Learned Visual Navigation for Under-Canopy Agricultural Robots

Arun Narenthiran Sivakumar!, Sahil Modi’, Mateus Valverde Gasparino', Che Ellis®,
Andres Baquero Velasquez', Girish Chowdhary'”, Saurabh Gupta*",
'Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign (UTUC)
2Department of Computer Science, University of Illinois at Urbana-Champaign (UIUC)

4Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign (UTUC)
3Earthsense Inc.

Abstract

This paper describes a system for visually guided au-
tonomous navigation of under-canopy farm robots. Low-
cost under-canopy robots can drive between crop rows un-
der the plant canopy and accomplish tasks that are infeasible
for over-the-canopy drones or larger agricultural equipment.
However, autonomously navigating them under the canopy
presents a number of challenges: unreliable GPS and LiDAR,
high cost of sensing, challenging farm terrain, clutter due to
leaves and weeds, and large variability in appearance over the
season and across crop types. We address these challenges by
building a modular system that leverages machine learning
for robust and generalizable perception from monocular RGB
images from low-cost cameras, and model predictive control
for accurate control in challenging terrain. Our system, Crop-
Follow, is able to autonomously drive 485 meters per inter-
vention on average, outperforming a state-of-the-art LiDAR
based system (286 meters per intervention) in extensive field
testing spanning over 25 km.

Introduction

[ This paper describes the design of a visually-guided navi-
gation system for compact, low-cost, under-canopy agricul-
tural robots for commodity row-crops (corn, soybean, sugar-
cane etc), such as that shown in Figure[I] Our system, called
CropFollow, uses monocular RGB images from an on-board
front-facing camera to steer the robot to autonomously tra-
verse in between crop rows in harsh, visually cluttered,
uneven, and variable real-world agricultural fields. Robust
and reliable autonomous navigation of such under-canopy
robots has the potential to enable a number of practical
and scientific applications: High-throughput plant phenotyp-
ing (Mueller-Sim et al.[2017; Kayacan, Zhang, and Chowd-|
|hary| 2018} [Young, Kayacan, and Peschel 2019), ultra-
precise pesticide treatments, mechanical weeding (McAllis-

2020), plant manipulation (Chowdhary et al.|2019;
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Figure 1: CropFollow is an autonomous navigation system
for under-canopy agriculture robots. It uses RGB images
from a front-facing camera to output steering commands to
drive the robot in crop rows.

[Uppalapati et al.[2020), and cover crop planting. Such appli-
cations are not possible with over-canopy larger tractors and
UAVs, and are crucial for increasing agricultural sustainabil-
ity (Shamshiri et al.|2018; [Foley et al.[2011).

Autonomous row-following is a foundational capability
for robots that need to navigate between crop rows in agri-
cultural fields. Such robots cannot rely on RTK (Real-Time
Kinematic)-GPS based methods which are used for over-
the-canopy autonomy (Reid et al|[2000; [Bak and Jakob-|
2004} Bakker et al|2011)) because of GPS signal atten-
uation and multi-path errors. LiDAR is known to work in
under-canopy and orchard environments and can return geo-
metric information (Barawid Jr et al|2007; [Velasquez et al.|
12020}, Higuti et al][2019). However, LiDAR is costly, and
it does not capture semantic information leading to low ro-
bustness of autonomy, as reported by low distance-between-
interventions (Higuti et al][2019). This motivates our use
of richer sensing and lower-cost modalities in the form of
RGB images. However, visual variability during the day and
across the season as well as the clutter in under-canopy en-
vironment limits heuristic based crop-lane detection algo-
rithms (Zhang, Reid, and Noguchi|[1999} [Ball et al.|[2016};
[Xue, Zhang, and Grift||2012) and therefore necessitates the
use of learning. However, the lack of large-scale datasets,
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the difficulty of collecting field data, and the infeasibility of
building a simulator for this task, makes it challenging to
employ machine learning.

