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ABSTRACT

We develop a notion of projections between sets of probability measures using the
geometric properties of the 2-Wasserstein space. In contrast to existing methods, it
is designed for multivariate probability measures that need not be regular, is com-
putationally efficient to implement via a linear regression, and provides a unique
solution in general. The idea is to work on tangent cones of the Wasserstein space
using generalized geodesics. Its structure and computational properties make the
method applicable in a variety of settings where probability measures need not
be regular, from causal inference to the analysis of object data. An application to
estimating causal effects yields a generalization of the synthetic controls method
for systems with general heterogeneity described via multivariate probability mea-
sures, something that has been out of reach of existing approaches.

1 INTRODUCTION

The concept of projections, that is, approximating a target quantity of interest by an optimally
weighted combination of other quantities, is of fundamental relevance in learning theory and statis-
tics. Projections are generally defined between random variables in appropriately defined linear
spaces (e.g. van der Vaart, 2000, chapter 11). In modern statistics and machine learning applications,
the objects of interest are often probability measures themselves. Examples range from object- and
functional data (e.g. Marron & Alonso, 2014) to causal inference with individual heterogeneity (e.g.
Athey & Imbens, 2015).

A notion of projection between sets of probability measures should be applicable between any set
of general probability measures, replicate geometric properties of the target measure, and possess
good computational and statistical properties. We introduce such a notion of projection between sets
of general probability measures supported on Euclidean spaces. It provides a unique solution to the
projection problem under mild conditions. To achieve this, we work in the 2-Wasserstein space, that
is, the set of all probability measures with finite second moments equipped with the 2-Wasserstein
distance.

Importantly, we focus on the multivariate setting, i.e. we consider the Wasserstein space over some
Euclidean space Rd, denoted byW2, where the dimension d can be high. The multivariate setting
poses challenges from a mathematical, computational, and statistical perspective. In particular,W2

is a positively curved metric space for d > 1 (e.g. Ambrosio et al., 2008, Kloeckner, 2010). More-
over, the 2-Wasserstein distance between two probability measures is defined as the value function
of the Monge-Kantorovich optimal transportation problem (Villani, 2003, chapter 2), which does not
have a closed-form solution in multivariate settings. This is coupled with a well-known statistical
curse of dimensionality for general measures (Ajtai et al., 1984, Dudley, 1969, Fournier & Guillin,
2015, Talagrand, 1992; 1994, Weed & Bach, 2019).

1.1 EXISTING APPROACHES

These challenges have impeded the development of a method of projections between general and
potentially high-dimensional probability measures. A focus so far has been on the univariate and
low-dimensional setting. In particular, Chen et al. (2021), Ghodrati & Panaretos (2022), and Pe-
goraro & Beraha (2021) introduced frameworks for distribution-on-distribution regressions in the
univariate setting for object data. Bigot et al. (2014), Cazelles et al. (2017) developed principal
component analyses on the space of univariate probability measures using geodesics on the Wasser-
stein space.
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The most closely related works to ours are Bonneel et al. (2016), Mérigot et al. (2020), and Werenski
et al. (2022). The first develops a regression approach in barycentric coordinates with applications
in computer graphics as well as color and shape transport problems. Their method is defined directly
onW2 and requires solving a computationally costly bilevel optimization problem, which does not
necessarily yield global solutions. The second introduces a linearization of the 2-Wasserstein space
by lifting it to aL2-space anchored at measure that is absolutely continuous with respect to Lebesgue
measure. This approach relies on the existence of optimal transport maps between this absolutely
continuous “anchor” distribution and other distributions and hence only defines tangent spaces at
absolutely continuous measures. The third works on a tangential structure based on “Karcher means”
(Karcher, 2014, Zemel & Panaretos, 2019), which is more restrictive still. This implies that their
method requires all involved measures to be absolutely continuous measures with densities that are
bounded away from zero, with the target measure lying in the convex hull of the control measures.

1.2 OUR CONTRIBUTION

In contrast to the existing approaches, our method is applicable for general probability measures,
allows for the target measure to be outside the generalized geodesic convex hull of the control mea-
sures, can be implemented by a standard constrained linear regression, and provides a global—and in
many cases unique—solution. The proposed method transforms the projection problem on the pos-
itively curved Wasserstein space into a linear optimization problem in the geometric tangent cone,
which can be implemented via a linear regression. This problem takes the form of a deformable
template (Boissard et al., 2015, Yuille, 1991), which connects our approach to this literature. Our
method can be implemented in three steps: (i) obtain the general tangent cone structure at the tar-
get measure, (ii) construct a tangent space from the tangent cone via barycentric projections if it
does not exist, and (iii) perform a linear regression to carry out the projection in the tangent space.
This implementation of the projection approach via linear regression is computationally efficient, in
particular compared to the existing methods in Bonneel et al. (2016) and Werenski et al. (2022).

The challenging part of the implementation is lifting the problem to the tangential structure: this
requires computing the corresponding optimal transport plans between the target and each measure
used in the projection. Many methods have been developed for this, see for instance Benamou &
Brenier (2000), Jacobs & Léger (2020), Makkuva et al. (2020), Peyré & Cuturi (2019), Ruthotto et al.
(2020) and references therein. Other alternatives compute approximations of the optimal transport
plans via regularized optimal transport problems (Peyré & Cuturi, 2019), such as entropy regularized
optimal transport (Galichon & Salanié, 2010, Cuturi, 2013). The proposed projection approach is
compatible with any such method, therefore its complexity scales with that of estimating optimal
transport plans. We provide results for the statistical consistency when estimating the measures via
their empirical counterparts in practice.

To demonstrate the efficiency and utility of the proposed method, we apply our method in different
settings and compare it to existing benchmarks such as Werenski et al. (2022). Furthermore, we
extend the classical synthetic control estimator (Abadie & Gardeazabal, 2003, Abadie et al., 2010)
to settings with observed individual heterogeneity in multivariate outcomes. The synthetic controls
estimator is a projection approach, where one tries to predict an aggregate outcome of a treated unit
by an optimal convex combination of control units and to use the weights of this optimal combina-
tion to construct the counterfactual state of the treated unit had it not received treatment. The novelty
of our application is that it lets us perform the synthetic control method on the joint distribution of
several outcomes, which complements the recently introduced method in Gunsilius (2022) designed
for univariate outcomes. The possibility to project entire probability measures allows us to disen-
tangle treatment heterogeneity at the treatment unit level. The possibility of working with general
probability measures is key in this setting, as many outcomes of interest are not regular. We illus-
trate this by applying our method to estimate the effects of a Medicaid expansion policy in Montana,
where we consider—as outcome—non-regular probability measure in d = 28 dimensions.
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2 METHODOLOGY

2.1 THE 2-WASSERSTEIN SPACEW2(Rd)

The 2-Wasserstein Distance For probability measures PX , PY ∈ P(Rd) with supports X ,Y ⊆
Rd, respectively, the 2-Wasserstein distance W2(PX , PY ) is defined as

W2(PX , PY ) ,

(
min

γ∈Γ(PX ,PY )

∫
X ×Y

|x− y|2 dγ(x, y)

) 1
2

. (2.1)

Here, | · | denotes the Euclidean norm on Rd and

Γ(PX , PY ) ,
{
γ ∈P(Rd × Rd) : (π1)#γ = PX , (π2)#γ = PY

}
is the set of all couplings of PX and PY . The maps π1 and π2 are the projections onto the first
and second coordinate, respectively, and T#P denotes the pushforward measure of P via T , i.e. for
any measurable A ⊆ Y , T#P (A) ≡ P (T−1(A)). An optimal coupling γ ∈ Γ(PX , PY ) solving
the optimal transport problem equation 2.1 is an optimal transport plan. By Prokhorov’s theorem,
a solution always exists in our setting. When PX is regular, i.e. when it does not give mass to sets
of lower Hausdorff dimension in its support, then the optimal transport plan γ solving equation 2.1
is unique and takes the form γ = (Id×∇ϕ)#PX , where Id is the identity map on Rd and ∇ϕ(x)
is the gradient of some convex function. This result is known as Brenier’s theorem (Brenier, 1991,
McCann, 1997, Villani, 2003, Theorem 2.12). By definition, all measures that possess a density with
respect to Lebesgue measure are regular. Our main contribution is to allow for general probability
measures, where only optimal transport plans but no maps exist.

