
Published in Transactions on Machine Learning Research (09/2023)

Dynamic Subgoal-based Exploration
via Bayesian Optimization

Yijia Wang yiw94@pitt.edu
University of Pittsburgh

Matthias Poloczek∗ matthias.poloczek@gmx.de
Amazon

Daniel R. Jiang drjiang@meta.com
Meta AI, University of Pittsburgh

Reviewed on OpenReview: https: // openreview. net/ forum? id= ThJl4d5JRg

Abstract

Reinforcement learning in sparse-reward navigation environments with expensive and limited
interactions is challenging and poses a need for effective exploration. Motivated by complex
navigation tasks that require real-world training (when cheap simulators are not available),
we consider an agent that faces an unknown distribution of environments and must decide
on an exploration strategy. It may leverage a series of training environments to improve
its policy before it is evaluated in a test environment drawn from the same environment
distribution. Most existing approaches focus on fixed exploration strategies, while the few
that view exploration as a meta-optimization problem tend to ignore the need for cost-efficient
exploration. We propose a cost-aware Bayesian optimization approach that efficiently searches
over a class of dynamic subgoal-based exploration strategies. The algorithm adjusts a variety
of levers — the locations of the subgoals, the length of each episode, and the number of
replications per trial — in order to overcome the challenges of sparse rewards, expensive
interactions, and noise. An experimental evaluation demonstrates that the new approach
outperforms existing baselines across a number of problem domains. We also provide a
theoretical foundation and prove that the method asymptotically identifies a near-optimal
subgoal design.

1 Introduction

Reinforcement learning (RL) is becoming the standard for approaching control problems – usually modeled by
a Markov decision process (MDP) – in environments whose dynamics are unknown and learned from data. In
many applications involving navigation tasks, rewards are sparse and delayed. Since most RL algorithms rely,
at least initially, on random exploration, this can cause an agent to require a large, often impractical number
of interactions with the environment before obtaining any rewards. Simultaneously, in real-world settings, it
is often the case that fast and cheap interactions with the environment are not available, making it nearly
impossible to apply RL algorithms. To address the two issues of sparse rewards and expensive interactions in
navigation tasks, our objective in this paper is to design methods for learning better exploration policies in a
cost-efficient manner: specifically, we propose a Bayesian optimization approach to optimize an exploration
strategy based on subgoals, where each subgoal is defined as a set of states that the agent must reach, serving
as an intermediate target for the agent to “complete” before navigating to the primary goal.

An illustrative example comes from the field of robotics: autonomous systems have long been used to explore
unknown or dangerous terrains (Matthies et al., 1995; Apostolopoulos et al., 2001; Ferguson et al., 2004;

∗The work was done before Matthias joined Amazon.

1

https://openreview.net/forum?id=ThJl4d5JRg

Published in Transactions on Machine Learning Research (09/2023)

Thrun et al., 2004). Policies learned offline (e.g., via a simulator) are common in these situations, but it may
be beneficial to introduce agents that execute an offline-learned exploration policy to guide the learning of an
online policy that can better tailor to the details of the test environment. An example of this general idea can
be found in Matthies et al. (1995), which describes the design of a rover for the Mars Pathfinder mission. One
of the main tasks is navigating the rover in a rocky terrain and reaching a goal (the test environment). To
train for the eventual mission, the engineers utilized an “indoor arena” that mimics the test environment. The
need for cost-efficient training also arises in the setting of safe robot navigation (Oliveira et al., 2020). Existing
approaches to exploration have largely ignored the need to be cost-efficient during the training process and
therefore are challenging to apply to real-world scenarios (see Section 2 for a detailed discussion of related work).

In our setup, an agent is given a fixed (and small) number of opportunities to train in environments randomly
drawn from a distribution Ξ (henceforth, we refer to these as “training environments”), with the caveat
that each interaction in the training environment incurs a cost. After these opportunities are exhausted,
the agent enters a random test environment ξ ∼ Ξ and executes an underlying RL algorithm to adapt to
the particulars of ξ, while aided by the higher-level exploration strategy learned for Ξ. One can view this
formulation as a meta-optimization problem with two levels: an upper-level problem to select an exploration
strategy, represented by parameters θ, and a lower-level RL task that explores with the help of the exploration
strategy θ on an environment instance ξ ∼ Ξ.

0 2 4 6 8

0

2

4

6

8

(a) Original (b) First subgoal (c) Second subgoal (d) Third subgoal

Figure 1: Example of a dynamic subgoal exploration strategy. The first, second, and third subgoals are
denoted by the circle, triangle, and cross, respectively. The blue square is the starting location of the agent,
the grey region is a wall, the yellow region is the location of the key, and the red region is the door (goal).
Note that although the second subgoal is not exactly in the location of the key, it brings the agent to the
correct vicinity, allowing the underlying RL algorithm (executed online) to further adapt to the environment’s
particular details.

We propose optimizing over a class of dynamic subgoal exploration strategies in the upper-level optimization
problem. To illustrate this concept, consider the sparse-reward environment shown in Figure 1a, where an
agent is tasked with picking up a “key” in the yellow region, in order to exit the “door” in the red region.
The grey region is a wall. An RL algorithm paired with a naive exploration strategy making use of random
actions (such as ϵ-greedy) requires a prohibitively large number of random actions before finding a suitable
path to the door through the key, while avoiding the wall. A dynamic subgoal strategy is an ordered set of
subgoals (along with associated rewards leading to each subgoal, omitted here for illustrative clarity) that
leads the agent on a trajectory where the underlying RL algorithm is more likely to discover the optimal
behavior. Figures 1b-1d together show an example of a dynamic subgoal exploration with three subgoals,
which first leads the agent to the vicinity of the key and later towards the door. Note that the situation here
in Figure 1 is simplified in that we are actually interested in finding dynamic subgoal strategies that work on
average across a distribution of environments, rather than a single environment.

1.1 Our Contributions

Our main contributions are as follows. We first propose a framework for cost-efficient learning of a dynamic
subgoal exploration strategy for a distribution of environments; in other words, interactions with the
environment are expensive during training, making most gradient-based approaches infeasible. We instead

2

Published in Transactions on Machine Learning Research (09/2023)

Figure 2: Outline of the BESD algorithm. During the training phase BESD optimizes an exploration strategy
(represented as subgoals) on sampled training environments. It then utilizes the learned subgoal design
as an exploration strategy in the test environment to train an effective policy within a limited number of
interactions.

leverage the Bayesian optimization (BO) paradigm, a well-known class of sample-efficient optimization
techniques (Brochu et al., 2010; Snoek et al., 2012; Herbol et al., 2018; Frazier, 2018), and propose a new
acquisition function as a core ingredient of our approach. The Gaussian process (GP) surrogate model used by
the BO formulation has the ability to reason about the learning curve of the underlying RL algorithm, enabling
us to introduce two additional levers in the BO learning process to improve cost-efficiency: (1) how long to run
each episode of training, (2) the number of replications to run in each training environment. These levers allow
us to intelligently trade-off running a longer trial versus more replications of shorter trials; the motivation
is that, given τ1 < τ2, an accurate evaluation of a particular exploration strategy θ after τ1 steps may be
more informative than a noisy evaluation of θ after τ2 steps, even though the same number of environment
interactions are used in both cases. The proposed algorithm, Bayesian exploratory subgoal design (BESD),
is outlined in Figure 2. We also prove an asymptotic guarantee on the quality of the solution found by our
approach, compared to the best possible subgoal-based exploration strategy within a given parameterized class.

2 Related Work

Our framework of cost-efficient learning of exploration strategies through BO appears to be distinct from
existing formulations in its strong focus on expensive environmental interactions during training, made
possible through the additional control levers of episode length and number of replications. Nevertheless, our
work is related to a number of distinct areas of study: Bayesian optimization, exploration for RL, intrinsic
reward and reward design in RL, multi-task RL, and transfer learning. Here, we attempt to give a tour
through the various strands of relevance in each field.

2.1 Bayesian Optimization

BO is a technique for optimizing black-box functions in a sample-efficient manner, in particular for tuning ML
models and design of experiments (Snoek et al., 2012; Brochu et al., 2010; Frazier, 2018; Herbol et al., 2018).
BO methods for problems with multiple information sources or fidelities (Swersky et al., 2013; 2014; Feurer
et al., 2015; Domhan et al., 2015; Li et al., 2017) is especially relevant to our proposed method’s ability to
select the length of an RL training episode, which builds upon ideas from Picheny & Ginsbourger (2013),
Poloczek et al. (2017), and Klein et al. (2017). The first paper proposes fitting GP to partially converged
simulations, and the latter two propose acquisition functions that consider the ratio of “information gain” to
cost of evaluation. Our approach also reasons about multiple replications in an environment, similar to the
problem studied in Binois et al. (2019) in the context of computer experiments. Our work fills a gap in the
BO literature where the length of training and number of replications are selected jointly in a cost-aware
setting, a natural and powerful idea that has not been considered in the literature. Our theoretical analysis
builds upon techniques developed in Frazier et al. (2008) and Poloczek et al. (2017) but extend them in new

3

Published in Transactions on Machine Learning Research (09/2023)

directions, accounting for the ability to select the number of replications, and providing a characterization of
the asymptotic suboptimality due to using a discretized domain.1

BO has previously been applied in the setting of navigation planning. Martinez-Cantin et al. (2007), Martinez-
Cantin et al. (2009), and Binney et al. (2013) use BO to optimize a sequence of waypoints for a robot to follow.
While our method similarly optimizes a sequence of subgoals, we use the subgoals as an exploration strategy
(over a distribution of environments) on top of an existing RL algorithm, rather than as a direct specification
of the control policy. In order to allow subgoals to provide exploration in a “plug-and-play” manner for
existing RL algorithms, our approach also features a novel integration of subgoals with potential-based
intrinsic rewards.

In two other works, Tesch et al. (2011) and Garcia-Barcos & Martinez-Cantin (2021), BO is directly applied
to optimize a parameterized policy, but this is limited to low-dimensional parameterizations of the policy:
Tesch et al. (2011) tune a two-dimensional gait parameter, while Garcia-Barcos & Martinez-Cantin (2021)
tune four policy parameters. In our work, we augment an underlying RL algorithm that can learn arbitrary
policies with a BO-optimized low-dimensional exploration strategy, striking a balance between flexibility and
cost-efficiency.

2.2 Exploration in Reinforcement Learning

Naive exploration strategies such as ϵ-greedy can lead to unreasonably large data requirements, making
exploration a commonly studied topic in RL. Most existing work focus on proposing a fixed exploration
strategy that is executed for a single underlying environment. For example, some previous related work
employ approaches based on optimism (Kearns & Singh, 2002; Stadie et al., 2015; Bellemare et al., 2016;
Tang et al., 2017) and posterior sampling (Osband et al., 2016; Russo & Van Roy, 2014; Osband & Van Roy,
2017; Morere & Ramos, 2018) to guide exploration. Others insert an active learning (Shyam et al., 2019)
or experimental design (Mehta et al., 2021) perspective into the model-based RL framework.

Our work departs from these existing studies in that we formulate the problem of exploration as a meta-
optimization over a parameterized class of exploration strategies and aim to find a suitable strategy for
a distribution of environments. A more closely related paper is Gupta et al. (2018), which extends the
model-agnostic meta-learning (MAML) approach of (Finn et al., 2017a) to the problem of exploration for a
set of tasks in a way that is similar in spirit to our formulation. However, their gradient-based approach is
not sample-efficient and they do not consider costly environment interactions during training. In addition,
Gupta et al. (2018) make use of task-specific parameters during training, limiting their approach to a small
set of environments. For a more comprehensive list of methods for exploration in RL, we refer the reader to
the excellent survey of Amin et al. (2021).

2.3 Hierarchical Reinforcement Learning and Options

Our proposed approach is related to the hierarchical reinforcement learning (HRL) framework, which refers
to methods that decompose a complex, long-horizon problem into smaller subtasks; see Barto & Mahadevan
(2003) and Pateria et al. (2021) for extensive reviews of the topic. A well-known type of HRL is feudal
reinforcement learning, introduced in Dayan & Hinton (1992), where a high-level manager delegates low-level
workers to complete subtasks. Examples of more recent work that follow this feudal hierarchy paradigm
include Kulkarni et al. (2016), Levy et al. (2018), and Nachum et al. (2018). Our work exhibits a similar
flavor in that a high-level BO method sets a subgoal-based exploration strategy, which is then executed by
the underlying RL algorithm.

