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Abstract

Visual localization and mapping is the key technology
underlying the majority of mixed reality and robotics sys-
tems. Most state-of-the-art approaches rely on local fea-
tures to establish correspondences between images. In this
paper, we present three novel scenarios for localization
and mapping which require the continuous update of fea-
ture representations and the ability to match across different
feature types. While localization and mapping is a funda-
mental computer vision problem, the traditional setup sup-
poses the same local features are used throughout the evo-
lution of a map. Thus, whenever the underlying features
are changed, the whole process is repeated from scratch.
However, this is typically impossible in practice, because
raw images are often not stored and re-building the maps
could lead to loss of the attached digital content. To over-
come the limitations of current approaches, we present the
first principled solution to cross-descriptor localization and
mapping. Our data-driven approach is agnostic to the fea-
ture descriptor type, has low computational requirements,
and scales linearly with the number of description algo-
rithms. Extensive experiments demonstrate the effectiveness
of our approach on state-of-the-art benchmarks for a vari-
ety of handcrafted and learned features.

1. Introduction
Mixed reality and robotics blend the physical and digi-

tal worlds to unlock the next evolution in human, machine,
and environment interaction. This promise largely relies on
the technical capability to build and localize against maps
of the environment. For example, collaborative experiences
require co-localization of multiple devices into the same co-
ordinate space. Similarly, re-localization against existing
maps enables persistence and retrieval of digital content at-
tached to the real world. Most systems build upon localiza-
tion and mapping pipelines predominantly based on vision
sensors using local features for image matching.

Traditionally, these systems run in real-time on the de-
vice, but the industry has been increasingly moving local-
ization and mapping capabilities to the cloud (e.g., Face-
book LiveMaps [2], Google VPS [44], Magic Leap’s Mag-

Figure 1: Mixed reality and robotics systems typically do
not store raw images. This complicates deployment of new
feature representations for visual localization and mapping.
Our approach enables the continuous update of feature rep-
resentations and the ability to match across heterogeneous
devices using different features.

icverse [3], or Microsoft Azure Spatial Anchors [23]). This
is for a variety of reasons, such as reducing on-board
compute or enabling collaborative experiences and crowd-
sourced mapping. In most settings, images are typically not
shared across devices or uploaded to the cloud primarily
due to privacy reasons [25], but also to reduce bandwidth
and storage requirements. Instead, image features are com-
puted locally on the device and only the extracted keypoints
and descriptors are shared. In other words, it is impossible
to re-extract features whenever a different representation is
required, as the images are no longer available.

There are two fundamental limitations of existing sys-
tems. First, they cannot adopt new feature algorithms be-
cause incompatibilities of feature representations make re-
localization against maps built using older features impos-
sible. In a world of continuous progress on local features
in the research community, this severely limits progress
on localization and mapping. One might argue for sim-

ar
X

iv
:2

01
2.

01
37

7v
2 

 [
cs

.C
V

] 
 2

1 
Se

p 
20

21



ply re-building the maps from scratch whenever a signifi-
cantly improved feature algorithm is available. However,
content attached to the old maps would be lost and map-
ping is an expensive process, where it could take weeks or
even months until the whole area is re-visited. Second, co-
localization and collaborative mapping scenarios with de-
vices using different features is impossible. The situation
is further complicated by the fact that many devices im-
plement specific algorithms in hardware for efficiency rea-
sons, making a client-side upgrade of algorithms impossi-
ble. This also means that many of the existing commercial
solutions might be significantly behind the state-of-the-art
art in the research community, because they cannot easily
upgrade their algorithms and representations.

In this paper, we first define three novel scenarios ad-
dressing the challenges in a world of changing local feature
representations (c.f . Figures 1 and 2):

• Continuous deployment of feature representations
without requiring an explicit re-mapping phase.

• Cross-device localization when the localization and
mapping devices use different features.

• Collaborative mapping with multiple heterogeneous
devices and features.