The 2-Wasserstein Space The 2-Wasserstein space W2 , (P2(Rd),W2) is the metric space
defined on the set P2(Rd) of all probability measures with finite second moments supported on
Rd, with the 2-Wasserstein distance as the metric. It is a geodesically complete space in the sense
that between any two measures P, P ′ ∈ W2, one can define a geodesic Pt : [0, 1] → W2 via the
interpolation Pt , (πt)#γ, where γ is an optimal transport plan and πt : Rd ×Rd → Rd is defined
through πt(x, y) , (1−t)x+ty (Ambrosio et al., 2008, McCann, 1997). Using this, it can be shown
thatW2 is a positively curved metric space d > 1 (Ambrosio et al., 2008, Theorem 7.3.2) and flat
for d = 1 (Kloeckner, 2010), where curvature is defined in the sense of Aleksandrov (1951). This
difference in the curvature properties is the main reason for why the multivariate setting requires
different approaches compared to the established results for measures on the real line.

2.2 TANGENT CONE STRUCTURE ONW2

We exploit a tangential structure that can be defined for general measures onW2 (Ambrosio et al.,
2008, Otto, 2001, Takatsu & Yokota, 2012). In particular, it allows us to circumvent solving a
bilevel optimization problem as the one considered in Bonneel et al. (2016), whose statement we
have included in the appendix.

The tangential structure relies on the fact that geodesics Pt inW2 are linear in the transport plans
(πt)#γ. This implies a geometric tangent cone structure at each measure P ∈ W that can be defined
as the closure in P2(Rd) of the set

G(P ) ,
{
γ ∈P2(Rd × Rd) : (π1)#γ = P, (π1, π1 + επ2)#γ is optimal for some ε > 0

}
with respect to the local distance

W 2
P (γ12, γ13) , min

{∫
(Rd)3

|x2 − x3|2 dγ123 : γ123 ∈ Γ1(γ12, γ13)

}
, (2.2)

where γ12 and γ13 are couplings between P and some other measures P2 and P3, respectively, and
Γ1(γ12, γ13) is the set of all 3-couplings γ123 such that the projection of γ123 onto the first two
elements is γ12 and the projection onto the first and third element is γ13 (Ambrosio et al., 2008,
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Appendix 12). We can then define the exponential map at P with respect to some tangent element
γ ∈ G(P ) by

expP (γ) = (π1 + π2)#γ .

This tangent cone can be constructed at every P ∈ W , irrespective of its support; in particular, we
do not assume that the corresponding measures are regular, i.e., give mass to subsets of Rd of lower
Hausdorff dimension. In the case where P is regular the tangent cone structure reduces to a tangent
space (Ambrosio et al., 2008, Theorem 8.5.1). This tangent space structure has been exploited
in Mérigot et al. (2020) and Werenski et al. (2022), and we include the results for our projection
approach in this special case in Appendix A.

2.3 TANGENTIAL WASSERSTEIN PROJECTIONS

Our main contribution is to define a projection approach between general probability measures,
where the target need not be regular. To define this notion of projection, we need to first define
an appropriate notion of a geodesic convex hull. The novelty here is that we define this notion via
generalized geodesics (Ambrosio et al., 2008, section 9.2) centered at the target measure P0. For
this, we extend the definition of WP to the multimarginal setting, by defining, for given couplings
γ0j ∈ Γ(P0, Pj), j ∈ JJK

W 2
P0;λ(γ01, γ02, . . . , γ0J) , min


∫

(Rd)J+1

J∑
j=1

λj
∣∣xj − x0

∣∣2 dγ : γ ∈ Γ1(γ01, . . . , γ0J)

 ,

(2.3)
where Γ1(γ01, . . . , γ0J) ⊆ Γ(P0, P1, . . . , PJ) is the set of all (J + 1)-couplings γ such that the
projection of γ onto the first- and j-th element is γ0j . Note that this definition is similar to the mul-
timarginal definition of the 2-Wasserstein barycenter (Agueh & Carlier, 2011, Gangbo & Święch,
1998), but “centered” at P0. Based on this, we define the generalized geodesic convex hull of mea-
sures {Pj}j∈JJK with respect to the measure P0 as

CoP0

({
Pj
}J
j=1

)
,

P (λ) ∈P2(Rd) : P (λ) =

 J∑
j=1

λjπj+1


#
γ,

γ solves W 2
P0;λ(γ01, . . . , γ0J), γ0j is optimal in Γ(P0, Pj) ∀j ∈ JJK, λ ∈ ∆J

 . (2.4)

A direct application of our tangential projection idea would lead us to solving

λ∗ , arg min
λ∈∆J

W 2
P0;λ(γ01, . . . , γ0J) , (2.5)

which would be a computationally prohibitive bilevel optimization problem similar to the one in
Bonneel et al. (2016). We therefore rely on barycentric projections to reduce the general cone
structure to a regular tangent space which we denote by TP0

W2 (Ambrosio et al., 2008). In this
structure the projection problem equation 2.5 is replaced by

λ∗ , arg min
λ∈∆J

∥∥∥∥∥∥
J∑
j=1

λj
(
bγ0j − Id

)∥∥∥∥∥∥
2

L2(P0)

, with bγ0j (x1) ,
∫
Rd

x2 dγ0j,x1
(x2) (2.6)

denoting the barycentric projections of optimal transport plans γ0j between P0 and Pj . Here, γx1

denotes the disintegration of the optimal transport plan γ with respect to P0.

This approach is a natural extension of the regular setting to general probability measures for two
reasons. First, if the optimal transport plans γ0j are actually induced by some optimal transport
map, then bγ0j reduces to this optimal transport map; in this case the general tangent cone G(P0)
reduces to the regular tangent cone TP0

W2 (Ambrosio et al., 2008, Theorem 12.4.4). Second, by the
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TP0
W2

W2

P0

P1

P2

P3

Pπ

b1 − Id

π

C̃oP0

Figure 1: Tangential Wasserstein projection for a general target P0.