The concept of options, which are temporally extended actions represented as a policy and a termination
condition, also fall under the HRL framework. Options can improve the efficiency of RL through the use of
previously acquired “skills” (Sutton et al., 1999; Precup et al., 1998). These skills might be acquired with the
help of a human, either fully user-specified (e.g., Jothimurugan et al. (2021)) or obtained from expert demon-

1Discretizing the domain is a common computational technique used when optimizing complex acquisition functions, but we
improve upon the existing theoretical analysis in Poloczek et al. (2017) with an explicit characterization of the induced error.

4

Published in Transactions on Machine Learning Research (09/2023)

strations (e.g., Pan et al. (2018), Paul et al. (2019)). In this paper, a subgoal is a particular type of option and
therefore, our dynamic subgoal exploration strategy can be thought of, at a high level, as a sequence of options.

Of particular relevance to our work is when options are automatically discovered, a problem that is well-known
to be challenging. One stream of work views option discovery to be (at least somewhat) detached from the RL
reward maximization objective, using state visitation frequencies (Stolle & Precup, 2002; McGovern & Barto,
2001; Goel & Huber, 2003), clustering (Mannor et al., 2004), novelty (Şimşek & Barto, 2004), local graph
partitioning (Şimşek et al., 2005), or diversity objectives (Eysenbach et al., 2018; Zhang et al., 2020), to name
a few examples. Approaches that considers a joint objective for option learning RL reward maximization
objective like ours (Kulkarni et al., 2016; Vezhnevets et al., 2016; Bacon et al., 2017; Frans et al., 2018;
Veeriah et al., 2021) typically use large, neural network-based representations along with gradient-based
(meta-)optimization and do not focus on cost-aware training. The method that we propose in this paper
is unique from previous works in that (1) it is designed specifically for the case where cost-aware training
is warranted and uses BO for option-learning, (2) it offers an integrated objective for subgoal-design and
RL reward maximization, and (3) it uses a novel combination of subgoals and reward shaping, which has a
simpler representation than a generic option.

2.4 Intrinsic Reward and Reward Design

When a particular subgoal of our proposed dynamic subgoal exploration strategy is active, we “turn on” a set
of artificial rewards that incentivize the agent to move toward that subgoal (these rewards are then removed
after the agent moves on to the next subgoal). Hence, the literature on intrinsic reward and reward design in
RL are also relevant. Intrinsic reward (also called intrinsic motivation) helps an agent learn increasingly
complex behavior in a self-motivated way (Randløv & Alstrøm, 1998; Ng et al., 1999; Huang & Weng, 2002;
Kaplan & Oudeyer, 2004; Şimşek & Barto, 2006; Tenorio-Gonzalez et al., 2010; Pathak et al., 2017; Achiam
& Sastry, 2017; Lample & Chaplot, 2017). Several works from the reward design literature are most closely
related to our paper. Sorg et al. (2010) and Guo et al. (2016) directly optimize the intrinsic reward parameters,
via gradient ascent, to maximize the outcome of the learning process. Similarly, Zheng et al. (2018) use
intrinsic rewards in policy gradient, and treat the parameters of policy as a function of the parameters of
intrinsic rewards. Again, these methods differ from ours in that they do not consider the costliness of training
and focus on finding intrinsic rewards for a single MDP.

2.5 Multi-task RL and Transfer Learning

Also related to our setting are methods that aim to train agents with the capability of solving (or adapting to)
multiple sequential decision making tasks (Pickett & Barto, 2002; Konidaris & Barto, 2006; Wilson et al., 2007;
Fernández et al., 2010; Deisenroth et al., 2014; Doshi-Velez & Konidaris, 2016; Finn et al., 2017a;b; Pinto &
Gupta, 2017; Espeholt et al., 2018; Hessel et al., 2019; Vithayathil Varghese & Mahmoud, 2020); such methods
generally fall under the umbrella of multi-task RL or transfer learning. As before, many of these methods require
the training of large neural networks and are not designed for a cost-aware setting. Despite their stated purpose
of being sample-efficient in adapting to new tasks, most multi-task RL or transfer learning approaches do not
place a strong emphasis on cost-efficiency of training on existing tasks. This is an important distinction to our
work. The two papers that are closest in spirit to our work are Pickett & Barto (2002), where macro-actions
are extracted from previous tasks, and Konidaris & Barto (2006), where shaped rewards are learned for a set of
tasks. One drawback of Pickett & Barto (2002) is that it assumes access to optimal policies for an initial set of
MDPs. Konidaris & Barto (2006) directly uses previous value functions as shaped rewards (thereby requiring
the agent to solve some tasks from scratch) and does not provide an avenue for cost-effective exploration.

3 Problem Formulation

This section formulates the problem mathematically, by defining the original (sparse-reward) MDPs and how
a dynamic subgoal exploration strategy induces an auxiliary, “subgoal-augmented” MDPs. We then describe
the iterative training process.

5

Published in Transactions on Machine Learning Research (09/2023)

3.1 Original MDPs Mξ with Sparse Rewards

Consider a family of MDPs {Mξ = ⟨S,A, Tξ, Rξ, γ⟩}ξ parameterized by a random variable ξ ∼ Ξ, where S
and A are the state and action spaces, Tξ is the transition matrix, Rξ : S ×A×S → R is the extrinsic2 reward
function, γ ∈ [0, 1] is the discount factor3, and Ξ is the environment distribution (not assumed to be known, nor
does it need to be finite or discrete).4 A sparse-reward environment is an environment where Rξ is non-zero only
for a small number of “goal” states. To ensure that all quantities are well-defined, we assume thatRξ is bounded,
as is common in the reinforcement learning literature. We assume common state and action spaces across the
distribution of MDPs (i.e., they are independent of ξ), while the reward and transition functions vary with ξ.

Given S and A, a policy π is a mapping such that π(· | s) is a distribution over A for any state s ∈ S. For
any ξ ∼ Ξ, define the value function of policy π at any state s as

V πξ (s) = E

[∞∑
t=0

γtRξ(st, at, st+1)
∣∣∣π, s], (1)

where the notation of “conditioning” on π and s indicates that s0 = s is the initial state and at ∼ π(· | st).
For the MDP Mξ, its optimal value function and associated optimal policy are

V ∗
ξ (s) = sup

π
V πξ (s) and π∗

ξ (s) ∈ arg max
a∈A

E
[
Rξ(s, a, s′) + γV ∗

ξ (s′) | s, a
]
.

Now that we have defined the value function, let us comment on the environment distribution Ξ. In Section
3.4, we will formulate the meta-optimization problem, which requires that the expected performance of
any policy π over the environment distribution, i.e., Eξ[V πξ (s)], is well-defined. However, since we assumed
bounded rewards, implying bounded performance V πξ (s), it will always be the case that this expectation
exists and we do not require further assumptions on Ξ.

When the extrinsic reward function Rξ is sparse, it produces little to no learning signal for the agent. Under
most RL algorithms, the agent essentially performs random exploration and does not start learning until the
first time it wanders to the goal. The time it takes to find the goal under a random exploration strategy is
often prohibitively long. The ϵ-greedy exploration strategy, which takes a random action with probability ϵ
and the best action under the current value function approximation, is an example of a random exploration
strategy.

3.2 Dynamic Subgoal Exploration Strategies

An intrinsic reward is an artificial reward signal experienced by the agent that does not come directly from
the environment. A subgoal is defined by a (usually small) set of states, such that when the agent lands in
any of them, the subgoal is considered “completed.” A dynamic subgoal exploration strategy is a sequence of
subgoals, along with an associated reward shaping function for each subgoal, that provides an intrinsic reward
signal for the agent. If the locations of the subgoals are chosen well, this strategy can help the agent explore
the environment efficiently. We call this a dynamic strategy because the subgoals are turned on one-by-one
and consequently introduces a new state into the MDP (described in detail below).

Suppose there are K subgoals and let θ ∈ Θ be a parameter that fully describes a subgoal exploration
strategy, including the subgoal locations, associated rewards, and sequencing. Let Gθ,k ⊆ S be a set of
“target” states associated with the kth subgoal, for k ∈ {1, 2, . . . ,K}, in the sense that if the agent lands in
some state in Gθ,k, then the kth subgoal is considered “completed.” In addition, we define an artificial reward
function gθ,k(s, s′) that, when activated, provides a sequence of rewards that leads the agent toward subgoal
k. Concretely, we use potential-based reward shaping from Ng et al. (1999) to achieve this. Let Φθ,k be a
potential function, a function that assigns a value for each state in S, with higher potential indicating a more

2In Section 3.3, we describe how a dynamic subgoal exploration strategy supplements the extrinsic reward function with
additional intrinsic rewards.

3We allow for the case of episodic MDPs, where γ = 1, provided that any policy will reach a terminal state with probability
one. A terminal state is absorbing and any action taken in that state gives zero reward.

4Note that our approach also applies to the case of a single environment if the distribution contains only one environment.

6

Published in Transactions on Machine Learning Research (09/2023)

“valuable” state. Φθ,k should have the property that target states in Gθ,k have the highest potential. Then, let

gθ,k(s, s′) = γΦθ,k(s′) − Φθ,k(s), (2)

for all s, s′ ∈ S. The definition of gθ,k(s, s′) in (2) can be interpreted as the difference in potential between
states s′ and s (with discount γ). This potential difference motivates the agent to move towards the target
states (high potential) of kth subgoal. Thus, a parameterization of a set of K subgoals, which forms our
exploration strategy, is fully described by (

{Gθ,k}Kk=1, {gθ,j}Kk=1
)
,

the locations and associated reward shaping functions.

Example 1 (Key and Door Environment) Let us consider a distribution of maze MDPs with states
{(i, j)}1≤i,j≤10 and a sparse reward in the upper left corner at (0, 10). In addition, suppose that the agent
needs to pick up a key in order to receive the reward at (0, 10), where the location of the key is uncertain
but likely to be in the right half of the room. The environment illustrated in Figure 1 can be considered to
be one possible realization from this distribution of mazes. Now, let us consider a subgoal design with K = 3
subgoals. The simple parameterization θ = (i1, j1, i2, j2, i3, j3), with

Gθ,k = {(ik, jk)} and Φθ,k(s) = e−∥s−(ik,jk)∥2

specifies that for k ∈ {1, 2, 3}, the kth subgoal is located at a single state (ik, jk) and the artificial reward
potential is a Gaussian centered at (ik, jk). Using Figure 1 as a visual reference, one can imagine that the
subgoal design θ = (1, 2, 8, 4, 2, 8) would be useful in guiding the agent toward the vicinity of the key on the
right side of the room and then toward the vicinity of the goal. Once the agent is in the correct vicinity, the
underlying RL algorithm can discover the precise locations of the key and goal in the particular environment
realization more quickly.

3.2.1 Subgoal Parameterization vs State Dimensionality

For the types of navigation tasks that we are concerned with in this paper, the dimension of the subgoal
parameterization θ need not scale with the dimension of the state s, which would pose a potential scalability
issue. Instead, one general rule-of-thumb to keep in mind is that for a dynamic subgoal exploration strategy
to be effective in navigation tasks, the dimension of θ only needs to scale with the number components of s
that pertain to the spatial positioning of the agent. The next example provides an illustration.

Example 2 (Mountain Car Environment, with dim(θ) < dim(s)) Consider the well-known Mountain
Car problem, a continuous control task where an underpowered car, operating in a one-dimensional space,
must make its way up a steep mountain (Sutton & Barto, 2018, Example 10.1). The state is two-dimensional,
s = (x, ẋ), where x ∈ [−1.2, 0.5] is the position of the agent while ẋ ∈ [−0.07, 0.07] is its velocity. A possible
subgoal design with K = 2 is θ = (i1, i2), with

Gθ,k = {(ik, ẋ) | ẋ ∈ [−0.07, 0.07]} and Φθ,k(s) = e−(x−ik)2

for each k. In other words, the agent reaches a subgoal target state if its position is ik, for any value of
its velocity. Also, the artificial reward only depends on the spatial position x rather than the full state (x, ẋ).
In Section 5, we give numerical results for exactly this example.

One could imagine that the concept illustrated in Example 2 also applies to more complex robotics environments
with a high-dimensional state, where the number of components related to the spatial positioning is relatively
small. This suggests that the subgoal parameterization (and the resulting BO problem) is often of much
lower dimension than that of the state itself.

