep 1.49 ±0.13 1.14 ±0.09 1.52 ±0.13 1.75 ±0.16 2.52 ±0.24 4.10 ±0.53

Test Slot Filling On
German English French Spanish Hindi Thai

Shared {Trans, Task} Baselines

Naive Seq FT 3.93 ±1.38 4.11 ±1.18 3.39 ±1.00 2.9 ±0.92 6.12 ±1.91 9.00 ±3.47
Inc Joint 1.19 ±0.88 1.15 ±0.69 0.70 ±0.68 0.60 ±0.66 1.75 ±0.73 0.74 ±0.56

Model Expansion Baselines

Lang-Spec Trans 0.84 ±0.70 0.94 ±0.60 1.09 ±0.67 1.21 ±0.71 1.28 ±0.72 1.07 ±0.68
Lang-Spec Enc[0-8] 1.91 ±0.97 1.92 ±0.82 0.97 ±0.72 1.26 ±0.65 1.84 ±0.76 2.01 ±0.78
Lang-Spec Task 3.30 ±1.38 3.05 ±0.94 2.80 ±0.95 2.69 ±0.87 6.91 ±2.03 8.01 ±3.01
Lang-Spec Ada(T) 2.69 ±1.03 3.47 ±1.02 2.40 ±0.81 2.72 ±0.99 5.06 ±1.32 7.08 ±2.50
Lang-Spec Ada(F) 1.46 ±0.82 2.12 ±0.81 1.63 ±0.81 1.63 ±0.96 2.55 ±1.00 4.5 ±1.47

Other continual Learning Algorithms

EWC-Online 4.12 ±1.38 4.11 ±1.28 3.01 ±0.97 3.71 ±1.05 6.31 ±1.73 8.58 ±3.39
ER 2.36 ±1.00 2.68 ±0.79 1.45 ±0.98 1.58 ±0.73 3.52 ±1.03 3.69 ±1.20
KD-Logit 3.68 ±1.27 4.20 ±1.08 2.80 ±1.04 3.41 ±1.03 5.67 ±1.56 8.81 ±2.88
KD-Rep 3.93 ±1.31 3.97 ±1.24 3.05 ±0.97 3.12 ±0.97 5.49 ±1.53 8.40 ±2.66

Table 14: CLL per language analysis of forgetting. Best and second best scores for each language are highlighted
in bold and underlined respectively.

pairwise comparisons are statistically significant1167

for intent classification and slot filling. For final1168

performance, we notice 47% and 49% of pairwise1169

comparisons are statistically significant for intent1170

classification and slot filling. For transfer, we no-1171

tice that improvements or degradation over transfer1172

of intent classification are not statistically signifi-1173

cant with the exceptions of Lang-Spec Trans which1174

the lowest in terms of transfer Lang-Spec Ada(F)1175

which exhibit high transfer. The same can be said1176

for Lang-Spec Ada(F) in slot filling. Overall, model1177

expansion approaches exhibit the highest statistical1178

significance, whereas EWC-Online and knowledge1179

distillation are among the lowest.1180
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Model
Test Intent Accuracy On

German English French Hindi Spanish Thai

Shared {Trans, Task} Baselines

Naive Seq FT 0.8 ±0.07 0.52 ±0.06 1.35 ±0.09 0.83 ±0.07 0.57 ±0.09 0.46 ±0.11
Inc Joint 1.01 ±0.07 0.68 ±0.06 1.48 ±0.08 0.94 ±0.07 0.49 ±0.10 0.5 ±0.11

Model Expansion Baselines

Lang-Spec Trans 0.25 ±0.08 0.56 ±0.06 0.85 ±0.09 0.57 ±0.08 0.09 ±0.10 0.23 ±0.10
Lang-Spec Enc[0-8] 1.04 ±0.07 0.93 ±0.06 1.54 ±0.07 0.76 ±0.07 0.70 ±0.11 1.01 ±0.10
Lang-Spec Task -0.25 ±0.12 0.39 ±0.01 0.63 ±0.06 -0.66 ±0.02 0.60 ±0.03 -0.10 ±0.01
Lang-Spec Ada(T) 0.86 ±0.08 0.61 ±0.05 1.16 ±0.08 0.12 ±0.08 0.56 ±0.11 1.44 ±0.12
Lang-Spec Ada(F) 1.12 ±0.12 1.72 ±0.09 3.37 ±0.11 2.20 ±0.11 2.77 ±0.18 4.68 ±0.32