Note that these scenarios are completely different from ex-
isting industrial or academic setups, where generally a fixed
local feature extraction algorithm is used for co-localization
and throughout the evolution of a map. Section 3 introduces
the scenarios in more detail.

As a first step towards enabling these scenarios, we fo-
cus on local feature descriptors and propose what to our
knowledge is the first principled and scalable approach to
the underlying challenges. Our learned approach translates
descriptors from one representation to another without any
assumptions about the structure of the feature vectors and
enables matching of features with incompatible dimension-
ality as well as distance metrics. For instance, we can match
512 dimensional binary BRIEF [10] against 128 dimen-
sional floating point SIFT [28] or even deep learning mod-
els such as HardNet [34] or SOSNet [54] and vice versa.
Our method has linear scalability in the number of algo-
rithms and is specifically designed to have a small compu-
tational footprint to enable deployment on low-compute de-
vices. The training data is generated automatically by com-
puting different descriptors from the same image patches.

We evaluate our approach on relevant geometric tasks in
the context of the newly proposed scenarios. We first con-
sider localization (pose estimation) on the Aachen Day &
Night benchmark [49]. Next, we assess the performance for
3D mapping from crowd-sourced images using the bench-
mark of Schönberger et al. [51]. In the supplementary mate-
rial, we also show results on the HPatches descriptor bench-
mark [7], the Image Matching Workshop challenge [22],
and the InLoc Indoor Visual Localization dataset [53]. Our

experiments demonstrate the effectiveness and high practi-
cal relevance of our method for real-world localization and
mapping systems.

To summarize our contributions, we i) introduce three
novel scenarios to localization and mapping in a world of
changing feature representations, ii) propose the first prin-
cipled and scalable approach tackling these newly intro-
duced scenarios, and iii) demonstrate the effectiveness of
our method on challenging real-world datasets.

2. Related work

Local image descriptors. Local descriptors are typically
extracted from normalized images patches defined by lo-
cal feature frames [28, 32, 47]. The most notable hand-
crafted descriptors include binary BRIEF [10], gradient-
based SIFT [28], and their variants [47, 33, 55, 6]. Re-
cently, the community has moved to data-driven models
leveraging large-scale datasets, various triplet losses, and
hard-negative mining techniques [8, 34, 29, 54, 16]. A re-
lated line of research aims to reformulate the entire pipeline
in an end-to-end trainable fashion [57, 40]. Finally, the
describe-then-detect approach extracts local features from
dense feature maps [39, 13, 15, 45, 30]. While it is possi-
ble to handcraft relations between some of these descriptors
(e.g. SIFT [28] ↔ Hue-SIFT [55]), they are typically not
designed for inter-compatibility. In contrast, our approach
aims to enable matching of local descriptors with incompat-
ible feature representations, dimensionalities or metrics.

Visual localization and mapping. Given the efficiency of
local features and the well-established theory of (sparse)
multi-view geometry, a majority of large-scale mapping [4,
19] and localization [27, 48] is based on local im-
age features. Furthermore, there is a growing number
of open-source tools for Simultaneous Localization and
Mapping (e.g., ORB-SLAM [37, 38]), visual odometry
(e.g., LIBVISO [26, 18]) or Structure-from-Motion (e.g.,
COLMAP [50], OpenMVG [36], Theia [52]) rendering this
research domain more accessible. Recently, these pipelines
were adopted for evaluation of visual localization and map-
ping – Schönberger et al. [51] and Jin et al. [22] consid-
ered mapping and localization performance using photo-
tourism collections, while Sattler et al. [49] introduced sev-
eral datasets for localization under challenging scenarios
(e.g., seasonal / temporal changes). Also related to our
work, the problem of collaborative mapping between mul-
tiple agents (e.g., robots, drones) has been thoroughly stud-
ied [17, 11, 35] in the field of robotics. However, all these
systems and associated benchmarks use the same local im-
age features throughout the whole process and are thus un-
able to tackle any of the scenarios discussed in Section 3.

