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Abstract
Graph Neural Networks (GNNs) face significant
computational challenges when handling large-
scale graphs. To address this, Graph Condensa-
tion (GC) methods aim to compress large graphs
into smaller, synthetic ones that are more manage-
able for GNN training. Recently, trajectory match-
ing methods have shown state-of-the-art (SOTA)
performance for GC, aligning the model’s train-
ing behavior on a condensed graph with that on
the original graph by guiding the trajectory of
model parameters. However, these approaches
require repetitive GNN retraining during conden-
sation, making them computationally expensive.
To address the efficiency issue, we completely
bypass trajectory matching and propose a novel
two-stage framework. The first stage, a precom-
putation stage, performs one-time message pass-
ing to extract structural and semantic informa-
tion from the original graph. The second stage, a
diversity-aware adaptation stage, performs class-
wise alignment while maximizing the diversity of
synthetic features. Remarkably, even with just the
precomputation stage, which takes only seconds,
our method either matches or surpasses 5 out of
9 baseline results. Extensive experiments show
that our approach achieves comparable or better
performance while being 96× to 2,455× faster
than SOTA methods, making it more practical for
large-scale GNN applications. 1

1. Introduction
Graph Condensation. Graph learning through GNNs (Kipf
& Welling, 2016; Hamilton et al., 2017) has significantly
advanced graph data analysis, providing insights into com-
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plex graph structures such as social networks (Fan et al.,
2019; Zhang et al., 2022) and molecular structures (Guo
et al., 2021; Gasteiger et al., 2021). However, real-world
large-scale graphs pose significant challenges for training
GNNs (Huang et al., 2021; Gao et al., 2024). To address
this, graph condensation techniques (Jin et al., 2022b;a) pro-
pose generating a condensed graph from a large original
graph, enabling models trained on the condensed graph to
be directly applied to the original graph, achieving com-
parable performance on both graphs. GC enhances train-
ing efficiency by reducing computational costs on large-
scale graphs. Recent studies further demonstrate that GC
facilitates efficient GNN training with minor performance
loss (Gao et al., 2024; Zhang et al., 2024).

Prior Work. GC methods encompass a variety of ap-
proaches, including coreset selection (Welling, 2009; Sener
& Savarese, 2018), gradient matching (Jin et al., 2022b;a;
Yang et al., 2024; Fang et al., 2024), distribution match-
ing (Liu et al., 2022; Xiao et al., 2024; Gao et al., 2025),
and trajectory matching (Zheng et al., 2024; Zhang et al.,
2024). Among them, trajectory matching has emerged
as the SOTA method due to its ability to align the train-
ing behavior effectively. These methods collect training
trajectories from the original graph to guide the training
process on the condensed graph, ensuring consistent train-
ing behavior between the two graphs. Notably, existing
trajectory-based methods operate in a Structure-Free (SF)
manner, producing condensed graphs without edges, which
simplifies the training process. Although these condensed
graphs lack edges, they support GNN node classification
tasks by adding self-loop edges for each node, ensuring
compatibility with GNNs and achieving SOTA.

Efficiency Issues with SOTA Method. Despite the leading
performance, trajectory-based methods require a substantial
number of trajectories to achieve optimal results. As illus-
trated in Figure 1, trajectory collection involves repeatedly
training the model from scratch (e.g., 200 times), taking
a remarkably long time (e.g., 452 hours on million-node
graphs) and dominating the overall condensation time. This
inefficiency hinders their applications at scale, e.g., on social
networks or e-commerce graphs.

To address the inefficiencies, we propose a novel Graph
Condensation framework via a Precompute-then-Adapt ap-
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Figure 1: Trajectory-based methods require repetitive GNN
re-training during trajectory collection, which can be highly
time-consuming. This stage accounts for the majority of the
total runtime in such methods.

proach (GCPA). Our method first employs a precomputa-
tion stage and then a diversity-aware adaptation stage,
eliminating the need for repetitive re-training with different
random initializations. The precomputation stage extracts
structural and semantic information from the original graph,
achieving competitive performance in a short time. The
adaptation stage further refines the precomputed features
through class-wise alignment and diversity maximization.
As a result, we achieve competitive performance (-1.5%
to +2.4%) on node classification tasks with substantially
faster training time (96× to 2,455×) compared to SOTA
(GEOM (Zhang et al., 2024)), as exemplified in Figure 2.

We summarize the key contributions of our work as follows:

• We propose GCPA, an efficient graph condensation frame-
work with a precomputation and an adaptation stage.
Compared to SOTA methods, our framework avoids the
costly repetitive re-training during trajectory collection,
achieving significant efficiency improvements.

• Our framework is effective. The precomputation stage,
which extracts structural and semantic information from
the original graph, already matches or surpasses 5 out
of 9 baselines. With the adaptation stage, we further
enhance performance with class-wise feature alignment
and diversity maximization, achieving SOTA performance
on 4 out of 7 datasets.

• Through extensive experiments on benchmark datasets,
we demonstrate that our method achieves better or com-
parable accuracy while being up to 2,455× faster than
existing methods.

2. Preliminaries
Let G = {X,A,Y} denote a graph, where X ∈ RN×d

denotes the node feature matrix with N nodes and d-
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Figure 2: Performance vs. condensation time on Ogbn-
Products. Our framework significantly reduces condensa-
tion time, bypassing the costly trajectory collection stage
and outperforming SOTA methods. Here, SF denotes
structure-free graph condensation, where the condensed
graphs possess no edges.

dimensional features, A ∈ {0, 1}N×N represents the adja-
cency matrix, Y ∈ RN×C denotes the ground-truth one-hot
node labels among C classes, and y ∈ RN records the la-
bels in vector form. Graph condensation aims to generate
a synthetic graph (or condensed graph, used interchange-
ably) corresponding to an existing graph such that a model
trained on the synthetic graph is effective when applied
to the original graph. Formally, given an original graph
T = {X,A,Y} with N nodes, GC aims to generate a
smaller synthetic graph S = {X′,A′,Y′} with N ′ nodes
such that a GNN trained on S achieves similar performance
on T as another GNN trained directly on T . In particu-
lar, structure-free graph condensation emerges as a storage-
efficient graph condensation approach where the adjacency
matrix is set to an identity matrix, A′ = I, so the synthetic
graph does not contain structural information.