Other continual Learning Algorithms

EWC-Online 0.79 ±0.07 0.72 ±0.06 1.42 ±0.10 0.82 ±0.07 0.64 ±0.09 0.36 ±0.10
ER 0.88 ±0.07 0.63 ±0.06 1.46 ±0.08 0.78 ±0.08 0.59 ±0.12 0.55 ±0.10
KD-Logit 0.64 ±0.08 0.56 ±0.06 1.36 ±0.08 0.76 ±0.07 0.75 ±0.09 0.48 ±0.10
KD-Rep 0.72 ±0.07 0.75 ±0.05 1.23 ±0.08 0.81 ±0.07 0.67 ±0.10 0.38 ±0.10

Test Slot Filling On
German English French Hindi Spanish Thai

Shared {Trans, Task} Baselines

Naive Seq FT 1.18 ±0.92 1.51 ±0.87 0.36 ±0.93 2.18 ±0.95 -0.19 ±0.9 3.48 ±0.83
Inc Joint 0.68 ±0.95 0.7 ±0.87 0.03 ±0.91 2.25 ±0.95 0.91 ±1.06 3.44 ±0.79

Model Expansion Baselines

Lang-Spec Trans 0.79 ±0.92 2.0 ±0.77 0.63 ±0.87 1.35 ±0.97 0.4 ±0.87 2.36 ±0.76
Lang-Spec Enc[0-8] 0.88 ±0.87 1.33 ±1.04 0.79 ±0.81 2.16 ±0.94 1.57 ±0.87 3.71 ±0.87
Lang-Spec Task 0.07 ±0.00 0.15 ±0.00 0.07 ±0.00 0.04 ±0.00 -0.02 ±0.00 0.09 ±0.00
Lang-Spec Ada(T) 3.00 ±0.86 -0.08 ±0.76 2.00 ±1.01 1.21 ±1.03 2.06 ±0.93 3.0 ±0.78
Lang-Spec Ada(F) 2.96 ±1.04 4.55 ±0.89 4.38 ±1.02 4.34 ±1.13 4.14 ±0.98 8.07 ±1.01

Other continual Learning Algorithms

EWC-Online 0.93 ±0.93 1.40 ±0.83 0.93 ±0.83 2.95 ±0.94 0.16 ±0.93 2.89 ±0.82
ER 1.61 ±0.96 1.94 ±0.78 1.11 ±0.86 3.09 ±0.95 0.77 ±0.97 2.97 ±0.85
KD-Logit 0.98 ±0.95 1.32 ±0.81 0.39 ±0.88 2.9 ±1.04 1.09 ±0.87 3.04 ±0.86
KD-Rep 1.36 ±0.95 1.64 ±0.77 0.87 ±0.97 2.98 ±1.04 -0.15 ±0.91 3.32 ±0.79

Table 15: CLL per language analysis of transfer. Best and second best scores for each language are highlighted in
bold and underlined respectively.
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Model
Test Intent Accuracy On

German English French Hindi Spanish Thai

Shared {Trans, Task} Baselines

Naive Seq FT 56.68 ±1.55 67.54 ±16.07 60.56 ±3.11 59.15 ±23.1 33.24 ±1.2 18.07 ±0.29
Inc Joint 57.50 ±1.75 70.07 ±12.61 61.55 ±2.89 61.23 ±19.88 32.62 ±2.67 17.73 ±0.29

Model Expansion Baselines

Lang-Spec Trans -1.43 ±0.00 0.44 ±0.01 -0.01 ±0.01 -0.95 ±0.01 -0.15 ±0.00 -0.46 ±0.00
Lang-Spec Enc[0-8] 26.14 ±7.42 33.21 ±10.85 25.51 ±7.04 27.18 ±18.12 21.82 ±2.33 11.51 ±0.76
Lang-Spec Task 0.88 ±0.07 0.72 ±0.06 1.55 ±0.08 0.76 ±0.07 0.64 ±0.09 0.59 ±0.09
Lang-Spec Ada(T) 56.76 ±1.41 67.41 ±13.26 60.15 ±4.27 59.04 ±24.16 35.03 ±4.41 15.83 ±0.59
Lang-Spec Ada(F) 6.39 ±0.09 9.86 ±1.38 9.72 ±0.5 13.41 ±1.18 8.86 ±0.57 1.90 ±0.39

