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ABSTRACT

ML libraries, often written in architecture-specific programming languages (AS-
PLs) that target domain-specific architectures, are key to efficient ML systems.
However, writing these high-performance ML libraries is challenging because it
requires expert knowledge of ML algorithms and the ASPL. Large language mod-
els (LLMs), on the other hand, have shown general coding capabilities. However,
challenges remain when using LLMs for generating ML libraries using ASPLs
because 1) this task is complicated even for experienced human programmers and
2) there are limited code examples because of the esoteric and evolving nature of
ASPLs. Therefore, LLMs need complex reasoning with limited data in order to
complete this task. To address these challenges, we introduce an adaptive self-
improvement agentic system. In order to evaluate the effectiveness of our system,
we construct a benchmark of a typical ML library and generate ASPL code with
both open and closed-source LLMs on this benchmark. Our results show improve-
ments of up to 3.9× over a baseline single LLM.

1 INTRODUCTION
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Figure 1: Left: we propose an adaptive self-improvement LLM agentic system. Similar to human
experiential learning Kolb (2014), LLM agents start from their base knowledge and accumulate
experiences through parallel sampling. Our adaptive self-improvement learning algorithm filters
high-quality answers, stratifies the earned experiences by difficulty, and adaptively selects demon-
strations to enhance LLM agents. Right: the portion of completed tasks (Pass@n) across models
using single LLM, agentic system, and adaptive self-improvement agentic system, highlighting per-
formance improvement.

With the ending of Dennard Scaling and Moore’s Law, computer architectures are specializing in
domain applications to achieve greater performance and efficiency and will continue to do so Hen-
nessy & Patterson (2019). New domain-specific architectures (DSA) typically come with new
architecture-specific programming languages (ASPL), such as CUDA for NVIDIA GPUs NVIDIA
(2025), HIP for AMD GPUs AMD (2025), and Pallas for Google TPUs Google (2025). Even ex-
isting ASPLs change as generations of DSAs evolve because new DSAs introduce specialized func-
tions to these existing ASPLs Choquette (2023). Efficiently utilizing these new functions requires
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Figure 2: We benchmarked 8 groups of ML op-
erators for a common LLM layer Jiang et al.
(2024). They can be categorized into dynamic,
static matrix, and static vector operators where
parentheses indicate the number of tasks associ-
ated with each group of ML operators.
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Figure 3: (a) diagrams a STeP program for
a simplified MoE module. More details can
be found in appendix A.2. (b) illustrates the
streaming dataflow execution of (a) on an RDA
where “MU” stands for memory unit, and “CU”
stands for compute unit. (c) is the SN40L, a de-
ployed RDA chip.

fundamentally different programming styles and thus new ASPLs Thakkar et al. (2023); Hagedorn
et al. (2023).

Each DSA needs a corresponding ML library, a collection of ML operators written in its ASPL,
before programmers can effectively use the DSA to accelerate ML applications. ML library devel-
opment is challenging because it requires expertise in both ML algorithms and the target ASPL.
Essentially, library development is a generation process that composes low-level ASPL primitives
into high-level ML operators Dong et al. (2024); Ye et al. (2025).

ML library development using ASPLs requires complex reasoning while minimizing data require-
ments. ML libraries are developed simultaneously as the chip is manufactured to meet the produc-
tion timeline Villa et al. (2021). This library–chip co-design process creates such a tight timeline
that ASPLs have only a limited number of code examples. Moreover, this task is complicated even
for experienced human programmers. For example, the publication of FlashAttention-3 Shah et al.
(2024) lagged behind the release of the H100 by two years. Directly adapting FlashAttention-2 Dao
(2023) from A100 to H100 GPU witnessed a 47% performance drop Spector et al. (2024).

The challenges in ML library development call for more automatic solutions. Furthermore, these
automatic solutions need to self-improve to perform complex reasoning starting from simple and
limited data. Large language models (LLMs) have demonstrated emerging capabilities in code gen-
eration Kaplan et al. (2020); Wei et al. (2022a). Moreover, empirical evidence implies that LLMs
already have the base knowledge of ML algorithms Ouyang et al. (2024). Therefore, we explore the
use of LLM agents to develop ML libraries with emerging ASPLs.

Current self-improvement methods for LLM agents fall short because of limited exploration or low
data efficiency. LLM agents can enhance their performance by synthesizing semantically similar
data Yu et al. (2023); Shinn et al. (2024); Zhao et al. (2024). Although these methods are effective for
local exploration Chen et al. (2024), they are insufficient for tasks that require substantial cognitive
effort Huang et al. (2023). Self-improvement learning can significantly improve reasoning ability
through reinforcement learning Cobbe et al. (2021); Bai et al. (2022); Singh et al. (2023). This
approach, however, currently requires hundreds of effective trajectories sampled from LLM agents
for each problem Wang et al. (2024), making it unsuitable for complex scenarios with limited data.

To address these limitations, we design an adaptive self-improvement learning algorithm integrated
with an agentic system organization. This approach not only produces a self-improving agentic
system to assist humans but also generates high-quality ML operators that can be leveraged by other
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systems. We show our system in fig. 1a. Our techniques create a self-improvement cycle: LLM
agents evolve through earned experiences and these evolved agents can earn more experiences. This
self-improvement cycle is fully automated, involving no human experts beyond the ASPL designers
themselves, who initially tell the models how to use the ASPL primitives.

Inspired by curriculum learning Bengio et al. (2009), our algorithm prioritizes hard-earned experi-
ences gained from challenging task completion. When these hard-earned experiences are used up,
the algorithm adaptively expand demonstrations by mixing experiences earned from less challeng-
ing tasks. Section 6.1 shows that hard-earned experiences improve LLM agents more efficiently
than mixed ones. Mixed experiences, while sometimes diluting demonstrations, can help agents
overcome learning obstacles and complete more tasks. As a byproduct, the algorithm adaptively
increases test-time compute on challenging tasks until they are finished or the data is used up.

To emulate the library–chip co-design process, we choose Streaming Tensor Programs (STeP) as
the target ASPL for library generation. STeP is an emerging ASPL designed for next-generation
reconfigurable dataflow architectures Prabhakar et al. (2017), a family of DSAs for AI Prabhakar
& Jairath (2021); Chen et al. (2023); Prabhakar et al. (2024). The only public document of STeP
is a non-archival three-page workshop publication Sohn et al. (2024a), which defines its semantics
without any code examples or execution environments. Therefore, STeP programs do not exist in
the training corpus of any LLM.

