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Abstract

Diffusion models have achieved remarkable suc-
cess in generative tasks but suffer from high com-
putational costs due to their iterative sampling
process and quadratic-attention costs. Existing
training-free acceleration strategies that reduce
per-step computation cost, while effectively re-
ducing sampling time, demonstrate low faithful-
ness compared to the original baseline. We hy-
pothesize that this fidelity gap arises because
(a) different prompts correspond to varying de-
noising trajectory, and (b) such methods do not
consider the underlying ODE formulation and
its numerical solution. In this paper, we pro-
pose Stability-guided Adaptive Diffusion Ac-
celeration (SADA), a novel paradigm that uni-
fies step-wise and token-wise sparsity decisions
via a single stability criterion to accelerate sam-
pling of ODE-based generative models (Diffusion
and Flow-matching). For (a), SADA adaptively
allocates sparsity based on the sampling trajec-
tory. For (b), SADA introduces principled approx-
imation schemes that leverage the precise gradi-
ent information from the numerical ODE solver.
Comprehensive evaluations on SD-2, SDXL, and
Flux using both EDM and DPM++ solvers re-
veal consistent ≥ 1.8× speedups with minimal fi-
delity degradation (LPIPS≤ 0.10 and FID≤ 4.5)
compared to unmodified baselines, significantly
outperforming prior methods. Moreover, SADA
adapts seamlessly to other pipelines and modali-
ties: It accelerates ControlNet without any modi-
fications and speeds up MusicLDM by 1.8× with
∼ 0.01 spectrogram LPIPS. Our code is avail-
able at: https://github.com/Ting-Justin-Jiang/sada-
icml.
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1. Introduction
Recent advancements in diffusion models have set new
benchmarks across various tasks, including image, video,
text, and audio generation (Sohl-Dickstein et al., 2015; Song
et al., a), significantly enhancing productivity and creativ-
ity. However, the deployment of these models at high res-
olutions faces two fundamental efficiency bottlenecks: (i)
the iterative nature of the denoising process and (ii) the
quadratic complexity of attention mechanisms. To address
these challenges, existing training-free acceleration meth-
ods have primarily focused on two corresponding fronts: (i)
reducing the number of inference steps (Song et al., a; Lu
et al., 2022b; Karras et al., 2022), (ii) reducing the compu-
tational cost per step (Bolya & Hoffman, 2023; Ma et al.,
2024b; Zhao et al., 2024; Wang et al., 2024; Zou et al., 2024;
Ye et al., 2024).

Sampling with generative models can be cast as transporting
between two distributions through a reverse ordinary differ-
ential equation (ODE) (Song & Ermon, 2019; Song et al.,
b; Lipman et al., 2023; Liu et al., 2022). Numerical ODE
solvers (Karras et al., 2022; Lu et al., 2022a;b) that signifi-
cantly reduce the number of inference steps while preserving
sample fidelity have become a fundamental component for
practical workflows. Orthogonal to these advanced sched-
ulers, recent works that reduce per-step computational cost
in category (ii) exploit the sparsity empirically observed in
pretrained architectures (Rombach et al., 2022; Chen et al.,
2024b; Podell et al.; Esser et al., 2024) during the sampling
procedure, either on a token-wise (Bolya & Hoffman, 2023;
Kim et al., 2024; Zou et al., 2024) or step-wise (Ma et al.,
2024b; Zhao et al., 2024; Ye et al., 2024) granularity.

While effectively reducing sampling latency, these architec-
tural strategies in category (ii) demonstrate low faithfulness
compared to original samples, as measured in LPIPS (Zhang
et al., 2018) and FID (Heusel et al., 2017). We hypothesize
that this fidelity gap arises because: (a) Fixed (Ma et al.,
2024b) or pre-searched (Yuan et al., 2024) sparsity patterns
cannot adapt to the variability of each prompt’s denoising
trajectory, and (b) Such methods do not explicitly leverage
the underlying ODE formulation of the denoising process,
nor interplay with the specific ODE-solver used.

Motivated by these observations, we introduce Stability-
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Figure 1. Accelerating {Flux, SDXL, SD-2} by {2.02×, 1.86×, 1.80×} with Stability-guided Adaptive Diffusion Acceleration with
50 {Diffusion, Flow-matching} inference steps.

guided Adaptive Diffusion Acceleration (SADA), a training-
free framework that dynamically exploits both step-wise and
token-wise sparsity via a unified stability criterion. SADA
addresses (a) by adaptively allocating computation along the
denoising trajectory (See Section 3.3), and (b) by employing
approximation schemes that leverage precise trajectory gra-
dient information from the chosen ODE solver (See Section
3.4).

Specifically, leveraging the second-order difference of the
precise gradient yt = dxt

dt according to its definition (Song
et al., a; Lipman et al., 2023), SADA makes better de-
cisions on sparsity allocation and principled approxima-
tion. For (a), we propose the stability criterion (Crite-
rion 3.4) as the second-order difference of yt, which mea-
sures the local dynamics of the denoising trajectory. Imple-
mented in a plug-and-play fashion, SADA dynamically iden-
tifies the sparsity mode {token-wise, step-wise,
multistep-wise} at each timestep. For (b), we incor-
porate the gradient calculated by a specific ODE solver into
both the stability criterion and the approximation correction.
In particular, we derive two approximation schemes that
unify the xt

0 and xt trajectory, yielding a principled estimate
of the per-step clean sample xt

0 compatible with advanced
diffusion schedulers.

Both theoretical and empirical analyses indicate that SADA
is compatible with different backbone architectures (Ron-
neberger et al., 2015; Peebles & Xie, 2023) and solvers, and
able to accelerate generative modeling in various modalities

(Chen et al., 2024c) and downstream tasks (Zhang et al.,
2023) without additional training. In all tested scenarios,
SADA achieves substantially better faithfulness (≤ 0.100
LPIPS) than existing strategies(Ye et al., 2024; Ma et al.,
2024b; Liu et al., 2025a), while consistently delivering
≥ 1.8× speedup. These results establish SADA as a prac-
tical plug-in for high-throughput, high-fidelity generative
sampling.

In summary, the core contributions of our work are: (i) We
introduce SADA, a training-free framework that leverages a
stability criterion to adaptively sample the denoising process
with principled approximation. (ii) To our best knowledge,
SADA is the first paradigm that directly bridges numerical
solvers of the sampling trajectory with sparsity-aware archi-
tecture optimizations. (iii) Extensive experiments conducted
on various baselines, solvers, and prediction frameworks
demonstrate the effectiveness of SADA to existing accelera-
tion strategies. Moreover, SADA can be easily adapted to
new generation pipelines and modalities.