Domain translation. Several local feature inversion tech-
niques [14, 42] reconstructing the original image from its



(a) (b)

Figure 2: Continuous deployment and cross-device localization. (a) Translating the local descriptors associated with the
map enables continuous deployment of new feature representations. (b) Translating the query descriptors enables cross-
device localization when queries and map use different feature representations.

features were proposed. One way to enable descriptor trans-
lation would be to reconstruct the image and then follow the
traditional pipeline to extract a different descriptor. In our
early experiments with feature inversion networks, we no-
ticed significant limitations in generalizing to new scenes
and poor quality of recovered low-level gradient informa-
tion. As such, it was not possible to successfully match
images using this feature inversion based approach.

Image-to-image translation [58, 21, 59] attempts to con-
vert one representation of a scene to another (e.g., RGB im-
age to semantic labels). One could imagine adapting these
models to translate between different local feature represen-
tations. However, similarly to feature inversion techniques,
these approaches typically have very large computational
and memory footprint, as they employ deep convolutional
neural networks to produce full resolution images. In con-
trast, we propose to use shallow multi-layer perceptrons,
taking a single descriptor as input and predicting its transla-
tion – a solution more suitable for low-compute devices.

Finally, research on domain adaptation (c.f . surveys of
Csurka [12] and Zhuang et al. [60]) tackles the problem of
adapting algorithms learned on a source data distribution
to a dataset with a related but different distribution. In the
case of deep learning, this is particularly interesting when
the source domain has enough annotations to allow training
while the target domain has little to no annotations avail-
able. In our case, instead of adapting to a different input
data distribution, we try to adapt the output distributions to
make them compatible for matching.

3. Scenarios

As our first contribution, we identify, introduce, and for-
malize three novel scenarios for localization and mapping.
In all scenarios, we assume there are no images stored in
the resulting maps. Therefore, it is impossible to re-extract
or replace the underlying feature representation.

3.1. Continuous deployment

Given a sparse 3D map, associated local feature descrip-
tors and no access to the original image data, the goal is
to develop a mechanism enabling the continuous deploy-
ment of new feature representations (Figure 2 (a)) without
the need for re-mapping. In other words, we aim to trans-
late the features of the map from one representation to an-
other. For instance, it should be possible to switch from
handcrafted to learned descriptors (e.g., SIFT [28]→ SOS-
Net [54]), change their dimensionality, or update the model
weights (e.g., different training data, loss, or architecture).

Matching the new feature representation against a
database of translated descriptors might lead to worse per-
formance when compared to matching using a single feature
representation. This is, however, only a transient issue and
not of serious concern in practice, since the translated de-
scriptors can be used in a boot-strapping fashion – as users
re-visit the environment, the translated descriptors are grad-
ually replaced by the newly extracted ones. Thus, the map
will eventually contain the latest descriptors to close the per-
formance gap. The key points are that i) the devices run
only a single algorithm (due to real-time constraints) or can-
not be easily updated (due to hardware implementation), ii)
the scenario avoids an explicit re-mapping phase, which is
generally very expensive and time-consuming.

3.2. Cross-device localization

The previous scenario assumes the same feature extrac-
tion algorithm is running on all client devices. However,
this is generally not the case, as legacy devices often can-
not be updated due to hardware limitations. In this case,
a mechanism for backwards-compatibility is required to
match across different device versions (see Figure 2 (b)).
Similarly, specialized devices (e.g., headsets, autonomous
cars, mapping platforms) could take advantage of addi-
tional on-board compute for a better localization perfor-



mance compared to devices such as mobile phones or light-
weight drones. It would be beneficial to co-localize these
devices inside the same maps to avoid a fragmented scene
representation. The same functionality could be extended
to enable localization between devices of different vendors,
but, in this situation, new challenges arise due to differences
in previous steps of the pipeline – notably feature detection,
as discussed in detail in Section 6.

