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ABSTRACT

Electronic health records (EHRs) contain patients’ longitudinal visit records, and
modelling EHRs can be applied to various clinical prediction tasks. Previous
works primarily focus on visit sequences and perform feature interaction on visit-
level data to capture patient states. Nonetheless, incorporating finer-grained mon-
itoring sequences simultaneously in structured EHRs, where each visit involves
multiple monitoring sessions, can improve prediction performance. However,
these studies have not accounted for the relationships between visit-level and
monitoring-level data. To fill this gap, we propose an EHRs modelling method
aimed at modelling the dynamic interaction between visit-level and monitoring-
level data and capturing finer-grained health trends. We first capture the dynamic
influence between medical data, and then perform a visiting-monitoring feature
interaction on the relationships between visit data and monitoring data, to ob-
tain the representation of patients’ state for clinical prediction. We conducted ex-
tensive experiments on disease prediction and drug recommendation tasks, with
MIMIC-III and MIMIC-IV datasets, demonstrating that our method outperforms
state-of-the-art models significantly.

1 INTRODUCTION

Electronic health records (EHRs) contain sequential visit records, including information such as
diagnoses and prescriptions (Johnson et al., 2016; Pollard et al., 2018; Johnson et al., 2023). Various
clinical prediction tasks based on EHRs have been conducted, such as disease prediction (Choi et al.,
2016; Ma et al., 2020a; Chen et al., 2024), drug recommendation (Zheng et al., 2021; Yang et al.,
2023b), and mortality prediction (Choi et al., 2017; Gao et al., 2020; Zhang et al., 2021). Modelling
EHRs offers a comprehensive, real-time analysis of patients and supports quick and accurate clinical
decision-making. Previous works have mainly focused on learning patient health trends from visit
sequences, but recent research (Bhoi et al., 2024) shows that incorporating monitoring sequences
from structured EHRs captures finer-grained health trends, improving prediction performance. As
shown in the left part of Figure 1, structured EHRs contain two levels of medical events: (1) visit-
level events, such as diseases, procedures, and drugs, and (2) monitoring-level events, such as lab
test results reflecting the patient’s health state, where a single visit can involve multiple monitoring
sessions, such as those in intensive care unit (ICU) settings.

How to model the complex relationships between medical events for feature interaction learning
has become a major challenge in EHRs modelling. The first type of work (Poulain & Beheshti,
2024; Li et al., 2024), as shown in Figure 2(a), analyzes correlations and constructs relationships
between events within the same visit, but the relationships across time points are relatively weak.
The second type of work (Jiang et al., 2023; Chen et al., 2024), as shown in Figure 2(b), builds
pathways based on event recurrence across visits but does not fully account for the finer-grained
monitoring sequences, making it challenging to capture finer-grained patient health trends. Recent
research (Bhoi et al., 2024) incorporates finer-grained monitoring sequences from structured EHRs,
as shown in Figure 2(c). This suggests applying a similar temporal modelling method to monitoring
sequences as used for visit sequences.
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Figure 1: (1) Left: In structured EHRs data, not only does a single patient have multiple visits, but
each visit also includes multiple monitoring sessions. (2) Right: Dynamic pathological relationship
between visit-level events and monitoring-level events.

However, a limitation is that it does not consider the relationships between the visit and monitor-
ing sequences. As illustrated in the right part of Figure 1, in real-world clinical scenarios, there is
often a dynamic pathological relationship between monitoring events and visit events. For exam-
ple, hypertension can cause elevated blood pressure (detected by lab tests). When blood pressure is
high, patients may need to take blood pressure drugs to lower it. As the blood pressure decreases,
the symptoms of hypertension are alleviated. This pathological relationship reflects the interplay be-
tween visits and monitoring events and captures fine-grained patient health trends. However, existing
methods fail to model these relationships in structured EHRs, resulting in sub-optimal performance.

To fill the aforementioned gap, as shown in Figure 2(d), we propose a temporal cross-level (visiting-
monitoring) feature interaction learning method to model the dynamic pathological relationships
between visit and monitoring sequences for EHRs modelling, named CrossMed. Specifically, we
first estimate the influence between monitoring and visit events, then construct a temporal cross-
level interaction graph, creating a sub-graph for each monitoring session. Within each sub-graph,
we model the influence of monitoring on visit events, and for consecutive sub-graphs, we model the
response of visit events to the next monitoring step. We then perform feature interaction learning,
updating event representations along the graph. Finally, we aggregate event representations into
patient representations for clinical prediction. To summarize, we make the following contributions:

• To the best of our knowledge, we are the first to model the pathological relationships be-
tween visit events and monitoring events in structured EHRs.

• We propose a temporal visiting-monitoring feature interaction learning method based on
the pathological relationship between visit event and monitoring event, to capture finer-
grained patient health trends.

• We conducted extensive experiments on two real-world medical datasets, including both
disease prediction and drug recommendation tasks, to demonstrate the superior perfor-
mance of our method compared to baselines.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Data Format. Structured EHRs contain multi-level continuous clinical records of patients. In the
record, each patient is represented as H = {V1, V2, . . . , VT }, where Vt denotes the t-th clinical
visit of the patient for t ∈ [1, T ]. For each clinical visit Vt, we have Vt = {Dt, Pt, Rt,Mt},
where Dt, Pt, Rt, Mt represent the diseases, procedures, drugs, and monitoring information of the
patient, respectively. Specifically, for diseases Dt, a patient’s single visit Vt may be associated with
multiple diseases simultaneously, hence we adopt multi-hot encoding to denote the information
of the disease Dt ∈ {0, 1}|D| with |D| as the total number of disease types. Both procedures1

Pt ∈ {0, 1}|P | and drugs Rt ∈ {0, 1}|R| similarly employ the multi-hot encoding with |P | and |R|
as the total number of procedure types and drug types, allowing patients to have multiple procedures

1Procedure is mostly recorded as the surgery type.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Constructing interaction pathways
  based on visit events that occur at the same time.

(b) Constructing interaction pathways
 based on visit events that recur at different times.

(d) Constructing cross-level interaction pathways for
monitoring and visit sequences based on dynamic pathological relationships.

(c) Constructing parallel interaction pathways for
monitoring and visit sequences based on temporal relationships.
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Figure 2: Different feature interaction learning methods in modelling EHRs for clinical prediction.

performed and be recommended with multiple drugs in a single visit Vt. In addition, the monitoring
information Mt is a finer-grained sequence that represents continuous changes in the patient’s health
state reflected by monitoring events (e.g., lab test result) during the Vt. It is represented as Mt =
{mt,1,mt,2, . . . ,mt,N}, where mt,n ∈ [0, 1]|M | is a normalized vector denoting the health state of
n-th monitoring session at visit Vt, for n ∈ [1, N ], and |M | refers to the total number of categories
for all monitoring events.

Task1: Disease Prediction. Given the patient health record H , disease prediction aims to learn a
function fDP (·) that predicts the disease Dt at the end of the visit sequence.

Task2: Drug Recommendation. Given the patient health record H , drug recommendation aims to
learn a function fDR(·) that recommends drugs Rt at the end of the visit sequence.

In this sense, these two tasks can be regarded as multi-label classification problems.