3.3 Subgoal-Augmented MDPs Mξ,θ

Now that we have described how a particular subgoal design is parameterized, the remaining question is
how these are integrated in a useful way into the original, sparse-reward MDP described in Section 3.1. We

7

Published in Transactions on Machine Learning Research (09/2023)

propose the notion of a subgoal-augmented, auxiliary MDP, where the K subgoals are sequentially “activated.”
This way, we encode subgoal ordering5 into the exploration strategy, meaning that the agent only moves on
to the next subgoal after finishing the current one.

Let Mξ,θ denote an auxiliary, subgoal-augmented MDP based on an original MDP Mξ, except that it is
includes rewards and transitions associated with the dynamic subgoal exploration strategy θ. We introduce
an auxiliary state i ∈ I := {0, 1, . . . ,K}, where i represents the number of subgoals reached by the agent
so far. Initially, we have i0 = 0. The state of the Mξ,θ is (s, i) ∈ S × I and the transition for the auxiliary
state is i′ = i + 1{s′ ∈ Gθ,i+1}, where we take Gθ,K+1 = ∅. This means the auxiliary state i is updated to
i+ 1 whenever s′ reaches the next subgoal. Let the intrinsic reward of the agent be:

Gθ(st, it, st+1) =
K∑
k=1

1{k=it} · gθ,k+1(st, st+1),

where the indicator function encodes the logic that if it subgoals have been completed so far, then the
current target is subgoal it + 1 and only the rewards leading to subgoal j + 1 are active. The new reward
function consists of both extrinsic (Rθ) and intrinsic (Gθ) rewards:

R̂ξ,θ(s, i, a, s′) = Rθ(s, a, s′) +Gθ(s, i, s′).

The value function for the new MDP Mξ,θ is written

V̂ π̂ξ,θ(s, i) = E
[∞∑
t=0

γtR̂ξ,θ(st, it, at, st+1) | π̂, s, i
]
, (3)

where π̂(·|s, i) is now a policy defined on the new state space S × I.

Figure 3 gives an example of the overall setup: Figure 3a shows the original MDP environment Mξ, where
the dark gray cells are walls, the light gray represent uncertainty in the size of the “doors”, and the red
cells represent goal states (the sparse, extrinsic reward). Figure 3b shows the possible rewards the agent can
encounter in the augmented MDP Mξ,θ, for a random selection of subgoals θ. The original sparse reward is
represented by the red bar in the corner and the first subgoal is the one that is farther from the goal. Both
subgoals are singletons and the potential functions are radial basis functions centered at the subgoal locations,
similar to the parameterization described in Example 1. Note that this randomly selected set of subgoals θ
is not a good exploration strategy for the environment in Figure 3a (as it leads the agent toward a wall),
motivating the need for optimizing their locations, as we discuss in the next section.

3.4 Optimizing the Exploration Strategy

The selection of the subgoal design θ depends on the agent’s underlying learning algorithm, which could in
principle be any RL algorithm where intermediate rewards influence the learning process: this includes any
temporal difference-based algorithm that makes use of learned value functions. In the numerical results of
Section 5, our agent learns via Q-learning Watkins & Dayan (1992). We refer to the underlying RL algorithm
as RL-ALGO. Let us use the notation RL-ALGO[τ,M] to refer to the policy learned by RL-ALGO on MDP M
after τ training interactions. We remind the reader that the subgoal-based exploration strategy is fixed before
the test environment is revealed, so that the sequence of events in the test phase is as follows:

1. A subgoal design θ for exploration is selected.
2. The agent is placed in a new environment ξ.
3. The agent uses the subgoal-augmented MDP Mξ,θ and an RL algorithm with a budget of τmax

interactions to learn a policy RL-ALGO
[
τmax,Mξ,θ

]
.

4. The agent’s policy is evaluated using only the extrinsic reward function Rξ of the original MDP.
5Without ordering, rewards from multiple subgoals can inhibit the agent’s progress.

8

Published in Transactions on Machine Learning Research (09/2023)

0 5 10 15
0

5

10

15

(a) 20 × 20 Gridworld Environment (b) Goal and Subgoal Rewards

Figure 3: An example that visualizes an environment and a random dynamic subgoal exploration strategy
along with the rewards of the associated subgoal-augmented MDP.

Our goal is to find an exploration strategy θ ∈ Θ such that a policy trained using θ behaves well in the
original MDP:

max
θ∈Θ

E
[∞∑
t=0

γtRξ(st, at, st+1)
∣∣ π̂τmax

ξ,θ , (s0, i0)
]

with π̂τmax
ξ,θ = RL-ALGO

[
τmax,Mξ,θ

]
, (4)

where (s0, i0) is the initial augmented state. The interpretation of the objective in (4) is as follows: Evaluate
π̂τmax
ξ,θ (a policy for the subgoal-augmented MDP) using the same dynamics as the subgoal-augmented MDP,

but without the rewards associated with the subgoals. In other words, the policy takes actions based on the
augmented state (st, it), but only receives rewards associated with the original MDP. This explains why we
need to consider a starting state (s0, i0), rather than just s0 (note that the reward does not depend on the
auxiliary state it).

The expectation in (4) is taken over the random choice of a test environment ξ, the stochastic dynamics
within Mξ, and the stochasticity of the learning algorithm itself. It is convenient to explicitly define the
following:

u(θ, τ) = E
[∞∑
t=0

γtRξ(st, at, st+1)
∣∣ π̂τξ,θ, s0, i0

]
with π̂τξ,θ = RL-ALGO

[
τ,Mξ,θ

]
.

Although the objective function in (4) is u(θ, τmax), the notation u(θ, τ) will be useful in Section 4, where we
discuss using fewer than τmax interactions to learn about u(θ, τmax) as a way of reducing cost.

3.5 Iterative Training and Additional Cost-Reduction Levers

In our setting, we observe the performance of exploration strategies and the resulting policies in a sequence
of training environment realizations ξ1, ξ2, . . . , ξN drawn from the MDP distribution Ξ. By default, each
complete evaluation of the objective function in (4) u(θ, τmax) for a fixed θ requires running RL-ALGO for τmax
interactions. Since each interaction in the training environments is expensive (e.g., in robotics applications,
this could involve time, labor, and equipment), we want to consider ways to reduce the number of training
interactions. To do so, we propose two additional levers:

1. Maximum number of interactions. For each training environment ξn, we allow the specification
of a maximum number of interactions τn, chosen from a finite set T ⊆ N. In episodic tasks, if
an episode finishes before τn interactions are used, we start a new episode and continue in this
manner until exactly τn environment interactions are exhausted. In the next section, we describe
our probabilistic model of the RL training curve, which allows observations of short episodes to

9

Published in Transactions on Machine Learning Research (09/2023)

be informative about the final performance. This also can reduce the risk of spending too many
interactions with an unpromising exploration strategy.

2. Multiple replications. We can reduce the variance of performance observations by averaging over
the observed cumulative reward over qn i.i.d. replications, for a total of τnqn interactions in training
environment ξn+1. Each replication is an independent invocation of an agent. We suppose that qn is
chosen from a finite set Q. The idea here is that even with the same number of total interactions, a
lower variance observation of a “preliminary” result could be more informative than a higher variance
observation of the “full” result.

To summarize, three decisions are made at the beginning of each training opportunity n: (1) a choice of
subgoal design θn, (2) the maximum number of interactions τn, and (3) the number qn of independent
replications to use for this particular θn. For each of the qn replications, we obtain a policy

π̂τ
n

ξn+1,θn = RL-ALGO
[
τn,Mξn+1,θn

]
,

before observing a estimate of its performance. After the qn training replications are complete, we compute
the average performance over the qn replications. Written more succinctly, our observation in episode n
takes the form

yn+1(θn, τn, qn) = u(θn, τn) + εn+1
env + εn+1

rep (qn),

where εn+1
env represents the deviation from the u(θn, τn) due to the random environment ξn+1, while the

observation noise εn+1
rep (qn) represents the noise that can be reduced via multiple replications, i.e., the noise

in π̂τ
n

ξn+1,θn due to a sample run of RL-ALGO. Thus, εn+1
rep (qn) depends on the number of replications qn.

Naturally, a larger number of replications implies a smaller observation noise. Note that the observations
{yn} are i.i.d., since a new MDP is sampled in each iteration. The total training cost incurred is cumulative
number of interactions:

∑N−1
n=0 τ

nqn.

After training opportunities 0, 1, . . . , N − 1, we reach the test phase and commit to a final subgoal design θNrec.
This design is evaluated on the test MDP ξN+1 ∼ Ξ with an agent that has a full budget of τmax interactions.

4 Bayesian Optimization for Cost-Efficient Exploration

The setup for BO typically consists of two components: (1) a probabilistic surrogate model (usually a Gaussian
process) for modeling the objective function, and (2) an acquisition function, which given a dataset of past
observations, assigns a score to each potential observation location (Garnett, 2023). Selecting the optimizer
of the acquisition function as the next point to sample gives rise to strategy for balancing exploration with
exploitation. The BO “loop” repeats the following: sample a point (using a combination of the current
surrogate model and acquisition function), observe new data, and update the surrogate model. For a detailed
tutorial, we refer readers to Frazier (2018) and Garnett (2023).

For our setting of learning a dynamic subgoal exploration strategy, we propose a tailored probabilistic model
for the RL learning curve and an acquisition function for selecting the next subgoal design, the maximum
episode length, and the number of replications to run. Although shorter episodes and smaller number of
replications are more cost-efficient, they also decrease the chance of reaching the goal and produce higher
observation noise. Thus, the acquisition function must carefully trade off these downsides with the cost of
interactions. We call this the Bayesian Exploratory Subgoal Design (BESD) acquisition function.

4.1 Surrogate Model

In order to enable the ability to dynamically select the maximum episode length of training, as described
in Section 3.5, our approach uses a GP surrogate model over u(θ, τ), rather than u(θ, τmax). In other words,
our model is a function of both θ and τ rather than just θ, enabling it to capture the performance of a policy
trained with subgoals θ, for a variety of episode lengths. Assume that Θ ⊆ Rm. We place a GP prior f on the
latent function u with mean function µ : Θ × T → R and covariance function k : (Θ × T) × (Θ × T) → R+.
More precisely, to capture the structure of the RL learning curve, we set µ to the mean of an initial set

10

Published in Transactions on Machine Learning Research (09/2023)

Algorithm 1 Bayesian Exploratory Subgoal Design

1. Set n = 0. Estimate hyperparameters of the GP prior f using initial samples.
2. Compute next decision (θn, τn, qn) according to the acquisition function (7).
3. Train in environment ξn+1 augmented with θn (Mξn+1,θn) using levers (τn, qn).
4. Observe yn+1(θn, τn) and update posterior on f .
5. If n < N , increment n and return to Step 2.
6. Return a subgoal recommendation θNrec that maximizes µN (θ, τmax).

of samples and use a multidimensional product kernel, based on the kernel used in Klein et al. (2017) for
modeling ML performance as a function of parameters and time:

k
(
(θ, τ), (θ′, τ ′)

)
= kθ(θ, θ′) kτ (τ, τ ′), (5)

where the first kernel kθ is the (5/2)-Matérn kernel and kτ is a polynomial kernel kτ (τ, τ ′) = ϕ(τ)⊺ Σϕ ϕ(τ ′)
with ϕ(τ) = (1, τ)⊺ and hyperparameters Σϕ. Note that the covariance under k is large only if the covariance
is large under both kθ and kτ . We make the modeling assumption that εn+1

env and εn+1
rep (qn) are independent,

zero mean, and normally distributed6 with variances σ2
env and σ2

rep/q
n, respectively. This allows us to take

advantage of standard GP machinery to analytically compute the posterior on f conditioned on the history
after n steps. This posterior is another GP, whose mean and kernel functions are denoted µn(θ, τ) and
kn((θ, τ), (θ′, τ ′)); the exact expressions can be found in, e.g., Rasmussen & Williams (2006).