Our contribution in this paper is a field-validated mod-
ular vision based crop-row following system to overcome
the above challenges. We term this system CropFollow, as it
provides the foundational row-following capability to small,
low-cost robots. Our system decouples perception and con-
trol. The perception system uses monocular RGB image
from the on-board camera to estimate row-relative robot
pose. It does so by directly estimating the robot’s relative
heading to the row (measured as the angle the robot makes
with the row direction), and robot’s placement in row (mea-
sured as the ratio of distance from the left row to inter-row
separation). These data are fused with inertial measurements
using a Bayesian sensor fusion system (Extended Kalman
filter (EKF)), and utilized to generate row-following control
in terms of desired angle and speed for staying in the center
of the row using a nonlinear robust controller (Model Predic-
tive Control (MPC)). The ability to directly predict relative
heading and distance from monocular RGB images is one
key novelty of our approach, and has key efficiency and ro-
bustness benefits: the approach avoids having to first detect
the plants (which can be many) (Gu et al.|2020), or explicitly
segmenting the ground from plants (which is highly chal-
lenging with more clutter in the environment) (Xue, Zhang,
and Grift|2012)). Our presented system is able to successfully
traverse crop rows regardless of the crop’s growth stage. In
field trials of about 25 kilometers, our system required fewer
interventions than a LiDAR based system (Velasquez et al.
2021)(485 meters per intervention 286 m), while at the same
time cutting down sensing cost by 50 x. These results clearly
establish that our modular visual navigation system enables
vision based autonomy for under-canopy field robots.

System Design

Figure [2] shows an overview of our presented system. Im-
ages from on-board RGB camera on the robot are processed
through a convolutional network to predict robot heading ¢,
and relative placement d between crop rows. This relative
placement is converted into the robot’s distance from the
left and the right crop rows by multiplying with the lane
width. These heading and distance predictions are filtered
using a Bayesian filter (we use the Extended Kalman Fil-
ter) that optionally also fuses them with high-frequency in-
put from an inertial measurement unit. The filtered head-
ing and distances are used to generate a course correcting
reference path in the robot coordinate frame. A model pre-
dictive controller is used to compute angular velocity com-
mands to achieve this reference path. A lower-level propor-
tional-integral—derivative (PID) controller is used to track
the commanded angular velocity.

In this section the CNN architecture, the Extended
Kalman Filter, and the model predictive controller.
Perception Model. We choose a learning approach due to its
superior generalizability compared to color-based segmenta-
tion navigation proposed by previous works. CropFollow’s
perception model takes in 320 x 240 RGB images and out-
puts the robot heading (in degrees) and its relative placement

in the crop row. Heading ¢ is the angle of the robot relative to
crop rows. The relative distance d is the ratio of the distance
to the left of the row to the lane width, d = dedeR, where
dy, and dp are the distances to left and right crop rows.

The perception model uses a ResNet-18 (He et al.|[2016)
backbone that has been pretrained on ImageNet (Deng et al.
2009). We truncate ResNet-18 right before the average-
pooling layer, and add in an additional convolutional layer,
a fully connected layer, dropout, and final prediction layer.
The final prediction layer outputs the heading ¢, and the dis-
tance ratio d. We found that independent networks to predict
heading and distance ratio worked better than a single joint
network.

IMU Fusion with Extended Kalman Filter. An Extended
Kalman Filter was used to reduce the effect of uncertainties
in distance and heading estimations by fusing the inertial

data with the vision data. We used s = (d. dr ¢ )T as the
state. State s evolves over time as per the prediction func-
tion f(sg_1,uk—1) (derived using the robot’s kinematics).
Here si_1 is the state at the previous time step, and wuj—1
is the linear and angular velocity at the previous time step.
Robot’s linear speed v and angular speed w are calculated
from wheel encoders, and IMU respectively. We assume ad-
ditive zero-mean Gaussian process and measurement noise.
As we directly observe s, the measurement function is an
identity function. Output from the CNN is used in the up-
date step.

Model Predictive Controller. We used a non-linear Model
Predictive Controller (MPC) to generate angular speed com-
mands to the robot given the reference path to be followed,
as shown in Figure 2] MPC uses the fused output states

s = (didr ¢)T from the EKF, the Unicycle kinematic
model of the robot and reference path, which is a straight
line through the center of the lane, to solve a constrained
optimization problem with the minimum and maximum cur-
vature radius as the constraints. The output is a path defined
in terms of the curvature p, which determines the angular
velocity w = p v where v is the linear velocity. The angular
speed for the first point in the output path is applied and the
optimization process is repeated. A PID controller is used to
maintain the commanded angular speed, based on feedback
from IMU’s yaw angular speed.