2.2 RELATED WORKS

EHRs modelling in clinical prediction. In recent years, researchers have increasingly used data
mining to develop EHRs modelling in clinical prediction. (1) The first type of research (Choi et al.,
2016; Jin et al., 2018; Liang et al., 2021; Wu et al., 2022; Waghmare et al., 2024) focuses on patient
state and employs various methods such as attention models, LSTM networks, and Markov decision
processes for clinical prediction. However, these approaches often overlook the interactions between
medical events. (2) The second type of research focuses on the relationships between multiple med-
ical events, using relational networks to enhance feature interaction. Techniques such as structure
learning (Zheng et al., 2021; 2023), causal discovery (Sun et al., 2022b; Li et al., 2024), and bias re-
duction (Zhao et al., 2024) are used to strengthen the relationships between medical events in graph
networks. However, these methods often rely on generated relationships, lacking clear medical sig-
nificance and sufficient granularity. (3) The third type of research enhances patient representation
by integrating domain-specific knowledge. Yang et al. (2021b; 2023b); Chen et al. (2023) leverage
molecular data, while Choi et al. (2017); Ma et al. (2018); Shang et al. (2019a) use medical ontolo-
gies. Bhoi et al. (2024) combines lab tests with drug-drug interaction databases. However, these
methods are limited by their heavy reliance on external knowledge. Our method belongs to the sec-
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Figure 3: CrossMed consists of relationship discovery, graph construction, and feature interaction.
(1) Starting from the workflow’s left side, it models relationship weights between different levels of
medical events in the relationship discovery stage. (2) Next, as shown in the red box on the right,
it constructs graphs based on event types and time. (3) Finally, it performs feature interaction to
integrate the heterogeneous relationships into patient representations, which are used for clinical
prediction tasks. Relevant legends are displayed on the left side of the workflow.

ond category mentioned above, driven by the latent pathological relationship between monitoring
events and visit events, achieving finer-grained relationships with clear medical significance.

Temporal Feature Interaction. Temporal feature interaction methods (Zheng et al., 2024; Feng
et al., 2024) integrate temporal modelling into graph structures, allowing for the realistic representa-
tion of real-world systems by modelling changes over time. (1) The first type of research generates
static graph sequences through temporal snapshots (Sankar et al., 2020; Wang et al., 2020; 2021c;
Li et al., 2019; Jin et al., 2019; Qin et al., 2023), learning representations at each time point and
integrating them sequentially using a temporal network. However, these methods only capture in-
teractions within a single time point, neglecting feature interaction across multiple time steps. (2)
Another approach continuously updates nodes and edges with timestamps, enabling smoother fea-
ture interaction and asynchronous time modelling (Trivedi et al., 2017; 2019; Han et al., 2020; Sun
et al., 2022a). Some works focus on temporal models, while others (Wen & Fang, 2022; Ma et al.,
2020b; Kumar et al., 2019; Zhang et al., 2024) focus on event intensity and edge order. Additionally,
methods (Xu et al., 2020; Wang et al., 2021a;b; Li et al., 2023; Wu et al., 2024) use attention mech-
anisms and neighbour aggregation for asynchronous propagation. However, key dynamic features
may fade quickly during edge adjustments, making it difficult to capture brief but crucial changes.
This paper falls into the first category, leveraging the pathological relationships between monitoring
and visit events across time points to achieve feature interaction.

3 METHOD

Our proposed method, CrossMed, as shown in Figure 3, consists of three distinct modules: (1) Re-
lationship Discovery: Model pathological relationships between monitoring events and visit events.
(2) Graph Construction: Establish a cross-level interaction temporal graph based on pathological
relationships. (3) Feature Interaction: Perform feature interaction across different levels of events
to generate patient representations.

3.1 MODULE 1: RELATIONSHIP DISCOVERY

To evaluate the influence of a monitoring event on a visit event, we define the specific monitoring
event as the treatment variable T , the specific visit event as the outcome variable Y , and other related
monitoring events as confounding variables X . We then apply a generalized linear model (GLM)
with a logit link function, expressed as:

log

(
µ

1− µ

)
= β0 + βTT + βXX, (1)

where µ denotes the expected value of the outcome variable Y . In this model, β0 represents the
intercept, βT reflects the average effect of the treatment variable T on the outcome variable Y , and
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βX encompasses the coefficients for the confounding variable X . The parameters β0, βT , and βX

are estimated using the maximum likelihood estimation (MLE) method. By fitting the estimated
coefficient β̂T , we obtain the influence of a specific monitoring event on a specific visit event at a
given time. Aggregating multiple β̂T values yields wm−D

mt,n
, wm−P

mt,n
, and wm−R

mt,n
, which represent the

relationship effect weight between the monitoring event and disease, procedure, and drug at time
mt,n, respectively. For a detailed explanation, please refer to the Appendix B.2.

3.2 MODULE 2: GRAPH CONSTRUCTION

In this module, we construct a cross-level interaction temporal graph based on the dynamic patholog-
ical relationships between different levels of data, which is divided into two steps: node construction
and edge construction.

For node construction. We generate four types of nodes from N 1 to N 4. The first type of node,
N 1, represents monitoring events, and hN 1

t,n
denotes the representation of the monitoring event

during the n-th monitoring session of the t-th visit. The second, third, and fourth types of nodes,
N 2, N 3, and N 4, all refer to visit events, representing diseases, procedures, and drugs, respectively.
For hN 2

t,n
, it denotes the representation of the disease during the n-th monitoring session of the

t-th visit. Since diseases are visit-level events, all hN 2
t,n

within the same visit Vt are initialized to
be identical. Similarly, for hN 3

t,n
and hN 4

t,n
, representing the procedure and drug at time of mt,n,

respectively, all hN 3
t,n

and hN 4
t,n

within the same visit Vt are also initialized to be identical.

For edge construction. There are three types of edges in total in the cross-level interaction temporal
graph in, as follows: (1) Same-Time Same-Level Relationships (blue dashed bi-directed edges): We
model the direct link between visit events by constructing bi-directional edges between multiple
visit events at the same time. Each edge is assigned a fixed weight of 1. (2) Same-Time Cross-
Level Relationships (green dashed directed edges): We model the influence of monitoring events
on visit events occurring at the same time point by constructing cross-level edges. The effects
generated in the previous module (wm−D

mt,n
, wm−P

mt,n
, and wm−R

mt,n
) are used as the corresponding edge

weights. (3) Cross-Time Relationships (yellow solid directed edges): We model the response of
visit events on monitoring events at the next time point by creating edges between consecutive time
points. Furthermore, we construct edges between consecutive monitoring events to capture changes
in health state over time, with each edge assigned a fixed weight of 1.

Notably, the graph structure mentioned above is used to aggregate multiple monitoring sessions into
a visit. A similar graph is employed to aggregate multiple visits into a patient representation, as
detailed in Appendix B.3.

3.3 MODULE 3: FEATURE INTERACTION

After building the cross-level interaction temporal graph, we perform feature interaction for multiple
nodes based on the constructed edges.

Dynamic edge weights. We compute the dynamic edge weights η according to the method proposed
by GATv2 (Brody et al., 2022),

η
(r)
ij = softmaxj

(
LeakyReLU(a(r)T [W(r)hi∥W(r)hj ]) · w(r)

ij

)
, (2)

where η
(r)
ij represents the dynamic weight between nodes i and j. The LeakyReLU function is a

nonlinear activation function, while a(r)T is a learnable attention vector specific to edge type r.
W(r) is the learnable weight matrix associated with edge type r, and hi and hj are the embedding
representations of nodes i and j, respectively. Finally, w(r)

ij is the weight assigned to the edge from
node j to node i for edge type r in the previous module.