We remind the reader that the dimensionality of the GP surrogate model is dim(Θ) + 1, i.e., the dimension
of the subgoal parameterization, along with an additional dimension for τ . As illustrated in Example 2, it
will often be the case for navigation domains that the dimension of the subgoal parameterization is smaller
than that of the state space of the underlying RL problem (due to the relatively small number of spatial
components of the state). Therefore, dynamic subgoal exploration strategies can be tractably modeled and
optimized for broad classes of navigation problems, even with vanilla GPs.7

4.2 Acquisition Function

As described above, the proposed algorithm proceeds in iterations, selecting one set of subgoals θn along
with τn and qn, to be evaluated in each training environment. We now propose the acquisition function for
making these evaluation decisions. An overview of the BO setup is given in Algorithm 1.

Suppose the training budget is used up after training iterations 0, 1, . . . , N − 1. Then, the optimal risk-neutral
decision is to use subgoals on the test MDP ξN+1 that have maximum expected performance under the
posterior. The expected score of this choice is µn∗ where

µn∗ := maxθ µn(θ, τmax), (6)

where µn(θ, τmax) = En[f(θ, τmax)]. Here En is the conditional expectation with respect to the history after
the first n observations: (θ0, τ0, q0, y1, . . . , θn−1, τn−1, qn−1, yn). Note that although we are allowed to use
fewer than τmax interactions in training environments to reduce cost, the agent uses its full budget for the
test MDP ξN+1.

The proposed acquisition function is based upon the knowledge gradient, which is one-step lookahead approach
(Frazier et al., 2008; 2009). That means we imagine for each training MDP that it is the last opportunity
before the test MDP and act optimally. Full lookahead approaches require solving an intractable dynamic

6Although the assumption of normality is commonplace in BO for tractability of the posterior (Frazier, 2018), other noise
distributions can be used through an appropriate likelihood function.

7When the need arises to optimize for high dimensional subgoal parameterizations, one may opt for scalable extensions of the
model and optimization formulation; see, e.g., Wang et al. (2016); Mutny & Krause (2018); Nayebi et al. (2019); Eriksson et al.
(2019); Papenmeier et al. (2022; 2023). We leave extensions in this direction to future work and focus on a more standard setting.

11

Published in Transactions on Machine Learning Research (09/2023)

programming problem; however, we show that nonetheless, the one-step approach is asymptotically optimal
in Theorem 1 and Theorem 2. If we evaluate (θ, τ, q), i.e., the subgoals θ for τ steps and q replications,
then the expected gain in performance in the test MDP of the recommended exploration strategy after the
evaluation, based on (6), with respect to the current best is

νn(θ, τ, q) = En
[
µn+1

∗ | θn = θ, τn = τ, qn = q
]

− µn∗ .

Therefore, the one-step optimal strategy is to choose the next subgoals θn, maximum episode length τn,
and number of replications qn so that νn is maximized. However, this strategy would generally allocate
a maximum number of steps τmax and replications qmax for the evaluation of the next subgoal design, as
observing τmax during training is most informative, and repeating for qmax replications reduces the noise
maximally. In other words, this strategy does not consider the cost of training.

Hence, we propose an acquisition strategy that maximizes the gain in performance per effort:

(θn, τn, qn) ∈ arg max
θ,τ,q

νn(θ, τ, q)
qτ

. (7)

The optimization problem (7) is challenging when the domain Θ is continuous, so we take the approach of
replacing it with a discrete domain Θ̄ ⊆ Θ (for example, this could be selected by a Latin hypercube design
(Stein, 1987)). This approach has been applied successfully in other knowledge gradient style acquisition
functions (Scott et al., 2011; Wu & Frazier, 2016; Poloczek et al., 2017). We provide a novel theoretical
guarantee on the asymptotic suboptimality of a discretized optimization domain. It characterizes the Lipschitz
constant explicitly, thereby improving on the analysis of Poloczek et al. (2017); see Theorem 2 in the next
section.

4.3 Theoretical Analysis

We now provide our main theoretical results on the asymptotic optimality of BESD. Detailed proofs can
be found in Appendix A. For convenience, we suppose µ(θ, τ) = 0 for all (θ, τ), and further assume that
the kernel k(·, ·) has continuous partial derivatives up to the fourth order. Recall that θNrec ∈ Θ̄ is the final
recommendation made in iteration N :

θNrec ∈ arg max
θ∈Θ̄

µN (θ, τmax).

Our first theorem is concerned with the finite, discretized optimization domain Θ̄.

Theorem 1 The acquisition function described in (7) has the property of asymptotic optimality with respect
to Θ̄, i.e.,

lim
N→∞

f(θNrec, τmax) = max
θ∈Θ̄

f(θ, τmax),

almost surely. That is, the recommended design θNrec becomes optimal as N → ∞.

If the optimization domain Θ̄ = Θ, then Theorem 1 suffices. Unfortunately, for many applications, the subgoal
parameterizations will naturally be continuous. Next, we provide an additive bound on the difference between
the solution of BESD in Θ̄ and the unknown optimum in Θ, as the number of iterations N tends to infinity.

We use a probabilistic Lipschitz constant of a GP from Lederer et al. (2019) to quantify the performance
with respect to the full, continuous subgoal parameter space. We make use of the fact that the derivative
df(θ, τmax)/dθi is another GP with covariance

k∂i(θ, θ′) = ∂2

∂θi∂θ′
i

k
(
(θ, τmax), (θ′, τmax)

)
,

for all i = 1, 2, . . . ,m (Rasmussen & Williams, 2006, Section 9.4). See also Ghosal et al. (2006) and Wu et al.
(2017) for other uses of this property. For each i = 1, 2, . . . ,m, define the constant

Liδ = k∂max

√
2 log

(2m
δ

)
+ 12

√
6mmax

{
k∂max,

√
L∂ik max

θ,θ′∈Θ
dist(θ, θ′)

}
, (8)

12

Published in Transactions on Machine Learning Research (09/2023)

A A
B

B

Random Wall (1x6)

(a) GW10 Domain

A

A

Random Doors (1x8)

(b) GW20 Domain

Figure 4: Recommendation paths for GW10 and GW20. The blue and red shaded regions denote the starting
points and goals, respectively. Dark and light gray regions possible locations of walls and doors, respectively.
Each plot displays four realizations of the “recommendation paths” of BESD. Each color corresponds to one
sample realization, and the color becomes darker as n increases, with the lightest points being the initial
samples. The circles and triangles represent the first and second subgoals, respectively, of the exploration
strategy. The ‘A’ and ‘B’ labels point out two example sets of subgoals displaying notable behaviors.

where L∂ik be a Lipschitz constant of the kernel k∂i and k∂max = maxθ∈Θ
√
k∂i(θ, θ).

Theorem 2 The acquisition function of (7) has bounded asymptotic suboptimality with respect to the original
domain Θ in the sense that with probability at least 1 − δ, it holds that

limN→∞ f(θNrec, τmax) ≥ maxθ∈Θ f(θ, τmax) − d · ∥Lδ∥

where d = maxθ∈Θ minθ′∈Θ̄ dist(θ, θ′) is a measure on the “coarseness” of the discretization and Lδ is the
vector (L1

δ , L
2
δ , . . . , L

m
δ), with each Liδ defined as in (8).

5 Numerical Experiments

We now show numerical experiments to demonstrate the cost-effectiveness of the BESD framework. BESD is
implemented using the MOE package (Clark et al., 2014) and the full source code be found at the following
URL: https://github.com/yjwang0618/subgoal-based-exploration. In the experiments that follow, we
use the BESD approach to optimize dynamic subgoal exploration strategies consisting of two or three subgoals.

BESD is given a few choices for the interaction length τ and number of replications q (values reported for each
benchmark below). Each replication of the BESD is given an initial set of 10 observations for each value of τ
(these initial observations incur interaction costs just like future observations). The potential function at
state s with the jth subgoal activated is Φj(s) = w1 exp[−0.5(s− j)2/w2], where the “height” is w1 = 0.2
and “width” is w2 = 10. The underlying RL algorithm for all environments is Q-learning with an ϵ-greedy
behavioral policy (with ϵ = 0.2) for all environments.

In the next few subsections, we first introduce each of the environments and along the way, show some
qualitative results obtained by BESD, focusing on providing intuition. Later, in Section 5.6, we introduce the
baseline algorithms used for an empirical comparison, and in Section 5.7, provide a discussion of those results.

13

https://github.com/yjwang0618/subgoal-based-exploration

Published in Transactions on Machine Learning Research (09/2023)

5.1 Windy Gridworlds with Walls

The first set of environments (GW10) is a distribution over 10 × 10 gridworlds, where the goal is to reach
the upper left square that is shaded red in Figure 4a to collect a reward of one. The agent starts from the
lower-left grid square shaded in blue and may in each step choose an action from the action space consisting
of the four compass directions. Each gridworld is partitioned by a wall into two rooms. The wall, randomly
located in one of the middle five rows in the gridworld, has a door located on four grid squares on its right.
The agent will stay in the current location when it hits the wall.

There is a small amount of “wind” or noise in the transition: the agent moves in a random direction with a
probability that is itself uniformly distributed between 0 and 0.02 (thus, a particular environment instance
drawn from the distribution has a random wall location and wind probability).

We use T = {200, 600, 1000} for the possible values of τ and Q = {5, 20} for the possible values of q. We
parameterize the exploration strategy using two subgoals, whose locations are optimized. Subgoal locations
are limited to the continuous subset of R2 which contains the grid, i.e., Θ = ([0, 10] × [0, 10])2 for GW10.

5.1.1 Recommendation Paths for GW10

In order to visualize the qualitative behavior of BESD, we show in Figure 4a the evolution of the recommended
subgoals over time (iterations), a concept that we refer to as a recommendation path. The plot displays four
recommendation path realizations of BESD using distinct colors. Within each color, the lightest points are the
initial samples while the darker points represent recommendations for larger n. Also within each color, the
circles represent the first subgoal of the exploration strategy, while the triangles represent the second subgoal.
We point out two types of exploration behaviors discovered by BESD in Figure 4a:

• Behavior ‘A’: The pairs of regions labeled ‘A’ are the final recommendations of the orange, green,
and purple sample paths. The strategy leads the agent toward the upper right corner (away from
the wall), and then after that, directly towards the goal.

• Behavior ‘B’: The final recommendation of the red sample path is labeled by ‘B.’ Note that in
behavior ‘A’, a direct path to the first subgoal (upper right corner) is blocked by the random wall for
some realizations of the environment. Behavior ‘B’ might be interpreted as a slight remedy of this
situation by targeting a lower region of the right edge, creating a more direct path around the wall.

Both strategies appear to be reasonable ways for the agent to avoid the door and head to the goal.

5.2 Larger, Three-Room Windy Gridworlds

The second domain (GW20) is a distribution of larger 20 × 20 gridworlds with three rooms separated by
two walls. As shown in Figure 4b, the walls are randomly located in the middle rows (dark gray). A door of
size 8 is randomly located somewhere within the wall, shaded in light gray. The starting location is the blue
square in the lower left and the goal is displayed in red in the upper right. As in GW10, we optimize the
locations of a two-subgoal exploration strategy, with Θ = ([0, 20] × [0, 20])2. The noise due to wind is the
same as in GW10. In this experiment, we consider the case of only allowing BESD to select the maximum
episode length from T = {4000, 7000, 10000}, while keeping q = 20 fixed.

5.2.1 Recommendation Paths for GW20

Recommendation paths are shown in Figure 4b. Unlike the case of GW10, all four of the realizations converge
to roughly the same exploration strategy, labeled by ‘A.’ Focusing on the lighter red and orange circles, we
can notice a trend of the first subgoal initially being placed (naively) near the goal, but as learning progresses,
they move downward toward the entrance of the first door. The second subgoal converges toward the exit of
the second door, moving the agent near the goal.

Regarding the placement of the first subgoal near the goal and inducing a direct path, it is worth pointing
out this strategy might work for some environments (i.e., those where the first door is at its leftmost position

14

Published in Transactions on Machine Learning Research (09/2023)

A

A

B
B

Random Treasure (1x1)

(a) TR Domain

A A

BB

(b) MC Domain

Figure 5: Recommendation paths for TR and MC. The first panel, Figure 5a, largely follows the same
design as Figures 4a and 4b, except that the green squares represent possible location of the treasure. In
the second panel, Figure 5b, since the location of the mountain-car is one-dimensional, we visualize the four
recommendation paths by spacing them vertically to avoid crowding (therefore, the vertical axis represents
different trajectories, each shown in a different color). The initial location of the car is colored in blue, while
the goal is in red, corresponding to the overlay of the mountain. See the caption of Figure 4 for an explanation
of the symbols used.

and the second door is at its rightmost position). However, BESD learns that in order to perform well across
the distribution of environments, the strategy of first moving rightward is better.