3.3. Collaborative mapping

Finally, we consider multiple heterogeneous devices col-
laboratively mapping the same environment. For the afore-
mentioned reasons, it is fairly unlikely for all devices to
use the same features as in a standard academic setup, even
when produced by a single vendor. Consequently, we end
up with each device providing different types of features
from which we need to build a single coherent map. There-
fore, we need a mechanism for translating all descriptors
into a common representation that can be used for estab-
lishing correspondences (see Figure 1).

4. Method
In this section, we present the first principled solution

to cross-descriptor localization and mapping. We start by
formalizing the descriptor translation problem. We then
propose to use a separate multi-layer perceptron (MLP) for
each pair of description algorithms, trained using a trans-
lation loss (c.f . Figure 3 (a)). Finally, we extend this for-
mulation by using an auto-encoder inspired model that em-
beds all descriptors from different algorithms into a joint
embedding space (c.f . Figure 3 (b)). To make sure that the
common embedding is suitable for establishing correspon-
dences between different algorithms, we leverage additional
supervision through a matching loss.

4.1. Descriptor translation

A feature description algorithm A defines a handcrafted
or learned function mapping images to vectors as A :
Ih×w → Rn, where Ih×w is the set of images of size h×w
and n is the embedding dimension. In the case of local
image descriptors, the domain is the set of patches I nor-
malized based on the estimated feature geometry (position,
scale, orientation, affine shape).

Let A1 : I → Rn1 and A2 : I → Rn2 be two descrip-
tion algorithms. A translation function t1→2 : Rn1 → Rn2

maps a feature vector of A1 onto the manifold of A2, satis-
fying t1→2(A1(p)) = A2(p) for all patches p ∈ I. Our
experiments (Section 5) empirically demonstrate that us-
ing MLPs to approximate the translation functions t1→2 is
highly effective in enabling matching between different de-
scriptors which, in turn, facilitates the scenarios introduced
in Section 3. Note that we do not propose a matching algo-
rithm but instead directly map descriptors from one space

to another. Our approach thus relies on traditional descrip-
tor comparison strategies, lending itself to efficient match-
ing implementations (e.g., approximate nearest neighbor).
Apart from the corresponding descriptors being extracted
from the same patches, we make no additional assumptions
regarding the descriptor dimension or the underlying algo-
rithm (handcrafted or learned, binary or floating point).

In the following, we consider a set of description algo-
rithms A = {A1, A2, . . . }. Our training batches consist of
normalized images patches P = {p1, p2, . . . }. Each de-
scription algorithm can be applied independently on a patch
p ∈ P to obtain the associated descriptor, i.e., Ai(p) = ai.

4.2. Pair network

Given a pair of different description algorithms (Ai, Aj),
one could approximate the translation function ti→j by a
multi-layer perceptron Ni→j (c.f . Figure 3 (a)). This model
translates features extracted using algorithmAi into the fea-
ture representation of algorithm Aj . To this end, we define
the translation loss as the `2 prediction error:

LTi→j =
1

|P|
∑
p∈P
‖Ni→j(Ai(p))−Aj(p)‖ . (1)

If the target algorithm Aj produces binary descriptors, the
regression loss is replaced by a classification loss:

LTi→j =
1

|P|
∑
p∈P

BCE (Ni→j(Ai(p)), Aj(p)) , (2)

where BCE is the binary cross entropy loss function defined
as BCE (x, y) = −y log(x)− (1− y) log(1− x).