T P0W2 is the regular tangent space constructed by applying barycentric projection to G(P0), the general
tangent cone anchored at P0. Thick dashed lines are tangent vectors (bj − Id) generated by the respective
barycentric projections. The gray shaded region is their convex hull in this constructed tangent space and π is
the projection of Id onto this convex hull. Pπ , expP0

(π) is the projection of P0 onto the generalized
geodesic convex hull C̃oP0

(
{P1, P2, P3}

)
⊆ W2 (blue).

definition of bγ and disintegrations in conjunction with Jensen’s inequality it holds for all λ ∈ ∆J

that ∥∥∥∥∥∥
J∑
j=1

λj
(
bγ0j − Id

)∥∥∥∥∥∥
2

L2(P0)

6W 2
P0;λ(γ01, . . . , γ0J) . (2.7)

This implies that for general P0 we can also define a convex hull based on barycentric projections,
which is of the form

C̃oP0

({
Pj
}J
j=1

)
,

P (λ) ∈P2(Rd) : P (λ) =

 J∑
j=1

λjbγ0j


#
P0, λ ∈ ∆J

 . (2.8)

Furthermore, the contraction property equation 2.7 implies that CoP0 ⊆ C̃oP0 , with equality when
all transport plans are achieved via maps ∇ϕj . Using these definitions, the following defines our
notion of projection for general P0 and shows that it projects onto C̃oP0

.
Proposition 2.1. Consider a general target measure P0 and a set {Pj}j∈JJK of general control
measures. Construct the measure P̃π as

P̃π , expP0

 J∑
j=1

λ∗j bγ0j − Id

 ,

where the optimal weights λ∗ ∈ ∆J are obtained by solving equation 2.6 and γ0j are optimal
plans transporting P0 to Pj , respectively. Then for given optimal plans γ0j , P̃π is the unique metric

projection of P0 onto C̃oP0

({
Pj
}J
j=1

)
.

The optimal plans γ0j transporting P0 to Pj need not be unique if Pj lies outside the cut locus of
P0, i.e., when there is more than one optimal way to transport P0 onto Pj . However, the projection
for fixed γ0j is always unique by virtue of the linear regression.

3 STATISTICAL PROPERTIES OF THE WEIGHTS AND PROJECTION

We now provide statistical consistency results for our method when the corresponding measures
{Pj}j∈JJK are estimated from data. We consider the case where the measures Pj are replaced by
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their empirical counterparts

PNj
(A) , N−1

j

Nj∑
n=1

δXn
(A)

for every measurable set A in the Borel σ-algebra on Rd, where δx(A) is the Dirac measure and(
X1j , . . . , XNj ,j

)
is an independent and identically distributed set of random variables whose distri-

bution is Pj . We explicitly allow for different sample sizes
⋃J
j=0Nj = N for the different measures.

To save on notation we write ϕ̂Nj
≡ ϕ̂j , b̂0j ≡ b̂γ0j ,Nj

and γ̂0j ≡ γ̂Nj ,N0
in the following.

Proposition 3.1 (Consistency of the optimal weights). Let
{
PNj

}J
j=0

be the empirical measures

corresponding to the data
(
X1j , . . . , XNjj

)J
j=0

which are independent and identical draws from
Pj , respectively, and are supported on some common latent probability space (Ω,A , P ). Assume
all Pj have finite second moments. As Nj →∞ for all j ∈ JJK, the corresponding optimal weights

λ̂∗N =
(
λ̂∗N1

, . . . , λ̂∗NJ

)
∈ ∆J obtained via

λ̂∗N , arg min
λ∈∆J

∥∥∥∥∥∥
J∑
j=1

λj

(
b̂0j − Id

)∥∥∥∥∥∥
2

L2(PN0
)

, (3.1)

satisfy

P

(∣∣∣λ̂∗N − λ∗∣∣∣ > ε

)
→ 0 for all ε > 0 ,

where λ∗ solve equation 2.6.

This consistency result directly implies consistency of the optimal weights in case the optimal trans-
port problems between PN0 and each PNj are achieved by optimal transport maps ∇ϕ̂Nj . We also
have a consistency result for the empirical counterparts P̃π,N of the optimal projection P̃π .
Corollary 3.1 (Consistency of the optimal projections). In the setting of Proposition 3.1, the esti-
mated projections P̃π,N converge weakly in probability to the projection P̃π as Nj → ∞ for all
j ∈ JJK.

Proposition 3.1 and Corollary 3.1 hold in all generality and without any assumptions on the corre-
sponding measures Pj , except that they possess finite second moments. To get stronger results, for
instance parametric rates of convergences, one needs to make strong regularity assumptions on the
measures Pj . Without these, the rate of convergence of optimal transport maps in terms of expected
square loss is as slow as n−2/d (Hütter & Rigollet, 2021). Under such additional regularity condi-
tions, the results for the asymptotic properties are standard, because the proposed method reduces to
a classical semiparametric estimation problem, as the weights λj are finite-dimensional.

4 ILLUSTRATIONS

4.1 MIXTURES OF GAUSSIANS

We consider mixtures of Gaussian in dimension d = 10. We draw from the following Gaussians:

Xj ∼ N
(
µj ,Σ

)
, j = 0, 1, 2, 3 ,

where µ0 = [10, 10, . . . , 10], µ1 = [50, 50, . . . , 50], µ2 = [200, 200, . . . , 200], µ3 =
[−50,−50, . . . ,−50] and Σ = Id10 +0.8 Id−10, with Id−10 the 10 × 10 matrix with zeros on the
main diagonal and ones on all off-diagonal terms. We then define the following mixtures: Y0 as
target, and Y1, Y2, and Y3 as controls, where

Y0 = 0.7X0 + 0.15X1 + 0.15X2 , Y1 = 0.6X0 + 0.3X1 + 0.1X2 ,

Y2 = 0.7X1 + 0.2X2 + 0.1X3 , Y3 = 0.3X0 + 0.1X2 + 0.6X3 .
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Each sample is 10000 points. The estimated optimal weights are λ∗ = [0.4329, 0.4002, 0.1669]

with corresponding projection Ỹ0. With only 3 control units, it is not possible to perfectly replicate
the entire target distribution. Still, in Figure 2, the optimal projection approximates Y0 reasonably
well. Moreover, the weights are non-sparse in this case, indicating that the target PY0

lies inside the
geodesic convex hull of the control measures. In many real-world applications we observe sparse
optimal weights; see, for instance, Section 4.3, and our application to synthetic controls in Section
5. This implies that in these settings the target lies outside the geodesic convex hull of the controls
and is projected onto one of the faces.

Figure 2: Kernel density estimates of the average of all dimensions comparing target PY0
(blue) and

its projection P̃π (orange) onto the generalized geodesic convex hull of {PY1
, PY2

, PY3
}.

4.2 IMAGE EXPERIMENT: MNIST

We compare our results to those from the experiment in Section 4.3 of Werenski et al. (2022).
We follow the experimental procedure described therein, taking as experimental data the MNIST
dataset of 28 × 28 pixel images of hand-written digits (LeCun, 1998). We show comparison to the
test case with image occlusion. We treat the normalized matrix as probability measures supported
on a 28 × 28 grid. Figure 3 shows our results. We are able to more clearly replicate the edges and
contours of the target image, compared to both the Euclidean projection and the method described in
Werenski et al. (2022). Moreover, our method manages to replicate the overall shape of the specific
handwritten number closer than the other methods; in particular, it is the only method that correctly
replicates the horizontal bar at the bottom of this particular handwritten “4”.

Figure 3: Left to right: occluded image; Euclidean projection; result from Werenski et al. (2022),
using optimal weights obtained from their method; result from our approach, using optimal weights
obtained from equation 2.6; target image.