5.3 Treasure-in-Room

The third domain (TR) is a distribution of 10 × 10 gridworlds with a “treasure” hidden in a small room; see
Figure 5a. The light green area shows the possible positions of the treasure. The agent gets a reward of 10
upon entering the square with treasure, and a reward of 10 upon reaching the goal. The cumulative reward,
however, is zero if the agent does not find the goal within the interaction budget. The discount factor is set to
γ = 0.98 to encourage policies that collect the reward earlier. We set T = {400, 1200, 2000} and Q = {5, 20}.

5.3.1 Recommendation Paths for TR

The recommendation paths for TR are shown in Figure 5a. We observe that two strategies were discovered
by BESD across these four realizations:

• Behavior ‘A’: This appears to be the ideal behavior and was discovered in the orange, purple, and
red sample paths: first lead the agent to the treasure and then toward the goal through the upper
right. It is also notable that the first subgoal is located at the bottom of the room, meaning that
wherever the treasure turns out to be, the agent can pick it up without backtracking.

• Behavior ‘B’: The green sample path’s final recommendation coincides with the (apparently subopti-
mal) exploration strategy denoted by ‘B’ simply leads the agent to the treasure, but does not provide
any guidance toward the goal. We highlight that this is an instance where BESD’s learning is not yet
complete, evidenced by the fact that behavior ‘B’ is often recommended in earlier iterations of the
orange sample path. In that case however, BESD eventually discovers behavior ‘A’ in later iterations.

15

Published in Transactions on Machine Learning Research (09/2023)

A

A

B

B
Random Keys (2x2)

(a) KEY2 Domain

A

A
B

B
Random Keys (2x2)

B
A

(b) KEY3 Domain

Figure 6: Recommendation paths. The blue and red shaded regions denote the starting points and goals,
respectively. Dark and light gray regions possible locations of walls and doors, respectively. Each plot displays
four realizations of the “recommendation paths” of BESD. Each color corresponds to one sample realization,
and the color becomes darker as n increases, with the lightest points being the initial samples. The circles,
triangles, and crosses represent the first, second, and third subgoals, respectively. The ‘A’ and ‘B’ labels
point out two example sets of subgoals displaying notable behaviors.

5.4 The Mountain Car Problem (MC)

The mountain car (MC) domain, as we introduced in Example 2, is a commonly used RL benchmark
environment that tests an agent’s ability to explore, as it is required to go in the opposite direction of the
goal in order to reach the top of the mountain; see, e.g., (Sutton & Barto, 2018, Example 10.1). For this
experiment, we created a distribution of environments Ξ by randomizing the starting location of the agent,
which is chosen uniformly from [−0.6,−0.4]. Here, we set T = {4000, 7000, 10000} and Q = {10, 50}.

5.4.1 Recommendation Paths for MC

The subgoal-pairs discovered by BESD are shown in Figure 5b; they tend to be on opposite sides of the agent’s
starting location, thereby creating back-and-forth movement needed to generate momentum and move up
the mountain. It is worth noting that the symmetric behaviors of going from left to right (Behavior ‘B’ in
Figure 5b, for the orange sample path) and going from right to left (Behavior ‘A’, exhibited by the green,
red, and purple sample paths) can both be found in the results of BESD.

5.5 Key-Door with Highly Varying Key Locations (KEY2 and KEY3)

In our last experiment, we test for the situation where the distribution of environments Ξ contains environments
that might vary dramatically from one another. We also consider how the exploration behavior changes when
we add an additional subgoal to the strategy.

In domains KEY2 (with two subgoals) and KEY3 (with three subgoals), we consider a 10 × 10 gridworld
with one wall, where a “key” needs to be picked up before opening a closed door at the upper-right corner of
the grid. The location of the key, however, is highly varying and is either near the left wall or the right wall.
The environment is visualized in Figures 6a and 6b. We set T = {400, 700, 1000} and Q = {5, 20}.

16

Published in Transactions on Machine Learning Research (09/2023)

5.5.1 Recommendation Paths for KEY2/KEY3

It is important that the agent moves in the vicinity of both keys in order for it to perform well across the
distribution of environments. We now discuss how this is achieved by the two- and three-subgoal exploration
strategies, using the annotations in Figures 6a and 6b.

• Behavior ‘A’ in KEY2 (Figure 6a): In the first exploration behavior discovered by BESD, the agent is
first directed to the right-most key location and then towards the door. This is behavior is reasonable
in the sense that the agent’s initial location is near the left-most key location; hence, the naive
exploration (e.g., ϵ-greedy) “built-in” to RL-ALGO would likely find the key (if it is there) without
additional subgoal rewards.

• Behavior ‘B’ in KEY2 (Figure 6a): The second exploration behavior that we highlight takes a similar
approach. This strategy incentivizes the agent to first check the left-most key location (going upwards
from the initial location). Interestingly, the second subgoal is neither the other key location nor the
goal: instead, the agent is directed toward the upper edge of the environment, slightly right of center.
Upon examination, one might conclude that this path compromises between the second key location
and the goal. On its way from the first to second subgoal, the agent enters the vicinity of the second
key location and also ends up not far from the goal. In other words, the exploration strategy puts
the agent in a position such that RL-ALGO’s naive exploration is more likely to be successful.

• Behavior ‘A’ in KEY3 (Figure 6b): With an additional subgoal to work with, BESD is able to find more
flexible exploration strategies. For behavior ‘A’, we see that the first subgoal is near the left-most key
location, the second subgoal indirectly leads the agent toward the vicinity of the right-most key location,
and the third subgoal is at the goal. The placement of the second subgoal is reminiscent of behavior
‘B’ of KEY2, but this time, a third subgoal allows BESD to directly lead the agent towards the goal

• Behavior ‘B’ in KEY3 (Figure 6b): This strategy is more intuitive (indeed, more replications
converge to behavior ‘B’ than behavior ‘A’) and leads the agent to check each of the possible key
locations (the closer one first) and then sends the agent directly toward the goal.

5.6 Baseline Algorithms

Given the somewhat unique positioning of the BESD framework, it is important for us to compare against from
several streams of literature. Due to our strong focus on cost-efficiency, non-gradient-based approaches from
the BO literature are particularly relevant. Two of the most common approaches are expected improvement
(Močkus, 1975; Jones et al., 1998) and lower confidence bound (LCB)(Cox & John, 1992; Srinivas et al., 2010).
Expected improvement (EI) allocates one sample in each round, selecting a point that maximizes the expected
improvement beyond currently sampled points:

EI(θ) = En
[(

min{y1, . . . , yn} − yn+1(θ, τmax)
)+]

.

In each iteration, we evaluate the EI selection using τmax iterations. LCB controls the exploration-exploitation
trade-off using a “bonus term” proportional to the standard deviation at each point:

LCB(θ) = µn(θ, τmax) − κ
√
kn((θ, τmax), (θ, τmax)).

The parameter κ is set to 2. Both EI and LCB are implemented using the GPyOpt package González (2016).
As a sanity check, we also compare against a baseline where the subgoals are randomly selected at each
iteration (RND), implemented using Latin hypercube sampling (Stein, 1987).

We also compare against two “default RL” baselines, that do not incorporate an aspect of tuning the
exploration strategy. The first baseline is the Q-learning algorithm (QL) (Watkins, 1989) with no subgoals or
reward shaping: that is, we directly run QL on environment ξN for τmax interactions. The second one is a
heuristic based on the approximate Q-values learned by QL, which we call “transfer” Q-learning (TQL): for the
test instance, we initialize the Q-values using the previously stored results from a randomly chosen training

17

Published in Transactions on Machine Learning Research (09/2023)

0 2 4 6

Total cost 1e5

0.5

1.0

1.5

2.0

2.5
L

o
g

 o
f

re
g

re
t

QL

TQL

RND

HB

EI

LCB

BESD

(a) GW10 Domain

0 1 2 3 4 5 6 7

Total cost 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
o
g

 o
f

re
g

re
t

QL

TQL

RND

HB

EI

LCB

BESD

(b) GW20 Domain

0.0 0.5 1.0

Total cost 1e6

2

4

6

8

10

12

14

16

R
e
w

a
rd

QL

TQL

RND

HB

EI

LCB

BESD

(c) TR Domain

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Total cost 1e7

1.6

1.7

1.8

1.9

2.0

2.1

2.2

L
o
g

 o
f

re
g

re
t

QL

TQL

RND

HB

EI

LCB

BESD

(d) MC Domain

0 2 4

Total cost 1e5

2.2

2.3

2.4

2.5

2.6

2.7

L
o
g

 o
f

re
g

re
t

QL

TQL

RND

HB

EI

LCB

BESD

(e) KEY2 Domain

0 2 4

Total cost 1e5

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

L
o
g

 o
f

re
g

re
t

QL

TQL

RND

HB

EI

LCB

BESD

(f) KEY3 Domain

Figure 7: Performance as a function of the total training costs. The curves are averaged over 50 replications
of the meta-optimization problem and the error bars indicate ± 2 standard errors of the mean. Note that the
curves associated with the BO methods, BESD, LCB, EI, start later due to the use of a set of initial points for
initializing the GP model.

environment. This heuristic is inspired by the idea of policy reuse proposed in Fernández et al. (2010) for
transferring learned strategies to new tasks.

An alternative to applying BO or bandit algorithms to hyperparameter optimization is the idea of adaptive
configuration evaluation, which focuses on improving the throughput of configuration evaluation by quickly
eliminating ones that are not promising. From this line of thinking, the Hyperband algorithm (HB) of Li
et al. (2017) stands out as a popular and representative approach. It treats hyperparameter optimization
as a pure-exploration infinite-armed bandit problem; it uses sophisticated techniques for adaptive resource
allocation and early-stopping to concentrate its learning efforts on promising designs. Setting η = 3 (the

18

Published in Transactions on Machine Learning Research (09/2023)

default value) and R = 81, HB consists of ⌊logη R⌋ rounds. The first round starts with R samples of subgoal
designs θ from a Latin hypercube sample. Following HB’s motivation of early-stopping unpromising designs,
each θ is evaluated for τmin steps. The best 1/η-fraction designs are kept for the next round. In round i,
Hyperband samples R/ηi−1 subgoal designs to evaluate for τmin η

i−1 steps.

A detailed empirical comparison of BESD to baseline algorithms for all environments are given in Figure 7.
The purpose of each numerical experiment is to show that BESD is able to, in a cost-efficient manner (where
cost is defined as the number of environment interactions), produce exploration strategies that lead to policies
that perform well in a randomly drawn test environment. For each replication, to assess the performance at a
particular point in the process, we take its latest recommendation and test it by averaging its performance on
a random sample of 200 test MDPs (i.e., ξN). The x-axis is the cumulative cost, which includes the initial
sampling cost. The y-axis is typically the log regret (lower is better), where regret is defined as the number
of additional steps needed to reach the goal when compared to the optimal policy. The exception is the
TR domain, where the y-axis is the discounted reward (higher is better), since in TR, the performance is
measured by both reward and steps.

5.7 Takeaways from Baseline Comparisons in Figure 7

We now offer some observations and takeaways from the performance plots of Figures 7a-7f, where BESD
is compared to a variety of baseline approaches. In these figures, the x-axis shows the total cost, defined
to be the total number of environment interactions, and the y-axis shows the performance measure (either
regret or reward, depending on the environment) when averaged across environments drawn from Ξ. In all
environments, BESD (in red) achieves either the lowest regret or highest reward.

1. Sanity checks. The methods RND, QL, and TQL tend to perform poorly across all domains. This
suggests that subgoal-free methods (QL and TQL) are unable to achieve cost-efficient exploration. At
the same time, the results of RND suggest that when using subgoals, they must be carefully selected
(i.e., exploration based on random subgoals does not perform well).

2. Comparison to Hyperband. HB is reasonably competitive against BESD on two of the easier
domains, GW10 and TR. In particular, we notice that HB tends to have good performance early on
(as it is able to use early stopping to quickly eliminate inferior subgoal strategies). However, as the
interaction budget grows, we see that in most domains, BESD is eventually able to make better use of
its evaluations, likely explained by BESD’s use of a tailored surrogate model.