Putting all these together, our system solves up to 96% of the tasks in our benchmark and achieves
up to 3.9× improvements over a baseline single LLM, as shown in fig. 1b. The contributions of
this paper are: (1) an adaptive self-improvement learning algorithm that enables LLM agents to
continuously construct ML libraries through adaptive experience-driven evolution; (2) an end-to-end
agentic system that uses adaptive self-improvement to develop an ML library for STeP, an ASPL
for a next-generation AI accelerator; (3) a complete evaluation of the adaptive self-improvement
learning algorithm and the integrated agentic system on a realistic benchmark constructed from
common ML operators.

2 BACKGROUND

In this section, we provide background on how DSAs are programmed through their ASPLs, de-
scribe how these ASPLs are used to create end-user ML libraries, and identify the key challenges
of this library generation process. We also establish STeP as the target ASPL to explore LLM tech-
niques for ML library development. Key concepts related to the background are listed in table 5.

2.1 ARCHITECTURE-SPECIFIC PROGRAMMING LANGUAGES

ASPLs describe the low-level programming interface of a DSA using primitives and specialized
functions. Primitives model the basic execution pattern similar to general-purpose programming
language constructs, and specialized functions control specialized accelerator units that are opti-
mized for domain applications on the DSA. Unlike domain-specific languages (DSLs), which are
a top-down distillation of the domain algorithms, ASPLs refer to a bottom-up abstraction of the
underlying chip architecture.

2.2 ML LIBRARY DEVELOPMENT USING ASPLS

ML libraries developed in ASPLs face portability challenges because ASPLs rapidly evolve to align
with DSA updates to meet the demand of growing ML workloads. For example, the matrix mul-
tiplication units on NVIDIA GPUs and their corresponding MMA instructions have been updated
every generation since introduction NVIDIA (2017). Consequently, every library function that uses
MMA instructions must be rewritten in a new ASPL per generation. Moreover, ML libraries need to
be shipped with the chip simultaneously. In this case, library development costs are not negligible.

To solve these challenges, we propose to enhance users’ learning capabilities for a given ASPL.
This approach offers an alternative to current automation techniques that focus on simplifying the
learning curve for new ASPLs. Mainstream techniques compromise by optimizing ML operators
whose performance is most significantly affected by the ASPL update Tillet et al. (2019); Thakkar
et al. (2023). Only focusing on certain ML operators does not fully incorporate some ASPL updates,
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such as memory optimizations, which could potentially accelerate any ML operator. Meanwhile,
new ML operators are being proposed Gu & Dao (2023); Sun et al. (2024). Given these factors, we
need better automation to improve the productivity of ML library development using APSLs.

2.3 STEP FOR NEXT-GENERATION RDA

We chose STeP as our target ASPL due to its potential for better efficiency and its status as a research
prototype ASPL. STeP’s efficiency potential stems from its role as the ASPL for next-generation
RDAs, which have emerged as a promising alternative to GPUs. The SN40L, a deployed RDA im-
plementation shown in Figure 3(c), demonstrates record-breaking inference speeds for the Llama
3.1 405B model SambaNova (2024). Although STeP does not yet have a path to a fabricated chip,
developing ML libraries in STeP still presents similar challenges as other ASPLs. Writing STeP pro-
grams requires complex reasoning about streaming dataflow execution, and our work began without
any existing executable STeP programs to reference.

Like other ASPLs, STeP’s operational semantics are expressed by primitives and specialized func-
tions. Specifically, STeP primitives describe different stream token manipulation strategies, and
STeP specialized functions express different configurations of RDA units. STeP adds streaming
to the conventional dataflow execution model of RDAs as shown in fig. 3(b). Streaming dataflow
unifies both data values and control signals as stream tokens. The streaming dataflow execution
model in STeP is inspired by parallel patterns and array programming Hsu et al. (2023); Rucker
et al. (2024). A stream can be consumed by at most one primitive because of the queueing nature
of dataflow Zhang et al. (2021), which is called an affine type constraint in programming language
theory Wikipedia (2024). The affine type constraint is a global property of the program since it
counts the usage of a variable in the whole program.

STeP primitives are categorized as either arithmetic or shape manipulation. Arithmetic primitives
apply computations and control flow to stream tokens. Shape manipulation primitives reshape the
data within the stream by changing the control tokens. Figure 3(a) and Figure 16 are example STeP
programs that contain 5 arithmetic primitives and only shape manipulation primitives, respectively.

3 ADAPTIVE SELF-IMPROVEMENT LEARNING

Our adaptive self-improvement learning evolves LLM agentic systems with data generated by them-
selves. This algorithm parallel samples the agentic system for correct answers with the success
rate, filters high-quality correct answers, stratifies the earned experiences, and adaptively updates
demonstrations until all the tasks are solved or the demonstrations are used up. Algorithm 1 shows
the complete algorithm for adaptive self-improvement learning. As a byproduct, the algorithm adap-
tively assigns more test-time compute to harder tasks because it excludes a task from the task set
after completion. Figure 4 shows a running example, where only the unfinished tasks are fed to the
agentic system. This algorithm is independent of the specific organization of the agentic system.
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Figure 4: Running example of algorithm 1 with m = 3 and |X | = 5. Orange circles are demon-
strations dj for the current iteration. Green circles are finished tasks and white ones are not. m = 3
means β stratifies demonstrations into 3 levels: hard, medium, and easy. Iter 1 and 3 consider hard-
only examples, and the other iterations consider mixed examples.
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3.1 FILTERING HIGH-QUALITY ANSWERS

The filter function, σ, collects earned experience D by filtering one answer for each newly solved
task in St and records the success rate of this answer. σ first groups the correct answers Bt by
the isomorphic abstract syntax tree Knuth (1968). Then, it randomly selects one answer from each
isomorphic group. After that, it selects the one with the minimal length of pure code (excluding
comments and empty lines) from these canonical representatives as the final answer for the task
in St. It also stores the success rate from Ct for β. The minimal length selection follows the
Minimum Description Length principle for higher information density Rissanen (1978). On the
other hand, shorter text might lose chain-of-thought comments Wei et al. (2022b). To balance these
two contradicting intuitions, we introduce randomness to the selection of representative answers for
each isomorphic group.

3.2 STRATIFICATION AND SELECTION

The selection function β stratifies the earned experiences D by binning them into m levels of diffi-
culty and demonstrations dj are selected incrementally from the stratified experiences E . We define
the difficulty as the opposite of the success rate following Lightman et al. (2023). β sorts D in
ascending order of success rate and then bins the tasks as evenly as possible to get the boundaries
of each bin. Then tasks are rebinned using these boundary values. This selection strategy can cause
repetitive steps as exemplified by the dash line circles (Iter 4&5 in fig. 6(a)) when the newly finished
tasks are easier than the demonstrations. Our algorithm keeps these repetitive steps instead of avoid-
ing them because the tasks with low success rates have a better chance of getting one correct answer
with the number of samples doubled. For example, Iter 4 performs better than Iter 3 in fig. 6(b) with
the same demonstrations. This method can also cause later iterations to have fewer tokens but with
higher quality than the previous iteration (Iter 2&3 in fig. 6(a)) when the boundary value crosses two
bins and the newly finished tasks are easier.