Data Collection and Ground Truthing

Given lack of any under-canopy agriculture datasets, we col-
lected a large dataset by driving the TerraSentia robot under
the canopy. We manually operated the robot in 19 corn and
4 soybean fields across Illinois and Indiana, and collected
time-series data from the front-facing RGB camera, LiDAR,
and IMU. We collected 2.7 hours of corn data and 1.2 hours
of soybean data, and made sure to collect data for different
growth stages. We also included data where the robot was
driven in a zigzag manner. This was done to expose the per-
ception models to a broader distribution of data that may be
experienced during autonomous runs.

Ground Truthing. To get the ground truth heading and
distance ratio for training the networks, we designed an in-
direct annotation procedure. We asked humans to label the



240

Truncated | 512 Conv2D ‘80l . 64 [
ResNet-18 (K,S,P,Cone) = (3, 2, 1, 64) Linear  —gropout 7 Linear

Model 1: Heading

Model 2: Distance Ratio

CNN state estimation MPC output path Applied turn rate command

I wa W - d)l Reference | | | |
path I I 1 : I

I ¢ I I I I : I
| ’ I Constrained cost [ I I HOR

—> > A —> —> 5

| | EKF optimization | | | ‘\ |
I I I I I I
I [ Kinematic I I I I
I I model [ I [ I
d : Distanceratio ¢ : Headingangle Ww:Row width ——— MPCoutputpath  =+e+esee2- Reference path to follow

Figure 2: CropFollow Overview. We use a convolutional network to output robot heading and placement in row. This is used
to compute the row center which is used as a reference trajectory. A model predictive controller converts reference trajectories

to angular velocity commands.

Figure 3: Annotations. We annotate the horizon and crop
rows for early season images (left). For late season images
when the horizon is not visible, we annotate the vertical corn
stalks (right).

horizon and the vanishing lines corresponding to the crop
row (FigureEl (left)). This together with the camera calibra-
tion information allows us to recover the robot heading and
placement in row using projective geometry. For the case
where the horizon is not visible, we instead ask humans to
mark out vertical crop stalks (Figure [3] (right)). This allows
us to estimate the vanishing point for the vertical direction
which readily provides the slope of the horizon. We anno-
tated a total of 25,296 corn images. 28% of these are from
early growth stage, while 72% are from late growth stage.
We split the dataset into a training and a validation set (83%
training, 17% validation). We made sure that data from the
same video is either entirely in the training set, or entirely in
the validation set. Our main experiments use this corn data.

Experimental Results

Our experiments are designed to test the autonomous crop
row traversal capability of our proposed system and effec-
tiveness of the proposed modular policy. We evaluate these
aspects through a combination of offline and online (field)
experiments. Offline experiments are conducted on our col-
lected dataset. They allow us to chose models for online ex-
periments. Online experiments are conducted in the field,

Model Mean Median 95 %ile
¢CT‘T‘ dUT'T ¢(57"7' d(‘.T?" d)(ﬂ’?" dG’V'T’
Baseline 11.41 0.48 8.81 0.48 30.33 0.65

CropFollow 1.99 0.04 1.21 0.03 4.71 0.10

Table 1: Perception Module Performance: We report L1
error in heading (in °) and distance ratio prediction. The
trivial baseline model always predicts median ¢, d from the
training set. CropFollow after training is significantly better
than trivial baseline.

and allow us to study the interplay between perception and
control systems. We also conduct end-to-end evaluation for
the task of crop row traversal, and compare against an exist-
ing system based on LiDAR (Velasquez et al.[2021).

Offline Evaluation of Perception Model

Offline evaluation of the perception module is conducted on
the collected dataset.

Metrics. We measure prediction performance using L1 error
in heading and distance ratio predictions, ¢ and d.

Training. We used ResNet-18 (He et al.[2016) pretrained on
ImageNet 2009) to initialize our models. Mod-

els were trained to minimize the L2 loss with the Adam opti-
mizer (Kingma and Ba|2014)) for 50 epochs. We started with
an initial learning rate of 10~* and dropped it by a factor of
10 at 40™ and 45" epochs. All layers of the network were
optimized.

Results. Table[T]presents the performance of our CNN mod-
els.Our best model achieves an average L1 error of 1.99°
for heading, and 0.04 for distance ratio. Inference speed for
this model on the robot was around 20 FPS, which is fast
enough for accurate control. Our main field experiments are
conducted with this model.




Figure 4: Sample images from field trials. Bottom row con-
sists of traditionally adverse conditions for vision-based
navigation.