Feature interaction on same-time edges. For edges within the same temporal sub-graph, we update
node features as follows:

h
(l+1,t)
i = (1− α)σ

∑
r∈R

∑
j∈N (r)

i

η
(r,l)
ij W(r)h

(l,t)
j

+ αh
(l,t)
i , (3)
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where h
(l+1,t)
j denotes the embedding of node j at time step t in layer l + 1, R refers to the set of

all edge types, α is the residual connection ratio, and σ represents the ReLU activation function.

Feature interaction on cross-time edges. For edges across temporal sub-graphs, in addition to
using the same graph network as for same-time edges, we also apply a temporal network method, as
detailed below:

h
(l+1,t+1)
i = (1− z

(t+1)
i )⊙ h

(l+1,t)
i + z

(t+1)
i ⊙ tanh

(
Uh(r

(t+1)
i ⊙ h

(l+1,t)
i )

)
, (4)

where z
(t+1)
i is the update gate controlling how much of the previous hidden state is kept, Uh is a

learnable weight matrix that transforms the reset-modified hidden state, and r
(t+1)
i is the reset gate

controlling how much of the previous hidden state contributes to the new candidate state. Finally,
we derive the representations for the last time point: hN 1

t,N
, hN 2

t,N
, hN 3

t,N
, hN 4

t,N
.

Each cross-level temporal graph captures the representation of the last time point within its respec-
tive sequence. In the monitoring-to-visit stage, we derive the representations of the last monitoring
session and concatenate these representations to obtain the visit representation, hVt . Similarly, in
the visit-to-patient stage, we derive the representations of the last visit and concatenate them into the
patient representation, hH , which serves as the final representation for downstream tasks.

3.4 PREDICTION, TRAINING AND INFERENCE

Prediction. Based on the patient representation hH , we produce outputs for various tasks using
different predictors tailored to each task,

odp = sigmoid(fcdp(hH)), odr = sigmoid(fcdr(hH)), (5)
where odp/odr represents the probability for each disease and drug, and fcdp/fcdr is the independent
predictor for the disease prediction and drug recommendation. Finally, we output the diseases/drugs
with probabilities greater than 0.5.

Training & Inference. During the training phase, we optimize all the learnable parameters and use
the same loss function for both tasks. The model follows the same pipeline during inference as it
does in training. We denote the predicted label as yi, and probability as oi. The loss function, binary
cross-entropy (BCE) loss, is used to optimize the model across both tasks, which is expressed as:

Lbce = − 1

|X|

|Y |∑
i=1

[yi log(oi) + (1− yi) log(1− oi)]. (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. This paper utilizes two widely used datasets, MIMIC-III (Johnson et al., 2016) and
MIMIC-IV (Johnson et al., 2023). For a detailed description of the data pre-process, please refer to
the Appendix C.1.

Baselines. To validate our model, we selected the following state-of-the-art benchmark models for
comparison. For disease prediction, we selected RETAIN (Choi et al., 2016), Transformer (Vaswani,
2017), KAME (Ma et al., 2018), StageNet (Gao et al., 2020), REFINE (Bhoi et al., 2024), and
TRANS (Chen et al., 2024). For drug recommendation, we selected RETAIN, Transformer, Grasp
(Zhang et al., 2021), GAMENet (Shang et al., 2019b), SafeDrug (Yang et al., 2021b), Micron (Yang
et al., 2021a), MoleRec (Yang et al., 2023b), REFINE, TRANS, and CausalMed (Li et al., 2024).
Notably, we also introduced an MLP baseline that incorporates both visit and monitoring informa-
tion for both tasks. For a detailed description of the baselines, please refer to the Appendix C.2.

Evaluation Metrics. To comprehensively evaluate our model, we used both the medical system and
recommender system evaluation methods. For the medical system, we use four main general metrics
(according to Jiang et al. (2023)) to evaluate the performance of our method: the F1-score, Jaccard,
PR-AUC, and ROC-AUC. For the recommender system, we use the visit-level precision@k and
event-level accuracy@k (according to Chen et al. (2024)) to evaluate our methods. For a detailed
description of the evaluation metrics, please refer to the Appendix C.3.
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Table 1: The average performance (%) and standard deviation (in parentheses) of each model for
MIMIC-III and MIMIC-IV on both tasks, evaluated using medical system metrics. The top model
is in bold, and the second-best is underlined, and models marked with an asterisk (*) indicate sig-
nificance testing against the current state-of-the-art.

Disease Prediction

Model MIMIC-III MIMIC-IV
F1-score Jaccard PR-AUC ROC-AUC F1-score Jaccard PR-AUC ROC-AUC

RETAIN 36.22 (1.4) 22.11 (1.0) 48.97 (1.2) 92.35 (0.3) 37.43 (1.1) 23.02 (0.8) 47.48 (1.0) 91.69 (0.2)

Transformer 35.26 (1.1) 21.40 (0.8) 45.85 (1.0) 91.58 (0.4) 35.97 (4.1) 24.94 (2.6) 44.38 (3.8) 90.20 (0.9)

KAME 34.21 (1.3) 20.64 (0.9) 42.76 (1.3) 90.12 (0.3) 37.41 (1.2) 23.01 (0.9) 45.51 (1.3) 90.88 (0.4)

StageNet 41.58 (1.0) 26.05 (0.8) 44.36 (1.1) 90.65 (0.4) 44.49 (0.9) 28.61 (0.8) 47.60 (1.3) 91.34 (0.3)

Trans 38.55 (1.9) 23.88 (1.5) 49.62 (2.6) 92.45 (0.3) 38.61 (1.5) 23.93 (1.2) 51.68 (1.2) 92.66 (0.2)

MLP 37.21 (1.0) 23.17 (0.8) 42.13 (1.8) 89.93 (0.4) 40.25 (0.8) 24.78 (0.7) 45.43 (1.6) 90.74 (0.4)

REFINE 38.84 (1.9) 24.10 (1.4) 49.53 (1.2) 92.09 (0.4) 41.14 (1.1) 25.90 (0.9) 51.80 (1.3) 92.66 (0.2)

Ours 43.31 (1.4)* 27.80 (1.1)* 51.37 (1.4)* 93.43 (0.4)* 46.82 (1.7)* 29.78 (0.9)* 52.16 (1.3) 93.10 (0.6)*
Drug Recommendation

Model MIMIC-III MIMIC-IV
F1-score Jaccard PR-AUC ROC-AUC F1-score Jaccard PR-AUC ROC-AUC

RETAIN 60.26 (3.3) 43.12 (3.4) 71.61 (3.8) 90.87 (1.2) 62.18 (1.8) 45.12 (1.9) 73.25 (2.0) 91.81 (0.5)

Transformer 59.75 (1.3) 42.52 (1.5) 73.95 (3.0) 92.08 (0.9) 58.11 (3.5) 40.96 (3.5) 70.22 (3.7) 90.86 (1.2)

Grasp 62.02 (2.3) 47.49 (2.0) 76.16 (2.2) 92.89 (1.5) 63.01 (2.4) 47.53 (2.3) 75.98 (2.7) 91.75 (1.5)

GAMENet 63.43 (2.4) 48.94 (1.9) 77.63 (2.1) 93.40 (1.6) 63.78 (2.6) 49.33 (2.2) 78.31 (2.5) 93.65 (1.6)

SafeDrug 59.60 (2.2) 45.04 (2.0) 75.46 (2.4) 92.34 (1.5) 59.59 (3.6) 44.90 (2.2) 75.34 (2.7) 92.20 (1.6)