2. Related Work
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., b; Nichol & Dhariwal, 2021) have
emerged as a transformative framework for generative mod-
eling. They generate high-fidelity samples by iteratively
reversing a stochastic process that gradually converts data
into pure noise, delivering state-of-the-art results across a
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wide range of tasks. In the realm of image synthesis, Stable
Diffusion (Rombach et al., 2022) enhances computational
efficiency by mapping high-dimensional pixel inputs to a
compact latent space via a Variational Autoencoder (Kingma
& Welling, 2014). Moreover, it incorporates text condition-
ing through a pre-trained text encoder (Radford et al., 2021;
Oquab et al., 2024), driven by classifier-free guidance (Ho &
Salimans, 2022). Building upon this foundation, later mem-
bers of the latent diffusion family (Podell et al.; Chen et al.,
2024b; Black-Forest-Labs, 2024) incorporate Transformers
(Vaswani et al., 2017) as the primary architectural backbone,
enabling improved scalability (Peebles & Xie, 2023) and
higher-resolution generation (Chen et al., 2024a; Gao et al.,
2024). However, these advancements come at the cost of
efficiency: the iterative nature of the denoising process and
the quadratic complexity of self-attention significantly slow
down inference.

Accelerating Diffusion Models To mitigate the above
two bottlenecks, existing acceleration strategies typically
focus on two fronts: (1) reducing the number of inference
steps, and (2) reducing the computational cost per step.

The first paradigm involves interpreting the underlying
stochastic process, developing numerical methods, and intro-
ducing novel objectives and frameworks. DDIM (Song et al.,
a) reformulates the diffusion process as a non-Markovian
procedure. Subsequent work identifies the diffusion pro-
cess as a stochastic differential equation (Song & Ermon,
2019) and converts it into solving a probabilistic-flow ordi-
nary differential equation (PF-ODE) that could be param-
eterized by various model output objectives (Song et al.,
b; Chen et al., 2023; Kim et al.; Kingma & Gao, 2023).
Building on this perspective, advanced numerical solvers
significantly decrease the required number of function eval-
uations. Among these, the Euler Discrete Multistep (EDM)
solver (Karras et al., 2022; Liu et al., 2023) has been ap-
plied effectively, while the DPM-Solver series (Lu et al.,
2022a;b; Zheng et al., 2023) further enhance efficiency and
stability by computing the linear component analytically
with respect to the semi-linearity of PF-ODE. More recent
works further explore the sampling trajectory of generative
modeling. Consistency models (Song et al., 2023; Lu &
Song, 2024) establish a theoretical one-step mapping from
any point on the PF-ODE to the data distribution, while the
flow matching (Liu et al., 2022; Albergo & Vanden-Eijnden,
2022; Lipman et al., 2023) casts generative modeling as
directly learning the ODE that transports samples from the
noise distribution to the data distribution.

The second paradigm mainly leverages either step-wise or
token-wise sparsity in diffusion models to reduce compu-
tation overhead. On the step-wise front, DeepCache (Ma
et al., 2024b) accelerates the U-Net (Ronneberger et al.,
2015) based denoising model by caching high-level features

in deeper layers. Feature caching methods (Zhao et al., 2024;
Ma et al., 2024a; Wimbauer et al., 2024; Zhen et al., 2025;
Saghatchian et al., 2025; Liu et al., 2024; Chen et al., 2024d;
Shen et al.; Liu et al., 2025b) shorten sampling latency by
reusing attention outputs. PF-Diff (Wang et al., 2024) lever-
ages previous model outputs to predict a look-ahead term in
the ODE solver, analogous to the use of Nesterov momen-
tum. These step-wise approaches typically employ a fixed
schedule—determined via a hyperparameter—to guide the
sparsity pattern during sampling. In parallel, token reduc-
tion strategies (Bolya & Hoffman, 2023; Kim et al., 2024;
Zhen et al., 2025; Saghatchian et al., 2025) exploit the re-
dundancy in image pixels to eliminate unnecessary tokens,
thereby reducing the attention module’s computational load.
ToCa series (Zou et al., 2024; Zhang et al., 2024) combines
caching and token pruning. DiTFastAttn (Yuan et al., 2024;
Zhang et al., 2025) compresses the attention module lever-
aging the redundancies identified after a brief search.

Despite these advancements, none of these approaches dy-
namically allocate step-wise and token-wise sparsity to ac-
celerate sampling in multi-granularity levels. Moreover,
their end-to-end acceleration configurations typically hinge
on specific hyperparameters or pre-trained models. Adaptive
Diffusion (Ye et al., 2024) offers a promising perspective by
adjusting its acceleration mode based on the prompt. How-
ever, it still requires hyperparameter tuning and does not
correct for approximation error. In contrast, we frame dif-
fusion acceleration as a stability-prediction problem rather
than merely controlling error accumulation. SADA requires
minimal hyperparameter tuning and incorporates principled
approximation schemes that directly match our stability cri-
terion.

3. Proposed Method
3.1. Preliminary

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., a; Nichol & Dhariwal, 2021) formulate
sample generation as an iterative denoising process. Start-
ing from a Gaussian sample xT ∼ N (0, I), these models
progressively recover a clean signal over T timesteps. The
forward process is defined by a variance schedule {βt} with
αt = 1 − βt and ᾱt =

∏t
i=1 αi. The reverse (sampling)

process is then modeled as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), βtI) , (1)

where the mean µθ(xt, t) =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
is

parameterized by a noise prediction model ϵθ(xt, t). Mean-
while, the data reconstruction xt

0 could be calculated as:

xt
0 =

1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
(2)
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Figure 2. Overview paradigm of SADA. The sparsity mode (middle: step-wise, bottom: token-wise) at timestep t−1 is adaptively
identified by the stability Criterion 3.4 after fresh computation at timestep t. Note that “DP” in the pipeline stands for “Data Prediction”.
Right: Visualization of SADA and baseline methods’ performance in terms of faithfulness and efficiency. Our methods significantly
outperforms existing baselines {DeepCache, AdaptiveDiffusion } on both metrics, using {SD-2 (Top), SDXL (Bottom)} with
DPM-solver++ 50 steps.