To compute the distance d between two descriptors ai, aj
extracted using algorithms Ai, Aj , respectively, one can
translate from Ai to Aj by using the associated MLP (d =
‖Ni→j(ai) − aj‖) or conversely (d = ‖Nj→i(aj) − ai‖).
In most practical applications, the direction of translation
is known. In the case of continuous software updates, the
outdated map descriptors are “migrated” to the new ones,
while for cross-device localization the query descriptors are
always translated to map descriptors. However, it is not ob-
vious how to use this approach in the collaborative mapping
scenario as there are O(|A|2) possible translation direc-
tions. One could use a “progressive” strategy that translates
the weaker to the better descriptor for each image pair, but
deciding which descriptor is more suitable is not straight-
forward as it generally depends on the specific scene.1

4.3. Encoder-decoder network

To address this issue, we turn our attention towards auto-
encoders. Each description algorithm Ai now has an as-
sociated encoder Ei and decoder Di that ideally satisfy

1Please refer to the supplementary material for a scene-by-scene break-
down on the HPatches Sequences dataset [7] that supports this argument.



(a) (b)
Figure 3: Method overview. (a) The pair network is trained for each description algorithm pair independently. (b) The
encoder-decoder network is trained for all description algorithms at once. All descriptors are mapped to a joint embedding
space. In green, we highlight the networks that need to be used in order to translate from SIFT to HardNet.

Di(Ei(ai)) = ai for all descriptors ai extracted using Ai.
We propose an extension to the identity loss traditionally
used for training auto-encoders [9], such that the codes (i.e.,
the output of encoders / the input of decoders) live in a joint
space for all algorithms. Thus, for a pair of descriptor ex-
tractors Ai, Aj , one can chain the encoder of Ai and the
decoder of Aj to obtain the mapping from Ai to Aj and
vice versa, i.e., Ni→j = Dj ◦Ei and Nj→i = Di ◦Ej (see
Fig. 3 (b)). In this way, we reduce the number of required
networks to O(|A|) and achieve linear scalability.

Furthermore, we use a triplet ranking loss to facilitate di-
rect matching in the joint embedding space. Therefore, one
can compare two descriptors ai, aj extracted using differ-
ent algorithms Ai, Aj by mapping both descriptors to the
joint space and computing the distance as d = ‖Ei(ai) −
Ej(aj)‖, instead of using the directional translation men-
tioned above. This is of particular interest in the collabora-
tive mapping scenario, as it offers an elegant way to match
descriptors coming from different algorithms by translating
everything to the joint embedding space. Moreover, it al-
lows compatibility with existing pipelines that suppose all
images use the same feature.

Translation loss. As above, we consider the translation loss
LTi→j for each algorithm pair Ai, Aj ∈ A2. Note that, for
i = j, this loss is equivalent to the traditional auto-encoder
loss [9]. The overall translation loss is defined as the aver-
age over all algorithm pairs as:

LT =
1

|A|2
∑

Ai,Aj∈A2

LTi→j . (3)

Matching loss. We use a triplet margin loss for each de-
scription algorithm pair Ai, Aj ∈ A2 to allow matching in
the joint embedding space:

LMi→j =
1

|P|
∑
p∈P

max (m+ pos(p)− neg(p), 0) , (4)

where pos(p) and neg(p) are the distances to the positive
and negative samples, respectively. Given two correspond-
ing descriptors Ai(p) = ai, Aj(p) = aj , the positive sam-
ple for the embedding of ai is simply the embedding of aj :

pos(p) = ‖Ei(Ai(p))− Ej(Aj(p))‖ . (5)

Following HardNet [34], we use in-batch hardest negative
mining by selecting the closest non-matching embedding of
a descriptor extracted using algorithm Aj as negative sam-
ple for the embedding of the current descriptor ai:

neg(p) = argmin
p′∈P,p′ 6=p

‖Ei(Ai(p))− Ej(Aj(p′))‖ . (6)

The overall matching loss is then defined as the sum over
all description algorithm pairs as:

LM =
1

|A|2
∑

Ai,Aj∈A2

LMi→j . (7)

Final loss. The final loss is a weighted sum of the transla-
tion and matching losses as: L = LT + αLM .