4 AGENTIC SYSTEM ORGANIZATION

In this section, we introduce a specific agentic system organization tailored for ML library develop-
ment using STeP as shown in fig. 5. It includes LLM agents, a code generator, and verifiers with a
structural intermediate representation as the interface between users and system components.

User

Task

Agentic system

Proposer CorrectorGate Code 
generatorPrompt 

Composer

Single 
LLM

Input

Configuration

Pytest

Type 
Checker

Agent 1 Agent 2

STeP 
ProgramAPI 
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Output

User

Structural IR Host language (Python)

(b) Agentic system organization  

Domain expert

Base Prompt

(a) A single LLM

Figure 5: Details of our agentic system organization. (a) shows a single LLM. (b) shows the system
components and their representations. The user is either a human or a self-improvement learning
process. The filled colors align with the text colors in section 4.

4.1 LLM AGENTS

As shown in fig. 5(a), each single LLM is designed for a purpose assigned by the domain expert
through the base prompt. The base prompt contains the task description, base knowledge, and
demonstrations. The prompt composer chains the base prompt and task-specific input, which is then
fed into a configured LLM serving API.

We design two agents, a proposer and a guardian. As explained in section 2.3, the affine type
constraint in STeP is a global property that requires thinking back and forth beyond step-by-step
reasoning, which is challenging for the causal generation of LLMs. Therefore, we design a guardian
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agent to check and correct the affine type error globally. We exclude the demonstration tasks in the
base prompt of the agents from the benchmark to avoid the model directly copying the answer. The
proposer agent generates a candidate STeP implementation whose base prompt comes from ASPL
designers. The base prompt is composed of STeP references and usage patterns. Figure 13 shows
the reference for the Accum primitive, and fig. 16 exemplifies one of the usage patterns for shape
manipulation. The guardian agent decides whether the output of the proposer violates the affine type
constraint and corrects the implementation when necessary. The guardian agent consists of a fused
gate and corrector. Figure 19 shows the base prompt for the guardian agent, which provides input
and output examples of variable reuse where the variable is reused zero, one, or two times.

4.2 CODE GENERATOR

After the LLM agents, a code generator takes in the generated implementation and outputs a self-
contained pytestable Python script. With this code generator, LLM agents only need to output
implementations without other helper code. We embed the STeP specifications written in natural
language to Python (as exemplified in fig. 20 to fig. 21). Beneath this Python frontend is a func-
tional simulator that calculates the result of STeP programs. Since the essence of each ASPL is
the programming abstraction (semantics) instead of its syntax Liskov (2011), we choose to prompt
LLMs with their familiar Python syntax. In this way, LLMs can focus more on reasoning about the
STeP programming abstraction without being distracted by alien syntax.

4.3 VERIFIER

Fast verification is vital because it bottlenecks adaptive self-improvement learning. ASPLs further
increase this complexity by requiring a simulator for the library–chip co-design process. Simulating
STeP as a general dataflow system in Python would be slow because of its high dynamism Zhang
et al. (2024a). Since we only focus on functional correctness in this work, we meticulously limit the
level of dynamism to the degree that ML operators require. Consequently, our simulator emulates
stream execution using tensor computation with necessary control flows.

Our system organization contains two verifiers. As a result, the reward in algorithm 1 is r(x, y) = 1
for task y if answer x passes these two verifiers and r(x, y) = 0 otherwise. One verifier checks for
functional correctness. Users program PyTorch to express their ML operators, which elicits LLMs’
base knowledge of ML algorithms. The verifier compares the execution results of our simulator with
the result tensors of the corresponding PyTorch program on a single set of shapes with random input
values. The fidelity of our unit test method builds on practice Jia et al. (2019) and theory Gulwani
& Necula (2003). The other verifier checks the affine type constraint by performing static analysis
on the abstraction syntax tree of the STeP program with the Python ast module Ronacher (2008).

4.4 STRUCTUAL INTERMEDIATE REPRESENTATION

Good interfaces can improve the performance of agentic coding systems Yang et al. (2024); Wei et al.
(2024). We borrow the intermediate representation (IR) technique from compiler literature Lattner
et al. (2021) and use a structural IR to unify the interfaces of our agentic system. Specifically,
the structural IR is used as the interface between users and the agentic system and as the interface
between LLM agents and the code generator within the system. Our structural IR encodes necessary
information using a data serialization language. It externalizes and condenses programs instead of
simply formatting the prompt without changing the content. Comparing the structural IR in fig. 17
with the equivalent bare Python in fig. 18 for the same task, users only need to state two things:
the ML operator to implement and the specialized functions as in fig. 14 without any redundant
glue string. Moreover, structural IR saves tokens by reducing redundant prompts, allowing for more
demonstrations.

5 BENCHMARK

We construct a set of tasks to measure the adaptive self-improvement agentic system proposed in sec-
tion 3 and section 4. This benchmark should cover a diverse set of popular ML operators and spe-
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cialized functions. In total, we collect 26 tasks covering 8 groups of ML operators in common LLM
model architectures, as shown in fig. 2.

We choose pass@k Chen et al. (2021) as the metric for task completion. Pass@k is calculated
as eq. (2) given T tasks, n samples of the agentic system, and ci correct responses for each task
i. It is useful for us to analyze the metric at two extremes: pass@1 and pass@n. Pass@1 is the
expectation of the success rate across tasks. Pass@n is the expectation of the portion of tasks that
can be solved given all samples.

We construct the benchmark from first principles and do not favor any kind of task. Firstly, the
number of tasks in each group is nearly the same as shown in fig. 2. Secondly, the benchmark has an
even distribution of difficulties. Table 2 shows that both tasks requiring shape and arithmetic prim-
itives and tasks with and without reused variables distribute fairly evenly. We provide a reference
implementation for each task. These oracle implementations ensure that each task has at least one
correct answer. Each task of one type has either different specialized functions for the same oper-
ator or different operators with different specialized functions. More details on the benchmark are
in appendix A.3.

6 EXPERIMENTS

Detailed experimental settings are in appendix A.4. We also benchmark the tasks with OpenAI-o1
in table 4 but do not include it in the following experiments to control for test-time compute. All
prompts are formatted in YAML because structural prompts generally benefit He et al. (2024).