3. Comparison to other BO methods. The popular BO methods EI and LCB tend to perform
similarly to each other in all domains. Compared to BESD, however, they are less cost-efficient. Since
all three approaches make use of underlying GP surrogate models, but EI and LCB are constrained
in always using qmaxτmax interactions, this is evidence that being able to reduce the episode lengths
and the number of replications is valuable.

4. Impact of more subgoals. Lastly, we point out that Figures 7e and 7f show that although
a two-subgoal exploration strategy achieves better results than the baselines, a three-subgoal
strategy performs even better. This demonstrates the benefit of expanding the dimension of the
parameterization in certain environments. Choosing the number of subgoals to use in a particular set
of environments is not an exact science; in general, a higher dimensional subgoal parameterization
makes the BO meta-optimization problem more challenging and each acquisition function
optimization is also more time-consuming. We recommend the following guidelines: (1) Consider the
total interaction budget across all training iterations. A rule-of-thumb is that a d-dimensional subgoal
parameterization should have 2d− 1 random initial points. The interaction cost of the initial points
should be less than 1/3 of the total budget in order to give BESD adequate time to make progress (if
the cost of initial points is too high, then one might want to reduce d). (2) Optimizing the acquisition
function becomes more time consuming as d increases, so d should be small enough such that (7)
can be computed in one’s allotted per-iteration time budget for acquisition function optimization.

19

Published in Transactions on Machine Learning Research (09/2023)

5.8 Dynamic Subgoal Exploration Strategy vs. Learning From Scratch at Test Time

In Section 5, Figures 4, 5, and 6 gave visual intuition about the types of exploration behaviors that were
discovered by BESD. In this section, we show how the final dynamic subgoal strategy θNrec recommended by
BESD is able to speed up learning in the test environment, by comparing it to “learning from scratch” (i.e.,
running RL directly in the sparse reward environment, with no subgoals). Let

πTξ = RL-ALGO
[
T,Mξ

]
and πTξ, θN

rec
= RL-ALGO

[
T,Mξ, θN

rec

]
be the policy learned using RL-ALGO on the original, sparse-reward environment (i.e., no subgoals) and the
policy learned by RL-ALGO with the aid of the subgoal strategy found by BESD after T test-time interactions.
The performance ratio that we are interested in is

performance ratio(T) = E
[
V
πT

ξ,θN
rec (s0)

]
/ E

[
V π

T
ξ (s0)

]
,

which, stated simply, represents the ratio “performance with subgoals / performance without subgoals.” On
GW10, GW20, MC, KEY2, and KEY3, a smaller performance ratio indicates a more effective exploration
strategy. For TR, we measure performance using rewards instead of costs, so a larger performance ratio is
better. Table 1 displays the performance ratios as a function of the number of interactions used in the test
environment. We can see that an optimized exploration strategy corresponds to dramatic improvements,
ranging from roughly 3x in the worst cases (MC, KEY2, and KEY3) to nearly 20x in the best cases (GW10,
GW20, and TR). Note that due to the varying difficulty between environments, we use a scaling factor m to
show how the performance improves with additional cost. The takeaway here is that using a good exploration
strategy can lead to dramatic improvements at test-time.

Table 1: Performance ratios as a function of interactions in the test environment. GW10, GW20 TR, MC,
KEY2, and KEY3 are evaluated every m = 100, 1000, 200, 1000, 500, 500 steps respectively.

τ GW10 GW20 TR MC KEY2 KEY3
m 0.458 0.779 0.436 0.980 1.456 1.025
2m 0.218 0.492 2.823 1.048 0.736 0.940
3m 0.086 0.234 2.823 0.949 1.277 0.698
4m 0.080 0.224 0.917 0.896 0.704 0.788
5m 0.070 0.108 6.723 0.987 1.355 0.531
6m 0.086 0.088 8.939 0.878 0.856 0.503
7m 0.080 0.068 9.908 1.077 0.920 0.623
8m 0.087 0.075 10.216 0.877 0.883 0.532
9m 0.069 0.059 23.2936 0.512 0.232 0.566
10m 0.069 0.058 18.011 0.354 0.332 0.361

6 Conclusion and Future Work

The problem of finding exploration strategies for a distribution of environments with a strong focus on
cost-awareness during training has not been adequately studied in the literature. This can be a deterrent to
applying RL in real-world settings where interactions with the environment are limited and expensive (and
where cheap simulators are not available). This paper proposes a solution based on Bayesian optimization; in a
cost-aware manner, our approach finds subgoals with an intrinsic shaped reward that aids the agent in scenarios
with sparse and delayed rewards, thereby reducing the number of interactions needed to obtain a good solution.
We hope that this approach can help RL become more applicable in real world settings. An experimental
evaluation demonstrates that BESD achieves considerably better solutions than a comprehensive field of
baseline methods on a variety of benchmark problems. Moreover, an examination of its “recommendation
paths” shows that BESD discovers solutions that induce interesting exploration strategies. There are several
exciting directions for extending this paper:

20

Published in Transactions on Machine Learning Research (09/2023)

• Richer BO formulations. Extensions to the BO formulation could be made in various ways. For
example, one interesting direction is to allow the acquisition function to determine the number of
subgoals as an additional lever. Based on a few informal observations, such a formulation is likely only
interesting in settings where more subgoals incur additional experimentation cost.8 Alternatively, the
acquisition function itself could be extended with additional features, such as encouraging successive
subgoal evaluations to be nearby previous ones (i.e., to reduce setup cost) or the ability to reason
about (known) symmetries in the domain. Such advanced features might be enabled by dynamic
programming formulations of the BO problem itself, which can be tackled using multi-step lookahead
BO (Lam et al., 2016; González et al., 2016; Jiang et al., 2020; Lee et al., 2020). Other possiblities
include the ability to handle expensive-to-evaluate constraints (Gardner et al., 2014; Gelbart et al.,
2014; Letham et al., 2019) or total cost budgets (Astudillo et al., 2021; Lee et al., 2021).

• Case study in an application domain. Our experiments gave proof-of-concept results on
benchmarks where the RL training itself did not use prohibitive amounts of computation, in order
for us to stay within a reasonable computational budget. This is because statistically distinguishable
results for baseline algorithms require many replications of the meta-optimization problem (i.e., the
BO routines), each of which require many iterations of RL training. One immediate area of future
work is to “productionize” the dynamic subgoal exploration strategies in a real-world application
involving a navigation task.

• The task-aware setting. Finally, our problem formulation does not include “labels” for environ-
ments, as our setting is concerned with case of exogenous variation in the environments, but otherwise
the same task. The situation often studied in the multi-task RL setting, however, often comes with
task identifiers, where the agent knows that it is operating in particular task. An extension to this
setting might be useful for certain applications, where exploration strategies that are good for one
task (e.g., biking through an environment) are also useful for other tasks (e.g., walking through the
same environment).

8We ran a small number of informal experiments where we allowed BO to select the number of subgoals, but found that BESD
almost immediately gravitates to the largest number of subgoals (as subgoals come at no cost). Since in the applications that we
have in mind, subgoal cost was not a primary concern, we did not pursue this direction as it did not bring any particularly
strong insights for the standard case.

21

Published in Transactions on Machine Learning Research (09/2023)

References
Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement learning. In

International Conference on Learning Representations, 2017.

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of exploration
methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

Dimitrios S Apostolopoulos, Liam Pedersen, Benjamin N Shamah, Kimberly Shillcutt, Michael D Wagner,
and William L Whittaker. Robotic antarctic meteorite search: Outcomes. In International Conference on
Robotics and Automation, volume 4, pp. 4174–4179. IEEE, 2001.

Raul Astudillo, Daniel Jiang, Maximilian Balandat, Eytan Bakshy, and Peter Frazier. Multi-step budgeted
Bayesian optimization with unknown evaluation costs. Advances in Neural Information Processing Systems,
34, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
Event Dynamic Systems, 13(1-2):41–77, 2003.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems,
pp. 1471–1479, 2016.

Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Optimizing waypoints for monitoring spatiotem-
poral phenomena. The International Journal of Robotics Research, 32(8):873–888, 2013.

Mickaël Binois, Jiangeng Huang, Robert B Gramacy, and Mike Ludkovski. Replication or exploration?
sequential design for stochastic simulation experiments. Technometrics, 61(1):7–23, 2019.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

Scott Clark, Eric Liu, Peter Frazier, JiaLei Wang, Deniz Oktay, and Norases Vesdapunt. Moe: A global,
black box optimization engine for real world metric optimization. https://github.com/Yelp/MOE, 2014.

Dennis D Cox and Susan John. A statistical method for global optimization. In International Conference on
Systems, Man, and Cybernetics, pp. 1241–1246. IEEE, 1992.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in Neural Information
Processing Systems, 5, 1992.

Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task policy search for robotics. In
International Conference on Robotics and Automation, 2014.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In International Joint Conferences
on Artificial Intelligence, volume 15, pp. 3460–8, 2015.

Finale Doshi-Velez and George Konidaris. Hidden parameter Markov decision processes: A semiparametric
regression approach for discovering latent task parametrizations. In International Joint Conferences on
Artificial Intelligence, pp. 1432. NIH Public Access, 2016.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global
optimization via local Bayesian optimization. In Advances in Neural Information Processing Systems, pp.
5497–5508, 2019.

22

https://github.com/Yelp/MOE

Published in Transactions on Machine Learning Research (09/2023)

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International Conference on Machine Learning, pp. 1407–1416. PMLR, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2018.

David Ferguson, Aaron Morris, Dirk Haehnel, Christopher Baker, Zachary Omohundro, Carlos Reverte, Scott
Thayer, Charles Whittaker, William Whittaker, Wolfram Burgard, et al. An autonomous robotic system
for mapping abandoned mines. In Advances in Neural Information Processing Systems, pp. 587–594, 2004.

Fernando Fernández, Javier García, and Manuela Veloso. Probabilistic policy reuse for inter-task transfer
learning. Robotics and Autonomous Systems, 58(7):866–871, 2010.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initializing Bayesian hyperparameter opti-
mization via meta-learning. In Association for the Advancement of Artificial Intelligence, pp. 1128–1135,
2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pp. 1126–1135. JMLR. org, 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation
learning via meta-learning. In Conference on Robot Learning, pp. 357–368, 2017b.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared hierarchies.
In International Conference on Learning Representations, 2018.

Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient policy for correlated normal
beliefs. INFORMS Journal on Computing, 21(4):599–613, 2009.

Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential information
collection. SIAM Journal on Control and Optimization, 47(5):2410–2439, 2008.

Javier Garcia-Barcos and Ruben Martinez-Cantin. Robust policy search for robot navigation. IEEE Robotics
and Automation Letters, 6(2):2389–2396, 2021.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham.
Bayesian optimization with inequality constraints. In International Conference on Machine Learning,
volume 2014, pp. 937–945, 2014.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown constraints.
arXiv preprint arXiv:1403.5607, 2014.

Subhashis Ghosal, Anindya Roy, et al. Posterior consistency of Gaussian process prior for nonparametric
binary regression. The Annals of Statistics, 34(5):2413–2429, 2006.

Sandeep Goel and Manfred Huber. Subgoal discovery for hierarchical reinforcement learning using learned
policies. In FLAIRS Conference, pp. 346–350, 2003.

J González. GPyOpt: A Bayesian optimization framework in Python. http://github.com/SheffieldML/
GPyOpt, 2016.

Javier González, Michael Osborne, and Neil Lawrence. Glasses: Relieving the myopia of bayesian optimisation.
In Artificial Intelligence and Statistics, pp. 790–799. PMLR, 2016.

23

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

Published in Transactions on Machine Learning Research (09/2023)

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design to improve
Monte Carlo tree search in ATARI games. In International Joint Conference on Artificial Intelligence, pp.
1519–1525, 2016.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-reinforcement
learning of structured exploration strategies. In Advances in Neural Information Processing Systems, pp.
5302–5311, 2018.

Henry C Herbol, Weici Hu, Peter Frazier, Paulette Clancy, and Matthias Poloczek. Efficient search of
compositional space for hybrid organic–inorganic perovskites via Bayesian optimization. NPJ Computational
Materials, 4(1):51, 2018.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van Hasselt.
Multi-task deep reinforcement learning with PopArt. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 3796–3803, 2019.

Xiao Huang and John Weng. Novelty and reinforcement learning in the value system of developmental
robots. In 2nd International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic
Systems. Lund University Cognitive Studies, 2002.