4.3 IMAGE EXPERIMENT: LEGO BRICKS

To examine the general properties of how our method obtains the optimal weights, we provide
an application on replicating a target image of an object using images of the same object taken
from different angles. We use the Lego Bricks dataset available from Kaggle, which contains
approximately 12,700 images of 16 different Lego bricks in RGBA format. Our method manages
to replicate the target block rather well, while only using the information of control units that look
sufficiently like the target. In particular, in replication, our method does not use information from
any image of the underside of the Lego brick. In contrast, the Euclidean projection does not provide
the correct rotation in the replication, and suffers from the standard blur induced by using a mixture
of images.
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(a) Target image (b) Euclidean projection (c) Our method

(0.059, 0.791) (0.313, 0.108) (0.077, 0) (0.083, 0.008) (0.468, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0.093)

Figure 4: Top row: target block, Euclidean projection, and projection from our method. Middle and
bottom rows: Control units used in simulation. Left entry in parentheses is optimal weights from
our method, right entry are optimal weights from Euclidean projection. Weights are denoted as zero
if they are less than 1e-6.

5 APPLICATION TO CAUSAL INFERENCE VIA SYNTHETIC CONTROLS

When analyzing the causal effect of treatment on a unit, such as that of public policies or medical
interventions, there is often no comparable control unit that can capture the treated unit’s underlying
characteristics. The classical synthetic controls method (Abadie & Gardeazabal, 2003, Abadie et al.,
2010) aims to create a suitable control unit by replicating the pre-treatment outcome trends of the
treated unit, using some optimally chosen set of control units. This is achieved by projecting the
observed characteristics of the target unit onto the convex hull defined by the characteristics of
control units in the pre-treatment periods. The optimal weights obtained by this projection, therefore,
describe how much each control unit contributes to the target unit’s counterfactual outcome in the
post-treatment period (Abadie, 2021).

We apply our notion of projections to extend the classical synthetic control method to work on joint
measures of several outcomes, which allows to disentangle heterogeneous treatment effects and
complements the univariate method introduced in Gunsilius (2022). As demonstration, we study
the effect of health insurance coverage following state-level Medicaid expansion in Montana in
2016. The variables of interest are Medicaid coverage, employment status, log wages, and log hours
worked. For control units, we use the twelve states for which such expansion has never occurred;
these are: Alabama, Florida, Georgia, Kansas, Mississippi, North Carolina, South Carolina, South
Dakota, Tennessee, Texas, Wisconsin, Wyoming. Additional information can be found in Appendix
C.

We estimate “synthetic Montana”, i.e. Montana had it not adopted Medicaid expansion, by estimat-
ing the optimal weights λ∗ using data from 2010 to 2016, and solving equation 2.6 over the joint
distribution of the four outcomes over the time period from 2010 to 2016, which generates measures
in d = 28 dimensions. We note that we estimate one set of optimal weights—specifically, one for
each control state—over the entire time period. We then estimate the counterfactual joint distribu-
tion using data from 2017 to 2020, by using the optimal weights λ∗ and computing the weighted
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barycenter (Agueh & Carlier, 2011) of the control states using these weights. Details of sample se-
lection and estimating “synthetic Montana” are described in Appendix C. The results of the general
causal effect of the Medicaid expansion policy in Montana averaged over the years 2017− 2020 are
illustrated in Figure 5.

Consistent with findings in Courtemanche et al. (2017), Mazurenko et al. (2018), we find significant
first- and second order effects of Medicaid expansion, which are summarized in the top row and the
bottom row of Figure 5, respectively. “Synthetic Montana” has much lower proportion of individuals
insured under Medicaid, suggesting that expanding Medicaid eligibility directly affects the extensive
margin of Medicaid enrollment. The disemployment effect is less pronounced in comparison to the
enrollment effect we estimated, but nonetheless positive and nontrivial, consistent with the findings
in, e.g., Peng et al. (2020), but inconsistent with those in, e.g., Gooptu et al. (2016). We also find
positive second-order effects, summarized in the bottom row of Figure 5. Additional details are in
Appendix C.

(a) Covered by Medicaid (b) Employment Status

(c) Log Wage (d) Log Labor Hours Supplied

Figure 5: Counterfactual (blue) vs actual (orange) Montana from 2017 to 2020. In the bottom row,
histograms of data distributions are shown on the left, and cumulative distribution functions are
shown on the right.

6 CONCLUSION

We have developed a projection method between sets of probability measures supported on Rd based
on the tangent cone structure of the 2-Wasserstein space. Our method seeks to best approximate
some general target measure using some chosen set of control measures. In particular, it provides
a global (and in most cases unique) optimal solution. Our application to evaluating the first- and
second-order effects of Medicaid expansion in Montana via an extension of the synthetic controls
estimator (Abadie & Gardeazabal, 2003, Abadie et al., 2010) demonstrates the method’s utility in
allowing for a method that is applicable for general probability measures. The method still works
without restricting optimal weights to be in the unit simplex, which would allow for extrapolation
beyond the convex hull of the control units, providing a notion of tangential regression. It can also
be extended to a continuum of measures, using established consistency results of barycenters (e.g.
Le Gouic & Loubes, 2017).
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APPENDIX

A WASSERSTEIN BARYCENTERS AND THE SPECIAL CASE OF A REGULAR
TARGET MEASURE

The natural approach to defining projections on W2 is to work on the manifold directly. As men-
tioned in the main text, this leads to a bilevel optimization problem, based on the notion of barycen-
ters in Wasserstein space (Agueh & Carlier, 2011, Carlier & Ekeland, 2010):

P̄ (λ) = arg min
P∈P2(Rd)

J∑
j=1

λj
2
W 2

2 (P, Pj).

With this definition, and assuming that the barycenter P̄ (λ) is unique for given λ, the bilevel pro-
jection problem reads:

λ∗ ∈ arg min
λ∈∆J

W2(P0, P̄ (λ)), where P̄ (λ) = arg min
P∈P2(Rd)

J∑
j=1

λj
2
W 2

2 (P, Pj). (A.1)

A version of this approach is used in Bonneel et al. (2016) to define a notion of regression between
probability measures in low dimensions. The challenges here are mathematical and computational.
Importantly, the optimal weights λ∗ need not be unique. This is not an issue for the applications con-
sidered in Bonneel et al. (2016), like color transport; however, it is important in statistical settings
when the weights convey information used in further procedures, like causal inference via synthetic
controls, where the optimal weights are used to introduced a counterfactual outcome of a treated unit
had it not been treated (Abadie & Gardeazabal, 2003, Abadie et al., 2010, Abadie, 2021). Moreover,
the bi-level optimization structure makes solving the problem prohibitively costly in higher dimen-
sions. Bonneel et al. (2016) introduce a gradient descent approach based on an entropy-regularized
analogue of W2 (Cuturi, 2013, Peyré & Cuturi, 2019) that can be implemented in low-dimensional
settings.

Other approaches like Werenski et al. (2022) introduce a tangential approach, but under strong as-
sumptions on the involved measures: they need to be absolutely continuous with densities bounded
away from zero on their support, and in particular the target measure must be known to lie inside
the convex hull of the other measures. A starting point for this is to consider a characterization of
the barycenter P̄ (λ) for fixed weights of a set {Pj}j∈JJK in regular tangent spaces. Agueh & Car-
lier (2011, Equation (3.10)) show that if at least one of the measures is absolutely continuous with
respect to Lebesgue measure, then P̄ (λ) can be characterized via

J∑
j=1

λj
(
∇ ϕ̃j − Id

)
= 0, (A.2)

where {ϕ̃j}j∈JJK are the optimal transport maps from the barycenter to the respective measure Pj ,
i.e. (ϕ̃j)#P̄ (λ) = Pj . Each term of the summand in equation A.2 is an element in T P̄ (λ)W2(Rd)
by construction.