6.1 ANALYSIS OF ADAPTIVE SELF-IMPROVEMENT LEARNING

The hard-only examples improve the performance more effectively than examples mixed with
easier ones. As shown in fig. 6, the Pareto optimal is composed of hard examples (denoted by “H”)
for all three models. Moreover, hard examples bring the most significant improvement along the
learning curve. In some cases, fewer hard examples may perform better than more examples mixed
with easier examples. For example, Iter 3 has better performance than Iter 2 for gpt-4o.

Mixed examples are required to generate better hard-only examples. In DeepSeek-V3, although
HM1 performs the same as H1 and HME1 performs worse than H2 while taking more tokens, H2

would not be discovered without HM1 and HME1. Although the new hard-only examples do not
necessarily improve the performance, they can save input tokens, as exemplified by HM4&H5 of
gpt-4o and HM5&H6 of llama.

(a) (b) (c)

Figure 6: Adaptive self-improvement learning improves the agentic system with data generated
by itself. The input tokens are averaged across tasks. A task takes increasing input tokens until
success or data is used up. “9: HME5” means 9-th iteration, 5-th cycle of adaptive sampling, and
demonstrations contain hard (H), medium (M), and easy (E)-earned experiences. “None” means no
examples for the first iteration. For Iter i, if Pass@ni−1 > Pass@ni−2, then a new cycle of adaptive
sampling starts from “H”. Otherwise, the current cycle continues in the order of H→HM→HME.
The dash lines are connected in the iteration order. Claude 3.5 Sonnet result is in fig. 10.

Adaptive granularity affects token efficiency and peak performance. If the adaptive granularity
m is too small, then easy examples might dilute the difficulty of training data. If m is too large, then
exploration steps might be too conservative and thus waste input tokens. Therefore, there is a sweet
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spot that balances the training data difficulty and cost of input tokens. As shown in fig. 7, m = 3
is that spot. m = 3 saves 1.07× tokens over m = 4 while maintaining performance. Additionally,
m = 3 improves the performance by 1.5× at a similar input token cost when compared to m = 1.

Figure 7: Hyperparameter tuning of adaptive
granularity m on GPT-4o. This supports using
m=3 for fig. 6.
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6.2 ABLATION STUDY OF AGENTIC SYSTEM ORGANIZATION

Agentic system can discover non-trivial STeP programs. Surprisingly, the agentic system com-
poses attention operators with over 50% Pass@1 as shown in fig. 12. That means the agentic sys-
tem can discover online softmax Milakov & Gimelshein (2018) and memory-free streaming atten-
tion Sohn et al. (2024b) with specialized functions provided in fig. 15, which is considered challeng-
ing for ordinary programmers.

Our structual IR improves performance by increasing the sample diversity. Figure 8 shows the
efficacy of our structural IR and agentic method. We calculate the semantic diversity of sampled
answers. A group of answers is considered to have the same semantics if their abstract syntax
trees are isomorphic. We calculate success diversity as the number of semantically different correct
answers divided by the total number of correct answers, averaged across all tasks. Failure diversity
is calculated in a similar way but for wrong answers. Overall, diversity combines both metrics. As
shown in table 1, Pass@n has a positive correlation with failure, overall diversity, and the complexity
of the methods. However, structural IR can hurt success diversity.

Method Success Failure Overall Pass@ndiversity diversity diversity

Single-WS 0.32 0.47 0.41 0.46
Single 0.27 0.64 0.50 0.62
Agent 0.34 0.68 0.52 0.85

Table 1: Analysis of the correlation between semantic diversity of answers and the performance.
“-WS” means “without structural IR”. Higher values indicate higher semantic diversity.

The guardian agent can correct affine type errors but might also corrupt correct answers
output by the proposer agent.

As shown in Table 2, the guardian agent effectively corrects the proposer agent, solving 5 extra reuse
tasks (Pass@n of Avg-Reuse from 6/12 to 11/12). Notably, all the Arith-Reuse tasks can be solved
by the agentic system (Pass@n of Arith-Reuse from 5/8 to 8/8). Surprisingly, the agentic system
also helps with non-reuse tasks (Pass@n of Shape-Once from 3/7 to 4/7). However, the agentic
system reduces the Pass@1 of Arith-Once from 0.685 to 0.663, implying that the guardian agent
might corrupt the proposer’s output. The agentic system can compensate for such corruption by
finishing more tasks, resulting in an unchanged Pass@1 of Avg-Once.
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Mode Metric Method Once Reuse Avg

Arith
Pass@1 Single 0.685 0.232 0.444

Agent 0.663 0.455 0.552

Pass@n Single 7/7 5/8 12/15
Agent 7/7 8/8 15/15

Shape
Pass@1 Single 0.145 0.004 0.094

Agent 0.167 0.051 0.125

Pass@n Single 3/7 1/4 4/11
Agent 4/7 3/4 7/11

Avg
Pass@1 Single 0.415 0.156 0.296

Agent 0.415 0.320 0.371

Pass@n Single 10/14 6/12 16/26
Agent 11/14 11/12 22/26

Table 2: Analysis of improvement brought by the agentic method. “Arith” and “Shape” mean the
oracle implementation only involves arithmetic primitives and involves shape manipulation primi-
tives as introduced in section 2.3, respectively. “Once” and “Reuse” mean all the streams are used
once and more than once, respectively.

7 RELATED WORK

7.1 SELF-IMPROVEMENT LEARNING FOR LLMS

Self-improvement learning for LLMs typically involves two stages: scoring generated samples (tra-
jectories) and incorporating those samples to enhance the model. Scoring can be achieved through
human labeling Cobbe et al. (2021); Lightman et al. (2023) or through automated methods such
as verifiers and heuristics Wang et al. (2024); Singh et al. (2023). Our method stands out in this
context by utilizing AST analysis, offering a more interpretable approach to scoring. When it comes
to incorporating samples, models may rely on retrieval Zhao et al. (2024); Park et al. (2023), reflec-
tion Shinn et al. (2024); Liu et al. (2023), or reward feedback Opsahl-Ong et al. (2024); Fernando
et al. (2023). Our method introduces a new mechanism in this stage by adaptively extending and
prioritizing high-scoring samples.

Our method shares similar reinforcement principles with self-improvement learning at the post-
training stage Bai et al. (2022); Gulcehre et al. (2023); Tian et al. (2024) but is rewarded at a task-
level granularity instead of token-level. Specifically, each action is a program instead of token
prediction and the state is defined by earned experiences rather than generated sequences.