Node classification is a prevalent task simplified by graph
condensation, involving label assignment based on node
features and graph structure. Formally, given a graph
G = {X,A}, and a subset of nodes NL ⊆ N with known la-
bels YL ∈ RNL×C , the transductive semi-supervised node
classification task involves predicting labels YU ∈ RNU×C

for an unlabeled subset of nodes NU ⊆ N . The optimiza-
tion goal can be formulated as a bi-level problem:

min
S

L(GNNθS (X,A),Y)

s.t. θS = argmin
θ

L(GNNθ(X
′,A′),Y′)

(1)

where θ denotes the learnable parameters of an L-layer
GNN model, θS represents the optimal GNN parameters
learned on the synthetic graph, and L is a loss function eval-
uating the node classification performance. Existing graph
condensation approaches optimize this bi-level problem to
learn an optimal synthetic graph S such that a trained GNN
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Figure 3: Overall pipeline of the proposed GCPA condensation framework. (1) Structure-based precomputation: Neighbor
aggregation is performed to capture structural dependencies. (2) Semantic-based precomputation: Nodes are grouped by
semantic relevance and uniformly sampled. (3) Adaptation learning: Synthetic features v1 and v2 are pushed away through
diversity constraints, while v2 and v3 are pushed away through sampled negative pairs.

with parameters θS yields optimal performance on T . How-
ever, the bi-level optimization problem is computationally
intensive, as it involves nested optimization loops. To mit-
igate this issue, we introduce our framework that directly
optimizes synthetic node features for improved efficiency.

3. GCPA Framework
The overview of the Graph Condensation framework via a
Precompute-then-Adapt approach (GCPA) is shown in Fig-
ure 3. We introduce two stages—a precomputation stage and
a diversity-aware adaptation stage—to produce structure-
free synthetic data. The precomputation stage involves
structure-based neighbor aggregation and semantic-based
aggregation on the original graph, achieving competitive per-
formance in a relatively short time. The adaptation learning
stage further refines the precomputed features using a class-
wise feature alignment objective to improve performance
with minor additional costs.

3.1. Structure-based Precomputation

In the context of graph-based learning models, neighbor
information aggregation refers to the process by which node
features are enriched with structural information from neigh-
boring nodes. This process allows a node’s feature vector
to incorporate not just its own information but also that of
its surrounding neighborhood. Such aggregation is criti-
cal for capturing relationships and dependencies in graph-
structured data.

Drawing inspiration from the graph diffusion pro-
cess (Gasteiger et al., 2019; Frasca et al., 2020; Hu et al.,
2024b;a), we leverage neighbor structural information to
pre-process the original node features. The goal of graph
diffusion is to smooth node features based on the underly-

ing graph’s topology, facilitating the effective propagation
of information across nodes. The structure-based precom-
puted features H with K-hop neighbor aggregation can be
recursively computed as:

H(k) = (1− α)ÂH(k−1) + αH(0) for k = 1, 2, . . . ,K

with Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A+ IN
(2)

where H(0) = X represents the node feature matrix, K
denotes the number of aggregation hops, and H = H(K)

is the output of the last layer. D̃ is the degree matrix of
Ã, where D̃ii =

∑
j Ãij . The coefficient α controls the

contribution of raw features to each hop. Having processed
the structural information, we omit the edges in the follow-
up semantic-based precomputation as shown in Figure 3,
focusing on processing semantic information.

3.2. Semantic-based Precomputation

To condense a set of N aggregated features into N ′ synthetic
node features, we perform semantic-based precomputation
by merging uniformly sampled original nodes within each
class. Specifically, for each synthetic node vi with class
label c ∈ {1, 2, . . . , C}, we uniformly sample a subset of
original nodes in the same class. Then, we compute the
semantic-based features by taking the mean of the aggre-
gated features of the sampled nodes:

X̂′
i =

1

M

∑
j∈Si

Hj for i = 1, 2, . . . , N ′

with Si ⊆ Iyi
, |Si| = M, Ic = {i | yi = c}

(3)

where Si is the set of sampled original nodes for synthetic
node i, Ic denotes the indices of original nodes belonging
to class c, M is the number of sampled nodes for each
synthetic node.
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This semantic-based precomputation process effectively
condenses the semantic information of multiple nodes
within the same class into a single synthetic node. Further-
more, by maintaining the class distribution in Y through
proportional sampling, we fix the synthetic labels Y′ to
preserve the original class proportions. Consequently, we
obtain the precomputed condensed dataset {X̂′,Y′}, where
X̂′ ∈ RN ′×d and Y′ ∈ RN ′×C .

3.3. Feature Adaptation Learning

Given the limited number of condensed nodes, it is crucial
that these nodes ideally depict the overall representations of
their respective classes (depicted by the background color
in Figure 3). Our precomputation stage effectively captures
the structural and semantic features of the original graph,
setting up a solid foundation for downstream learning. Since
the precomputation stage is not directly optimized for the
final objective, we further integrate an adaptation learning
stage that adjusts the class-wise representations.

To achieve better class-wise representation separation, we
consider a contrastive loss to enhance node features for
classification utility (Joshi et al., 2022). For the task of graph
condensation, we propose to align the condensed features
with the original precomputed features using a class-wise
adaptation loss. Specifically, we introduce an adaptation
module fadapt : RN ′×d → RN ′×d, implemented as a Multi-
Layer Perceptron (MLP) (Rosenblatt, 1958) with F layers,
to better depict the overall representations:

Z′ = βX̂′ + (1− β)fadapt(X̂
′) (4)

where β is a hyperparameter controlling the contribution
of precomputed representations, Z′ represents the adapted
synthetic representations. We adopt {Z′,Y′} as the final
condensed dataset after the learning process. Notably, X′ is
treated as a fixed, non-trainable condition during training,
thereby imposing a permanent constraint on Z′. This con-
trasts with prior approaches (Jin et al., 2022b; Zheng et al.,
2024; Zhang et al., 2024), which use randomly sampled
features only for initialization and allow these signals to
drift away throughout optimization.