For text-to-image synthesis, generation typically occurs in a
learned latent space (Rombach et al., 2022). In this setting,
the denoising model is usually implemented using a deep
neural network composed of L transformer-based layers.
At the l-th transformer layer at timestep t, the input latent
representation is denoted by x

(l)
t ∈ RB×H×W×C , where B

is the batch size, and H,W,C are the spatial and embedding
dimensions, respectively.

Diffusion ODEs Sampling with diffusion models can be
reformulated as solving a reverse-time ordinary differential
equation (ODE). In particular, previous works (Song & Er-
mon, 2019; Song et al., b) defined the Probability-flow ODE
that characterizes the continuous-time evolution of samples:

dx
dt

∣∣∣∣
x=xt

= f(t)xt +
g2(t)

2σt
ϵθ(xt, t), (3)

where f(t) = d
dt log

√
ᾱt, g2(t) = dσt

dt − 2 d
dt (log

√
ᾱt)σt,

and σt =
√
1− ᾱt. Here, time is assumed to be contin-

uous with t ∼ U([0, 1]). Recent works explored rectified
flows (Liu et al., 2022; Albergo & Vanden-Eijnden, 2022;
Lipman et al., 2023), where the reverse transformation is
achieved with a learned vector field uθ(xt, t) predicted by
the denoising model:

dx
dt

∣∣∣∣
x=xt

= uθ(xt, t). (4)

Without loss of generality, we mark dx
dt

∣∣
x=xt

as y(xt, t).
For brevity, we further denote y(xt, t) as yt, ϵθ(xt, t) as ϵt,
and uθ(xt, t) as ut

Step-wise Sparsity accelerates the diffusion model by
adaptively reducing the noise prediction steps. The recent

work (Ye et al., 2024) leverages a third-order difference of
the latent feature map xt to identify temporal redundancy in
the sampling process. Let ∆(1)xt = xt−xt+1 as backward
finite difference. At step t, given the noise ϵt and a threshold
τ , if:

(∥∆(1)xt+2∥+ ∥∆(1)xt∥)/2− ∥∆(1)xt+1∥
∥∆(1)xt+1∥

≤ τ, (5)

then the denoising model is bypassed for the subsequent
timestep t− 1, and ϵt−1 is reused by ϵt.

Token-wise Sparsity accelerates diffusion models with
high representation granularity. The token indices of the
input sequence in a transformer layer are partitioned into
Ireduce and Ifix, aiming to maximize |Ireduce| while main-
taining acceptable image quality. An index mapping I :
{1, . . . , N} → {1, . . . , N ′} is defined, where N ′ = |Ifix|.
A standard token pruning (Bolya & Hoffman, 2023; Kim
et al., 2024) process then discards Ireduce and retains only
Ifix:

x̃[j] = x[i′], j = 1, . . . , N ′, (6)

where I(i′) = j and i′ ∈ Ifix. After self-attention A(·), the
feature map is reconstructed by:

x̂[i] = A(x̃)
[
I(i)

]
, i = 1, . . . , N. (7)

Removing more tokens often degrades generation quality.
Our analysis in Appendix C shows that token merging be-
haves as a low-pass filter, motivating our choice to build
upon token pruning.

3.2. Overall Paradigm

Figure 2 illustrates the overall paradigm of SADA. We lever-
age the precise gradient from the sampling trajectory to
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measure the denoising stability, as described in Sections 3.3.
This Boolean measure serves as an overall criterion for
our acceleration process. Specifically, when Criterion 3.4
returns True, we apply step-wise cache-assisted pruning
(refer to Section 3.4) with dual approximation scheme
{step-wise, multistep-wise}. Conversely, when
Criterion 3.4 returns False, we apply token-wise cache-
assisted pruning (refer to Section 3.5).

3.3. Modeling the Stability of the Denoising Process

We formulate the acceleration of the denoising process as a
stability prediction problem. Given a pre-trained diffusion
architecture with noise prediction ϵt at timestep t, we seek
a dynamic criterion for step-wise and token-wise cache-
assisted pruning (i.e., optimal sparsity allocation) that re-
duces computation at timestep t − 1 without degrading
sample fidelity.

The criterion for acceleration should match the specific ap-
proximation method that mitigates the loss resulting from
step-wise pruning. AdaptiveDiffusion (Ye et al., 2024) di-
rectly caches and reuses the noise across steps. However,
approximating ϵ̂t−1 = ϵt introduces a mismatch between
the sample state xt−1 and its corresponding noise, causing
error to accumulate. A more principled approach should
incorporate historical information to correct this approxi-
mation.

Concretely, we propose a third-order extrapolation of the
sample state at t − 1, which implicitly carries historical
noise along the ODE trajectory. A straightforward third-
order backward finite-difference baseline can be written as
x̂t−1 = 3xt − 3xt+1 + xt+2. This yields a correction term,
xt−1 − x̂t−1 = ∆(3)xt−1. Moreover, x̂t−1 is theoretically
bounded by Theorem 3.1, which guarantees its stability
under small ∆t.

Theorem 3.1. Let f ∈ Ck[a, b] be a smooth function
and let x0 := x, with equally spaced grid points xi :=
x + ih for i = 0, 1, . . . , k − 1. Define Pk−1(t) as the
degree-(k − 1) Lagrange interpolant of f at {xi}k−1

i=0 .

Then, the extrapolated value at x− h satisfies:

f(x− h) =

k−1∑
i=0

αif(xi) +Rk(h), (8)

where the weights are given by:

αi = (−1)i
(

k

i+ 1

)
, i = 0, 1, . . . , k − 1. (9)

The error bound of the remainder term is:

Rk(h) = O(hk). (10)

To derive our stability criterion, we now present the follow-
ing supplemental theorems:

Theorem 3.2. The expected value of xt over the joint dis-
tribution of x0, ϵ, and timestep t satisfies: Ex0,ϵ,t[xt] =√
ᾱt · Ex0 [x0].

(i) From Theorem 3.2, we know that the trajectory {xt}
is continuous in expectation. Consequently, the empirical
average xt also exhibits continuity by the law of large num-
bers (Feller et al., 1971).