4.4. Implementation details

Training dataset. Our training dataset contains 7.4 million
patches from 3190 random internet images of the Oxford-
Paris revisited retrieval dataset distractors [43]. The nor-
malized image patches are extracted around Difference-
of-Gaussians (DoG) detections according to the estimated
scale and orientation. Training descriptors are computed by
applying all description algorithms on each patch to obtain
a set of corresponding descriptors. For DoG keypoint ex-
traction we use COLMAP [50] with default parameters.

Training methodology. We train all networks for 5 epochs
using Adam [24] as optimizer with a learning rate of 10−3

and a batch size of 1024. Similar to Mishchuk et al. [34], we
use a marginm = 1. According to validation results, we fix



the weighting of the matching loss α = 0.1. The encoders
and decoders are MLPs with 2 hidden layers of sizes 1024
and 256 for hand-crafted and learned features, respectively.
We use ReLU followed by batch normalization [20] after
each linear layer apart from the last. For consistency with
state-of-the-art floating point local descriptors [28, 34, 54],
the joint embedding is 128-dimensional and `2 normalized.
For binary descriptors [10], we use sigmoid activation af-
ter the last linear layer and, at test time, we use a threshold
of 0.5 for binarization to allow efficient matching using bit-
wise operations. Similarly, if needed [28, 34, 54], the output
of the network is `2 normalized. Please refer to the supple-
mentary material for additional details.

5. Experimental evaluation

We evaluate our approach on the tasks of visual local-
ization and mapping in the context of the scenarios intro-
duced in Section 3. Please refer to the supplementary mate-
rial for additional results on the HPatches descriptor bench-
mark [7], the Image Matching Workshop challenge [22],
and the InLoc Indoor Visual Localization dataset [53]. We
consider four well-established widely used descriptors –
two handcrafted descriptors, with BRIEF [10] as a binary
and SIFT [28] as a gradient-based approach as well as two
state-of-the-art learned descriptors, HardNet [34] and SOS-
Net [54]. In our initial experiments, we found the pair net-
work to perform on par with the encoder-decoder approach
in terms of accuracy and runtime. However, the encoder-
decoder architecture provides us with a joint embedding
and covers all three discussed scenarios. Thus, all results
presented in this section were obtained using the encoder-
decoder approach. Please refer to the supplementary mate-
rial for a comparison of the two approaches.

5.1. Visual localization

We consider the task of visual localization against pre-
built maps on the challenging Aachen Day & Night lo-
calization benchmark [49]. We start by matching each
database image with its 20 nearest spatial neighbors.
COLMAP [50] is used for triangulation using the provided
camera poses and intrinsics. Next, each query image is
matched against its top 50 retrieval results according to
NetVLAD [5]. Finally, we use COLMAP’s image regis-
trator for localization with known intrinsics. According to
standard procedure, the poses are submitted to the evalua-
tion system [1] and we report the percentage of localized
images at different real-world thresholds in Table 1.

Localization under continuous deployment. To evaluate
this scenario, we build the reference map from a single de-
scription algorithm (e.g., SIFT). Then, all the feature de-
scriptors of the map are translated to a target feature rep-
resentation (e.g., SIFT → HardNet). For the queries, we
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Database
descriptor

Query
descriptor

% localized queries
Day (824 images) Night (98 images)

0.25m, 2◦ 0.5m, 5◦ 0.25m, 2◦ 0.5m, 5◦

St
an

da
rd BRIEF BRIEF 76.1 81.4 32.7 36.7

SIFT SIFT 82.5 88.7 52.0 61.2
HardNet HardNet 86.2 92.2 64.3 72.4
SOSNet SOSNet 86.4 92.7 65.3 75.5