We further construct the contrastive samples by first sam-
pling a sufficient number of anchor nodes Hi from the
precomputed representations H. These anchors serve as
learning targets during the adaptation stage, encouraging
the synthetic representations to preserve the original feature
distributions. The first introduced constraint is class-wise
alignment, where, for each anchor node in the original graph,
we sample a synthetic node belonging to the same class as
a positive sample and a set of arbitrary synthetic nodes
from different classes as negative samples. Additionally,
we introduce an intra-class diversity constraint to encour-
age synthetic features within each class to be dissimilar.

With the sampled pairs, we optimize an adaptation loss as
follows:

L = −E{i,j|yi=y′
j}

(
log σ

(
⟨Hi,Z

′
j⟩
)

+Et∼Uniform{ t:y′
t ̸=yi } log σ

(
− ⟨Hi,Z

′
t⟩
)

︸ ︷︷ ︸
class-wise alignment

+ γ Et∼Uniform{ t:y′
t=yi } log σ

(
− ⟨Hi,Z

′
t⟩
)

︸ ︷︷ ︸
intra-class diversity

) (5)

where ⟨Hi,Z
′
j⟩ denotes the inner product between the

i-th anchor node’s representation Hi and the j-th syn-
thetic node’s adapted representation Z′

j , t is the index of
a random negative sample from the synthetic dataset, and
σ(x) = 1/(1+exp(−x)) is the sigmoid function. The adap-
tation module refines the precomputed representations to
better align synthetic and original node representations, en-
hancing the generalization of the condensed features. We op-
timize the model using the AdamW optimizer (Loshchilov
& Hutter, 2017), with learning rate η, weight decay λ, and
betas (β1, β2) as hyperparameters.

3.4. Complexity Analysis

We analyze the time complexity using GCN as the back-
bone for GC. For GCPA, the time complexity is O(KEd+
PF (N ′d+N ′d2)), where E is the number of edges of the
original graph and P is the number of epochs. The first term
corresponds to precomputation, while the second accounts
for adaptation. In contrast, the time complexity of SOTA
(GEOM) is O(TPL(Ed + Nd2 + N ′d + N ′d2)), where
T represents the number of repetitive GNN retraining itera-
tions for trajectory matching. Compared to GCPA, GEOM
includes an additional multiplicative factor T , which can
be large (e.g., in the hundreds) and significantly increases
GEOM’s time complexity. Conversely, GCPA bypasses
trajectory matching, eliminating the dependence on T and
making it substantially more efficient than GEOM.

4. Experiments
In this section, we conduct experiments to validate the ef-
fectiveness and efficiency of the proposed framework.

4.1. Experimental Setup

Datasets. Following GCondenser (Liu et al., 2024), a com-
prehensive graph condensation benchmark, our experiments
are conducted on seven benchmark datasets including three
smaller networks: CiteSeer, Cora, and PubMed (Kipf &
Welling, 2016), and four larger graphs: Ogbn-arxiv, Ogbn-
products (Hu et al., 2020), Flickr (Zeng et al., 2020), and
Reddit (Hamilton et al., 2017). We use the public data splits
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Table 1: Summary of dataset statistics.

Setting Dataset # Train/Val/Test Nodes # Nodes # Edges # Features # Classes

Transductive

CiteSeer 120/500/1,000 3,327 4,732 3,703 6
Cora 140/500/1,000 2,708 5,429 1,433 7

PubMed 60/500/1,000 19,717 88,648 500 3
Ogbn-arxiv 90,941/29,799/48,603 169,343 1,166,243 128 40

Ogbn-products 196,615/39,323/2,213,091 2,449,029 61,859,140 100 47

Inductive Flickr 44,625/22,312/22,313 89,250 899,756 500 7
Reddit 153,431/23,831/55,703 232,965 57,307,946 602 41

for fair comparisons. The dataset statistics and settings
are detailed in Table 1. For CiteSeer, Cora, and PubMed
datasets, row feature normalization is applied to prepare the
data. For Ogbn-arxiv, Flickr, and Reddit datasets, we apply
feature standardization. The Ogbn-products dataset retains
its feature processing as defined by OGB (Hu et al., 2020).

Baselines. We compare our proposed framework to the
baselines in the following categories: (i) Coreset approach:
K-Center (Sener & Savarese, 2018). (ii) Gradient match-
ing approaches: GCond (Jin et al., 2022b), SGDD (Yang
et al., 2024), and EXGC (Fang et al., 2024). (iii) Distri-
bution matching approaches: GCDM (Liu et al., 2022),
SimGC (Xiao et al., 2024), and CGC (Gao et al., 2025). (iv)
Trajectory matching approaches: SFGC (Zheng et al., 2024)
and GEOM (Zhang et al., 2024). We report results based on
the following sources, depending on their availability: (a)
official results reported in the original papers of each base-
line, (b) reproduced results provided by the GCondenser
benchmark (Liu et al., 2024), and (c) results obtained by
running the official code.

Backbone Models. We use GCN (Kipf & Welling, 2016)
and SGC (Wu et al., 2019) as backbone models during
condensation and evaluation for fair comparisons. In the
cross-architecture evaluation, we use more models including
MLP (Rosenblatt, 1958), GAT (Veličković et al., 2018),
ChebNet (Defferrard et al., 2016), GraphSAGE (Hamilton
et al., 2017), and APPNP (Gasteiger et al., 2018).

The details of the evaluation schemes and hyperparameter
settings are provided in Appendix A and B, respectively.

4.2. Performance Comparison

We present the performance of different graph condensation
approaches using the GCN backbone in Table 2. Addition-
ally, the performance of these approaches with the SGC
backbone is shown in Table 7, located in the Appendix.
Based on these results, we make the following observations:

• The coreset approach, K-Center, which typically employs
conventional machine learning techniques, fails to provide

good condensation results on all datasets. This highlights
the non-trivial nature of graph condensation tasks, which
necessitate substantial effort.

• Two distinct categories of graph condensation methods,
including gradient matching and distribution matching,
have both shown fair performance on different datasets.
Notably, neither category consistently outperforms the
other. This variation in performance suggests that multi-
ple frameworks might be applicable to the task of graph
condensation, without a universally superior approach.