Theorem 3.3. Let the network ϵθ(x, t) be trained with
the standard mean-squared error (MSE) objective:

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
, (11)

Suppose θ⋆ minimizes L, and the training is sufficiently
converged. Then, following Assumption 1 that ϵθ(xt, t)
is Lipschitz in xt and t, we have the following consis-
tency property for sampling-time inputs x̂t:

Ex0,ϵ,t[ϵ− ϵθ⋆(x̂t, t)]→ 0 as ∥x̂t − xt∥ → 0. (12)

(ii) From Theorem 3.3, a well-trained denoiser permits us
to treat the sampling trajectory as a continuous process,
preserving structural consistency.

We therefore assume that, in a stable regime, the sign
of consecutive third-order differences remains consistent:
sign

(
∆(3)xt

)
= sign

(
∆(3)xt−1

)
. Consequently, if the ex-

trapolation error xt−1 − x̂t−1 is aligned with the true curva-
ture ∆(3)xt−1, then x̂t−1 serves as a directionally accurate
approximation. To incorporate precise gradient information,
we leverage the always-hold identity ∆(2)yt ·∆(3)xt < 0 by
construction. Combining the sign measure with the identity,
we substitute ∆(3)xt with ∆(3)xt−1 = xt−1 − x̂t−1 and
yield the following criterion:

Criterion 3.4. A timestep t is considered stable and
eligible for acceleration if the extrapolation error is anti-
aligned with the local curvature of velocity:

(xt−1 − x̂t−1) ·∆(2)yt < 0. (13)

This stability measure ensures that the extrapolated state
x̂t−1 lies in the correct direction with respect to curvature
correction.

3.4. Step-wise Cache-Assisted Pruning

This section proposes two complementary approxima-
tion schemes for Step-wise Cache-Assisted Pruning:
(step-wise) and (multistep-wise). Either approxi-
mation scheme produces a clean-sample estimate x̂ t

0 , which
is then fed into advanced samplers (e.g., DPM-Solver++ or
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0 and xt trajectory.

EDM (Karras et al., 2022; Lu et al., 2022a)). This unified
framework aligns the xt

0 and xt trajectories (Fig. 4). Below,
we detail the design choices for each approximation.

Step-wise Approximation As noted in Section 3.3, a
simple baseline for approximating xt−1 is a third-order
backward finite difference. Empirical experiments demon-
strate low reconstruction errors, as shown in Figure 3. Note
that we reuse the noise prediction at step t, formulated as
ϵ̂t−1 ← ϵt, under this scheme. However, since we have
exact derivative information yt (See Eq. 3 and 4) we adopt a
third-order Adams–Moulton method (Iserles, 2009) along
the ODE trajectory:

Theorem 3.5. Using the second- and third-order
Adams–Moulton method, we define the estimator:

x̂t−1 := xt −
5∆t

6
yt −

5∆t

6
yt+1 +

2∆t

3
yt+2, (14)

whose local truncation error satisfies: x̂t−1 − xt−1 =
O(∆t2).

The full derivation and the corresponding error bound are
provided in Proposition B.1, Theorems 3.1, B.2, and 3.5 in
the Appendix B.2. To quantify the benefit of these precise
updates, we measure per-step reconstruction error on 50
randomly sampled MS-COCO prompts (Lin et al., 2014).
Our Adams–Moulton scheme results in lower mean error
and smaller standard deviation, compared to third-order
finite difference, as illustrated in Figure 3.

Given that xt
0 captures structural information and serves as

the initial input to all schedulers, accurately reconstructing
xt
0 is critical. Theorem 3.6 establishes an upper bound on

the reconstruction error at timestep t, based on the third-
order estimator in Theorem 3.5 and incorporating the effect
of noise reuse.

Theorem 3.6. Let x̂t
0 denote the reconstruction of x0

at time t. Then, the final reconstruction x̂t
0 satisfies the

following error bound:

∥x̂t
0 − xt

0∥ = O(∆t) +O(∆xt). (15)

This theorem characterizes the reconstruction error as a
first-order term in both the scheduler resolution ∆t and
the variation ∆xt. The detailed proof can be found in Ap-
pendix B.2.

Multistep-wise Approximation Prior work (Liu et al.,
2025b) empirically divides the denoising trajectory into a
semantic-planning stage and a subsequent fidelity-improving
stage, corresponding to regions where data xt

0 is inherently
stable (see Figure 4). In these stable regions, one can safely
use larger effective step sizes by compensating with higher-
order interpolation. Building on this insight, we implement
a uniform step-wise pruning strategy with Lagrange inter-
polation, once the trajectory enters the stable regime.

For example, consider a 50-step process. To achieve a step-
wise pruning interval of 4 after stabilization (i.e., compute
every 4th step fully and interpolate the skipped steps via
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Figure 5. Illustration of the proposed Token-wise strategy. The
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process at the input of the l-th attention layer. The pruned feature
map is then reconstructed at the output of the layer using its cached
representation Cl.

Lagrange), we store xt
0 every 4 steps before stabilization.

Their indices define the fixed-size set I , which is a rolling
buffer to limit memory usage. For any skipped t:

Theorem 3.7. Let I = {0, 1, . . . , k} be k + 1 distinct
indexes with known cached values {xti

0 }i∈I . For any
skipped timestep t /∈ {ti}i∈I , define the interpolated
reconstruction as:

x̂t
0 :=

∑
i∈I

 ∏
j∈I\{i}

t− tj
ti − tj

xti
0 . (16)

Then, under the assumption that xτ
0 is (k + 1)-times

continuously differentiable over τ ∈ [tmin, tmax], the
interpolation error satisfies:

∥x̂t
0 − xt

0∥ = O(hk+1), (17)

where h is the maximum step spacing among {ti}.

This multi-step cache-assisted pruning strategy significantly
induce step-wise sparsity while preserving sample fidelity.

3.5. Token-wise Cache-Assisted Pruning

At timestep t, if the Criterion 3.4 returns False, we con-
tinue to evaluate our stability measure under a high gran-
ularity level. The core idea of our token-wise algorithm
is aligned with its step-wise counterpart: (i) fix unstable
tokens for full calculation (ii) reduce the stable token and
approximate it by previous representation in latent cache.
This procedure partitions the tokens into two sets, Ifix (un-
stable tokens) and Ireduce (stable tokens), which define our
adaptive pruning configuration for the subsequent timestep.

Our algorithm is formulated as follows:

(i) Cache Initialization: Let T ∗ denote the starting
timestep for Cache-Assisted Pruning and i the caching
interval. For an input at timestep t− 1 and transformer
layer l, if (t − 1 − T ∗) mod i = 0, we initialize the
cache after a full computation:

Cl = A(x
(l)
t−1) ∈ RB×N×C (18)

where Cl is the feature map stored in the cache for layer
l, and it is updated throughout the denoising process.