C
on

tin
uo

us
de

pl
oy

m
en

t

BRIEF→
SIFT 74.9 -1.2 80.5 -0.9 31.6 -1.1 36.7 0.0

HardNet 81.4 +5.3 86.7 +5.3 44.9 +12.2 49.0 +12.3

SOSNet 81.6 +5.5 86.9 +5.5 42.9 +10.2 46.9 +10.2

SIFT→
BRIEF 66.6 -15.9 73.1 -15.6 19.4 -32.6 23.5 -37.7

HardNet 83.4 +0.9 90.9 +2.2 59.2 +7.2 66.3 +5.1

SOSNet 84.2 +1.7 91.4 +2.7 55.1 +3.1 62.2 +1.0

HardNet→
BRIEF 70.5 -15.7 76.7 -15.5 22.4 -41.9 26.5 -45.9

SIFT 81.2 -5.0 88.0 -4.2 41.8 -22.5 51.0 -21.4

SOSNet 85.8 -0.4 92.4 +0.2 61.2 -3.1 68.4 -4.0

SOSNet→
BRIEF 68.8 -17.6 74.8 -17.9 18.4 -46.9 20.4 -55.1

SIFT 81.7 -4.7 87.5 -5.2 42.9 -22.4 49.0 -26.5

HardNet 85.9 -0.5 92.4 -0.3 63.3 -2.0 69.4 -6.1

C
ro

ss
-d

ev
ic

e
BRIEF←

SIFT 65.8 -10.3 71.6 -9.8 22.4 -10.3 24.5 -12.2

HardNet 68.8 -7.3 74.0 -7.4 20.4 -12.3 26.5 -10.2

SOSNet 66.6 -9.5 71.4 -10.0 22.4 -10.3 24.5 -12.2

SIFT←
BRIEF 75.6 -6.9 80.8 -7.9 28.6 -23.4 36.7 -24.5

HardNet 81.2 -1.3 87.3 -1.4 46.9 -5.1 55.1 -6.1

SOSNet 80.1 -2.4 87.3 -1.4 42.9 -9.1 46.9 -14.3

HardNet←
BRIEF 82.8 -3.4 88.8 -3.4 43.9 -20.4 49.0 -23.4

SIFT 84.7 -1.5 91.0 -1.2 58.2 -6.1 67.3 -5.1

SOSNet 86.2 0.0 92.7 +0.5 64.3 0.0 69.4 -3.0

SOSNet←
BRIEF 82.5 -3.9 88.2 -4.5 44.9 -20.4 49.0 -26.5

SIFT 84.0 -2.4 91.1 -1.6 51.0 -14.3 57.1 -18.0

HardNet 85.3 -1.1 91.9 -0.8 66.3 +1.0 72.4 -3.1

C
ol

la
b.

Embed←

BRIEF 80.6 +4.5 86.7 +5.3 48.0 +15.3 50.0 +13.3

SIFT 82.8 +0.3 89.0 +0.3 50.0 -2.0 57.1 -4.1

HardNet 85.1 -1.1 91.7 -0.5 55.1 -9.2 61.2 -11.2

SOSNet 84.8 -1.6 90.9 -1.8 57.1 -8.2 60.2 -15.3

Table 1: Localization under continuous deployment. A
reference map is built using the database description algo-
rithm. The descriptors of this map are translated to a target
query descriptor. Cross-device localization. A reference
map is built using the database description algorithm. The
descriptors of query images are translated to be compatible
with the map. Localization to collaborative maps. The
database images are partitioned in 4 balanced subsets, one
for each description algorithm. Both database and query de-
scriptors are mapped to the common embedding space. The
absolute performance difference (superscript) is color-coded
according to the baseline used as reference.

use descriptors extracted directly by the target feature de-
scription algorithm (e.g., HardNet) and match them against
the translated features. The resulting matches are used for
localization. Our approach not only enables updating de-
scriptors without re-mapping the environment, but in many
cases also unexpectedly improves the re-localization per-



formance. In particular, hand-crafted descriptors [10, 28]
are significantly better after translating them to learned
ones [34, 54]. For SIFT, the increase is of more than 2%
and 5% in absolute performance at the largest threshold for
day and night queries, respectively, and for BRIEF the dif-
ference is even more accentuated with 5% and 10%. While
there is still a gap w.r.t. re-building the map from scratch us-
ing the learned descriptors, the performance can be further
improved using a bootstrapping strategy (c.f . Section 3.1).