7.2 AGENTIC SYSTEM ORGANIZATION FOR SPECIALIZED TASKS

Task-specific organization has proven effective in enhancing the performance of agentic systems
across diverse coding tasks Zhang et al. (2024b); Fang et al. (2024); Guan et al. (2024). We adopt an
agentic system organization specifically for ML library development using an ASPL. Such domain
knowledge can be further augmented with automatic agentic system design tools Khattab et al.
(2023); Hu et al. (2024). Furthermore, well-designed interfaces between agents, tools, and other
agents have been shown to improve performance Schick et al. (2023); Yang et al. (2024); Wu et al.
(2023), and a structural IR enables these interfaces to be highly task-aligned in our system.

8 CONCLUSION

ML library development using ASPLs is a critical component of the ML ecosystem, but it remains
poorly automated. To address this limitation, we co-design the learning process and agentic system
around a central objective: enabling complex reasoning with limited data. Our methods simultane-
ously implement non-trivial ML operators and produce a self-improving agent. Consequently, our
system provides not only support to experts in developing ML libraries but also valuable resources
for other systems.
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A APPENDIX

A.1 ADAPTIVE SELF-IMPROVEMENT LEARNING ALGORITHM

Algorithm 1 Adaptive self-improvement learning

Input: X : task set, m: adaptive granularity
Require: θ: LLM agentic system, r: reward from verifier, σ: filter function, β: selection function

1: D ← ∅
2: t← 0 ▷ iteration
3: repeat
4: E ← β(D,m) ▷ stratification
5: for ej ∈ E do
6: dj ← [e0, e1, ...ej ] ▷ selection
7: // Parallel sampling
8: Ct ← {Ey∼pθ(y|xi,dj)[r(xi, y)] | xi ∈ X}
9: Bt ← {(xi, y) | r(xi, y) = 1, xi ∈ X}

10: St ← {xi | ci > 0, ci ∈ Ct}
11: if Bt ̸= ∅ then
12: D ← D ∪ σ(Bt, Ct,St) ▷ filtering
13: X ← X \ St
14: t← t+ 1
15: break
16: end if
17: t← t+ 1
18: end for
19: until X = ∅ ∨ (dj = D ∧ Bt−1 = ∅)
Output: Solutions: D

Discussion. To use this technique in a continuous learning setting, users can add new tasks to the
initial X and apply algorithm 1. This approach, however, does not guarantee success and might
exceed context window constraints. If the task set X is finite, as in our case, the algorithm will
terminate.

A.2 STEP INTRODUCTION

As shown in fig. 9, Copy duplicates a stream for the affine type constraint. Zip combines two streams
of values into a stream of tuples. Map applies the function (fn) on each input value. Partition routes
tokens of the data stream to experts assigned by the index stream (S0

1 ). Merge accumulates tokens
from experts. The accumulation of Merge is parameterized by fn and init where init initializes the
state and fn updates the state with the input value. Partition and Merge are used in pairs, sharing the
same index stream. ⟨⟩ represents the Tuple type of value tokens. Buffer, Multihot, and Scalar are
also types of value tokens, parametrized by the generic data type like float and half, which is omitted
for simplicity in the algorithm. Buffer and Multihot types are further parametrized by the shape in
the paratheses. Shape manipulation primitives include Promote, Repeat and RepeatRef. Fig-
ure 3(a) also shows two streams. S1 is a control token signaling the end of rank-1. 01 is a value
token of multihot vector type served in index streams. (v0,v1) is a value token of type Tu-
ple(Scalar, Reference) because the weight and input streams are composed of scalar and reference
values, respectively.
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1∑
i=0

Gi · gelu(WiX) with Ni = I[Gi > 0] (1)

Algorithm 2 STeP for a simplified MoE module

Require: X: [m,n] of Buffer(k), N : [m,n] of Multihot(e), G: [m,n] of Buffer(e)
Output: [m,n] of Buffer(k)
param W0: [k,d], W1: [k,d]
func weightedsum ▷ external function

type: Buffer(k)→ ⟨Buffer(k), Scalar⟩ → Buffer(k)
fn (s,v) = s + v0 ∗ v1
init: s = 0

func expert0
type: ⟨Buffer(k), Buffer(e)⟩ → ⟨Buffer(k), Scalar⟩
fn (v) = gelu(W0v0), v1[0])

func expert1
type: ⟨Buffer(k), Buffer(e)⟩ → ⟨Buffer(k), Scalar⟩
fn (v) = gelu(W1v0), v1[1])

1: S0 = Zip(X , G)
2: S0

1 , S1
1 = Copy(N )

3: S2 = Partition(2, S0, S0
1 )

4: S3 = [Map(expert0, S2[0]), Map(expert1, S2[1])]
5: S4 = Merge(weightedsum, S3, S1

1 )

Figure 9: Algorithm 2 is a STeP program example for eq. (1). The type signature follows the Haskell
style where→ connects a sequence of argument types with one return type. Three funcs are external
functions provided by the hardware.

A.3 BENCHMARK DETAILS

The pass@k is defined as:

pass@k :=
1

T

T∑
i=1

[
1−

(
n−ci
k

)(
n
k

) ]
(2)

As shown in fig. 2, Group 4 tasks have the same operator: softmax(S) · V where S equals QKT .
They differ in external functions as shown in fig. 15. Group 4 can use RDA’s on-chip fusion to
compose scale-dot-product attention with Group 5. Group 7 also differs in external functions. Group
5 contains three dataflow orders: inner-product(”mnk,mdk → mnd”), row-wise(”mnk,mkd →
mnd”), and outer-product(”mkn,mkd → mnd”). Group 6 contains GptJ and NeoX styles which
differ in pairing even and odd or the first and second half positions vLLM (2023). Group 8 contains
LayerNorm and RMSNorm.

The last three in table 3: index, expert, and etoe all come from MoE. MoE contains token Shazeer
et al. (2017) eq. (3) and expert choice routing Zhou et al. (2022) eq. (4).

S = softmax(X ·Wg), S ∈ Rn×e

G, I = TopK(S) Along expert dimension
(3)

S = softmax(X ·Wg), S ∈ Rn×e

G, I = TopK(ST ) Along token dimension
(4)

The expert choice routing can have another MLP auxiliary predictor for causal inference when it is
a binary choice Raposo et al. (2024) eq. (5).

S = σ((gelu(X ·Wg0)) ·Wg1), S ∈ Rn×1 expert=2
G, I = S > 0.5

(5)
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Group Description Count

attn Softmax(S)@V part 3
gemm Matrix multiplication with expanded reduction dimension 3
bmm Batch matrix-matrix product 3
norm RMSNorm and LayerNorm (without bias and gain) 3
rope GptJ and NeoX style of RoPE 3
index Index generation of MoE router 4
expert Expert execution of MoE 3
etoe End-to-end of MoE module 4

Table 3: Description of each type of tasks. Matmul is short for matrix multiplication.