More generally, the condition equation A.2 is a sufficient condition for P̄ (λ) to be a “Karcher mean”
(Karcher, 2014) inW2 (Zemel & Panaretos, 2019). In fact, a “Karcher mean” of a set of measures
{Pj}j∈JJK is defined as the gradient of the Fréchet functional in W2 and is characterized through
equation A.2 holding P̄ (λ)-almost everywhere. equation A.2 is a stronger condition because it is
assumed to hold at every point in the support of P̄ (λ), not just almost every point. Álvarez-Esteban
et al. (2016) use this characterization to introduce a fixed-point approach to compute Wasserstein
barycenters, and Werenski et al. (2022) use this structure to introduce a replication approach for
absolutely continuous measures whose densities are bounded away from zero and whose target
measure lies inside the convex hull of the control measures. Related is the recent definition of weak
barycenters in Cazelles et al. (2021), where the authors replace the optimal transport maps from the
classical optimal transport problem by the weak optimal transport problem introduced in Gozlan
et al. (2017). Heuristically, this characterization is that of a deformable template. A measure P is a
deformable template if there exists a set of deformations

{
ψj
}
j=1,...,J

such that ψj#P = Pj , in a
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way that their weighted average is “as close to the identity” as possible. In our setting ψj ≡ ∇ϕj−Id
(Anderes et al., 2015, Boissard et al., 2015, Yuille, 1991).

In our setting of interest, our tangential projection reduces to

λ∗ , arg min
λ∈∆J

∥∥∥∥∥∥
J∑
j=1

λj
(
∇ϕj − Id

)∥∥∥∥∥∥
2

L2(P0)

, (A.3)

where ∇ϕj are the optimal transport maps between the target P0 and the control measures Pj ,
j ∈ JJK. In contrast to Werenski et al. (2022) the target measure does not need to lie inside the
convex hull of the other measures.

Based on these definitions we can show that our approach is a projection of the target P0 onto
CoP0

(
{Pj}Jj=1

)
in the case where P0 is regular.

Proposition A.1. Consider a regular target measure P0 and a set {Pj}j∈JJK of general control
measures. Construct the measure Pπ as

Pπ , expP0

 J∑
j=1

λ∗j (∇ϕj − Id)

 ,

where the optimal weights λ∗ ∈ ∆J are obtained by solving equation A.3 and ∇ϕj are the opti-
mal maps transporting P0 to Pj , respectively. Then Pπ is the unique metric projection of P0 onto

CoP0

({
Pj
}J
j=1

)
.

B PROOFS

Proof of Proposition A.1. Define the following closed and convex subset C ⊆ L2(P0) for fixed
optimal transportation maps between P0 and Pj , denoted∇ϕj :

C ,

f ∈ L2(P0) : f =

J∑
j=1

λj ∇ϕj for some λ ∈ ∆J

 .

Recall that the transport maps ∇ϕj exist since P0 is regular. Using C, we can rewrite equation A.3
as

arg min
λ∈∆J

∥∥∥∥∥∥
J∑
j=1

λj ∇ϕj − Id

∥∥∥∥∥∥
2

L2(P0)

= arg min
f∈C

‖f − Id‖2L2(P0) ,

which by definition is the metric projection of Id onto C. Since C is a non-empty closed and convex
subset of the Hilbert space L2(P0), this metric projection exists and is unique (Aliprantis & Border,
1999, Theorem 6.53). Moreover, if Id ∈ C, then πC = Id; otherwise, πC ∈ ∂C, where ∂C is the
boundary of C (Aliprantis & Border, 1999, Lemma 6.54).

Since P0 is regular, the exponential map is continuous. In fact, for every j 6= k,

W 2
2 (Pj , Pk) = W 2

2 ((∇ϕj)#P0, (∇ϕk)#P0) 6
∫
Rd

∣∣∇ϕj −∇ϕk∣∣2 dP0(x).

In other words, the distance between Pj and Pk inW2(Rd) is smaller than that between correspond-
ing elements∇ϕj ,∇ϕk in the tangent space. This implies continuity of the exponential map.

Furthermore, in this regular setting, the exponential map sends convex sets in T P0
W2 to generalized

geodesically convex sets in W2. Mechanically, for any two (scaled) elements t(∇ϕj − Id) and
s(∇ϕk − Id) in TP0

W2, and any ρ ∈ [0, 1],

expP0
(ρt(∇ϕj − Id) + (1− ρ)s(∇ϕk − Id))

= expP0
((ρt∇ϕj + (1− ρ)s∇ϕk)− (ρt+ (1− ρ)s) Id)

15



Under review as a conference paper at ICLR 2023

= expP0

ρ̃[[ρt
ρ̃
∇ϕj +

(1− ρ)s

ρ̃
∇ϕk

]
− Id

]
=
([
ρt∇ϕj + (1− ρ)s∇ϕk

]
+ (1− ρ̃) Id

)
#
P0

=
([
ρt(∇ϕj − Id) + (1− ρ)s(∇ϕk − Id)

]
+ Id

)
#
P0

where ρ̃ , ρt + (1 − ρ)s. This is a generalized geodesic connecting Pj and Pk, via the optimal
transport map between them and P0 (Ambrosio et al., 2008, section 9.2). The same argument holds
when extending generalized geodesics to generalized barycenters by taking convex combination of
more measures than a binary interpolation with respect to ρ. Mechanically, for any λ ∈ ∆J and
tj > 0 for all j ∈ JJK,

expP0

 J∑
j=1

λjtj(∇ϕj − Id)

 = expP0

 J∑
j=1

λjtj ∇ϕj −
J∑
j=1

λjtj Id


= expP0

ρ̃J
 J∑
j=1

ρ̃J∇ϕj − Id




=


 J∑
j=1

λjtj∇ϕj

+ (1− ρ̃J) Id


#

P0

=


 J∑
j=1

λjtj(∇ϕj − Id)

+ Id


#

P0

where ρ̃J ,
∑J
j=1 λjtj . This proves the exponential map is generalized geodesically convex.

From above it follows that Pπ , expP0
(πC) is either in the interior of C, which is the case if Id ∈ C,

or on its boundary: since πC ∈ ∂C, expP0
(πC) ∈ expP0

(∂C). By continuity of the exponential map
it follows that expP0

(∂C) = ∂ expP0
(C). Combining all steps above show that Pπ is a geodesic

metric projection of P0 onto the geodesic convex hull of
{
Pj
}J
j=1

. �

Proof of Proposition 2.1. The result follows from the same argument as the proof of Proposition
A.1. Theorem 12.4.4 in Ambrosio et al. (2008) shows that TP0

W2 is the image of the barycentric
projection of measures in the general tangent cone: bγ(x) is an optimal transport map if γ is an
optimal transport plan. But the exponential map satisfies

expP0
(v) = (v + Id)# P0 for all v ∈ TP0W2.