Micron 61.71 (2.3) 46.98 (2.0) 75.05 (2.3) 92.61 (1.7) 62.79 (2.7) 48.33 (2.4) 77.12 (2.6) 93.18 (1.8)

MoleRec 64.44 (2.7) 49.62 (2.8) 76.77 (2.4) 92.63 (1.7) 64.85 (1.8) 50.18 (2.6) 76.88 (2.7) 92.11 (1.8)

Trans 63.49 (3.0) 46.44 (3.2) 75.73 (3.0) 91.95 (0.9) 64.13 (2.7) 47.13 (2.6) 76.14 (3.0) 92.37 (0.9)

CausalMed 66.14 (2.5) 51.29 (2.0) 79.00 (1.8) 93.11 (0.6) 66.27 (2.5) 50.27 (2.3) 78.56 (2.4) 93.09 (1.7)

MLP 63.64 (2.1) 46.67 (2.3) 69.72 (2.3) 89.38 (0.9) 62.75 (2.2) 47.87 (2.4) 67.88 (4.5) 90.37 (1.2)

REFINE 66.73 (2.6) 50.07 (2.9) 78.25 (2.6) 92.54 (0.7) 66.05 (1.0) 49.66 (1.1) 78.29 (1.5) 92.11 (0.3)

Ours 69.58 (2.3) 53.35 (2.7) 79.02 (1.8) 93.61 (0.6) 68.74 (2.5)* 52.37 (2.8) 79.34 (2.5) 94.12 (1.7)*

Table 2: The average performance (%) and standard deviation (in parentheses) of each model for
MIMIC-III and MIMIC-IV on both tasks, evaluated using recommender system metrics. The top
model is in bold, and the second-best is underlined, and models marked with an asterisk (*) indicate
significance testing against the current state-of-the-art.

Disease Prediction

Model
MIMIC-III MIMIC-IV

Event-Level Accuracy@k Visit-Level Precision@k Event-Level Accuracy@k Visit-Level Precision@k
10 20 30 10 20 30 10 20 30 10 20 30

RETAIN 22.79 (2.3) 25.58 (1.7) 26.23 (3.0) 30.80 (2.5) 25.70 (1.8) 26.61 (2.1) 21.10 (2.0) 23.77 (1.5) 24.22 (3.1) 37.09 (2.2) 26.20 (1.7) 27.67 (2.8)

Transformer 21.66 (1.3) 24.19 (2.1) 26.07 (2.7) 30.26 (1.8) 25.13 (2.4) 26.47 (2.0) 20.86 (1.7) 24.26 (2.3) 26.47 (2.8) 32.36 (1.9) 24.89 (2.5) 25.79 (1.8)

KAME 24.90 (2.0) 25.32 (1.6) 27.91 (3.0) 32.50 (2.2) 26.97 (2.7) 27.28 (1.8) 25.00 (2.1) 28.82 (1.9) 29.56 (2.4) 34.54 (1.5) 27.66 (2.2) 28.71 (2.9)

StageNet 26.50 (1.8) 27.51 (2.3) 28.89 (2.7) 33.80 (1.9) 29.91 (2.4) 30.72 (2.1) 27.41 (1.6) 29.19 (2.2) 31.37 (2.9) 38.63 (2.0) 29.57 (1.9) 31.03 (2.7)

Trans 25.31 (1.2) 28.02 (1.3) 29.77 (1.4) 35.10 (1.4) 29.16 (1.2) 30.40 (1.2) 27.33 (1.2) 32.23 (1.2) 34.66 (1.2) 42.95 (1.2) 34.20 (1.2) 34.74 (1.2)

MLP 22.73 (1.0) 23.41 (1.3) 26.58 (1.4) 33.55 (1.6) 26.09 (1.6) 27.41 (1.7) 26.31 (0.7) 29.69 (0.9) 30.29 (0.9) 38.52 (1.8) 31.49 (1.2) 32.29 (1.2)

REFINE 23.61 (1.4) 25.90 (1.1) 27.75 (1.1) 33.14 (1.4) 27.29 (1.4) 28.62 (1.6) 27.15 (1.0) 31.72 (0.9) 33.88 (1.2) 42.29 (1.9) 32.80 (0.8) 33.33 (1.3)

Ours 29.36 (2.5) 32.84 (2.3)* 34.66 (2.8)* 40.74 (2.1)* 33.66 (1.9)* 34.82 (2.2)* 27.96 (2.0) 33.33 (2.1) 35.61 (2.4) 43.71 (1.9) 34.64 (2.3) 35.05 (2.7)

Drug Recommendation

Model
MIMIC-III MIMIC-IV

Event-Level Accuracy@k Visit-Level Precision@k Event-Level Accuracy@k Visit-Level Precision@k
30 40 50 30 40 50 30 40 50 30 40 50

RETAIN 46.75 (2.3) 51.17 (1.7) 56.87 (3.1) 64.38 (2.0) 64.14 (2.2) 64.20 (2.5) 44.71 (1.8) 49.45 (2.1) 52.41 (3.0) 61.34 (2.0) 64.28 (2.3) 63.36 (2.8)

Transformer 47.43 (1.4) 52.91 (1.2) 56.78 (0.8) 64.61 (1.1) 64.19 (0.7) 64.92 (0.7) 45.91 (1.3) 50.43 (1.1) 53.70 (1.1) 63.66 (1.6) 62.06 (1.3) 62.53 (1.0)

Grasp 46.71 (1.9) 53.28 (2.4) 57.66 (2.5) 65.48 (2.0) 63.54 (2.3) 64.76 (2.7) 46.16 (2.1) 52.03 (2.3) 55.04 (2.8) 64.07 (2.1) 66.09 (2.5) 65.05 (2.9)

GAMENet 47.72 (2.2) 54.32 (2.5) 58.94 (2.1) 66.27 (2.3) 64.92 (2.1) 65.33 (2.6) 47.16 (2.0) 54.74 (2.4) 56.89 (2.9) 65.65 (2.2) 66.43 (2.1) 66.40 (2.7)

SafeDrug 46.17 (2.2) 52.62 (2.5) 59.83 (2.9) 63.39 (2.3) 62.54 (2.0) 63.81 (2.7) 46.26 (1.9) 52.65 (2.2) 54.75 (2.5) 62.32 (2.6) 63.19 (2.4) 63.55 (2.3)

Micron 47.67 (2.1) 51.87 (2.0) 54.75 (2.3) 65.55 (1.8) 64.69 (2.2) 64.70 (2.1) 45.58 (1.8) 52.11 (2.4) 55.31 (2.6) 64.54 (2.5) 63.24 (2.8) 64.25 (2.6)

MoleRec 49.94 (2.7) 58.89 (2.4) 61.28 (2.2) 65.78 (2.5) 65.53 (2.3) 65.86 (2.9) 47.81 (2.4) 52.13 (2.5) 57.87 (2.6) 64.22 (2.1) 64.50 (2.8) 65.01 (2.3)

Trans 47.15 (2.9) 52.33 (2.9) 56.35 (3.4) 64.98 (1.5) 64.12 (1.8) 65.00 (2.2) 47.05 (2.1) 51.61 (2.1) 55.16 (2.4) 65.66 (2.5) 63.91 (1.9) 64.37 (2.0)

CausalMed 51.32 (2.5) 56.45 (2.7) 61.17 (2.1) 66.02 (2.6) 64.13 (2.4) 66.24 (2.8) 46.33 (2.3) 53.41 (2.2) 59.14 (2.8) 65.04 (2.5) 67.21 (2.4) 66.18 (2.9)