(ii) Cache Update: When (t − 1 − T ∗) mod i ̸= 0, we
prune the input data into x̃

(l)
t−1 ∈ RB×N ′×C where its

length N ′ = |Ifix|. After the Transformer (/Attention),
we update Cl with fresh tokens:

Cl[i] = A(x̃
(l)
t−1)[ I(i) ] for i ∈ Ifix. (19)

(iii) Cache-Assisted Reconstruction: The pruned tokens are
approximated by their cached representations.:

x̂
(l)
t−1[i] =

{
A(x̃

(l)
t−1)[ I(i) ], if i ∈ Ifix,

Cl[i], if i ∈ Ireduce.
(20)

We keep the reconstructed sequence x̂
(l)
t−1 synchro-

nized with Cl for subsequent timesteps.

4. Experiments
4.1. Experiment Settings

Model Configurations To verify the generalization of
the proposed approach, we evaluate a set of widely used
text-to-image models employing different backbone archi-
tectures: SD-2 (U-Net), SDXL (Podell et al.) (modified U-
Net), and Flux.1-dev (Black-Forest-Labs, 2024) (DiT). We
perform evaluations using two sampling schedulers—Euler
Discrete Multistep (EDM) (Karras et al., 2022) Solver (first-
order) and DPM-Solver++ (Lu et al., 2022b) (second-order)
—each configured with 50 sampling steps. All pipelines
are implemented using the Huggingface Diffusers frame-
work. Experiments with Flux.1-dev are executed on a single
NVIDIA A100 GPU, while the remaining experiments are
run on a single NVIDIA A5000 GPU.

Evaluation Metrics We compare our proposed paradigm
with widely-adopted training-free acceleration strategies,
DeepCache, AdaptiveDiffusion, and TeaCache. (Ma et al.,
2024b; Ye et al., 2024; Liu et al., 2025a). DeepCache caches
and reuses the latent feature in the middle layer of the U-Net
architecture. AdaptiveDiffusion skips the noise predictor
and reuses the previous predicted noise guided by a third-
order estimator. TeaCache introduces a caching threshold

7
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Table 1. Quantitative results on MS-COCO 2017 (Lin et al., 2014).

Model Scheduler Methods PSNR ↑ LPIPS ↓ FID ↓ Speedup Ratio

SD-2

DPM++
DeepCache 17.70 0.271 7.83 1.43×
AdaptiveDiffusion 24.30 0.100 4.35 1.45×
SADA 26.34 0.094 4.02 1.80×

Euler
DeepCache 18.90 0.239 7.40 1.45×
AdaptiveDiffusion 21.90 0.173 7.58 1.89×
SADA 26.25 0.100 4.26 1.81×

SDXL

DPM++
DeepCache 21.30 0.255 8.48 1.74×
AdaptiveDiffusion 26.10 0.125 4.59 1.65×
SADA 29.36 0.084 3.51 1.86×

Euler
DeepCache 22.00 0.223 7.36 2.16×
AdaptiveDiffusion 24.33 0.168 6.11 2.01×
SADA 28.97 0.093 3.76 1.85×

Flux Flow-matching TeaCache 19.14 0.216 4.89 2.00×
SADA 29.44 0.060 1.95 2.02×

Table 2. Ablation study on few-step sampling across schedulers.
Results on MS-COCO 2017.

SD-2

Scheduler Steps PSNR ↑ LPIPS ↓ FID ↓ Speedup

DPM++
50 26.34 0.094 4.02 1.80×
25 28.15 0.073 3.13 1.48×
15 29.84 0.072 3.05 1.24×

Euler
50 26.25 0.100 4.26 1.81×
25 26.83 0.088 3.87 1.48×
15 29.34 0.076 3.70 1.25×

SDXL

Scheduler Steps PSNR ↑ LPIPS ↓ FID ↓ Speedup

DPM++
50 29.36 0.084 3.51 1.86×
25 30.84 0.073 2.80 1.52×
15 31.91 0.073 2.54 1.29×

Euler
50 28.97 0.093 3.76 1.85×
25 29.42 0.085 3.13 1.50×
15 31.28 0.084 3.26 1.26×

that measures the error accumulation. All experiments are
conducted using the MSCOCO-2017 validation set as gen-
eration prompts under identical conditions to assess effi-
ciency and quality. We report speedup ratios compared to
the baseline as a measure of generation efficiency. Gener-
ation quality is evaluated using the Peak Signal-to-Noise
Ratio (PSNR), Learned Perceptual Image Patch Similarity
(LPIPS), and Fréchet Inception Distance (FID) between
original generated and accelerated samples.

4.2. Main Results

As shown in Table 1, SADA consistently outperforms Deep-
Cache, AdaptiveDiffusion, and TeaCache across all set-
tings. Compared to other acceleration strategies, it drives

FID down from 8.48 to 3.51 (59% ↓) on SDXL with
DPM-Solver++, and on Flux.1-dev from 4.89 to 1.95 (60%
↓). Across every configuration, SADA maintains LPIPS
≤ 0.100 relative to the original samples—substantially bet-
ter than competing methods—demonstrating only negligible
perceptual deviation from the unmodified baseline. Cru-
cially, these significant quality improvements incur no extra
compute beyond the acceleration itself, yielding consistent
1.8–2× speedups, outperforming the competing methods in
the majority of cases, underscoring SADA’s effectiveness as
a loss-free acceleration framework.

4.3. Ablation Studies

We provide justification for our choice of base step T = 50
in Figure A.3. To evaluate SADA’s performance under few-
step sampling, Table 2 reports results on {SD-2, SDXL}
using {Euler, DPM-Solver++} while varying the number of
inference steps {50, 25, 15}. As the step count decreases,
SADA achieves higher similarity: PSNR rises from 26.25
dB to 29.34 dB, FID falls from 4.26 to 3.70, and LPIPS
drops from 0.100 to 0.076. We attribute this trend to reduced
error accumulation when using fewer steps. Meanwhile,
SADA can further accelerate sampling under a few-step
setting. The speedup ratio maintains ∼ 1.5× under 25 steps
denoising, and ∼ 1.25× under 15 steps denoising, high-
lighting SADA’s effectiveness under a low computational
budget. Note that the Lagrange interpolation parameters are
slightly adjusted to match the shorter denoising schedules
in these few-step settings.