This implies that

P̃π , expP0

 J∑
j=1

λ∗j bγ0j − Id

 =

 J∑
j=1

λ∗j bγ0j


#
P0 ∈ C̃oP0

({
Pj
}J
j=1

)
,

since the convex combination of elements in the subgradients of convex functions lie in the subgra-
dient of a convex function (provided the subgradient of each convex function is nonempty, which is
the case here). Then the continuity and generalized convexity of the exponential map for elements
in the regular tangent space TP0W2 implies the result. �

Proof of Proposition 3.1. We split the proof into two parts. In the first part we prove the con-
vergence in probability of the family of objective functions equation 3.1 to their population
counterparts equation 2.6 if the empirical measures PNj

converge weakly in probability to the
population measures Pj . In the second step we use the fact that λ̂∗ is a classical semiparametric
estimator (Andrews, 1994, Newey & McFadden, 1994) to derive the convergence of the weights.
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Step 1: Convergence of the objective functions To show the convergence of the of the objective
functions for obtaining the weights λ∗, we write∣∣∣∣∣∣∣∣

∥∥∥∥∥∥
J∑
j=1

λjb0j − Id

∥∥∥∥∥∥
2

L2(P0)

−

∥∥∥∥∥∥
J∑
j=1

λj b̂0j − Id

∥∥∥∥∥∥
2

L2(PN0
)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ ∣∣∣∣∣∣

J∑
j=1

λjb0j(x)− x

∣∣∣∣∣∣
2

dP0 −
∫ ∣∣∣∣∣∣

J∑
j=1

λj b̂0j(x)− x

∣∣∣∣∣∣
2

dPN0

∣∣∣∣∣∣∣ .
We hence want to show that

lim∧
j Nj→∞

∣∣∣∣∣∣∣
∫ ∣∣∣∣∣∣

J∑
j=1

λjb0j(x)− x

∣∣∣∣∣∣
2

dP0(x)−
∫ ∣∣∣∣∣∣

J∑
j=1

λj b̂0j(x)− x

∣∣∣∣∣∣
2

dPN0
(x)

∣∣∣∣∣∣∣ = 0 ,

where
∧
j Nj ≡ min {N0, . . . , NJ}.

We split the result into two parts. The first part shows that

lim inf∧
j Nj→∞

∫
Rd

∣∣∣∣∣∣
J∑
j=1

λj b̂0j(x0)− x0

∣∣∣∣∣∣
2

dPN0
(x0) >

∫
Rd

∣∣∣∣∣∣
J∑
j=1

λjb0j(x0)− x0

∣∣∣∣∣∣
2

dP0(x0).

In the second part we use the L2(P0) convergence of the barycentric projections to prove that the
limit exists and coincides with the limit inferior.

For the first part, we have

lim inf∧
j Nj→∞

∫
Rd

∣∣∣∣∣∣
J∑
j=1

λj b̂0j(x0)− x0

∣∣∣∣∣∣
2

dPN0
(x0) =

lim inf∧
j Nj→∞

∫
(Rd)J+1

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγ̂N (x0, x1, . . . , xJ),

where γ̂N (x0, x1, . . . , xJ) is a measure that solves

min


∫

(Rd)J+1

J∑
j=1

λj
∣∣xj − x0

∣∣2 dγ : γ ∈ Γ1(γ̂01, . . . , γ̂0J)

 ,

γ̂0j are the optimal couplings between PN0
and P̃Nj

,
(
b̂0j

)
#
PN0

. Since all measures are defined

on the complete and separable space Rd, and by assumption of finite second moments, i.e.

max
j∈JJK

sup
Nj

∫ ∣∣xj − x0

∣∣2 dγ̂0j < +∞ ,

it holds that each sequence γ̂0j is tight by Ulam’s theorem (Dudley, 2018, Theorem 7.1.4). Using
the fact that λ ∈ ∆J and γ̂N ∈ Γ1 (γ̂01, . . . , γ̂0J), applying Jensen’s inequality gives us

max
j∈JJK

sup
Nj

∫
(Rd)

J+1

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγ̂N 6 max
j∈JJK

sup
Nj

J∑
j=1

λj

∫
Rd

∣∣xj − x0

∣∣2 dγ̂0j < +∞ ,

which implies that γ̂N is tight. By Prokhorov’s theorem, there exists a subsequence γ̂Nk
that weakly

converges to a limit measure γ. Therefore, by the continuity of the map (x0, xj) 7→
∑
j λjxj − x0,

it follows from classical convergence results (Ambrosio et al., 2008, Lemma 5.1.12(d)) that
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lim inf∧
j Nj→∞

∫
(Rd)J+1

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγ̂N (x0, x1, . . . , xJ) =

∫
(Rd)J+1

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγ(x0, . . . , xJ).

Furthermore, by the same argument via Jensen’s inequality, i.e.,∫
(Rd)J+1

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγ(x0, . . . , xJ) 6
J∑
j=1

∫
(Rd)2

∣∣λjxj − x0

∣∣2 dγ0j(x0, xj) < +∞ ,

it follows that the limit γ ∈ Γ1 (γ01, . . . , γ0J).

Now note that by the definition of disintegration it follows that (Ambrosio et al., 2008, Lemma 5.3.2)

γ ∈ Γ1(γ01, . . . , γ0J) ⇐⇒ γx0
∈ Γ

(
γ1|x0

, . . . , γJ|x0

)
,

where
γ =

∫
γx0 dP0(x0) and γ0j =

∫
γj|x0

dP0(x0)

are the disintegrations of γ and γ0j with respect to P0, respectively. Therefore, we have∫
(Rd)J+1

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγ(x0, . . . , xJ)

=

∫
Rd

∫
(Rd)

J

∣∣∣∣∣∣
J∑
j=1

λjxj − x0

∣∣∣∣∣∣
2

dγx0
(x1, . . . , xJ) dP0(x0)

>
∫
Rd

∣∣∣∣∣∣
∫

(Rd)
J

 J∑
j=1

λjxj − x0

dγx0(x1, . . . , xJ)

∣∣∣∣∣∣
2

dP0(x0)

=

∫
Rd

∣∣∣∣∣∣
J∑
j=1

λj

∫
(Rd)

J
xj dγx0(x1, . . . , xJ)− x0

∣∣∣∣∣∣
2

dP0(x0)

=

∫
Rd

∣∣∣∣∣∣
J∑
j=1

λj

∫
Rd

xj dγj|x0
(xj)− x0

∣∣∣∣∣∣
2

dP0(x0)

=

∫
Rd

∣∣∣∣∣∣
J∑
j=1

λjb0j(x0)− x0

∣∣∣∣∣∣
2

dP0(x0),

where the third lines follows from Jensen’s inequality and the fifth line from γx0
∈

Γ
(
γ1|x0

, . . . , γJ|x0

)
. This shows the first part.

For the second part we use the fact that each barycentric projection b̂0j(x1) is an optimal transport
map between PN0

and P̃Nj
if γ̂0j is an optimal transport plan between PN0

and PNj
, which follows

from Theorem 12.4.4 in Ambrosio et al. (2008). As before, we know that
(
b̂0j

)
#
PN0 is a tight

sequence that converges to some P̃j . By definition and the fact that b̂0j is the gradient of a convex
function between PN0

and P̃Nj
, b̂0j is the unique optimal transport map between PN0

and P̃Nj
for

all Nj and all j. Since the measures Pj have finite second moments by assumption, we have

lim sup
N0∧Nj→∞

∫
Rd

|xj |2 dP̃Nj
= lim sup
N0∧Nj→∞

∫
Rd

∣∣∣̂b0j(x0)
∣∣∣2 dPN0
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= lim sup
N0∧Nj→∞

∫
Rd

∣∣∣∣∫
Rd

xj dγ̂j|x0
(xj)

∣∣∣∣2 dPN0

6 lim sup
N0∧Nj→∞

∫
(Rd)

2

∣∣xj∣∣2 dγ̂0j(x0, xj)

=

∫
(Rd)

2

∣∣xj∣∣2 dγ0j(x0, xj) < +∞,

where the last equality follows from the tightness of γ̂0j , as shown earlier. Therefore, by standard
stability results for optimal transport maps (Segers, 2022, Panaretos & Zemel, 2020), it holds that
b̂0j converges uniformly on every compact subset K ⊆ Rd in the support of the limit measure P̃j ,
that is

lim
N0∧Nj→∞

sup
x0∈K

∣∣∣̂b0j(x0)− vj(x0)
∣∣∣ = 0 ,

where vj is the optimal transport map between P0 and P̃j .