• Recent advancements in trajectory matching, especially
the SFGC and GEOM approaches, have demonstrated
superior performance on most datasets, affirming the ef-
ficacy of trajectory-based methods. Notably, both SFGC
and GEOM employ structure-free condensation, indicat-
ing that for node classification tasks, providing edges in
condensed graphs may not always be necessary.

• Our proposed framework achieves superior performance
on 4 out of 7 datasets, underscoring the effectiveness of
our precompute-then-adapt approach.

4.3. Efficiency Comparison

We present a comprehensive efficiency comparison of dif-
ferent methods using the GCN backbone in Table 3 and the
SGC backbone in Table 8 (located in the Appendix). Addi-
tionally, Figure 4 illustrates a joint analysis of both accuracy
and efficiency. Based on the results, we make the following
observations on the efficiency of different approaches:

• As depicted in Figure 4, GEOM, a trajectory-based
method, exhibits leading performance but suffers from
poor efficiency. The primary efficiency bottleneck lies in
the need for repetitive re-training, which, while effective,
leads to severe efficiency issues.

• As shown in Figure 4, our framework achieves compara-
ble or leading performance across datasets. Notably, the
framework is significantly more efficient than trajectory-
based methods, achieving speedups ranging from 96× to
2,455× compared to these approaches.
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Table 2: Node classification performance comparison using GCN backbone (mean±std). The best and second-best results
are marked in bold and underlined, respectively. Ours (Pre.) is a precomputation-only variant. The Whole column represents
the performance obtained by training on the whole dataset.

Dataset Ratio K-Cen. GCond SGDD GCDM SimGC EXGC CGC SFGC GEOM Ours (Pre.) Ours Whole

CiteSeer
0.9% 52.4±2.8 70.5±1.2 69.5±0.4 71.2±0.8 73.8±2.5 69.2±2.0 72.5±0.2 71.4±0.5 73.0±0.5 72.1±0.2 75.4±0.4

71.4±0.51.8% 64.3±1.0 70.6±0.9 70.2±0.8 71.9±0.7 72.2±0.5 70.1±0.7 72.4±0.2 72.4±0.4 74.3±0.1 72.1±0.1 74.8±0.3

3.6% 69.1±0.1 69.8±1.4 70.3±1.7 72.3±1.3 71.1±2.8 70.6±0.9 72.0±0.5 70.6±0.7 73.3±0.4 72.7±0.5 74.9±0.1

Cora
1.3% 64.0±2.3 79.8±1.3 80.1±0.7 78.9±0.8 80.8±2.3 82.0±0.4 82.7±0.3 80.1±0.4 82.5±0.4 80.3±0.5 82.1±0.6

81.7±0.92.6% 73.2±1.2 80.1±0.6 80.6±0.8 79.4±0.6 80.9±2.6 81.9±1.0 82.3±1.3 81.7±0.5 83.6±0.3 80.6±0.5 82.9±1.0

5.2% 76.7±0.1 79.3±0.3 80.4±1.6 79.9±0.2 82.1±1.3 82.3±0.9 82.5±0.6 81.6±0.8 82.8±0.7 80.8±0.3 82.3±0.7

PubMed
0.08% 72.1±0.1 67.6±0.4 76.7±1.1 75.9±0.6 74.4±0.2 77.8±0.1 77.6±0.4 78.4±0.1 80.1±0.3 79.5±1.3 80.5±0.4

79.3±0.30.15% 76.4±0.0 74.6±0.8 78.5±0.4 77.4±0.4 76.0±0.8 78.3±0.1 77.8±0.9 78.1±0.4 79.7±0.3 79.7±0.3 80.9±0.3

0.3% 78.2±0.0 77.2±0.7 78.0±1.1 77.6±0.4 76.2±0.8 76.2±0.1 77.7±0.3 78.5±0.5 79.5±0.4 79.3±0.3 81.7±0.4

Arxiv
0.05% 47.2±3.0 59.2±1.1 60.8±1.3 63.3±0.3 63.6±0.8 57.6±0.6 64.1±0.4 65.5±0.7 65.5±0.6 60.5±0.9 67.2±0.3

71.1±0.00.25% 56.8±0.8 63.2±0.3 65.8±1.2 59.6±0.4 66.4±0.3 62.3±0.3 66.4±0.1 66.1±0.4 68.8±0.2 64.6±0.4 67.7±0.2

0.5% 60.3±0.4 64.0±1.4 66.3±0.7 62.4±0.1 66.8±0.4 65.0±0.8 67.2±0.4 66.8±0.4 69.6±0.2 65.5±0.3 68.1±0.3

Products
0.025% 55.4±0.8 63.7±0.3 64.0±0.4 66.5±0.1 63.3±1.1 62.1±0.7 68.0±0.1 67.1±0.2 68.5±0.3 64.1±0.9 69.3±0.2

73.1±0.10.05% 57.6±0.7 67.0±0.2 65.9±0.2 68.4±0.4 64.8±1.1 64.7±1.4 68.9±0.3 67.9±0.3 69.8±0.3 65.9±0.9 70.2±0.5

0.1% 59.1±0.5 68.0±0.2 66.1±0.3 68.4±0.3 67.0±0.7 66.4±0.7 69.1±0.2 70.1±0.3 71.1±0.3 67.7±0.3 71.5±0.4

Flickr
0.1% 42.0±0.7 46.5±0.4 46.9±0.1 44.5±0.4 45.3±0.7 47.0±0.1 46.8±0.0 46.6±0.2 47.1±0.1 44.4±0.4 47.2±0.3

46.8±0.20.5% 43.2±0.1 47.1±0.1 47.1±0.3 45.0±0.2 45.6±0.4 48.3±0.5 47.1±0.1 47.0±0.1 47.0±0.2 45.4±0.1 47.1±0.1

1% 44.1±0.4 47.1±0.1 47.1±0.1 44.6±0.3 43.8±1.5 48.4±0.9 47.0±0.1 47.1±0.1 47.3±0.3 45.4±0.1 47.2±0.1

Reddit
0.05% 46.6±2.3 88.0±1.8 90.5±2.1 88.9±1.2 91.1±1.0 90.2±0.1 90.6±0.2 89.7±0.2 91.1±0.4 90.5±0.3 90.5±0.3

94.2±0.00.1% 53.0±3.3 89.6±0.7 91.8±1.9 91.8±0.3 92.0±0.3 90.6±0.9 91.4±0.1 90.0±0.3 91.4±0.2 91.3±0.2 93.0±0.1

0.2% 58.5±2.1 90.1±0.5 91.6±1.8 92.2±0.1 92.6±0.1 91.8±0.7 91.6±0.2 90.3±0.3 91.5±0.4 91.4±0.1 92.9±0.2

Table 3: Efficiency comparison using GCN backbone (total condensation time in seconds).