4.4. Downstream Tasks and Data Modalities

This section demonstrates that SADA has potential to accel-
erate any generative modeling with an iterative generative
process, regardless of the downstream task or data modality.
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Figure 6. SADA deployment on MusicLDM on different text
prompts. SADA accelerates MusicLDM by ∼ 1.81× while main-
taining the spectrogram LPIPS under 0.020.

Figure 7. SADA deployment on ControlNet. We demonstrate the
SD-1.5-based ControlNet pipeline trained on canny edges as con-
ditional input. SADA accelerates ControlNet by ∼ 1.41× while
preserving fidelity.

Data Modality We evaluate SADA on music and au-
dio generation using the MusicLDM (Chen et al., 2024c)
pipeline to synthesize 8-second clips. We compare both
perceptual quality and spectrogram similarity between ac-
celerated samples and the unmodified baseline. As shown
in Figure 6, SADA achieves an LPIPS of ∼ 0.010 between
accelerated and baseline audio, while reducing sampling
time by ∼ 1.81×. This implies that SADA has the potential
to implemented in future baselines models for any-modality
generation with little to no modifications.

Downstream Task To validate cross-pipeline compatibil-
ity, we apply SADA directly on top of ControlNet (Zhang
et al., 2023) without any additional fine-tuning or architec-
tural changes. Figure 7 demonstrates that SADA preserves
faithfulness between ControlNet-conditioned outputs while
accelerating the sampling by ∼ 1.41×. This implies that
SADA could be seamlessly deployed in professional work-
flows.

5. Conclusion
We present Stability-guided Adaptive Diffusion Accelera-
tion (SADA), a training-free paradigm that adaptively ac-
celerates the sampling process of ODE-based generative
models (mainly Diffusion and Flow-matching). Leverag-
ing trajectory gradient calculated from the numerical solver,
SADA dynamically exploits step-wise and token-wise spar-
sity during the procedure with principled and error-bounded
approximation, bridging between the sampling trajectories
and sparsity-aware optimizations. Extensive experiments
on SD-2, SDXL, and Flux across EDM and DPM++ solvers
both demonstrate consistent ≥ 1.8× speedups with negli-
gible fidelity loss (LPIPS ≤ 0.10, FID ≤ 4.5) compared
to unmodified baselines, significantly outperforming exist-
ing strategies. Moreover, we show that SADA generalizes
across modalities—achieving ∼ 1.81× acceleration on Mu-
sicLDM and ∼ 1.41× on ControlNet—without additional
tuning.
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A. Appendix
Due to the page limit of the main manuscript, we provide more theoretical and implementation details in the appendix,
organized as follows:

• Sec. B: Mathematical Foundations

– Sec. B.1: Theoretical Assumptions.
– Sec. B.2: Proofs of Main Theorems.

• Sec. C: Analysis on Existing Token Reduction Methods.

• Sec. D: Additional Experimentss.

B. Mathematical Foundations
B.1. Theoretical Assumptions

1 The network output ϵθ(xt, t) is jointly Lipschitz continuous in both xt and t. In our experiments, we skip the first and
last time steps to avoid potential issues with infinite Lipschitz (Yang et al., 2023) constants near the boundaries.

B.2. Proofs of Main Theorems
Theorem 3.2. Let xt =

√
ᾱtx0+

√
1− ᾱt ϵ, where ϵ ∼ N (0, I) and x0 ∼ p(x0) is independent of ϵ. Then the expected

value of xt over the joint distribution of x0, ϵ, and timestep t satisfies

Ex0,ϵ,t[xt] =
√
ᾱt · Ex0 [x0]. (A.1)

Proof. By the definition of the forward process in diffusion models, the latent variable at timestep t is given by:

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ. (A.2)

Taking expectation over x0 ∼ p(x0), ϵ ∼ N (0, I), and t ∼ Uniform({1, . . . , T}), we get:

Ex0,ϵ,t[xt] = Et

[
Ex0

[
√
ᾱtx0] + Eϵ[

√
1− ᾱt ϵ]

]
. (A.3)

Since ϵ ∼ N (0, I), we have E[ϵ] = 0, and thus:

Ex0,ϵ,t[xt] = Et

[√
ᾱt · Ex0

[x0]
]
=
√
ᾱt · Ex0

[x0]. (A.4)

This concludes the proof.

Theorem 3.3 (Consistency of the network estimator under trajectory approximation). Let the network ϵθ(x, t) be trained
with the standard mean-squared error (MSE) objective:

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
, xt =

√
ᾱtx0 + σtϵ. (A.5)

Suppose θ⋆ minimizes L, and the training is sufficiently converged. Then, following Assumption 1 that ϵθ(xt, t) is

13
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Lipschitz in xt and t, we have the following consistency property for sampling-time inputs x̂t:

Ex0,ϵ,t[ϵ− ϵθ⋆(x̂t, t)]→ 0 as ∥x̂t − xt∥ → 0. (A.6)

Proof. Since xt is a linear deterministic combination of (x0, ϵ) at time step t, the distribution p(xt, t) is induced from the
joint distribution of x0, ϵ, and t. Therefore, minimizing the MSE loss over (x0, ϵ, t) is equivalent to minimizing it over
(xt, t). The optimal solution in the L2 sense is the conditional expectation:

ϵθ⋆(xt, t) = Ex0,ϵ,t|xt,t[ϵ | xt, t] (A.7)

Taking expectation again:

Ex0,ϵ,t[ϵ− ϵθ⋆(xt, t)] = 0. (A.8)

Now, for any approximation x̂t, by Lipschitz continuity:

∥ϵθ⋆(x̂t, t)− ϵθ⋆(xt, t)∥ ≤ L∥x̂t − xt∥. (A.9)

Thus,

∥Ex0,ϵ,t[ϵ− ϵθ⋆(x̂t, t)]∥ ≤ ∥Ex0,ϵ,t[ϵ− ϵθ⋆(xt, t)]∥+ Ex0,ϵ,t [∥ϵθ⋆(xt, t)− ϵθ⋆(x̂t, t)∥] . (A.10)

The first term is zero; the second vanishes as x̂t → xt.

Therefore,

Ex0,ϵ,t[ϵ− ϵθ⋆(x̂t, t)]→ 0, (A.11)

as ∥x̂t − xt∥ → 0.