MLP 44.75 (1.5) 51.75 (1.7) 56.76 (1.9) 64.45 (2.2) 63.39 (1.7) 63.26 (1.6) 45.57 (1.8) 51.12 (1.5) 56.90 (1.4) 64.09 (2.1) 63.28 (1.6) 64.57 (1.4)

REFINE 47.95 (1.6) 53.64 (1.2) 58.04 (0.9) 64.11 (1.3) 63.42 (0.7) 65.85 (0.4) 48.39 (1.4) 53.93 (1.3) 58.02 (0.8) 66.32 (0.9) 65.07 (0.8) 65.68 (0.8)

Ours 55.18 (2.3)* 59.72 (2.8)* 63.99 (2.4)* 67.19 (2.6) 66.32 (2.9) 67.13 (2.5) 47.96 (2.1) 55.58 (2.4)* 61.65 (2.7) 67.89 (2.6)* 68.16 (2.5) 69.43 (2.8)

4.2 RESULTS AND ANALYSIS

In this section, we compare CrossMed to the baseline disease prediction and drug recommendation
tasks and conduct several complementary experiments (some additional experiments are discussed
in Appendix D) designed to answer the following research question (RQ).

RQ1: Does CrossMed provide more accurate clinical prediction than SOTA models for both tasks?

RQ2: Do the components we proposed improve the performance for both tasks?

RQ3: How does CrossMed perform with limited sequence length of visit and monitoring?

RQ4: How do different feature interaction learning methods impact performance, and why?
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Table 3: Ablation experiments results (%) and standard deviation (in parentheses) of modified model
for MIMIC-III on both tasks, evaluated using medical system metrics. The top model is in bold.

Model Disease prediction Drug recommendation
F1-score Jaccard PR-AUC ROC-AUC F1-score Jaccard PR-AUC ROC-AUC

CrossMed w/o Rm2v 42.50 (1.2) 26.93 (1.0) 50.72 (1.3) 92.80 (0.5) 67.98 (2.1) 52.36 (2.6) 77.23 (1.8) 92.42 (0.8)

CrossMed w/o Rv2m 43.05 (1.3) 27.23 (1.0) 50.04 (1.3) 91.72 (0.5) 68.24 (2.3) 51.70 (2.3) 77.05 (1.7) 91.49 (0.9)

CrossMed w/o RM 43.28 (1.4) 27.32 (1.1) 50.05 (1.4) 92.93 (0.5) 68.62 (1.9) 52.97 (2.5) 78.87 (2.0) 92.97 (0.8)

CrossMed w/o TR 41.17 (1.2) 26.15 (0.9) 48.40 (1.2) 92.25 (0.6) 65.50 (2.1) 50.40 (2.6) 75.24 (1.4) 90.63 (0.9)

CrossMed 43.31 (1.4) 27.80 (1.1) 51.37 (1.4) 93.43 (0.4) 69.58 (2.3) 53.35 (2.7) 79.02 (1.8) 93.61 (0.6)

Performance Comparison (RQ1). Tables 1 and 2 demonstrate the performance of the CrossMed
model proposed in this paper with other baseline models under two datasets, two tasks, and two sets
of evaluation metrics systems. Models like Trans and CausalMed, which emphasize relationships
between visit events and perform feature interactions, outperform models like Micron and StageNet
which focus mainly on the temporal dependencies within visit sequences.

visit=1 visit=2 visit=3 visit=40
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rm
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 D

ro
p GAMENet

Micron
MoleRec
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Figure 4: The performance decrease of differ-
ent models with different limited lengths of visit
sequence compared to the optimal performance,
where higher bars represent more decrease.
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Figure 5: Robustness of various models with
a limited length of visit sequence, where larger
boxes represent more significant impacts.
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Figure 6: The performance of our method in dif-
ferent scenarios with a limited length of monitor-
ing sequence. Some models do not use the moni-
toring sequence, so there was no change.

Additionally, REFINE utilizes monitoring se-
quences, further improving performance com-
pared to methods that only use visit sequences.
These advantages arise because performing
feature interaction between multiple medical
events can significantly enhance the accuracy
of event representations. Moreover, monitor-
ing sequences are finer-grained than visit se-
quences, and modelling the temporal relation-
ships within monitoring allows for capturing
clearer patient health trends. Our method mod-
els the pathological relationships between mon-
itoring events and visit events, capturing finer-
grained health states and enabling feature inter-
actions between the two sequences. Compared
to the baseline models, our CrossMed achieves
superior performance across both datasets,
tasks, and evaluation systems.

Ablation Study (RQ2). We conducted an ab-
lation study, as shown in Table 3, to evalu-
ate the effectiveness of each CrossMed com-
ponent by removing four key elements: the
relationship from monitoring to visit events
(Rm2v), the relationship from visit to moni-
toring events (Rv2m), the relationship discov-
ery module (RM ), and the temporal recurrent
component in feature interaction (TR). Re-
moving Rm2v and Rv2m significantly reduces
model accuracy, underscoring the importance
of capturing interactions between different-
level events. Excluding RM also results in sub-
optimal performance, indicating the necessity
of modelling the granular impact of monitoring
events on visit events. Omitting TR causes a
performance decline, demonstrating the critical
role of temporal propagation in tracking patient
health trends. Overall, the core methods pro-
posed by CrossMed are essential for improving
model effectiveness.

Robustness Study (RQ3). We evaluated
CrossMed’s performance with limited visit and
monitoring sequence lengths through a robust-
ness study on drug recommendation tasks using
the MIMIC-III dataset, assessed by F1-score.
We create scenarios by limiting visits per patient and monitoring per visit.
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Figure 7: The impact of different data interaction meth-
ods on performance for both tasks, where the dashed
line represents the performance of the sub-optimal
model.

Figure 8: The t-SNE visualization shows the distances
between representations generated by different feature
interaction methods. The larger the distance, the higher
the differentiation of the representation.

For the length of visit sequence: Figure
4 shows model performance with varying
visit numbers. While GAMENet and Mi-
cron struggle with low visit numbers, Mol-
eRec, CausalMed, and CrossMed remain
stable by focusing on feature interactions
beyond visit sequences. Figure 5 high-
lights CrossMed’s smaller variability and
superior performance due to its integra-
tion of monitoring and visit data, capturing
finer-grained health trends.

For the length of monitoring sequence:
Figure 6 shows model performance as
monitoring sequence length decreases.
Even with 0% sequence length (i.e., retain-
ing monitoring event nodes without em-
bedded information), our model slightly
outperforms others. Compared to RE-
FINE, our cross-level interaction method
shows greater improvement as sequence
length increases, excelling in both ICU
settings with long monitoring sequences
and routine predictions.

Feature Interaction Method Study
(RQ4). To validate the effectiveness of
our cross-level feature interaction method,
we conducted comparative experiments
on the MIMIC-III dataset, evaluating
five interaction methods: (1) visit se-
quences only, (2) parallel modelling
of visit and monitoring sequences, (3)
modelling the influence of monitoring
on visits, (4) modelling the influence of
visits on monitoring, and (5) cross-level
feature interactions. As shown in Figure
7, the parallel interaction method per-
forms similarly to the visit-only method,
both yielding sub-optimal results com-
pared to strong baselines (StageNet and
CausalMed). In contrast, cross-level
interaction methods significantly improve
performance by effectively capturing
pathological relationships. To further
explore the effectiveness of cross-level interactions, t-SNE visualizations, as shown in Figure
8, show that cross-level interactions produce more distinct and well-separated representations,
confirming that CrossMed captures finer-grained patient health trends, enhancing clinical prediction
by improving the differentiation of visit and patient representations.