Dataset K-Cen. GCond SGDD GCDM SimGC EXGC CGC SFGC GEOM Ours (Pre.) Ours

CiteSeer (r=1.8%) 7 71 70 57 245 237 32 2,165 10,890 6 45
Cora (r=2.6%) 5 70 70 54 240 235 30 2,578 10,144 4 44

PubMed (r=0.15%) 5 59 223 48 291 278 51 8,060 26,432 5 39
Arxiv (r=0.25%) 18 389 759 555 362 338 126 86,553 104,905 20 247

Products (r=0.05%) 91 13,554 21,821 11,485 4861 4915 1093 1,509,397 1,912,105 104 2,985

Flickr (r=0.5%) 16 187 1,178 165 425 412 94 96,350 21,061 23 219
Reddit (r=0.1%) 51 2,665 12,126 1563 702 692 182 379,974 128,642 55 505

0e0 2e3 5e3 8e3 1e4

73.0

74.0

Ac
cu

ra
cy

 (%
)

SimGCCGC SFGC

GEOM
Ours

CiteSeer (r=1.8%)

0e0 1e4 2e4
76.0

78.0

80.0

SimGC

CGC SFGC

GEOM

Ours
PubMed (r=0.15%)

0e0 2e4 5e4 8e4 1e5
66.0

67.0

68.0

SimGCCGC SFGC

GEOM

Ours

Arxiv (r=0.25%)

0e0 5e5 1e6 2e6 2e6
Time (s)

66.0

68.0

70.0

Ac
cu

ra
cy

 (%
)

SimGC

CGC
SFGC

GEOMOurs
Products (r=0.05%)

0e0 2e4 5e4 8e4 1e5
Time (s)

46.0

46.5

47.0

SimGC

CGC SFGCGEOMOurs
Flickr (r=0.5%)

0e0 1e5 2e5 3e5
Time (s)

90.0

91.0

92.0

93.0

SimGC

CGC

SFGC

GEOM

Ours
Reddit (r=0.1%)

Figure 4: Evaluation accuracy versus total condensation time using GCN backbone.
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Table 4: Cross-architecture transferability of condensed graphs using GCN backbone.

Dataset Method MLP SGC GCN GAT ChebNet SAGE APPNP Avg. Std.

CiteSeer
(r = 0.90%)

GCond 41.8 34.8 46.3 39.2 57.4 61.2 47.0 46.8 8.8
GCDM 62.3 69.6 72.7 58.3 60.2 67.1 71.4 65.9 5.3
SFGC 64.4 64.9 70.4 70.0 69.1 69.5 70.8 68.4 2.5
Ours 66.5 70.9 73.4 73.4 72.8 72.6 72.1 71.7 2.3

Cora
(r = 1.30%)

GCond 67.7 72.6 79.5 80.7 60.0 78.6 79.0 74.0 7.2
GCDM 65.3 78.5 80.2 80.1 58.4 77.5 79.3 74.2 8.1
SFGC 68.2 76.2 80.4 79.8 62.1 77.6 81.6 75.1 6.7
Ours 70.5 79.9 81.3 79.1 82.1 78.9 76.2 78.3 3.6

PubMed
(r = 0.08%)

GCond 75.1 55.6 75.0 77.0 74.3 77.2 78.0 73.2 7.3
GCDM 73.8 72.9 75.0 73.7 70.5 75.3 76.9 74.0 1.9
SFGC 73.6 76.8 78.5 76.6 77.2 76.7 78.9 76.9 1.6
Ours 74.2 76.6 76.1 76.3 77.3 77.5 76.7 76.4 1.0

Arxiv
(r = 0.05%)

GCond 39.2 58.0 57.0 47.7 36.4 33.5 54.3 46.6 9.5
GCDM 41.6 59.8 60.7 46.5 52.6 55.3 60.3 53.8 6.9
SFGC 45.3 62.2 63.3 60.5 50.7 55.4 62.4 57.1 6.4
Ours 46.7 61.6 65.0 64.4 63.3 58.4 53.9 59.0 6.2

Products
(r = 0.025%)

GCond 36.4 45.7 60.7 48.4 45.2 49.8 60.3 49.5 8.0
GCDM 45.7 60.0 66.6 67.9 61.2 63.6 66.2 61.6 7.0
SFGC 46.7 55.1 66.7 69.4 61.4 63.4 64.8 61.1 7.2
Ours 46.3 65.9 65.9 67.6 67.8 62.2 62.1 62.5 7.0

Flickr
(r = 0.1%)

GCond 40.8 36.5 44.9 40.8 43.0 43.2 44.9 42.0 2.7
GCDM 41.7 27.3 40.7 37.7 41.5 43.0 43.8 39.4 5.3
SFGC 44.9 38.7 46.2 45.3 43.6 44.9 46.2 44.3 2.4
Ours 44.1 45.1 45.3 45.1 42.4 43.6 45.4 44.4 1.0

Reddit
(r = 0.05%)

GCond 38.7 82.2 79.9 31.2 38.7 41.5 69.8 54.6 20.2
GCDM 43.1 87.1 88.1 37.5 55.6 66.2 68.9 63.8 18.3
SFGC 47.5 82.8 87.0 84.4 53.6 71.9 67.5 70.7 14.4
Ours 39.3 91.1 90.9 90.5 61.8 79.1 66.4 74.1 18.1

Table 5: Ablation on precomputation components includ-
ing both structure-based (Stru.) and semantic-based (Sem.)
aggregation phases. The w/o Both variant initializes the
synthetic features using randomly selected original features.