A.4 EXPERIMENT SETTINGS

In section 6.1 we sample 64 times for each temperature of 0.4, 0.7, and 1.0, recording the best result.
In section 6.2, we sample 64 times at temperature 0.7 on Claude 3.5 Sonnet to control variables.
Four models are: claude-3-5-sonnet-20241022 of Anthropic API (Claude 3.5 Sonnet), gpt-4o-2024-
11-20 of OpenAI API (GPT-4o), deepseek-chat of DeepSeek API (DeepSeek-V3), and Meta-Llama-
3-1-405B-Instruct-Turbo of TogetherAI API (Llama 3.1-405B). Maximum output tokens are set as
1024 and the seed for GPT-4o is 42. Section 6.1 uses the agentic system organization described
in section 4.1 for the best possible base learning capability. Section 6.2 studies the base learning
capability of agentic systems without the self-improvement process.

A.5 EXTRA RESULTS

4000 6000 8000 10000 12000
Input Tokens

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
n

Claude 3.5 Sonnet

Intermediate steps
Pareto optimal

Figure 10: Self-improvement learning curve with m=3. Claude 3.5 Sonnet consumes much fewer
tokens than other models because the input tokens are counted by the least necessary number of
tokens averaged across tasks. A task can take increasing input tokens but still fail. Sonnet only has
3 unsolved tasks left. Therefore, although it has the most example tokens, the average number of
input tokens across tasks is still less than others.

As shown in table 4, OpenAI-o1 achieves similar performance at the cost of more tokens than a
single Claude-3-5-Sonnet. This observation aligns with previous findings that scaling pretraining is
preferable over inference for challenging tasks Snell et al. (2024). Meanwhile, a single Claude-3-5-
Sonnet proposer can finish more tasks than the OpenAI-o1 using fewer tokens. Table 3 contains all
abbreviations.
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Figure 11: Result of five models at temperature 0.7.

Figure 12: Result of three methods on Claude 3.5 Sonnet at temperature 0.7.

A.6 ADDITIONAL EXPLANATION

Model Metric (↑) attn gemm bmm norm rope index expert etoe avg

Qwen2.5-Coder-32B Pass@1 0.010 0 0.052 0 0 0.004 0 0 0.008
Pass@n 0.33 0 0.33 0 0 0.25 0 0 0.115

Llama3-405B Pass@1 0.010 0 0 0.057 0.089 0.016 0 0 0.020
Pass@n 0.33 0 0 1.00 0.67 0.25 0 0 0.269

DeepSeek-V3 Pass@1 0.438 0 0 0 0 0.113 0 0 0.068
Pass@n 1.00 0 0 0 0 0.75 0 0 0.231

GPT-4o Pass@1 0.021 0.016 0.214 0.094 0 0.258 0.005 0 0.080
Pass@n 0.33 0.67 0.33 0.67 0 0.5 0.33 0 0.346

Claude-3-5-sonnet Pass@1 0.620 0.229 0.146 0.208 0.526 0.676 0.688 0.324 0.433
Pass@n 1.00 1.00 0.33 1.00 1.00 0.75 1.00 1.00 0.885

OpenAI-o1 (n=8) Pass@1 0.208 0.042 0 0 0.083 0.343 0.583 0 0.159
Pass@n 0.67 0.33 0 0 0.67 0.5 1.00 0 0.385

Table 4: The performance of the self-improvement agentic system across models.
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Abbv. Description

DSA Domain Specific Architectures
DSL Domain Specific Language

ASPL Architecture Specific Programming Language
RDA Reconfigurable Dataflow Architecture, a DSA for AI
STeP Streaming Tensor Program, an ASPL for next-generation RDA

Table 5: Explanation of the abbreviations.

A.7 CODE AND PROMPT EXAMPLES

- name: Accum
desc: |
Accum is a primitive operation that applies a function to a stream in a recursive manner.
The function is applied to the first element of the stream and the initial state to produce

the first output element.
The function is then applied to the second element of the stream and the output of the

previous application to produce the second output element, and so on.
The state is initialized at rank ‘b‘ of the input stream. The output stream’s shape is the

input stream’s shape excluding the first ‘b‘ dimensions.

examples:
- inputs:
- name: E0
dtype: fp32
dims: [M, N]
data_gen: torch.rand

fns:
- name: Sum

apply: |
return [state[0] + input[0]]

init: [0]
input_dtype: fp32
output_dtype: fp32
func_name: fn_sum

outputs:
- name: S0

dtype: fp32
dims: [N]
data_transform:
- |

torch.sum(input_data[’E0’], 1, keepdim=False)
impl: |

E1 = step.Accum(fn=fn_sum, b=1).apply(E0)
return E1

Figure 13: The reference of Accum that contains the definition and an example. Each example in
the examples field is composed of task description and implementation.
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inputs:
- name: E0
dtype: fp32
dims: [M, N]
data_gen: torch.rand

- name: E1
dtype: Buffer(fp32, [D])
dims: [M, N]
data_gen: torch.rand

fns:
- name: MaxSum
apply: |

m_t, l_t, o_t = state # scalar, scalar, [D]
s_t, v_t = input # scalar, [D]
m_next = torch.max(m_t, s_t) # scalar
l_prim_t = torch.exp(m_t - m_next) * l_t
p_t = torch.exp(s_t - m_next)
l_next = p_t + l_prim_t
o_next = l_prim_t * o_t / l_next + p_t * v_t / l_next
return [m_next, l_next, o_next]

init: [-inf, 0, 0]
input_dtype: [fp32, "Buffer(fp32, [D])"]
output_dtype: [fp32, fp32, "Buffer(fp32, [D])"]
func_name: fn_maxsum

- name: GetThird
apply: |

return [input[2]]
input_dtype: [fp32, fp32, "Buffer(fp32, [D])"]
output_dtype: Buffer(fp32, [D])
func_name: fn_getthird

outputs:
- name: S0
dtype: fp32
dims: [D, N]
data_transform:

- |
torch.bmm(torch.softmax(input_data[’E0’], 1).unsqueeze(1),

input_data[’E1’]).squeeze(1)

impl: |

Figure 14: Task description of attn task 0 in our structural IR, where the LLM needs to complete
impl.
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# Task 0
# MaxSum
def apply(state, input):

mt, lt, ototot = state
st, vtvtvt = input
mt+1 = max(mt, st)

l′t = lt ∗ e(mt−mt+1)

pt = e(st−mt+1)

lt+1 = pt + l′t
ot+1ot+1ot+1 = 1

lt+1
(l′t ∗ ototot + pt ∗ vtvtvt)

return (mt+1, lt+1, ot+1ot+1ot+1)

def init():
return (−∞, 0,000)

# GetThrid
def apply(input):

return input[2]