5 CONCLUSION

This paper introduces CrossMed, a structured EHRs modelling method for disease prediction and
drug recommendation. By modelling dynamic pathological relationships and using a novel cross-
level feature interaction approach, CrossMed effectively captures patient health trends during treat-
ment. Experiments on two public medical datasets show it outperforms all baselines. Although
CrossMed improves prediction accuracy, it currently captures relationships between medical events
based on simple correlations. However, these pathological relationships are often much more com-
plex in reality. Future work aims to better model these relationships using more advanced methods
to enhance this framework.
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A PRELIMINARIES DETAILS

A.1 DATA FORMAT DETAILS

For each clinical visit Vt, we have Vt = {St, Dt, Pt, Rt,Mt}, where St, Dt, Pt, Rt, Mt represent
the covariates, diseases, procedures, drugs, and monitoring information of the patient, respectively.
The diseases, procedures, and drugs have already been introduced in the main text; here, we will
elaborate on the covariates St and monitoring Mt.

Covariates information Covariates information St includes age and weight of the patient at the
time of visit Vt in this paper, represented as St = {aget,wgtt}, where aget ∈ [0, 1] and wgtt ∈ [0, 1]
are both normalized continuous values, representing the patient’s age and weight, respectively.

Monitoring information For a single monitoring session, we have mt,n = {labt,n, injt,n}, where
labt,n and injt,n are both monitoring events, represent the laboratory results and injection dosages of
a patient during the n-th monitoring session of the t-th visit, respectively. For the laboratory results,
we have labt,n = {lab1t,n, lab2t,n}, where lab1

t,n refers to multiple lab test items performed in the
same monitoring session. It is represented in multi-hot encoding form, i.e., lab1t,n ∈ {0, 1}|LAB|,
with |LAB| denoting the total number of categories of lab test items. A value of 1 indicates that
the test was performed, while a value of 0 indicates that it was not. lab2t,n ∈ {0, 1}|LAB| represents
the results of the performed lab tests in the same session, also encoded in multi-hot form, where 1
denotes an abnormal result and 0 denotes a normal result. For the injection dosage, we have injt,n =

{inj1t,n, inj2t,n}, where inj1t,n refers the multiple injection items in the monitoring session, encoded
similarly to lab1t,n, representing inj1t,n ∈ {0, 1}|INJ|, with |INJ | denoting the total number of
categories of injection items. Meanwhile, inj2t,n ∈ [0, 1]|INJ| indicates the dosage of the injections
in the same monitoring, expressed as a normalized vector.

A.2 NOTATIONS

Important mathematical notes can be found in Table 4.

Table 4: Mathematical Notations
Notations Descriptions
H,Vt patient, the t-th visit
Ct, c disease set in Vt, a disease
Pt, p procedure set in Vt, a procedure
Dt, d drug set in Vt, a drug
St covariates in Vt

aget,wgtt age, weight in Vt

Mt,mt,n monitoring sequence in Vt, the n-th monitoring in Vt

labt,n, injt,n laboratory results,injection dosage in mt,n

E,h embedding table and representation
T, Y,X treatment, outcome, and confounding variable
µ, β value of outcome variable and linear coefficient
w pathological relationship weight
E ,N edge and node of graph
r edge type
a,W learnable attention vector, learnable weight matrix
e, η attention score and attention coefficient
α ratio of residual connections
U, z, r weight matrix of hidden states, update gate, reset gate
t, l time step, graph layer

14
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Relationship Discovery

EHR

Input Effect estimation Effect aggregation Ouput

···

disease procedure drug lab test

Figure 9: A specific example of the Relationship Discovery module is uncovering the influence of
monitoring events (lab tests) on visit events (diseases, procedures, and drugs).

B METHODOLOGY DETAILS

B.1 REPRESENTATION INITIALIZATION

For covariates. We use two feed forward networks: fcage(·) : R1 → Rdim and fcwgt(·) : R1 → Rdim

to characterize continuous values of age age and weight wgt:

hage = fcage(age), hwgt = fcwgt(wgt). (7)

For visit events. We define three learnable embedding tables Ed ∈ R|D|×dim, Ep ∈ R|P |×dim

and Er ∈ R|R|×dim, corresponding to disease, procedure, and drug, where dim is the embedding
dimension. As shared representations in global data, hdi

, hpj
, and hrk are generated by mapping

the disease di, the procedure pj , and the drug rk into the embedding space:

hdi
= diEd, hpj

= pjEp, hrk = rkEr. (8)

Then we perform additive aggregation on all diseases, procedures, and drugs in visit Vt to obtain
hDt

, hPt
, and hRt

, respectively.

For monitoring events. We similarly define two sets of embedding tables: E1
lab ∈ R|LAB|×dim and

E2
lab ∈ R|LAB|×dim, as well as E1

inj ∈ R|INJ|×dim and E2
inj ∈ R|INJ|×dim. Where E1

lab corresponds to
the lab test item, E2

lab corresponds to the lab result, E1
inj corresponds to the injection item, and E2

inj
corresponds to the injected dosage. The lab test information and injection information are generated
by combining the two sets of information:

hlabi = lab1iE
1
lab · lab2iE

2
lab, hinjj = inj1jE

1
inj · inj2jE

2
inj, (9)

where lab1
i represents the laboratory test that the patient underwent, while lab2i records the specific

result of that test. Similarly, in the monitoring records for injection j, inj1j indicates the injection
that the patient received, and inj2j denotes the dosage of that injection. Then we perform additive
aggregation on all lab tests and injection dosage in mt,n to obtain hLABt,n and hINJt,n , respectively.

B.2 DETAILS IN MODULE1: RELATIONSHIP DISCOVERY

We illustrate the specific process of the relationship discovery module using an example, shown in
Figure 9, that captures the influence of a particular monitoring event (lab test) on three types of visit
events (disease, procedure, drug).

Input: Data from all patients in the EHR.

Effect Estimation: As described in the main text, a linear model is used to capture the general
associations between monitoring events and visit events.

Effect Aggregation: The edge weights of each pair of monitoring and visit events are aggregated
using average pooling, forming an influence effect of the monitoring event set on the visit event set.
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stage1: monitoring-to-visit

stage2: visit-to-patient

lab test

injection

patient age

patient weight

Figure 10: A similar graph construction method is used in both the monitoring-to-visit aggregation
and the visit-to-patient aggregation processes.

Output: Pathological relationships between the lab test set and various visit event sets.

This paper repeatedly utilizes the Relationship Discovery module to generate the influence relation-
ships of monitoring events (lab tests, injection dosages) visit events (diseases, procedures, drugs)
and covariates (age, weight) on visit events.

B.3 DETAILS IN MODULE2: CONSTRUCTION OF CROSS-LEVEL TEMPORAL GRAPH

This module can be reused in both the aggregating monitoring-to-visit and aggregating visit-to-
patient stages, with the main difference lying in node construction.

For monitoring-to-visit stage: N 1
t,n represents the monitoring visit, while N 2

t,n, N 3
t,n, and N 4

t,n
represent diseases, procedures, and medications, respectively. Since they all belong to the same Vt,
the initial representations of nodes representing visit events are the same across different monitoring
sessions.