Dataset Ours w/o Stru. w/o Sem. w/o Both

CiteSeer (r=1.80%) 74.8±0.3 69.3±0.6 67.8±0.2 62.1±0.3

Cora (r=2.60%) 82.9±1.0 74.4±0.4 79.1±0.7 72.2±0.5

PubMed (r=0.15%) 80.9±0.3 77.9±0.3 78.8±0.4 76.1±0.5

Arxiv (r=0.25%) 67.7±0.2 64.2±0.6 67.3±0.3 63.9±0.2

Products (r=0.05%) 70.2±0.5 64.6±0.5 65.7±0.2 62.2±0.7

Flickr (r=0.5%) 47.1±0.1 46.9±0.1 47.0±0.5 46.9±0.6

Reddit (r=0.10%) 93.0±0.1 92.4±0.4 92.2±0.6 92.2±0.2

• Our method is not only more efficient than the time-
intensive trajectory-based methods but also faster than
the majority of other baseline methods on most datasets.
These results underscore the superior condensation effi-
ciency of our precompute-then-adapt framework.

• A variant of our method containing only the precompu-
tation stage (Pre.), typically taking under 60 seconds to
complete, matches or surpasses 5 out of 9 baselines, as de-
tailed in Table 2. The results illustrate the capability of the
precomputation stage to achieve competitive results in a
fraction of the time compared to learning-based baselines.

These observations demonstrate that our method not
only achieves competitive performance but does so with
markedly higher efficiency, addressing one of the key chal-
lenges in scalable graph learning applications.

4.4. Cross-architecture Transferability

Table 4 presents the cross-architecture transferability results
of condensed graphs across different models. Our method
consistently matches or outperforms the top performance
across all datasets, underscoring the robustness and general-
ization of our framework. The ability to transfer across dif-
ferent architectures may be attributed to the similar filtering
behavior of popular GNNs, as reported in the literature (Jin
et al., 2022b; Zheng et al., 2024). In particular, our frame-
work demonstrates outstanding transferability, which may
be attributed to our direct alignment between original and
synthetic features without relying on specific GNN models
for performance matching.

4.5. Ablation on Precomputation Components

Table 5 evaluates the impact of structure-based and semantic-
based phases of the precomputation stage. The results show
that both the structural and semantic components contribute
to the performance of the framework, particularly on trans-
ductive datasets, which reflects the importance of precom-
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Table 6: Impact of diversity constraint.

Dataset γ = 0 γ = 0.01 γ = 0.1 γ = 1

CiteSeer (r=1.80%) 72.1±0.1 73.5±0.4 74.8±0.3 74.2±0.2

Cora (r=2.60%) 81.4±0.2 82.9±1.0 80.3±0.6 79.7±0.7

PubMed (r=0.15%) 79.9±0.5 80.2±0.3 80.9±0.3 79.3±0.4

Arxiv (r=0.25%) 64.6±0.4 65.8±0.6 67.7±0.2 66.1±0.5

Products (r=0.05%) 65.9±0.9 66.3±0.2 70.2±0.5 68.4±0.4

Flickr (r=0.5%) 45.4±0.1 47.1±0.1 46.8±0.5 45.9±0.3

Reddit (r=0.10%) 91.3±0.2 92.1±0.1 93.0±0.1 92.7±0.4

putation on transductive datasets where the complete graph
structure is available. We also observe that removing struc-
tural components typically results in a larger performance
drop compared to the removal of semantic components. This
indicates the critical role of structure-based aggregation in
capturing representative features in the original graph. In
conclusion, the structural and semantic components are both
pivotal to achieving optimal performance in our framework,
but their impact varies with the nature of the datasets.

4.6. Impact of Diversity Constraint

Table 6 evaluates the impact of the diversity constraint on
model performance across different datasets. The hyperpa-
rameter γ controls diversity, with higher values promoting
greater diversity in the synthetic features. We observe that
while the constraint generally enhances performance, exces-
sively high values of γ can negatively affect the results.

4.7. Impact of Adaptation Learning

We demonstrate the impact of the adaptation learning stage
in Figure 5. On the presented large datasets, the precompu-
tation stage (Epoch 0) produces condensed representations
with sub-optimal performance. The adaptation learning fur-
ther improves the representations by aligning them with the
original node representations, achieving SOTA performance
after sufficient training epochs.

4.8. Extended Analysis of Hyperparameters

As shown in Figure 6a, increasing the number of structure-
based precomputation hops K generally improves accuracy
across datasets. A similar trend is observed in Figure 6b
for the semantic aggregation size M . These positive cor-
relations highlight the importance of both structure- and
semantic-based aggregation modules during precomputa-
tion. Notably, performance gains begin to saturate beyond
K=2 and M=50, indicating diminishing returns once the
representations are sufficiently aggregated.

In contrast, Figures 6c and 6d show that varying the residual
coefficient β and the number of negative samples S yields
less significant changes in final accuracy. This robustness

0 100 200 300
Epoch

64

66

68

Ac
cu

ra
cy

 (%
)

Ogbn-arxiv (0.25%)

0 200 400
Epoch

46.0

46.5

47.0
Flickr (0.5%)

Method
Ours
SOTA

Figure 5: Effect of adaptation learning over different num-
bers of adaptation epochs.
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Figure 6: Impact of hyperparameters on accuracy (%).

suggests that the adaptation learning phase is relatively in-
sensitive to these hyperparameters, reducing the need for
exhaustive tuning and enhancing the method’s applicability
across datasets and deployment settings.

5. Related Work
Graph Condensation (GC) (Jin et al., 2022b;a; Yang et al.,
2024), derived from dataset distillation (Wang et al., 2018;
Zhao et al., 2021), aims to produce a smaller version of
a graph while retaining information from the original. Its
optimization goal is for GNNs trained on the condensed
graph to perform similarly to those trained on the original.
GC methods can be categorized into two classes: structured
GC, which generates both node features and graph structure;
and structure-free GC, which only focuses on synthesizing
node features but does not generate explicit graph structure.

Structured Graph Condensation synthesizes graph struc-
ture using a neural network that generates links between
nodes based on their features. GCond (Jin et al., 2022b) uses
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a gradient matching loss between the original and condensed
graphs, but its nested optimization loop limits efficiency.
GCDM (Liu et al., 2022) generates smaller graphs with a
distribution similar to the original graph, using a distribution
matching loss measured by maximum mean discrepancy.
SGDD (Yang et al., 2024) incorporates the original graph
structure through optimal transport. SimGC (Xiao et al.,
2024) aligns condensed and original graphs using a pre-
trained SGC model without external parameters for efficient
graph condensation. EXGC (Fang et al., 2024) employs
mean-field variational approximation and gradient-based ex-
plainability to efficiently condense large graphs. CGC (Gao
et al., 2025) introduces a training-free graph condensation
framework that transforms class-level distribution matching
into a clustering-based class partition problem.