Shali Jiang, Daniel Jiang, Maximilian Balandat, Brian Karrer, Jacob Gardner, and Roman Garnett. Efficient
nonmyopic Bayesian optimization via one-shot multi-step trees. Advances in Neural Information Processing
Systems, 33:18039–18049, 2020.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–492, 1998.

Kishor Jothimurugan, Osbert Bastani, and Rajeev Alur. Abstract value iteration for hierarchical reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pp. 1162–1170. PMLR, 2021.

Frédéric Kaplan and Pierre-Yves Oudeyer. Maximizing learning progress: An internal reward system for
development. In Embodied Artificial Intelligence, pp. 259–270. Springer, 2004.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209–232, 2002.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast Bayesian optimization of
machine learning hyperparameters on large datasets. In Artificial Intelligence and Statistics, pp. 528–536,
2017.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement learning.
In International Conference on Machine Learning, pp. 489–496. ACM, 2006.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. Advances in Neural Information
Processing Systems, 29, 2016.

Remi Lam, Karen Willcox, and David H Wolpert. Bayesian optimization with a finite budget: An approximate
dynamic programming approach. Advances in Neural Information Processing Systems, 29, 2016.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforcement learning. In
Association for the Advancement of Artificial Intelligence, pp. 2140–2146, 2017.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for Gaussian process regression
with application to safe control. In Advances in Neural Information Processing Systems, pp. 657–667, 2019.

Eric Lee, David Eriksson, David Bindel, Bolong Cheng, and Mike Mccourt. Efficient rollout strategies for
Bayesian optimization. In Conference on Uncertainty in Artificial Intelligence, pp. 260–269. PMLR, 2020.

24

Published in Transactions on Machine Learning Research (09/2023)

Eric Hans Lee, David Eriksson, Valerio Perrone, and Matthias Seeger. A nonmyopic approach to cost-
constrained bayesian optimization. In Uncertainty in Artificial Intelligence, pp. 568–577. PMLR, 2021.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained Bayesian optimization
with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies with
hindsight. In International Conference on Learning Representations, 2018.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1):
6765–6816, 2017.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement learning via
clustering. In International Conference on Machine Learning, pp. 71, 2004.

Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, and José A Castellanos. Active policy learning
for robot planning and exploration under uncertainty. In Robotics: Science and systems, volume 3, pp.
321–328, 2007.

Ruben Martinez-Cantin, Nando De Freitas, Eric Brochu, José Castellanos, and Arnaud Doucet. A Bayesian
exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile
robot. Autonomous Robots, 27:93–103, 2009.

Larry Matthies, Erann Gat, Reid Harrison, Brian Wilcox, Richard Volpe, and Todd Litwin. Mars microrover
navigation: Performance evaluation and enhancement. Autonomous Robots, 2(4):291–311, 1995.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning using
diverse density. In International Conference on Machine Learning, 2001.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experimental
design perspective on model-based reinforcement learning. In International Conference on Learning
Representations, 2021.

Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical
Conference, pp. 400–404. Springer, 1975.

Philippe Morere and Fabio Ramos. Bayesian RL for goal-only rewards. In Conference on Robot Learning,
2018.

Mojmir Mutny and Andreas Krause. Efficient high dimensional Bayesian optimization with additivity and
quadrature fourier features. Advances in Neural Information Processing Systems, 31, 2018.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimization in
embedded subspaces. In International Conference on Machine Learning, pp. 4752–4761, 2019.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In International Conference on Machine Learning, volume 99, pp.
278–287, 1999.

Rafael Oliveira, Lionel Ott, Vitor Guizilini, and Fabio Ramos. Bayesian optimisation for safe navigation
under localisation uncertainty. In Robotics Research, pp. 489–504. Springer, 2020.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In International Conference on Machine Learning, pp. 2701–2710. JMLR. org, 2017.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value
functions. In International Conference on Machine Learning, pp. 2377–2386, 2016.

25

Published in Transactions on Machine Learning Research (09/2023)

Xinlei Pan, Eshed Ohn-Bar, Nicholas Rhinehart, Yan Xu, Yilin Shen, and Kris M Kitani. Human-interactive
subgoal supervision for efficient inverse reinforcement learning. arXiv preprint arXiv:1806.08479, 2018.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adaptive
Bayesian optimization in nested subspaces. Advances in Neural Information Processing Systems, 35:
11586–11601, 2022.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Bounce: a reliable bayesian optimization algorithm
for combinatorial and mixed spaces. arXiv preprint arXiv:2307.00618, 2023.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement learning:
A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, volume 2017, 2017.

Sujoy Paul, Jeroen van Baar, and Amit K Roy-Chowdhury. Learning from trajectories via subgoal discovery.
arXiv preprint arXiv:1911.07224, 2019.

Victor Picheny and David Ginsbourger. A nonstationary space-time Gaussian process model for partially
converged simulations. SIAM/ASA Journal on Uncertainty Quantification, 1(1):57–78, 2013.

Marc Pickett and Andrew G Barto. Policyblocks: An algorithm for creating useful macro-actions in
reinforcement learning. In International Conference on Machine Learning, volume 19, pp. 506–513, 2002.

Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for effective learning.
In 2017 IEEE international conference on robotics and automation (ICRA), pp. 2161–2168. IEEE, 2017.

Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization. In Advances in
Neural Information Processing Systems, pp. 4288–4298, 2017.

Doina Precup, Richard S Sutton, and Satinder Singh. Theoretical results on reinforcement learning with
temporally abstract options. In European conference on machine learning, pp. 382–393. Springer, 1998.

Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and shaping. In
International Conference on Machine Learning, volume 98, pp. 463–471. Citeseer, 1998.

Carl Edward Rasmussen and Christopher K.̃I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006. ISBN 0-262-18253-X.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

Warren Scott, Peter Frazier, and Warren Powell. The correlated knowledge gradient for simulation optimization
of continuous parameters using Gaussian process regression. SIAM Journal on Optimization, 21(3):996–1026,
2011.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In International
Conference on Machine Learning, pp. 5779–5788. PMLR, 2019.

Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions in
reinforcement learning. In International Conference on Machine Learning, pp. 95, 2004.

Özgür Şimşek and Andrew G Barto. An intrinsic reward mechanism for efficient exploration. In International
Conference on Machine Learning, pp. 833–840, 2006.

Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals in reinforcement learning by
local graph partitioning. In International Conference on Machine Learning, pp. 816–823, 2005.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959, 2012.

26

Published in Transactions on Machine Learning Research (09/2023)

Jonathan Sorg, Richard L Lewis, and Satinder P Singh. Reward design via online gradient ascent. In Advances
in Neural Information Processing Systems, pp. 2190–2198, 2010.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. In International Conference on Machine Learning,
pp. 1015–1022, 2010.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Michael Stein. Large sample properties of simulations using latin hypercube sampling. Technometrics, 29(2):
143–151, 1987.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International Symposium on
abstraction, reformulation, and approximation, pp. 212–223. Springer, 2002.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. In Advances in Neural
Information Processing Systems, pp. 2004–2012, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw Bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip
DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 2753–2762, 2017.

Ana C Tenorio-Gonzalez, Eduardo F Morales, and Luis Villaseñor-Pineda. Dynamic reward shaping: Training
a robot by voice. In Ibero-American Conference on Artificial Intelligence, pp. 483–492. Springer, 2010.

Matthew Tesch, Jeff Schneider, and Howie Choset. Adapting control policies for expensive systems to changing
environments. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 357–364.
IEEE, 2011.

Sebastian Thrun, Scott Thayer, William Whittaker, Christopher Baker, Wolfram Burgard, David Ferguson,
Dirk Hahnel, D Montemerlo, Aaron Morris, Zachary Omohundro, et al. Autonomous exploration and
mapping of abandoned mines. Robotics & Automation Magazine, 11(4):79–91, 2004.

Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Kemaev, Hado P van Hasselt,
David Silver, and Satinder Singh. Discovery of options via meta-learned subgoals. Advances in Neural
Information Processing Systems, 34, 2021.

Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John Agapiou, et al.
Strategic attentive writer for learning macro-actions. Advances in Neural Information Processing Systems,
29, 2016.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement learning.
Electronics, 9(9):1363, 2020.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian optimization in a
billion dimensions via random embeddings. Journal of Artificial Intelligence Research, 55:361–387, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, 1989.

27

Published in Transactions on Machine Learning Research (09/2023)

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: A
hierarchical Bayesian approach. In International Conference on Machine Learning, pp. 1015–1022. ACM,
2007.

Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch bayesian optimization. Advances
in Neural Information Processing Systems, 29, 2016.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with gradients. In
Advances in Neural Information Processing Systems, pp. 5267–5278, 2017.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic options.
In International Conference on Learning Representations, 2020.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient methods. In
Advances in Neural Information Processing Systems, pp. 4649–4659, 2018.

28

Published in Transactions on Machine Learning Research (09/2023)

A Proofs

A.1 Restatement of Theorems

Here we restate the two main theorems from the paper for the reader’s convenience. Full proofs are provided
in the following sections.

Theorem 1 The acquisition function described in (7) has the property of asymptotic optimality with respect
to Θ̄, i.e.,

lim
N→∞

f(θNrec, τmax) = max
θ∈Θ̄

f(θ, τmax),

almost surely. That is, the recommended design θNrec becomes optimal as N → ∞.

Theorem 2 The acquisition function of (7) has bounded asymptotic suboptimality with respect to the original
domain Θ in the sense that with probability at least 1 − δ, it holds that

limN→∞ f(θNrec, τmax) ≥ maxθ∈Θ f(θ, τmax) − d · ∥Lδ∥

where d = maxθ∈Θ minθ′∈Θ̄ dist(θ, θ′) is a measure on the “coarseness” of the discretization and Lδ is the
vector (L1

δ , L
2
δ , . . . , L

m
δ), with each Liδ defined as in (8).

A.2 Proof of Theorem 1

The proof is based on theoretical results of Poloczek et al. (2017). Our result, however, includes the ability
to select the number of replications q. Denote λ(θ, τ, q) = σ2

env + σ2
rep/q. Also, let Fn denote the σ-algebra

generated by the history Hn. The expectation En := E[· |Fn] is taken with respect to Fn. Recall that µn
and kn are the mean and covariance matrix of the time n belief on f . Define the quantities

Zn+1 = yn+1(θ, τ) − µn(θ, τ)√
Var

[
yn+1(θ, τ) − µn(θ, τ) | Fn

] ,
and

σ̃nq
(
(θ′, τ ′), (θ, τ)

)
=

kn
(
(θ′, τ ′), (θ, τ)

)√
λ(θ, τ, q) + kn

(
(θ, τ), (θ, τ)

) .
Observe that Zn+1 is standard normal (conditional on Fn). We have the following recursive updating
equation for µn+1:

µn+1(θ, τ) = µn(θ, τ) + σ̃nqn+1

(
(θ, τ), (θn+1, τn+1)

)
Zn+1, (9)

and another recursive formula kn+1:
kn+1(

(θ′, τ ′), (θ, τ)
)

= kn
(
(θ′, τ ′), (θ, τ)

)
− σ̃nqn+1

(
(θ′, τ ′), (θn+1, τn+1)

) [
σ̃nqn+1

(
(θ, τ), (θn+1, τn+1)

)]⊤
.

(10)

These updating equations are based on the Sherman-Woodbury identity; see Frazier et al. (2009) for a full
derivation. The objective of the acquisition function is thus:

νn(θ, τ, q)
qτ

= 1
qτ

En
[
(µn+1

∗ − µn∗) | (θn, τn, qn) = (θ, τ, q)
]

= 1
qτ

En
[
max
θ′

{
µn(θ′,τmax) + σ̃nq

(
(θ′, τmax), (θ, τ)

)
Zn+1}

− max
θ′

µn(θ′, τmax)
∣∣∣ (θn, τn, qn) = (θ, τ, q)

]
.

(11)

We also define the quantity

V n(θ, τ, θ′, τ ′) = En[f(θ, τ) · f(θ′, τ ′)] = kn
(
(θ, τ), (θ′, τ ′)

)
+ µn(θ, τ) · µn(θ′, τ ′). (12)

Next, we restate a useful technical lemma from Poloczek et al. (2017).