Theorem 3.7 (Lagrange Interpolation for Cache-Assisted Reconstruction). Let I = {0, 1, . . . , k} be k + 1 distinct
indexes with known cached values {xti

0 }i∈I . For any skipped timestep t /∈ {ti}i∈I , define the interpolated reconstruction
as:

x̂t
0 :=

∑
i∈I

 ∏
j∈I\{i}

t− tj
ti − tj

xti
0 . (A.12)

Then, under the assumption that xτ
0 is (k + 1)-times continuously differentiable over τ ∈ [tmin, tmax], the interpolation

error satisfies:

∥x̂t
0 − xt

0∥ = O(hk+1), (A.13)

where h is the maximum step spacing among {ti}.

Proof. The expression in Equation A.12 is the Lagrange interpolation formula for approximating a function at an unobserved
point t using k + 1 known values {xti

0 } at points {ti} ∈ I .

By classical interpolation theory, the interpolation error at t for a (k + 1)-times continuously differentiable function xτ
0

satisfies:

xt
0 − x̂t

0 =
1

(k + 1)!

dk+1xξ
0

dξk+1
·
∏
i∈I

(t− ti), for some ξ ∈ [tmin, tmax]. (A.14)

14
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Taking norm and bounding the derivative gives:

∥x̂t
0 − xt

0∥ ≤
1

(k + 1)!
max

ξ

∥∥∥∥∥dk+1xξ
0

dξk+1

∥∥∥∥∥ ·∏
i∈I

|t− ti|. (A.15)

If all time steps are approximately uniformly spaced with step size h, then |t− ti| ≤ Ch for some constant C, and hence:

∥x̂t
0 − xt

0∥ = O(hk+1), (A.16)

as claimed.

Theorem 3.1 (Backward Extrapolation via Lagrange Interpolation). Let f ∈ Ck[a, b] be a smooth function and let
x0 := x, with equally spaced grid points xi := x + ih for i = 0, 1, . . . , k − 1. Define Pk−1(t) as the degree-(k − 1)
Lagrange interpolant of f at {xi}k−1

i=0 .

Then, the extrapolated value at x− h satisfies:

f(x− h) =

k−1∑
i=0

αif(xi) +Rk(h), (A.17)

where the weights are given by:

αi = (−1)i
(

k

i+ 1

)
, i = 0, 1, . . . , k − 1, (A.18)

and the remainder term is:

Rk(h) =
f (k)(ξ)

k!

k−1∏
j=0

(x− h− xj), ξ ∈ [x− h, x+ (k − 1)h]. (A.19)

and the error bound of the remainder term is:

Rk(h) = O(hk). (A.20)

Proof. Let xi := x+ ih for i = 0, . . . , k − 1. We construct the Lagrange interpolating polynomial:

Pk−1(t) =

k−1∑
i=0

f(xi) ℓi(t), (A.21)

where the Lagrange basis functions are:

ℓi(t) =

k−1∏
j=0
j ̸=i

t− xj

xi − xj
. (A.22)

Evaluating at t = x− h gives:

f(x− h) = Pk−1(x− h) +Rk(h), (A.23)

where the remainder term is the standard Lagrange error:

Rk(h) =
f (k)(ξ)

k!

k−1∏
j=0

(x− h− xj), ξ ∈ [x− h, x+ (k − 1)h]. (A.24)
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Since xj = x+ jh, we have: Rk(h) = O(hk). Now compute the weights αi := ℓi(x− h), we have:

ℓi(x− h) =

k−1∏
j=0
j ̸=i

(x− h)− (x+ jh)

(x+ ih)− (x+ jh)
=

k−1∏
j=0
j ̸=i

−(j + 1)h

(i− j)h
. (A.25)

Canceling h and simplifying signs:

ℓi(x− h) = (−1)k−1 · (k − 1)!

i!(k − 1− i)!
· 1

i+ 1
= (−1)i

(
k

i+ 1

)
. (A.26)

Therefore:

f(x− h) =

k−1∑
i=0

(−1)i
(

k

i+ 1

)
f(xi) +Rk(h), (A.27)

as claimed.

Proposition B.1 (High-order backward difference as weighted combination). Let αi := (−1)i
(

k
i+1

)
be the extrapolation

coefficients in Theorem 3.1. Then the following linear combination defines the k-th order backward finite difference:

f(x− h)−
k−1∑
i=0

αif(x+ ih) = ∆(k)f(x− h), (A.28)

where ∆(k) is the standard k-th order backward difference operator:

∆(k)f(x− h) :=

k∑
i=0

(−1)i
(
k

i

)
f(x+ ih). (A.29)

Proof. The result follows directly by substituting the expression for αi from Theorem 3.1 into Equation (A.28) and matching
terms with the standard definition of ∆(k).

Theorem B.2 (Adams-Moulton Method via Forward Lagrange Quadrature). Let y(x) ∈ Ck[a, b] and let x0 := x with
equally spaced grid points xi := x+ ih for i = 0, 1, . . . , k − 1. Let Pk−1(t) be the degree-(k−1) Lagrange interpolant
of f , which is derivative of y, at {xi}k−1

i=0 .

Define the one-step approximation of the integral:

y(x− h) = y(x)−
∫ x

x−h

f(s)ds. (A.30)

Then, the Adams-Moulton method of order k is:

ŷn−1 = yn − h

(
k−1∑
i=0

βifn+i + β−1fn−1

)
, (A.31)

where: yn+j = y(xj), fn+j = f(xj), and the quadrature weights β−1, β0, . . . , βk−1 are given by:
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βj :=

∫ 1

0

ℓj(s) ds, for j = −1, 0, . . . , k − 1, (A.32)

where ℓj(s) are the Lagrange basis polynomials defined on nodes τj = j, with τ−1 = −1 for the future value yn−1.

The local truncation error is:

ŷn−1 − yn−1 = O(hk+1). (A.33)

Proof. We aim to approximate the integral:

y(x− h) = y(x)−
∫ x

x−h

f(s) ds. (A.34)

Let us define a variable substitution s = x− h+ τh, so that:

∫ x

x−h

f(s) ds = h

∫ 1

0

f(x− h+ τh) dτ. (A.35)

Let τj = j for j = 0, . . . , k − 1 and τ−1 = −1 (the future point), and define Lagrange basis polynomials:

ℓj(τ) =

k−1∏
i=−1
i ̸=j

τ − τi
τj − τi

. (A.36)

Let Pk(τ) =
∑k−1

j=−1 f(x− h+ τjh)ℓj(τ) be the Lagrange interpolant of f(x− h+ τh) using nodes τj .