Structure-Free Graph Condensation assumes that struc-
tural information can be embedded directly into the syn-
thetic node features, bypassing the need to generate graph
structure. GCondX (Jin et al., 2022b), a variant of GCond,
focuses solely on feature learning via gradient match-
ing without the inner loop. SFGC (Zheng et al., 2024)
matches training trajectories with expert guidance, and
GEOM (Zhang et al., 2024) adjusts the matching range for
different node difficulties. While these condensed graphs
do not possess edges, they enable GNN-based node classifi-
cation by introducing self-loops for each node, simplifying
the training process and achieving SOTA performance.

Graph Coarsening methods (Cai et al., 2021; Loukas &
Vandergheynst, 2018; Huang et al., 2021; Deng et al., 2019)
reduce graph size by clustering original nodes into super-
nodes, preserving the overall structural or spectral properties
while enabling more efficient downstream processing

Coreset methods (Sener & Savarese, 2018; Welling, 2009;
Wolf, 2011) select a subset of the original nodes and retain
the induced edges. K-Center (Sener & Savarese, 2018)
trains a GCN on the original graph to generate embeddings,
from which k-nearest nodes are sampled to form a subgraph.

Different from existing methods, our framework employs
a streamlined precomputation and adaptation process that
extracts and aligns features efficiently, avoiding the costly
re-training in SOTA methods.

6. Conclusion
In this paper, we propose a framework, GCPA, for effi-
cient graph condensation. The method consists only of a
precomputation stage that performs one-time message pass-
ing and a diversity-aware adaptation stage. Compared to
SOTA methods, our framework avoids costly repetitive re-
training, achieving up to 2,455× faster training speed. Our
framework is also effective, surpassing or matching a ma-
jority of baselines with just the precomputation stage and

achieving SOTA results with a further adaptation stage. Our
framework demonstrates that precomputation is a promis-
ing solution for efficient graph condensation, and it is also
flexible, as it can be further enhanced through adaptation
learning. In the future, we plan to explore more precompu-
tation techniques for graph condensation.
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A. Evaluation Scheme
Following GCondenser (Liu et al., 2024), we evaluate all methods using three different condensation ratios (r) for each
dataset. Specifically, the condensation ratio r is defined as the fraction of condensed nodes to the total number of original
nodes N , where 0 < r < 1. In the transductive setting, N denotes the total node count in the entire large-scale graph,
whereas in the inductive setting, N refers to the node count within the training sub-graph of the complete large-scale graph.
The evaluation has two phases: (i) the condensation phase: synthesizes the condensed graph from the original graph, and
(ii) the evaluation phase: the GNN is trained on the condensed graph, and the performance is evaluated on the original test
nodes. We repeat the experiments five times and report the average node classification accuracy with standard deviation.
The experiments are conducted on a single NVIDIA H100 GPU (80GB).

B. Hyperparameter Settings
For our method, we tune the structure-based precomputation hops K ∈ {1, 2, 3, 4}, damping factor α ∈ {0, 0.25, 0.5, 0.75},
residual coefficient β ∈ {0, 0.25, 0.5, 0.75}, diversity coefficient γ ∈ {0, 0.001, 0.01, 0.1, 1}, semantic-based aggregation
size M ∈ {1, 10, 50, 100}, number of negative samples S ∈ {1, 5, 10, 50}, number of adaptation layers {1, 2, 3}, and
hidden dimension of the adaptation module {128, 256, 512}. We tune all hyperparameters on the validation set. We adopt
the default settings of AdamW, including learning rate η = 0.001, β1 = 0.9, β2 = 0.999, and λ = 0.01 for weight decay.

C. Performance and Efficiency using SGC Backbone
Figure 7 and 8 present node classification performance and efficiency comparisons using the SGC backbone, respectively.

Table 7: Node classification performance comparison using SGC backbone (mean±std). The best and second-best results are
marked in bold and underlined, respectively. Ours (Pre.) is the precomputation-only variant. The Whole column represents
the performance obtained by training on the whole dataset.