# Task 1
# ExpMaxDiff
def apply(state, input):

mt, et, dt = state
st, = input
mt+1 = max(mt, st)
∆m = mt − mt+1

et+1 = e(st−mt+1)

dt+1 = e∆m

return (mt+1, et+1, dt+1)

def init():
return (−∞, 0, 0)

# DivSum
def apply(state, input):

vtvtvt, et, dt = input
lt, ototot = state
l′t = dt ∗ lt
lt+1 = et + l′t
ot+1 = 1

lt+1
(l′t ∗ ototot + et ∗ vtvtvt)

return (lt+1, ot+1)

def init():
return (0,000)

# GetSecondThrid
def apply(input):

return input[1],input[2]

# GetSecond
def apply(input):

return input[1]

# Task 2
# ExpMaxDiff
def apply(state, input):

mt, et, dt = state
st, = input
mt+1 = max(mt, st)
∆m = mt − mt+1

et+1 = e(st−mt+1)

dt+1 = e∆m

return (mt+1, et+1, dt+1)

def init():
return (−∞, 0, 0)

# GetSecondThrid
def apply(input):

return input[1],input[2]

# WeightedSumSingle
def apply(state, input):

et, dt = input
rt = state
return (rt ∗ dt + et)

def init():
return 0

# WeightedSumDouble
def apply(state, input):

vtvtvt, et, dt = input
return (state ∗ dt + et ∗ vtvtvt)

def init():
return 000

# Div
def apply(input):

rt, ltltlt = input

return ltltlt
rt

Figure 15: Inner functions for 3 tasks of attn. Task 0 encapsulates the whole innermost loop
body of FlashAttention Dao et al. (2022) in the MaxSum function. Task 1 splits the MaxSum into
ExpMaxDiff and DivSum. Task 2 postpones the division of summation as in FlashAttention2 Dao
(2023). The bold symbols are streams with type 1D Buffer, and the symbols are streams with type
Scalar.

name: Stashing dimension
desc: |

When the pritmives require a non-one dimension to be inserted as a non-innermost dimension,
a Bufferize&Streamify pair can wrap the primitives to adjust the dimension.

This pattern is useful for Repeat and RepeatRef primitives.
examples:

- inputs:
- name: E0
dtype: fp32
dims: [M, N, K]
data_gen: torch.rand

outputs:
- name: S0

dtype: fp32
dims: [M, N, D, K]
data_transform:

- |
input_data[’E0’].unsqueeze(1).repeat(1, D_value, 1, 1)

impl: |
E1 = step.Bufferize(a=2).apply(E0) # E1: {dtype: Buffer(fp32, [M, N]), dims: [K]}
E2 = step.Repeat(n=D).apply(E1) # E2: {dtype: Buffer(fp32, [M, N]), dims: [D, K]}
E3 = step.Streamify().apply(E2) # E3: {dtype: fp32, dims: [M, N, D, K]}
return E3

Figure 16: An example of usage pattern that contains 3 shape manipulation primitives: Bufferize,
Repeat, and Streamify.
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inputs:
- name: E0
dtype: fp32
dims: [M, N]
data_gen: torch.rand

- name: E1
dtype: Buffer(fp32, [D])
dims: [M, N]
data_gen: torch.rand

fns:
- name: MaxSum
apply: |

m_t, l_t, o_t = state # scalar, scalar, [D]
s_t, v_t = input # scalar, [D]
m_next = torch.max(m_t, s_t) # scalar
l_prim_t = torch.exp(m_t - m_next) * l_t
p_t = torch.exp(s_t - m_next)
l_next = p_t + l_prim_t
o_next = l_prim_t * o_t / l_next + p_t * v_t / l_next
return [m_next, l_next, o_next]

init: [-inf, 0, 0]
input_dtype: [fp32, "Buffer(fp32, [D])"]
output_dtype: [fp32, fp32, "Buffer(fp32, [D])"]
func_name: fn_maxsum

- name: GetThird
apply: |

return [input[2]]
input_dtype: [fp32, fp32, "Buffer(fp32, [D])"]
output_dtype: Buffer(fp32, [D])
func_name: fn_getthird

outputs:
- name: S0
dtype: fp32
dims: [D, N]
data_transform:

- |
torch.bmm(torch.softmax(input_data[’E0’], 1).unsqueeze(1),

input_data[’E1’]).squeeze(1)

impl: |
E3 = step.Zip().apply((E0, E1))
E4 = step.Accum(fn=fn_maxsum, b=1).apply(E3)
E5 = step.Map(fn=fn_getthird).apply(E4)
E2 = step.Streamify().apply(E5)
return E2

Figure 17: The complete implementation of attn task 0 written in structural IR.
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import step
from sympy import Symbol
import torch

M = Symbol("M")
N = Symbol("N")
K = Symbol("K")
D = Symbol("D")
M_value = 5
N_value = 7
K_value = 9
D_value = 11
ctx = {M: M_value, N: N_value, K: K_value, D: D_value}
input_dtype = {’E0’: step.Scalar("float"), ’E1’: step.Buffer(step.Scalar("float"), [D])}
input_data = {’E0’: torch.rand(N_value, M_value), ’E1’: torch.rand(N_value, M_value, D_value)}

class MaxSum(step.Fn):
def __init__(self, input, output):

super().__init__("MaxSum", input, output)
def getInit(self):

return [torch.tensor(float(’-inf’)), torch.tensor(0), torch.zeros(D_value)]
def apply(self, state, input):

m_t, l_t, o_t = state # scalar, scalar, [D]
s_t, v_t = input # scalar, [D]
m_next = torch.max(m_t, s_t) # scalar
l_prim_t = torch.exp(m_t - m_next) * l_t
p_t = torch.exp(s_t - m_next)
l_next = p_t + l_prim_t
o_next = l_prim_t * o_t / l_next + p_t * v_t / l_next
return [m_next, l_next, o_next]

fn_maxsum = MaxSum(step.STuple((step.Scalar("float"), step.Buffer(step.Scalar("float"),
[D]))), step.STuple((step.Scalar("float"), step.Scalar("float"),
step.Buffer(step.Scalar("float"), [D]))))

class GetThird(step.Fn):
def __init__(self, input, output):

super().__init__("GetThird", input, output)
def apply(self, input):

return [input[2]]
fn_getthird = GetThird(step.STuple((step.Scalar("float"), step.Scalar("float"),

step.Buffer(step.Scalar("float"), [D]))), step.Buffer(step.Scalar("float"), [D]))

def prepare():
E0 = step.Stream("E0", step.Scalar("float"), 1, [M, N])
E0.ctx = ctx
E0.data = [input_data[’E0’]]
E1 = step.Stream("E1", step.Buffer(step.Scalar("float"), [D]), 1, [M, N])
E1.ctx = ctx
E1.data = [input_data[’E1’]]
return E0, E1

def check_shape(S0):
assert S0.shape == [D, N]
assert S0.dtype == step.Scalar("float")

def check_data(S0):
S0_data_0 = torch.bmm(torch.softmax(input_data[’E0’], 1).unsqueeze(1),

input_data[’E1’]).squeeze(1)
torch.testing.assert_close(S0.data[0], S0_data_0)

def test():
E0, E1 = prepare()
S0 = body(E0, E1)
check_shape(S0)
check_data(S0)

def body(E0, E1):
E3 = step.Zip().apply((E0, E1))
E4 = step.Accum(fn=fn_maxsum, b=1).apply(E3)
E5 = step.Map(fn=fn_getthird).apply(E4)
E2 = step.Streamify().apply(E5)
return E2