For visit-to-patient stage: N 1
t , N 2

t , N 3
t , and N 4

t represent covariates, diseases, procedures, and
medications in Vt, respectively, with the initial representations of visit event nodes changing over
time.

B.4 DETAILS IN INFERENCE

During the inference phase, the model works within the same pipeline as training. We use the
parameters trained on the training set to perform inference on the validation set. The model that
achieves the lowest loss on the validation set is considered to have the best performance, and its
parameters are selected as the optimal ones.

C EXPERIMENTAL SETUP DETAILS

C.1 DATASET AND DATA PRE-PROCESS

Dataset. The dataset used for both tasks is the same. As shown in Table 5, this paper utilizes
the MIMIC-III2 (Johnson et al., 2016) and MIMIC-IV3 (Johnson et al., 2023) datasets, which are
widely used in clinical research and analysis. The codes involved in this paper and datasets include
the ICD-94, ICD-105, CCS6, NDC7, and ATC8. In the MIMIC-III dataset, diseases are encoded
using ICD-9-CM codes, while in the MIMIC-IV dataset, both ICD-9-CM and ICD-10-CM codes

2https://physionet.org/content/mimiciii/1.4/
3https://physionet.org/content/mimiciv/3.0/
4https://www.cms.gov/medicare/coding-billing/icd-10-codes
5https://www.cms.gov/medicare/coding-billing/icd-10-codes/

icd-9-cm-diagnosis-procedure-codes-abbreviated-and-full-code-titles
6https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CCS
7https://www.fda.gov/drugs/drug-approvals-and-databases/

national-drug-code-directory
8https://www.who.int/tools/atc-ddd-toolkit/atc-classification
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are used. In this paper, these codes are unified and mapped to CCS-CM codes. For procedures, the
MIMIC-III dataset uses ICD-9-PROC codes, while the MIMIC-IV dataset uses both ICD-9-PROC
and ICD-10-PROC codes, which are unified and mapped to CCS-PROC codes in this study. Drugs
in both the MIMIC-III and MIMIC-IV datasets are encoded using NDC codes and are mapped to
ATC-3 codes in this paper.

Table 5: Statistics of the datasets.
Items MIMIC-III MIMIC-IV
#num. of patients 15,407 19,721
#num. of visits 18,557 24,777
#num. of diseases 272 276
#num. of procedures 204 213
#num. of drugs 196 200
#num. of lab item 669 807
#num. of inj. item 279 309
#avg. of visits/ patient 1.2950 1.2564
#avg. of dis./ visit 12.7193 14.7674
#avg. of proc./ visit 3.3714 3.2920
#avg. of drug/ visit 34.2526 35.7669

Data Pre-process. We modified the preprocessing methods based on PyHealth9 (Yang et al., 2023a),
selecting records that simultaneously contain covariates (age, weight), visit events (disease, proce-
dure, drug), and monitoring events (lab test, injection dosage). For both tasks, we split the dataset
into training, validation, and testing as 0.75: 0.1: 0.15 with the same setup of previous work (Chen
et al., 2024). In the evaluation process, a bootstrapping sampling technique is employed, as in pre-
vious work (Yang et al., 2021b). The process begins with training all models on a training set, with
hyperparameters selected based on a validation set. Subsequently, the evaluation is conducted by
repeatedly sampling 80% of the data points from the test set with replacement. This sampling eval-
uation procedure is repeated over 10 rounds, and the mean and standard deviation of the results are
reported as the outcomes.

C.2 BASELINES

To validate our model, we select the following state-of-the-art methods as benchmark models for
comparison.

C.2.1 DISEASE PREDICTION

RETAIN (Choi et al., 2016) is an attention-based model for sequence data analysis that integrates
temporal dynamics and features to predict diseases. It captures key clinical events to create patient
representations.

Transformer (Vaswani, 2017) applies a separate transform layer for each feature and then concate-
nates the final hidden status of each transform layer. The concatenated hidden states are fed into the
fully connected layer for prediction.

KAME (Ma et al., 2018) combines medical ontology knowledge to improve disease predictions. By
utilizing medical knowledge, the accuracy and interpretability of predictions are improved.

StageNet (Gao et al., 2020) integrates a stage-aware LSTM module and a stage-adaptive convolu-
tional module to improve predictions by considering the different stages of a patient’s status.

REFINE (Bhoi et al., 2024) introduces monitoring-level sequences in structured EHRs, using sim-
ilar temporal modelling for both visit-level and monitoring-level sequences, while incorporating
personalized drug-drug interaction to capture finer-grained patient representations.

TRANS (Chen et al., 2024) integrates temporal edge features, global positional coding, and local
structural coding into graph convolution to capture complex relationships in patient data.

9https://pyhealth.readthedocs.io/en/latest/
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C.2.2 DRUG RECOMMENDATION

RETAIN (Choi et al., 2016), the same approach as in disease prediction can be used for drug rec-
ommendations as well.

Transformer (Vaswani, 2017), the same approach as in disease prediction can be used for drug
recommendations as well.

Grasp (Zhang et al., 2021) integrates knowledge from similar patients to enhance health represen-
tation. A single Grasp layer can be used within the model or as a standalone layer to improve other
recommendation models.

GAMENet (Shang et al., 2019b) is based on memory networks with a memory bank enhanced
by integrated drug usage, DDI (drug-drug interaction) graphs and dynamic memory with patient
history.

SafeDrug (Yang et al., 2021b) introduces drug-related molecular knowledge and learns drug inter-
actions through molecular characterization to recommend safer drug combinations.

Micron (Yang et al., 2021a) uses a recurrent residual learning model to predict medication changes,
then recommends based on those changes and the previous visit’s drug combination.

MoleRec (Yang et al., 2023b) delves into the importance of specific molecular substructures in
drugs. This approach enhances the accuracy of drug recommendations by leveraging finer molecular
representations.

REFINE (Bhoi et al., 2024), the same approach as in disease prediction can be used for drug rec-
ommendations as well.

TRANS (Chen et al., 2024), the same approach as in disease prediction can be used for drug recom-
mendations as well.

CausalMed (Li et al., 2024) utilizes causal discovery based on patient status to identify primary and
secondary diseases, thereby enhancing personalized patient representation.

C.3 EVALUATION METRICS

Our task scenario is based on EHR data mining within the clinical medical system, while the multi-
label prediction is part of the recommender system domain. Therefore, we employ two sets of
evaluation metrics to evaluate our work. The following description uses drug recommendation as an
example, and the same evaluation metrics apply to disease prediction.

C.3.1 MEDICAL SYSTEM

From the perspective of the medical system, we use four main general metrics (according to Jiang
et al. (2023)) to evaluate the performance of our method: the F1-score, Jaccard, PR-AUC, and ROC-
AUC.

F1-score combines precision and recall, reflecting the model’s ability to accurately identify correct
drugs while ensuring comprehensive coverage.

Precision(t) =
|{i : d̂i = 1} ∩ {i : di = 1}|

|{i : d̂i = 1}|
, (10)

Recall(t) =
|{i : d̂i = 1} ∩ {i : di = 1}|

|{i : di = 1}|
, (11)

F1(t) =
2

1
Precision(t) +

1
Recall(t)

, (12)

F1 =
1

TH

TH∑
t=1

F1(t), (13)

where d̂i represents the predicted outcome, di represents the real label, Th represents the total num-
ber of visits for patient H .
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Jaccard is employed to evaluate the similarity between two sets. In drug recommendation, a higher
Jaccard score indicates that the predicted prescription is more consistent with the actual drug regi-
men, indicating higher accuracy.