We now show that vj = b0j P0-almost everywhere. From the local uniform convergence, we can
then derive “strong L2-convergence” (Ambrosio et al., 2008, Definition 5.4.3) of the potentials:

lim sup
N0∧Nj→∞

∣∣∣∣∣∥∥∥b̂0j∥∥∥L2(PN0
)
−
∥∥vj∥∥L2(P0)

∣∣∣∣∣
6 lim sup
N0∧Nj→∞

∣∣∣∣∣∥∥∥b̂0j∥∥∥L2(PN0
)
−
∥∥vj∥∥L2(PN0

)

∣∣∣∣∣+ lim sup
N0→∞

∣∣∣∣∥∥vj∥∥L2(PN0
)
−
∥∥vj∥∥L2(P0)

∣∣∣∣
6 lim sup
N0∧Nj→∞

∥∥∥b̂0j − vj∥∥∥
L2(PN0

)
+ lim sup

N0→∞

∣∣∣∣∥∥vj∥∥L2(PN0
)
−
∥∥vj∥∥L2(P0)

∣∣∣∣
Now the first term converges to zero by Hölder’s inequality and the local uniform convergence of
the optimal transport maps from above. The second term satisfies

lim sup
N0→∞

∣∣∣∣∥∥vj∥∥L2(PN0
)
−
∥∥vj∥∥L2(P0)

∣∣∣∣
= lim sup

N0→∞

∣∣∣∣∣
(∫

Rd

∣∣vj(x0)
∣∣2 dPN0

)1/2

−
(∫

Rd

∣∣vj(x0)
∣∣2 dP0

)1/2
∣∣∣∣∣

6 lim sup
N0→∞

∣∣∣∣∫
Rd

∣∣vj(x0)
∣∣2 dPN0

−
∫
Rd

∣∣vj(x0)
∣∣2 dP0

∣∣∣∣1/2 .
But since P0 has finite second moments, it holds that this term also converges to zero.

Based on this we can show that γ̂0j ≡
(

Id, b̂0j

)
converge weakly to γ0j ≡

(
Id, vj

)
. Indeed, if γ0j

is a limit point of the sequence γ̂0j , it holds that∫
(Rd)

2

∣∣xj∣∣2 dγ0j(x0, xj) 6 lim inf
N0∧Nj→∞

∫
(Rd)

2

∣∣xj∣∣2 dγ̂0j(x0, xj)

6 lim sup
N0∧Nj→∞

∫
(Rd)

2

∣∣xj∣∣2 dγ̂0j(x0, xj)

= lim sup
N0∧Nj→∞

∫
Rd

∣∣∣̂b0j(x0)
∣∣∣2 dPN0

(x0)

=

∫
Rd

∣∣vj(x0)
∣∣2 dP0(x0).

Disintegrating the left-hand side with respect to P0, and applying Jensen’s inequality, gives∫
(Rd)

2

∣∣xj∣∣2 dγ0j(x0, xj) =

∫
Rd

∫
Rd

∣∣xj∣∣2 dγj|x0
(xj) dP0(x0)
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>
∫
Rd

∣∣∣∣∫
Rd

xj dγj|x0
(xj)

∣∣∣∣2 dP0(x0)

=

∫
Rd

∣∣b0j(x0)
∣∣2 dP0(x0),

that is, ∫
Rd

∣∣b0j(x0)
∣∣2 dP0(x0) 6

∫
Rd

∣∣vj(x0)
∣∣2 dP0(x0).

But since vj is an optimal transport map between P0 and P̃j by definition, it holds that∫
Rd

∣∣b0j(x0)
∣∣2 dP0(x0) >

∫
Rd

∣∣vj(x0)
∣∣2 dP0(x0) ,

which implies that equality holds and we have that∫
Rd

[∣∣b0j(x0)
∣∣2 − ∣∣vj(x0)

∣∣2] dP0(x0) = 0 ,

which implies that b0j = vj P0-almost everywhere. We have hence shown that
(

Id, b̂0j

)
#
PN0

converges weakly to
(
Id, b0j

)
#
P0 for all j, where the barycentric projection b0j is the optimal

transport map between P0 and P̃j (e.g. Villani, 2003, Theorem 2.12.(iii)).

Moreover, we have shown “strong L2-convergence” of the barycentric projections in terms of Def-
inition 5.4.3 in Ambrosio et al. (2008). Since this holds for all j, it also holds for their convex
combination for fixed weights λ ∈ ∆J . Putting everything together, we then have that

lim∧
j Nj→∞

∥∥∥∥∥∥
J∑
j=1

λj b̂0j − Id

∥∥∥∥∥∥
2

L2(PN0
)

=

∥∥∥∥∥∥
J∑
j=1

λjb0j − Id

∥∥∥∥∥∥
2

L2(P0)

.

Since all observable measures Pj are empirical measures, they converge weakly in probability
(Varadarajan, 1958), which implies that

lim∧
j Nj→∞

P


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥
J∑
j=1

λj b̂0j − Id

∥∥∥∥∥∥
2

L2(PN0
)

−

∥∥∥∥∥∥
J∑
j=1

λjb0j − Id

∥∥∥∥∥∥
2

L2(P0)

∣∣∣∣∣∣∣∣ > ε

 = 0 for all ε > 0.

This shows convergence in probability of the objective function for fixed λ.

Step 2: Convergence of the optimal weights λ̂∗N The convergence of the optimal weights now
follows from standard consistency results in semiparametric estimation. In particular, the objective
functions are all convex for any λ ∈ RJ , which implies that they converge uniformly on any compact
set (Rockafellar, 1970, Theorem 10.8), so the objective function converges uniformly on ∆J . Now
a standard consistency result like Theorem 2.1 in Newey & McFadden (1994) then implies that

lim∧
j Nj→∞

P

(∣∣∣λ̂∗N − λ∗∣∣∣ > ε

)
= 0 for all ε > 0 ,

which is what we wanted to show. Note that the result can also be shown if we allow the weights
λ to be negative, i.e., if we only require that

∑J
j=1 λj = 1. In this case, the fact that the objective

functions are convex and coercive implies that an optimal λ∗ will be achieved at the interior of the
extended Euclidean space, from which consistency follows by Theorem 2.7 in Newey & McFadden
(1994). �

Proof of Corollary 3.1. We want to show that
(∑J

j=1 λ̂
∗
Nj
b̂0j

)
#
PN0 converges weakly in proba-

bility to
(∑J

j=1 λ
∗
j b0j

)
#
P0, where λ̂∗N ,

(
λ̂∗N1

, . . . , λ̂∗NJ

)
are the optimal weights obtained in
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equation 3.1 and equation 2.6, respectively. The result follows by applying the extended continuous
mapping theorem (van der Vaart & Wellner, 2013, Theorem 1.11.1) as follows.