Figure 18: The unit test of the implementation of attn task 0 in Python produced by the code gener-
ator from structural IR shown in fig. 17.
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desc: |
Streaming Tensor Programs (STeP) provides a higher-level abstraction for dataflow systems.
The streams can be only consumed once. Your task is to use Copy primitives to create a new

stream that is a copy of the input stream when necessary.

examples:
- input_impl: |

E2 = step.Partition(N=E_value).apply((E0, E1))
E3 = [step.Map(fn=fn).apply(s) for fn, s in zip(matmul_fns, E2)]
E4 = step.Merge(fn=fn_sum).apply((E3, E1))
return E4

output_impl: |
E1_0, E1_1 = step.Copy().apply(E1)
E2 = step.Partition(N=E_value).apply((E0, E1_0))
E3 = [step.Map(fn=fn).apply(s) for fn, s in zip(matmul_fns, E2)]
E4 = step.Merge(fn=fn_sum).apply((E3, E1_1))
return E4

explanation: |
Stream E1 is consumed twice in the input implementation. To ensure that the stream is

consumed only once, we create a copy of the stream E1 and use the copy in the
second step.

- input_impl: |
E1 = step.Map(fn=fn_predict).apply(E0)
E2 = step.Map(fn=fn_router).apply(E1)
E3 = step.Map(fn=fn_affinity).apply(E0)
E4 = step.Zip().apply((E0, E3))
return E4

output_impl: |
E0_0, E0_1 = step.Copy().apply(E0)
E0_2, E0_3 = step.Copy().apply(E0_0)
E1 = step.Map(fn=fn_predict).apply(E0_1)
E2 = step.Map(fn=fn_router).apply(E1)
E3 = step.Map(fn=fn_affinity).apply(E0_2)
E4 = step.Zip().apply((E0_3, E3))
return E4

explanation: |
Stream E0 is consumed 3 times in the input implementation. To ensure that all streams

are consumed only once, we create a copy of the stream E0 and use the copy in the
subsequent steps.

- input_impl: |
E1 = step.Bufferize(a=1).apply(E0)
E2 = step.Map(fn=fn_gate).apply(E1)
E3 = step.Map(fn=fn_top2).apply(E2)
return E3, E2

output_impl: |
E1 = step.Bufferize(a=1).apply(E0)
E2 = step.Map(fn=fn_gate).apply(E1)
E3 = step.Map(fn=fn_top2).apply(E2)
return E3, E2

explanation: |
All streams are consumed only once in the input implementation. No need to create a

copy of any stream.

Figure 19: Base prompt for the guardian agent.
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### <a name="Accum"></a>Accum
Accumulate the lower ‘b‘ dimensions in ‘Stream<A,a>‘ into a single value of type ‘B‘.

**Accum** will continue to dequeue and accumulate to a value of type ‘B‘ by calling the
given accumulation function (‘Fn(A,B)->B‘) until it sees a ‘.Sb‘ in the input stream.
Then, it will emit the accumulated value of type ‘B‘ into the output stream and
initialize the accumulator with the given initialize function.

‘‘‘
Accum<A,B,a,b>: Fn(A,B) -> B, Fn() -> B, Stream<A,a> -> Stream<B,a-b>

(accumulate) (initialize)
Precondition: 0 < b <= a
‘‘‘
We can think of ‘b‘ as the minimum stop token level **Accum** has to see before emitting the

accumulated values. More details on how to set ‘b‘ according to the type of reduction we
do can be found in the below examples.

<details>

<summary>
Examples
</summary>

**Example1: Rowmax** <br/>

‘‘‘
Goal: [B,N,E] -> [B,N] (Reduce over the inner-most dim)
Accum<A=f32, B=f32, a=3, b=1>:
Fn(f32,f32)->f32, Fn()->f32, Stream<f32,3>->Stream<f32,2>

Precondition: 0 < b <= a
(=1) (=3)

‘‘‘
We will call the given function (max) on every dequeue and emit the accumulated value when we

see a ‘.Sx(x>=b)‘. b is 1 in this example because we have to see the whole vector to
obtain the reduced value.

<br/>

Figure 20: The specification of Accum primitive in the STeP document.
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class Accum(OpBase):
def __init__(self, **kwargs):

super().__init__("Accum", **kwargs)

def apply(self, input: base.Stream, name=""):
b = self.config["b"]
fn: base.Fn = self.config["fn"]
assert isinstance(fn, base.Fn), f"Accum should take one of provided fns as input, but

get {type(fn)}"
assert fn.input == input.dtype, f"Accum should take {fn.input} as input, but get

{input.dtype}"
assert b > 0 and b <= input.rank, f"Accum should take a positive integer b less than

or equal to the rank of the input, but get b: {b} and input rank: {input.rank}"

result = base.Stream(
self.getName(name), fn.output, input.rank - b, input.shape[b:]

)
if input.data is not None:

result.ctx = input.ctx
# TODO: Construct a general application function here
output_indices = get_full_indices(base.subsOuterShape(result.shape, result.ctx))
input_indices = get_full_indices(base.subsOuterShape(input.shape[:b], input.ctx))
if isinstance(result.dtype, base.Element) or isinstance(result.dtype,

base.Buffer):
output_shapes = [base.subsFullShape(result.dtype, result.shape,

result.ctx)[::-1]]
elif isinstance(result.dtype, base.STuple):

output_shapes = [base.subsFullShape(r, result.shape, result.ctx)[::-1] for r
in result.dtype]

else:
raise ValueError("Invalid dtype")

result.data = [torch.zeros(shape) for shape in output_shapes]
for idx in output_indices:

state = fn.getInit()
for i in input_indices:

full_idx = idx + i
partial_data = [d[full_idx + (...,)] for d in input.data]
state = fn.apply(state, partial_data)

for n, s in enumerate(state):
result.data[n][idx] = s

return result

Figure 21: The definition of Accum primitive in the Python frontend.
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