Jaccard(t) =
|{i : d̂i = 1}| ∩ |{i : di = 1}|
|{i : d̂i = 1}| ∪ |{i : di = 1}|

, (14)

Jaccard =
1

TH

TH∑
t=1

Jaccard(t). (15)

PR-AUC assesses model performance across different recall levels, indicating the ability to maintain
precision with increasing recall.

PR-AUCt =

|D|∑
k=1

Precisionkt
△Recallkt

, (16)

△Recallkt = Recallkt − Recallk−1t , (17)

where |D| denotes the number of drugs, k is the rank in the sequence of the retrieved drugs, and
Precisionk(t) represents the precision at cut-of k in the ordered retrieval list and △Recallkt

de-
notes the change in recall of a drug’s ranking from k − 1 to k. We averaged the PR-AUC across all
of the patient’s visits.

ROC-AUC calculates the area under the ROC curve by summing the areas of trapezoids formed
between consecutive points on the ROC curve.

ROC-AUC =

n−1∑
i=1

1

2
× (FPRi+1 − FPRi)× (TPRi+1 + TPRi), (18)

where FPRi and TPRi are the false positive rate and the true positive rate at the i threshold,
respectively, and n is the number of thresholds.

C.3.2 RECOMMENDER SYSTEM

From a recommender system perspective, we use the visit-level precision@k and event-level accru-
acy@k (according to Chen et al. (2024)) to evaluate our methods.

Visit-level Precision@k measures the precision of individual visit. Visit-level precision@k is de-
fined as the number of correct visit events in the top-ranked k predictions divided by min(k, |Dt|),
where |Dt| is the number of category labels of target events in visit vt. We report the average visit
precision@k for all visits. The visit-level precision @k is defined as:

visit-level precision@k =

∑k
i=1 I(d̂i = di)

min (k, |Dt|)
, (19)

where the numerator represents the number of correct predictions in the top-k prediction, which are
ordered by probability.

Event-level Accuracy@k measures the overall accuracy of the model’s predictions and is defined as
the number of correctly predicted visit events divided by the total number of top-ranked k predicted
visit events. For multiple visit sequences, the event-level accuracy @k is defined as:

event-level accuracy@k =

∑|V |
t=1

∑k
i=1 I(d̂i = di)∑|V |
t=1 |Dt|

, (20)

where |V | denotes the total number of visits.

The average number of diseases per visit is between 10-20, while the average number of drugs per
visit is between 30-40, so we set k to 10, 20, 30 in disease prediction and set 30, 40, 50 in drug
recommendation to evaluate the coarse-grained and fine-grained performance of each model.
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Figure 11: Hyperparameter testing, represented by the F1-score on the MIMIC-III dataset.

C.4 IMPLEMENTATION DETAILS

Experimental Environment The experiments are carried out on an Ubuntu 22.04 system equipped
with 80GB of memory, a 32-core CPU, and a 48GB A40 GPU, utilizing Python 3.8.16, PyTorch
2.0.0 and CUDA 11.7.

D ADDITIONAL EXPERIMENTS

D.1 PARAMETER SENSITIVITY STUDY

To achieve optimal model performance and analyze the impact of key parameters, we conduct hyper-
parameter tests in this subsection. We evaluate the effects of Embedding dimension (dim), Number
of graph layers (l), Number of graph propagation steps (t), and Residual ratio (α). Figure 11 shows
the model’s F1-score performance on drug recommendation and disease prediction tasks using the
MIMIC-III dataset under different parameter settings.

Embedding dimension dim. To evaluate the effect of the embedding dimension on the performance
of the proposed model, we conduct scaling experiments on the size of the embedding dimension,
and the results are shown in Figure 11 (a). It is found that the performance of CrossMed improves
significantly as the embedding dimension increases and reaches an optimum at a dimension of 128.
However, an embedding dimension beyond 128 leads to a gradual decrease in performance, a trend
that occurs simultaneously in both tasks. The performance degradation may be due to the introduc-
tion of noise by too large a dimension, which in turn leads to overfitting of the model. Based on the
experimental results, we finally chose to set the embedding dimension to 128.

Number of graph layers l. In our model, the number of graph network layers is crucial for capturing
the pathological relationships between medical events and personal information in cross-level fea-
ture interaction. Figure 11 (b) illustrates the experimental results, showing that the model achieves
optimal performance when the number of graph network layers is 1. This is because the heteroge-
neous network structure proposed in this paper is relatively complex and saturated at a layer number
of 1. Further increasing the layer number not only fails to improve performance, but also may lead
to overfitting and reducing generalization ability.

Number of graphs propagation times t. As shown in Figure 11 (c), the two tasks exhibit the
same trend: as the number of graph propagation increases, the accuracy of the computational results
significantly improves. In the case where the total length of the sequence is t, the results show a
significant improvement when the number of propagation is increased from 1/5 t to 3/5 t, while the
results are still improved but to a lesser extent when the number of propagation times is increased
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Table 6: Difference in results between independent and combined training
Model Disease prediction Drug recommendation

F1-score Jaccard PR-AUC ROC-AUC F1-score Jaccard PR-AUC ROC-AUC
Independent 43.33 (1.4) 27.80 (1.1) 51.37 (1.4) 92.43 (0.4) 69.58 (2.3) 53.35 (2.7) 79.02 (1.8) 93.61 (0.6)

Combined 40.18 (1.2) 22.80 (1.3) 49.92 (1.5) 91.45 (0.7) 66.48 (1.0) 49.62 (2.4) 77.21 (1.5) 91.37 (0.7)

from 3/5 tto t. The results suggest that the higher the number of propagation times, the more
information about the early time points is absorbed. Meanwhile, data near the end of the sequence
have a greater impact on the results, and although the influence of early data is not as significant as
later data, it still provides a significant gain.

Residual ratio α. α controls the proportion between a node’s representation before and after in-
tegrating additional information. Specifically, a larger α indicates a greater focus on the updated
representation, while a smaller α emphasizes the representation prior to updating. As shown in Fig.
11(d), both tasks achieve optimal performance when α equals 0.5. If α is either too small or too
large, performance declines.

D.2 MULTI-TASK TRAINING

The proposed CrossMed is a general model, and through the aforementioned experiments and anal-
yses, we have demonstrated its capability to be applied independently to clinical diagnosis and
treatment tasks. To further investigate its generalization ability—specifically, whether it can be
trained once to perform well across multiple tasks—we conducted the following multi-task training
experiments.

Independent training: each task is looked at using the same model but with a specialized set of
parameters, i.e., for each task, we train a model from scratch and optimize its parameters for that
task.

Combined training: each task is looked at with the same model and the same parameters, i.e.,
multiple loss functions are merged, the model is trained on multiple tasks at the same time, and the
parameters from one training are directly applied to multiple tasks.

Table 6 demonstrates the performance of independent training versus combined training in the dis-
ease prediction and drug recommendation tasks in the medical system evaluation under the MIMIC-
III dataset. The results show a significant decrease in accuracy for both tasks. Combined training
may introduce information that is irrelevant to the task at hand. CrossMed incorporates cross-level
feature interaction modules, allowing it to efficiently filter out irrelevant information for independent
tasks using an explicit objective loss function. On the contrary, when the model needs to process
multiple tasks simultaneously, it may introduce information that is favourable to one task but un-
favourable to other tasks, thus affecting the overall performance. In summary, the combined training
approach fails to optimize for a specific task, resulting in a degradation of model performance on
certain tasks.
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