As shown in the proof of Proposition 3.1 we have “strong L2-convergence” of the maps∑J
j=1 λ̂

∗
Nj
b̂0j − Id to

∑J
j=1 λ

∗
j b0j − Id. Therefore, by Theorem 5.4.4 (iii) in Ambrosio et al.

(2008), it holds that

lim
∧jNj→∞

∫
Rd

f

x0,

J∑
j=1

λ̂∗Nj
b̂0j(x0)− x0

 dPN0
(x0) =

∫
Rd

f

x0,

J∑
j=1

λ∗j b0j(x0)− x0

 dP0(x0)

for any continuous function such that |f(x0)| 6 C1 + C2 |x0 − x0|2 for all x0 in the support of P0,
where C1, C2 < +∞ are some constants and x0 in some element in the support of P0 (Ambrosio
et al., 2008, equation (5.1.21)). In particular, this holds for any bounded and continuous function f ,
which implies that

lim
∧jNj→∞

∫
Rd

f

 J∑
j=1

λ̂∗Nj
b̂0j(x0)

dPN0
(x0) =

∫
Rd

f

 J∑
j=1

λ∗j b0j(x0)

dP0(x0)

for any bounded and continuous function, which implies that
(∑J

j=1 λ̂
∗
Nj
b̂0j

)
#
PN0

converges

weakly to
(∑J

j=1 λ
∗
j b0j

)
#
P0 if PNj

converge weakly to Pj , j ∈ JJK.

Now we apply the extended continuous mapping theorem (van der Vaart & Wellner, 2013, Theorem
1.11.1). Equip P2(Rd) with any metric d̃(·, ·) that metrizes weak convergence. We define the maps
g :×J

j=0

(
P2(Rd), d̃

)
j
→
(
P2(Rd), d̃

)
by

g (P0, . . . , PJ) =

 J∑
j=1

λ∗j b0j


#

P0 ,

and analogously for their empirical counterparts gN . Note that g and gN are non-random functions
if the measures Pj and PNj

are non-random themselves for all j ∈ JJK. Moreover, by definition,
g and gN are continuous maps because

∑J
j=1 λ

∗
j b0j are gradients of convex functions, which are

continuous P0-almost everywhere; the same thing holds for their empirical counterparts. Now from
what we have shown above and in Proposition 3.1, it holds that

gN
(
PN0 , . . . ,PNJ

)
→ g (P0, . . . , PJ)

as PNj
converge weakly to Pj . Since {PNj

}Jj=1 here instead are the only random elements in

×J

j=0

(
P2(Rd), d̃

)
j
, the extended continuous mapping theorem implies that

lim∧
j Nj→∞

P

(
d̃
(
gN
(
PN0

, . . . ,PNJ

)
, g (P0, . . . , PJ)

)
> ε

)
= 0 for all ε > 0 ,

which is what we wanted to show. �

C DETAILS OF MEDICAID EXPANSION APPLICATION

We use the ACS data with harmonized variables made available by IPUMS, a unified source of
Census and survey data collected around the world. The data is at the household-person-year level.
For our application, we select the household head and the spouse as our unit of analysis. The
continuous outcomes are adjusted using the person-level sample weights available in the data.

We adopt the following sample restriction criteria: we included individuals
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• of working age, i.e. between ages 18 and 65
• who has no missing outcomes (for those listed in the main text)
• who has no top-coded responses
• who are either household heads or their spouses

The sample size breakdown by states are follows:

State Observations
Target

MT 25,173
Control

AL 106,464
FL 427,397
GA 227,659
KS 74,812
MS 61,505
NC 233,804
SC 107,905
SD 22,563
TN 152,470
TX 598,222
WI 157,410
WY 15,666

Table 1: Summary of the full data sample used to obtain λ∗.

We randomly select N = 1500 observations from each unit for estimating λ∗. In the Python imple-
mentation, we face a challenge where if the entries of the target and control data are large enough,
equation A.3 becomes too large for CVXPY to compute an optimal solution. Therefore, we intro-
duce a stabilizing constant to prevent this. This stabilizing constant is determined by the mean value
and dimensions of the target distribution, and the number of controls. The weights we obtained are
sparse and are displayed in Table 2.

State AL FL GA KS MS NC SC SD TN TX WI WY
Weight 0.184 0 0 0 0.174 0 0.010 0.513 0 0 0.119 0

Table 2: Estimated Weights for Control States.

We check whether the obtained weights are fit for creating synthetic Montana by examining if they
well-approximate actual Montana in the pre-treatment period. As seen in Figures 6 and 7, our
projection is similar to the actual data.

(a) Covered by Medicaid (b) Employment Status

Figure 6: Replicated (blue) vs actual (orange) Montana from 2010 to 2016.
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(a) Log Wage (b) Log Labor Hours Supplied

Figure 7: Replicated (blue) vs actual (orange) Montana from 2010 to 2016. In each panel, his-
tograms of data distributions are shown on the left, and cumulative distribution functions are shown
on the right.

Once we obtain the optimal weights λ∗, we estimate the counterfactual outcomes of interest for the
four years after Medicaid expansion in Montana (namely, between 2017 and 2020). This involves
solving equation A.1 with λ∗ obtained from the pre-intervention period. Implementation-wise, we
computed the free-support barycenter, using the POT package; this does not fix the support of the
barycenter a priori, and allows it to be different from those of the control distributions. We plot the
densities and distributions of the counterfactual outcomes in Figure 5 of the main text.

To perform inference on the estimated causal effect, we use a placebo permutation test in analogy
to Abadie et al. (2010), Gunsilius (2022). The idea is to repeatedly apply the procedure described
above to each control unit, pretending in turn each control unit is the treated unit. Post-intervention,
if an actual treatment effect only appears in the treatment unit (Montana, in this application), then
the estimated effect for the actual treatment unit should be among the largest.

(a) Weights Using All Years (b) Weights Using Averaged Weights Over All Years

Figure 8: In orange: Montana. In blue: pretending each control state listed in Table 1 is a treated
state.

We plot the 2-Wasserstein distance between the treated, joint distribution of all outcomes and the
pre-/post-intervention optimal projection (i.e. equation A.1 with λ∗). We present two sets of results
in Figure 8: in panel (A), the optimal projection is computed using λ∗ estimated using all years in
the pre-intervention period; in panel (B), the λ∗ used is constructed from taking a simple average of
weights estimated in each year of the pre-intervention period. Our results suggest that the estimated
causal effect is valid in the post-intervention period, as we consistently observe the largest difference
coming from Montana, especially from 2017-2019. The effect is less pronounced in 2020, however.
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To accompany Figure 8, we also compute p-values, which we denote by and define as pt ,
r(d1t)
J+1 ,

where d1t is the 2-Wasserstein distance from the optimal projection to actual distribution when the
target unit is Montana, r(d1t) is the rank of d1t amongst djts at given time t, and J is the number
of control units. Results are described in Table 3. A smaller pt value indicates larger treatment
effect. We observed that r(d1t) = 1 for 2018 and 2019, implying a nontrivial effect of the Medicaid
expansion in Montana during these years. The values are pt are comparably higher in 2017 and
2020, which we attribute to the fact that it was the first year of the policy implementation, and the
COVID-19 pandemic, respectively.

Year (t) pt (Weights Using All Years) pt (Averaged Weights Over All Years)
2017 0.231 0.308
2018 0.077 0.077
2019 0.077 0.077
2020 0.535 0.385

Table 3: Estimated pt ,
r(d1t)
J+1 in the post-intervention period.
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