Other continual Learning Algorithms

EWC-Online 56.99 ±1.76 67.02 ±15.33 60.43 ±2.99 58.6 ±22.11 32.70 ±1.04 18.39 ±0.18
ER 57.54 ±1.05 68.01 ±17.34 60.97 ±3.17 60.05 ±23.77 33.37 ±1.47 18.19 ±0.61
KD-Logit 57.26 ±1.62 68.06 ±16.59 60.56 ±3.49 59.81 ±23.36 31.31 ±1.12 18.91 ±0.22
KD-Rep 56.14 ±1.35 67.53 ±16.01 60.22 ±3.17 59.10 ±22.14 31.82 ±1.26 18.01 ±0.55

Test Slot Filling On
German English Hindi Spanish Thai

Shared {Trans, Task} Baselines

Naive Seq FT 44.23 ±1.99 47.92 ±9.98 47.13 ±2.32 46.40 ±15.52 19.10 ±0.31 11.84 ±0.18
Inc Joint 44.49 ±1.53 48.66 ±10.86 47.85 ±2.25 46.58 ±17.42 18.36 ±0.4 12.09 ±0.24

Model Expansion Baselines

Lang-Spec Trans 0.45 ±0.00 0.76 ±0.01 0.33 ±0.00 0.83 ±0.01 0.00 ±0.00 0.15 ±0.00
Lang-Spec Enc[0-8] 14.86 ±3.81 15.48 ±6.11 16.09 ±4.06 16.13 ±8.9 6.63 ±1.29 4.82 ±0.34
Lang-Spec Task 1.41 ±1.13 0.62 ±0.81 0.46 ±1.05 2.13 ±1.25 1.58 ±0.97 2.84 ±0.82
Lang-Spec Ada(T) 43.96 ±1.77 46.73 ±8.95 47.32 ±2.83 44.97 ±17.98 21.23 ±1.24 10.62 ±0.17
Lang-Spec Ada(F) 4.31 ±0.08 4.14 ±0.30 4.44 ±0.29 5.53 ±1.14 2.65 ±0.10 0.73 ±0.03

Other continual Learning Algorithms

EWC-Online 44.01 ±2.02 47.75 ±9.49 47.10 ±2.47 45.91 ±14.96 19.17 ±0.32 12.45 ±0.14
ER 44.81 ±1.53 48.70 ±10.39 47.82 ±2.17 46.70 ±16.27 19.37 ±0.32 12.08 ±0.20
KD-Logit 44.4 ±2.33 48.13 ±10.07 47.38 ±2.65 46.22 ±15.32 18.93 ±0.50 12.13 ±0.17
KD-Rep 44.14 ±1.86 48.29 ±10.07 47.43 ±2.53 46.06 ±15.25 18.80 ±0.38 12.21 ±0.16

Table 16: CLL per language zero-shot forward transfer. Best and second best scores for each language for intent
classification and slot filling independently across approaches are highlighted in bold and underlined respectively.
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(a) Transfer versus negative forgetting. (b) Final performance versus negative forgetting.

(c) Zero-shot transfer versus negative forgetting.

Figure 8: Transfer, final performance, and zero-shot transfer versus negative forgetting for slot filling task.

(a) Accuracy for intent classification. (b) F1 score for slot filling.

Figure 9: Comparing cross-lingual generalization of Naive Seq FT across many hops and different languages for
intent classification and slot filling.
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(a) Zero-shot transfer of accuracy for intent classification. (b) Zero-shot transfer of f1 score for slot filling.

(c) Accuracy for intent classification. (d) F1 score for slot filling.

Figure 10: Measuring cross-lingual generalization to new languages across many hops for intent classification and
slot filling. This is both in terms of zero-shot transfer metric and plain accuracy and f1 scores.
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(a) Forgetting for slot filling. (b) Transfer for intent classification.

(c) Transfer for slot filling. (d) Final performance for intent classification.

(e) Final performance for slot filling.

Figure 11: Comparison between different metrics using two-hop (crossed boxplots) and multi-hop analysis (dotted
boxplots), on the left and right respectively for each approach.
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(a) Forgetting of intent accuracy. (b) Forgetting of slot filling.

(c) Final performance of intent accuracy. (d) Final performance of slot filling.

(e) Zero-shot transfer of intent accuracy. (f) Zero-shot transfer of slot filling.

Figure 12: P-values for different pairwise comparison of different continual learning approaches using Tukey’s
honestly significant difference (HSD) test.
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(a) Transfer of intent accuracy. (b) Transfer of slot filling.

Figure 13: P-values for different pairwise comparison of different continual learning approaches using Tukey’s
honestly significant difference (HSD) test (Cont.).
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