In Field End-to-End System Evaluation

We conducted end-to-end system evaluation with the model
described above. We compared the performance of the fol-
lowing 2 systems, along with 2 variants each:

* CropFollow (w/ IMU). This is our proposed system that
uses the above CNN model for heading and distance ratio
prediction, EKF for fusing IMU information, and MPC
for executing control commands. We also compare with
a variant that does not use IMU information (denoted by
CropFollow (w/o IMU)).

¢ LiDAR System (Velasquez et al.|2021) (w/ IMU). This
system uses readings from the LiDAR mounted on top
of the robot to estimate the robot heading and distance
from the crop rows using line fitting. Other parts of the
system are same as our system: Use of an EKF to fuse
information from the IMU, and use of MPC for gener-
ating control commands. We also compare to a variant
that does not use IMU information (denoted by LiDAR
System (Velasquez et al.|[2021) (w/o IMU)).

Evaluation Methodology. All 4 systems are tested on the
same unique 4.85 km. These 4.85 km come from 15 dif-
ferent experiments that were done in different parts of the
field, over different growth stages, different days, different
time of the day, and weather conditions. While there is a
lot of variability in these 4.85 km, we attempted to mini-
mized the variability in conditions for the 4 systems to en-
sure result comparability. Runs for the different systems for
each of the 15 experiments were done one after another over
the same routes, and with the same constant linear robot ve-
locity of 0.6 m/s. Run order for the different systems was
randomized to prevent environmental bias. This experiment
thus presents results pooled over field trials of 19.4 km. For
each method, we measure the number of human interven-
tions needed to complete the experiment. Human interven-
tions were required when the robot crashed into the corn
stalks. This metric measures autonomy effectiveness.

Results. Table 2] reports the number of interventions for the
4 systems that we evaluated. We separately report results for
early and late season experiments. Note that LiDAR system

from (Velasquez et al.|2021) can’t operate in early season

data since early season corn stalks are shorter than the robot,

Growth Length LiDAR LiDAR CropFollow CropFollow

Stage (inm) w/IMU w/oIMU w/IMU w/o IMU
Early 1120 - - 3 4
Late 3726 13 72 7 8

Table 2: Field Experiments: We report the number of in-
terventions for the different methods. LiDAR can’t operate
in early season as crops are too short. Our system can work
under both conditions and requires interventions.

and not detected by the 2-D LiDAR. Our vision based sys-
tems works reasonably well. In late season when the LiDAR
based system does work, we note that it had more interven-
tions than our system, 72 vs 8 without IMU, and 13 vs 7 with
IMU. Thus, our presented vision-based system outperforms
the LiDAR based system, while also reducing sensing cost
by 50x. The quality of our output is further shown by the
fact that our system is closing the loop only at about 20Hz,
40Hz for the LiDAR system, but still achieves a better end
performance.

Different error modes. We characterized the different error
modes in CropFollow and LiDAR navigation system. Large
gaps in crop rows was the common cause of failure in Crop-
Follow (our training data did not include such cases). Sensor
occlusion and bumpy terrain were the other rare causes of
failures. In contrast, failure due to gaps was rarely observed
in LiDAR since it was specifically engineered to be robust
to it. But because of its high sensitivity to noise, even minor
sensor occlusion by leaves affects LIDAR performance and
leads to interventions. CropFollow’s performance in gaps
could be improved with adding training data whereas Li-
DAR’s occlusion problem is a sensor limitation.

Stress testing. To test the performance in challenging con-
ditions, CropFollow (w/ and w/o IMU) was tested in a field
with sharp curves, gaps and occlusion from weeds. 3 and
6 interventions w/ and w/o IMU respectively was observed
in a test of 600m. Last row in Figure [4] shows the challeng-
ing condition in this field. Also, CropFollow’s performance
at higher speeds was tested. CropFollow showed same stable
behavior at 1m /s but oscillations in trajectory due to latency
was observed at 1.4m/s or more.

Conclusion

We presented a vision based autonomous under-canopy
navigation system. Through a modular architecture and a
learning-based approach we showed that machine vision can
be applied for reliable and robust navigation in cluttered,
changing, and harsh under-canopy environments. 25 km
of real-world validation on an under-canopy robot demon-
strated that our visual navigation approach is not only 50x
more cost-effective than LIDAR but also leads to fewer inter-
ventions. Our system forms a new benchmark for visual nav-
igation under the canopy, and our openly accessible dataset
(1030 labeled images and 24266 unlabeled images of our
corn data) will enable further research.
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