Now approximate the integral:

̂∫ 1

0

f(x− h+ τh) dτ =

∫ 1

0

Pk(τ) dτ =

k−1∑
j=−1

(∫ 1

0

ℓj(τ) dτ
)
f(x− h+ τjh). (A.37)

Define:

βj :=

∫ 1

0

ℓj(τ) dτ, j = −1, 0, . . . , k − 1. (A.38)

Then we get:

̂∫ x+h

x

f(s) ds = h

 k−1∑
j=−1

βjf(x− h+ τjh)

 = h

β−1f(x− h) +

k−1∑
j=0

βjf(x+ jh)

 . (A.39)
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Substitute into the ODE integral:

ŷn−1 = yn + h

β−1fn−1 +

k−1∑
j=0

βjfn+j

 . (A.40)

which is exactly the Adams-Moulton method of order k.

Finally, since this is based on Lagrange interpolation over k + 1 nodes (including the implicit node at future time), the
quadrature error is O(hk+1), leading to method of order k.

We now instantiate the backward Adams-Moulton method of order 3 from Theorem B.2, and quantify its effect in discrete
difference form, including error propagation.

Theorem 3.5 (Third-order backward difference via Adams-Moulton estimation). Let xt be the trajectory satisfying
the ODE: dxt

dt = yt. Consider estimating xt−1 by third-order backward difference ∆(3)xt−1 using forward values
xt, xt+1, xt+2, where the step size is ∆t. Furthermore, we using second and third order of Adams-Moulton method to
define the estimator:

x̂t−1 := xt −
5∆t

6
yt −

5∆t

6
yt+1 +

2∆t

3
yt+2. (A.41)

This estimate is consistent with the discrete ODE, and the local truncation error satisfies:

x̂t−1 − xt−1 = O(∆t2). (A.42)

Proof. By Theorem B.2, the third-order Adams-Moulton method in reverse-time (backward extrapolation) reads:

̂xt−1 − xt =
∆t

12
(8yt − yt+1 + 5yt−1) . (A.43)

In our scenario, we aim to express everything in terms of xt, xt+1, xt+2, and yt, yt+1, yt+2.

By using the identity:

∆(3)xt−1 = xt−1 − 3xt + 3xt+1 − xt+2, (A.44)

we reverse it to get the original estimation of x̃t−1:

x̃t−1 = 3xt − 3xt+1 + xt+2 = xt + 2(xt − xt+1)− (xt+1 − xt+2). (A.45)

Then we plug in a higher-order correction from the Adams-Moulton method:

xt − xt+1 = −∆t

12
(5yt + 8yt+1 − yt+2) +O(∆t3), xt+1 − xt+2 = −∆t

2
(yt+1 + yt+2) +O(∆t2). (A.46)

Combining these, we define the estimator x̂t−1:

x̂t−1 = xt −
5∆t

6
yt −

5∆t

6
yt+1 +

2∆t

3
yt+2. (A.47)

18



SADA: Stability-guided Adaptive Diffusion Acceleration

Thus we have the error bound

x̂t−1 − xt−1 = xt −
5∆t

6
yt −

5∆t

6
yt+1 +

2∆t

3
yt+2 − xt−1

= x̃t−1 +O(∆t2)− xt−1

= O(∆t2), (A.48)

as claimed.

Theorem 3.6 (Error bound for final reconstruction x̂t
0). Let x̂t

0 denote the reconstruction of x0 at time t, obtained using
an extrapolated estimate x̂t−1 from Theorem 3.5, which incurs an error of order O(∆t2). Then, the final reconstruction
x̂t
0 satisfies the following error bound:

∥x̂t
0 − xt

0∥ = O(∆t) +O(∆xt). (A.49)

Proof. This follows from the linearity of the prediction formula for x̂t
0, which is a linear combination of xt and ϵ̂t. Therefore,

by following Assumption 1 that ϵθ(xt, t) is Lipschitz in xt and t

∥x̂t
0 − xt

0∥ ≤ C1∥x̂t − xt∥+ C2∥ϵ̂t − ϵt∥ = O(∆t) +O(∆xt), (A.50)

where C1 and C2 are constants depending on the schedule.

C. Analysis on Existing Token Reduction Methods
Compared to the baseline, token merging with a high merging ratio significantly loses detailed information, while token
pruning at the same ratio partially preserves fine-grained details. However, pruning still leads to the loss of a substantial
amount of information in the generated image. In this section, we provide a short analysis of token merging, token pruning,
and the unmerging process.

Token merging We represent the token-merging procedure via an N ′ ×N matrix M :

Mj,i =

{
1

|Sj | , if i ∈ Sj ,

0, otherwise,

where each set Sj ⊆ {1, . . . , N} groups tokens deemed similar. The merged sequence x′ is then obtained by:

x′ = M x.

Within each subset Sj , the operation is an average: hj =
1

|Sj |1
T . From a signal-processing perspective, such an averaging

operation has a low-pass frequency response described by the sinc function:

H(u) =
sin
(
π u |Sj |

)
π u |Sj |

.

Hence, merging tokens suppresses high-frequency components while retaining lower-frequency content.

Token pruning Token pruning also cause information loss, as any unique feature captured by the pruned tokens are no
longer available for subsequent computations. Since it removes tokens without averaging, token pruning does not exhibit the
low-pass filtering effect, resulting in the loss of specific spatial information rather than a smoothing of the input sequence.
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Unmerging process Furthermore, due to the non-linear mapping of self-attention, the high similarity of two input tokens
x[i], x[j] (where i ∈ Sj) does not guarantee the high similarity of corresponding outputs after attention computation.
Therefore, the unmerging procedure, which duplicates the processed merged tokens back to their original position results in
an inherent downsampling effect. This duplication does not recover the high-frequency details lost during merging, thus
further degrading the detailed features in the output.

D. Additional Experiments

Figure A.1. Comparison between SADA and TeaCache on FLux.1 Dev. Our method shows significantly better faithfulness under an
identical speedup ratio of 2.0×.
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Figure A.2. Comparison between SADA and AdaptiveDiffusion on SDXL with 50 steps DPM++. Our method shows better faithfulness
with a much faster speedup of 1.81× vs 1.65×.

Figure A.3. The generated samples from DPM-Solver first dramatically change, then demonstrate convergence after setting the sample
step to 50. Therefore, we believe our baseline setting is reasonable.
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