29

Published in Transactions on Machine Learning Research (09/2023)

Lemma 1 (Restatement of Lemma 1 of (Poloczek et al., 2017)) Let τ, τ ′ ∈ T and θ, θ′ ∈ Θ. The
limits of the series {µn(θ, τ)}n and {V n(θ, τ, θ′, τ ′)}n exist. Denote them by µ∞(θ, τ) and V ∞(θ, τ, θ′, τ ′)
respectively. We have

lim
n→∞

µn(θ, τ) = µ∞(θ, τ), (13)

lim
n→∞

V n(θ, τ, θ′, τ ′) = V ∞(θ, τ, θ′, τ ′) (14)

almost surely. If (θ′, τ ′) is sampled infinitely often, then

lim
n→∞

V n(θ, τ, θ′, τ ′) = µ∞(θ, τ) · µ∞(θ′, τ ′).

Fix a sample path ω, which corresponds to a particular path of measurements and observations

{(θn, τn, qn, yn+1(θn, τn, qn))}n.

By the finiteness of Θ̄, T , and Q, there must exist a configuration (θ′, τ ′, q′) that is visited infinitely often on
sample path ω. The following lemma states the asymptotic behavior of νn(θ′, τ ′, q′)/(q′τ ′) for n → ∞ as a
function of µn(·, ·) and σ̃n·

(
(·, ·), (·, ·)

)
.

Lemma 2 Consider the sample path ω and (θ′, τ ′, q′) described above. Then, on that sample path ω, it holds
that

lim
n→∞

σ̃nq′

(
(θ′′, τmax), (θ′, τ ′)

)
= 0

for every θ′′ ∈ Θ. Also, the acquisition value tends to zero: limn→∞ νn(θ′, τ ′, q′)/(q′τ ′) = 0

Proof. It follows from Lemma 1 that

kn
(
(θ, τ), (θ′, τ ′)

)
= En[f(θ, τ) · f(θ′, τ ′)] − µn(θ, τ) · µn(θ′, τ ′) n→∞−−−−→ 0

for any θ ∈ Θ, τ ∈ T . Then for all θ′′ ∈ Θ̄, we have

lim
n→∞

σ̃nq′

(
(θ′′, τmax), (θ′, τ ′)

)
= lim
n→∞

kn
(
(θ′′, τmax), (θ′, τ ′)

)√
λ

(
θ′, τ ′, q′

)
+ kn

(
(θ′, τ ′), (θ′, τ ′)

) = 0.

Note that we made use of the fact that the observation noise λ(θ′, τ ′, q′) > 0 for any q′. From the proof of
Lemma 1 of Poloczek et al. (2017), it is shown that for any θ′′ ∈ Θ̄,{

µn(θ′′, τmax)
}
n

and
{
σ̃nq′

(
(θ′′, τmax), (θ′, τ ′)

)}
n

are uniformly integrable (u.i.) families of random variables that converge almost surely to their
respective limits µ∞(θ′′, τmax) and σ̃∞

q′

(
(θ′′, τmax), (θ′, τ ′)

)
= 0. Note that the family of random

variables
{
σ̃nq′

(
(θ′′, τmax), (θ′, τ ′,)

)
Zn+1}

n
is also uniformly integrable since Zn+1 is independent of

σ̃nq′

(
(θ′′, τmax), (θ′, τ ′)

)
. Let Z be a standard normal random variable (independent from all other quantities).

It holds that

lim
n→∞

νn(θ′, τ ′, q′)
q′τ ′

= 1
q′τ ′

[∫ +∞

−∞
ϕ(Z) max

θ′′∈Θ̄

{
µ∞(θ′′, τmax) + σ̃∞

q′

(
(θ′′, τmax), (θ′, τ ′)

)
Z

}
dZ

− max
θ′′∈Θ̄

µ∞(θ′′, τmax)
] (15)

= 0.

The first equality is due to (11) and the fact that the operations of summing and taking maximum over a
finite set of uniform integrable random variables maintains uniform integrability.

30

Published in Transactions on Machine Learning Research (09/2023)

From (7), we know that in each iteration n, the configuration (θn, τn, qn) is selected from according to
arg maxθ,τ,q νn(θ, τ, q)/(qτ). Now, for the sake of contradiction, suppose that there exists some configuration
(θ̆, τ̆ , q̆) such that limn→∞ νn(θ̆, τ̆ , q̆)/(q̆τ̆) > 0. This immediately leads to a contradiction, since then it cannot
be the case that (θ′, τ ′, q′) is visited infinitely often.

Since the sample path ω was arbitrary, we conclude that

lim
n→∞

νn(θ, τ, q)/(qτ) = 0 a.s. (16)

for all θ ∈ Θ̄, τ ∈ T , and q ∈ Q.

Lemma 3 Given that (16) holds, we have that

arg max
θ∈Θ̄

µ∞(θ, τmax) = arg max
θ∈Θ̄

f(θ, τmax)

almost surely.

Proof. We can conclude from (12) and Lemma 1 that

lim
n→∞

kn
(
(θ, τmax), (θ, τmax)

)
= k∞(

(θ, τmax), (θ, τmax)
)

a.s.

for all θ ∈ Θ̄. In the case that the posterior variance k∞((θ, τmax), (θ, τmax)) = 0 for all θ ∈ Θ̄, then the
maximizer is known perfectly and we are done.

If not, then we define Θ̂ =
{
θ ∈ Θ̄ | k∞((θ, τmax), (θ, τmax)) > 0

}
and consider some θ̂ ∈ Θ̂ where the posterior

variance is positive. Fix any q̂ ∈ Q. We now argue that

σ̃∞
q̂

(
(θ̂, τmax), (θ̂, τmax)

)
= σ̃∞

q̂

(
(θ′′, τmax), (θ̂, τmax)

)
(17)

for all θ′′ ∈ Θ̄. Suppose, for the sake of contradiction, that there exist some θ1, θ2 ∈ Θ̄ with

σ̃∞
q̂

(
(θ1, τmax), (θ̂, τmax)

)
̸= σ̃∞

q̂

(
(θ2, τmax), (θ̂, τmax)

)
. (18)

Recall (15) and note that it can be rewritten as

lim
n→∞

νn(θ′, τ ′, q′)
q′τ ′ = 1

q′τ ′

[
E

[
h(Z)

]
− max
θ′′∈Θ̄

µ∞(θ′′, τmax)
]
, (19)

where h(z) = maxθ′′∈Θ̄

{
µ∞(θ′′, τmax) + σ̃∞

q′

(
(θ′′, τmax), (θ′, τ ′)

)
z
}

. Since Θ̄ is finite and each function within
the maximization in h is affine in z, the h(z) is convex9 and piecewise linear. Since h is convex, there is an
affine function l such that

l(0) = h(0), l(z) ≤ h(z) for all z ∈ R.
The assumption we made in (18), which effectively says that h is created by taking maximum over affine
functions of differing slopes, implies h cannot itself be affine (and indeed, must consist of various “pieces”).
Therefore, there exists an interval I, either of the form (z0,∞) or (−∞, z0), such that l(z) < h(z) for z ∈ I.
It follows that E[l(Z)] < E[h(Z)]. By the linearity of l, we have

E[l(Z)] = l(E[Z]) = l(0) = h(0) = max
θ′′∈Θ̄

µ∞(θ′′, τmax) < E
[
h(Z)

]
.

This implies that (19) is strictly positive, contradicting (16). We thus conclude that (17) holds, which is
equivalent to

k∞(
(θ′′, τmax), (θ̂, τmax)

)√
λ(θ̂, τmax, q̂) + k∞

(
(θ̂, τmax), (θ̂, τmax)

) =
k∞(

(θ′′′, τmax), (θ̂, τmax)
)√

λ(θ̂, τmax, q̂) + k∞
(
(θ̂, τmax), (θ̂, τmax)

) ,
9Pointwise maximum of convex functions is convex.

31

Published in Transactions on Machine Learning Research (09/2023)

for all θ′′, θ′′′ ∈ Θ̄. Moreover, since θ̂ was chosen from Θ̂, we know that

λ(θ̂, τmax, q̂) + k∞(
(θ̂, τmax), (θ̂, τmax)

)
> 0,

and hence k∞(
(θ′′′, τmax), (θ̂, τmax)

)
= k∞(

(θ′′, τmax), (θ̂, τmax)
)

for all θ′′, θ′′′ ∈ Θ̄.

This means the covariance matrix of {f(θ, τmax) | θ ∈ Θ̄} is proportional to the all-ones ma-
trix, and that draws from f(θ, τmax) − µ(∞)(θ, τmax) are constant across θ ∈ Θ̄. Therefore,
arg maxθ∈Θ̄ µ

(∞)(θ, τmax) = arg maxθ∈Θ̄ f(θ, τmax) and the statement of the theorem holds.

A.3 Proof of Theorem 2

In Theorem 2, we establish an additive bound on the loss of the solution obtained by BESD, f(θ̄, τmax), with
respect to the unknown optimum f(θOPT, τmax), as the number of iterations N → ∞. Recall that we suppose
µ(θ, τ) = 0 for all θ, τ , and that the kernel k(·, ·) has continuous partial derivatives up to the fourth order.
According to Theorem 3.2 of Lederer et al. (2019), for any δ ∈ (0, 1], with probability at least 1 − δ, the
quantity

∥Lδ∥ =
∥∥(L1

δ , L
2
δ , · · · , Lmδ)

∥∥
is a Lipschitz constant of f on Θ , i.e., it holds that

|f(θ, τmax) − f(θ′, τmax)| ≤ ∥Lδ∥ · dist(θ, θ′),

where θ, θ′ ∈ Θ. By the definition of d, there exists a θ̄ ∈ Θ̄ such that dist(θ̄, θOPT) ≤ d. Therefore, it follows
that the suboptimality due to optimizing in Θ̄ is bounded by

f(θOPT, τmax) − f(θ̄, τmax) ≤ ∥Lδ∥ · d. (20)

Theorem 1 completes the proof of Theorem 2 since (20) holds with probability 1 − δ.

B GP Hyperparameter Estimation

The hyperparameters of the covariance function k are set via maximum a posteriori (MAP) estimation. Recall
that a MAP estimate is the mode under the log-posterior obtained as the sum of the log-marginal likelihood
of the observations and the logarithm of the probability under a hyper-prior. We focus on describing the
hyper-prior, since the log-marginal likelihood follows canonically; see (Rasmussen & Williams, 2006, Ch. 5)
for details. The proposed prior extends the hyper-prior for the multi-task GP model used in Poloczek et al.
(2017). We set the mean function µ and the noise function λ to constants that we estimate. For the covariance
function we need to estimate d+ 5 hyperparameters: the signal variance, one length scale for every subgoal
parameter in θ and the four parameters associated with kτ . We suppose a normal prior for these parameters.
For the signal variance, the prior mean is given by the variance of the observations, after subtracting the above
estimate for the observational noise. Here we use the independence of observational noise that we argued
in Section 3.5. For any length scale, we set the prior mean to the size of the interval that the associated
parameter is chosen in. Having determined a prior mean µψ for each hyperparameter ψ, we may then set the
variance of the normal prior to σ2

ψ = (µψ/2)2.

32

	Introduction
	Our Contributions

	Related Work
	Bayesian Optimization
	Exploration in Reinforcement Learning
	Hierarchical Reinforcement Learning and Options
	Intrinsic Reward and Reward Design
	Multi-task RL and Transfer Learning

	Problem Formulation
	Original MDPs M with Sparse Rewards
	Dynamic Subgoal Exploration Strategies
	Subgoal Parameterization vs State Dimensionality

	Subgoal-Augmented MDPs M,
	Optimizing the Exploration Strategy
	Iterative Training and Additional Cost-Reduction Levers

	Bayesian Optimization for Cost-Efficient Exploration
	Surrogate Model
	Acquisition Function
	Theoretical Analysis

	Numerical Experiments
	Windy Gridworlds with Walls
	Recommendation Paths for GW10

	Larger, Three-Room Windy Gridworlds
	Recommendation Paths for GW20

	Treasure-in-Room
	Recommendation Paths for TR

	The Mountain Car Problem (MC)
	Recommendation Paths for MC

	Key-Door with Highly Varying Key Locations (KEY2 and KEY3)
	Recommendation Paths for KEY2/KEY3

	Baseline Algorithms
	Takeaways from Baseline Comparisons in Figure 7
	Dynamic Subgoal Exploration Strategy vs. Learning From Scratch at Test Time

	Conclusion and Future Work
	Proofs
	Restatement of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	GP Hyperparameter Estimation