Dataset Ratio K-Cen. GCond SGDD GCDM SFGC GEOM Ours Whole

CiteSeer
0.9% 52.7±0.0 71.9±0.6 71.1±0.1 66.0±2.2 65.2±0.3 60.1±0.2 72.3±0.5

70.3±1.01.8% 66.8±0.0 71.0±0.6 69.9±0.1 66.7±0.0 67.0±0.8 65.2±0.2 72.7±0.3

3.6% 68.1±0.0 72.5±1.2 70.8±0.8 69.1±1.2 68.8±0.2 67.7±0.3 72.7±0.6

Cora
1.3% 63.8±0.0 80.6±0.1 62.4±5.5 77.0±0.4 73.8±1.5 69.2±1.2 80.9±0.7

79.2±0.62.6% 70.3±0.0 81.0±0.2 80.8±0.4 78.9±1.0 77.5±0.1 69.6±1.5 81.5±0.6

5.2% 77.1±0.0 80.9±0.4 81.4±0.4 77.9±0.7 79.2±0.1 77.3±0.1 81.9±0.6

PubMed
0.08% 70.5±0.1 75.9±0.7 76.4±0.9 73.3±1.2 73.9±0.5 73.8±0.3 76.6±0.5

76.9±0.10.15% 75.8±0.0 75.2±0.0 78.0±0.3 74.7±0.6 75.8±0.2 77.4±0.4 76.9±0.6

0.3% 75.7±0.0 75.7±0.0 76.1±0.1 76.5±1.1 75.8±0.0 75.8±0.4 76.8±0.4

Arxiv
0.05% 51.8±0.2 65.5±0.0 64.5±0.9 60.8±0.1 66.1±0.2 62.0±0.5 67.2±0.4

68.8±0.00.25% 58.2±0.0 66.5±0.5 66.4±0.3 62.7±0.9 66.7±0.3 62.8±0.7 67.3±0.2

0.5% 60.3±0.0 67.2±0.1 66.9±0.3 62.4±0.2 66.4±0.3 63.6±0.3 67.3±0.1

Products
0.025% 48.6±0.6 64.0±0.2 64.9±0.1 57.7±0.2 62.2±0.1 61.1±0.4 65.0±0.5

64.7±0.10.05% 52.2±0.7 64.0±0.1 62.3±0.2 58.2±0.3 62.2±0.2 62.4±0.2 65.1±0.4

0.1% 55.4±0.4 64.4±0.4 64.3±0.3 60.8±0.2 61.9±0.2 63.1±0.2 65.0±0.4

Flickr
0.1% 34.5±0.1 43.7±0.5 43.6±0.3 40.3±0.0 45.3±0.7 33.6±0.4 45.6±0.3

44.2±0.00.5% 36.1±0.0 42.2±0.2 41.6±1.6 40.8±0.1 45.7±0.4 37.4±0.2 46.5±0.2

1% 36.5±0.0 41.1±0.8 43.2±0.4 42.7±0.4 46.1±0.5 38.1±0.2 46.8±0.2

Reddit
0.05% 54.0±0.1 89.7±0.6 90.5±0.3 90.3±0.8 90.9±0.2 59.4±1.5 91.5±0.7

93.2±0.00.1% 78.6±0.0 91.8±0.2 91.9±0.0 88.1±2.8 92.6±0.2 81.7±0.7 92.6±0.1

0.2% 83.8±0.0 92.1±0.3 86.3±5.6 91.7±0.2 92.6±0.3 86.7±0.1 92.7±0.2

D. Visualization
Figure 7 displays visualization results between SFGC condensed features and ours. Our condensed graphs exhibit clear
clustering patterns on all presented datasets with minimal inter-class mixing, in contrast to the SFGC graphs, which show
less distinct class separation. The comparison is more evident on larger datasets such as Ogbn-arxiv and Flickr, where SFGC
fails to produce clear clustering patterns. To quantify these clustering patterns, we follow previous work (Zhang et al., 2024)
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Table 8: Efficiency comparison using SGC backbone (total condensation time in seconds).

Dataset K-Center GCond SGDD GCDM SFGC GEOM Ours (Pre.) Ours

CiteSeer (r=1.8%) 5 42 51 47 1,652 6,920 6 26
Cora (r=2.6%) 4 42 48 47 2,011 6,031 4 21

PubMed (r=0.15%) 4 34 204 42 7,555 22,201 5 40
Arxiv (r=0.25%) 6 283 1,485 242 78,586 84,356 20 71

Products (r=0.05%) 44 2,011 2,007 1,545 1,357,845 1,687,718 104 586

Flickr (r=0.5%) 5 177 300 258 99,254 19,202 23 56
Reddit (r=0.1%) 7 508 9,203 505 360,327 100,354 55 91

SC: 0.08
DB: 2.22
CH: 5.30

SFGC
SC: 0.40
DB: 1.03
CH: 26.55

Ours

(a) CiteSeer (r=1.8%)

SC: -0.03
DB: 3.45
CH: 1.97

SFGC
SC: 0.38
DB: 1.06
CH: 23.64

Ours

(b) Cora (r=2.6%)

SC: -0.14
DB: 3.83
CH: 2.50

SFGC
SC: 0.26
DB: 1.27
CH: 40.99

Ours

(c) Ogbn-arxiv (r=0.25%)

SC: -0.08
DB: 9.06
CH: 0.69

SFGC
SC: 0.09
DB: 2.87
CH: 52.72

Ours

(d) Flickr (r=0.5%)

Figure 7: The t-SNE visualization of synthetic node features using GCN backbone. The node classes are represented by
colors. The clustering metrics including Silhouette Coefficient (SC↑), Davies-Bouldin Index (DB↓), and Calinski-Harabasz
Index (CH↑) are reported for each plot. The arrows ↑ and ↓ denote that a higher value indicates better clustering pattern for
SC and CH, while a lower value indicates better clustering for DB.

to utilize clustering metrics including the Silhouette Coefficient (Rousseeuw, 1987), the Davies-Bouldin Index (Davies &
Bouldin, 1979), and the Calinski-Harabasz Index (Caliński & Harabasz, 1974), all of which indicate that our condensed
graphs demonstrate better clustering patterns. The visualization results show that our framework effectively optimizes the
condensed features, forming robust representations to preserve the original graph’s classification capabilities.

E. Structure-free Features via Precomputation
During the precomputation stage, we transform the raw features to structure-free features via precomputation. We show that
when using SGC as the backbone GNN, the precomputed features coupled with an identity adjacency matrix are equivalent
to the raw features coupled with the original graph structure. We start by defining the SGC network on the original graph:

SGC(X,A;Θ) =
(
D̃− 1

2 ÃD̃− 1
2

)K
XΘ, (6)

where X is the raw node features, Ã = A+ I represents the adjacency matrix with self-loops, D̃ denotes the degree matrix
of Ã, K is the number of propagation layers, and Θ is the weight matrix.

13



Adapting Precomputed Features for Efficient Graph Condensation

Then, we revisit the feature precomputation introduced in Equation 2 when α = 0:

X′ =
(
D̃− 1

2 ÃD̃− 1
2

)K
X, (7)

where X′ denotes the precomputed features, which is the result of applying the same transformation as in the SGC but
isolated from the learning weights Θ.

As a result, SGC with precomputed features and identity adjacency matrix becomes:

SGC(X′, I;Θ) =
(
D̃− 1

2 ĨD̃− 1
2

)K
X′Θ = X′Θ =

(
D̃− 1

2 ÃD̃− 1
2

)K
XΘ, (8)

Therefore, we draw the equivalence between SGC computation on the original graph and the structure-free precomputed
features:

SGC(X′, I;Θ) = SGC(X,A;Θ) (9)

The equivalence shows that although the original features and condensed features are differently distributed, they perform
equivalently when coupled with their corresponding graph structure using the SGC backbone. Drawing inspiration from
this equivalence under the SGC backbone, our framework focuses on initializing and refining features in the precomputed
feature space, enabling effective training of message-passing GNNs on the structure-free condensed graphs.
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