Cross-device localization. Inverse to the previous exper-
iment, we now build maps using a description algorithm
(e.g., SIFT) and instead translate the query descriptors (e.g.,
HardNet→ SIFT). Similarly to the previous case, compared
to standard localization, we notice increased performance
when translating hand-crafted descriptors to learned ones.
Maps built from state-of-the-art descriptors (HardNet, SOS-
Net) preserve their advantages no matter the description al-
gorithm used for queries. Not surprisingly, translating other
descriptors to BRIEF [10] yields worse performance due to
the more limited discriminative power of binary descriptors.
Overall, our approach enables localization with a good per-
formance in this previously infeasible scenario.

Localization to collaborative maps. For the final scenario,
we randomly split the database images of the map into 4
balanced subsets (one for each description algorithm) and
translate all descriptors to the joint embedding space (i.e.,
SIFT, HardNet, . . .→ embedding). Similarly, all query de-
scriptors are translated to the joint embedding space for
matching. Although the map is built from heterogeneous
descriptors, the localization performance at day is compa-
rable to the best results in the previous experiments. More-
over, note that the performance of HardNet and SOSNet in
this scenario is just slightly below the current state-of-the-
art patch-based descriptor [54]. In addition, BRIEF queries
achieve a substantial improvement of more than 5% for both
day and night folds at the coarsest threshold. This is a very
encouraging result for cloud-based solutions, as we enable
multiple devices implementing different algorithms to not
only collaborate on mapping a location, but also remain
competitive with the state-of-the-art in localization.

5.2. Collaborative mapping

Next, we consider the large-scale Structure-from-Motion
benchmark of Schönberger et al. [51]. Similar to other
datasets [49, 22], to evaluate the camera poses, we gener-
ate pseudo-ground-truth intrinsics and extrinsics via an ini-
tial SfM process. Only the images registered in this step
are considered.2 For each method, we exhaustively match
all remaining images using a mutual nearest-neighbors
matcher with symmetric second nearest neighbor ratio
test [28] (the threshold is set to 0.9 for all methods). Given

2Please refer to the supplementary material for additional details.

the feature matches, COLMAP [50] is used for geomet-
ric verification and sparse reconstruction with known in-
trinsics. In the context of collaborative mapping (c.f . Sec-
tion 3.3), we randomly split the database into balanced sets
corresponding to different description algorithms.

The resulting point-cloud statistics are reported in Ta-
ble 2. We evaluate two variants of our method: i) Embed
taking advantage of the joint embedding space and ii) Pro-
gressive using the hierarchy BRIEF → SIFT → HardNet
→ SOSNet based on the rankings reported in [7, 54]. In
this variant, the translation direction is chosen online to-
wards the strongest in each pair. Given two images with
descriptors X and Y respectively, we translate the lower
one to the higher one in the order and then run matching
on the obtained descriptors. For instance, in an image pair
with BRIEF and HardNet, BRIEF would be translated to
HardNet, while in an image pair with only SIFT descrip-
tors, there would be no translation.

First, we compare the joint embedding approach with
progressive translation. Both models achieve comparable
results, but the jointly embedded map consistently registers
more images and reconstructs more 3D points, albeit at the
cost of shorter track lengths. Furthermore, the joint embed-
ding also significantly simplifies the translation and match-
ing in the reconstruction pipeline.

Next, we compare our approach with the traditional
setup, where one has access to the same feature descrip-
tor for all dataset images. While these baselines are not
able to tackle collaborative mapping with heterogeneous de-
scriptors, it serves as an upper-bound for our method. Both
our approaches outperform maps built from only BRIEF or
SIFT, but achieve slightly inferior results than state-of-the-
art HardNet and SOSNet. However, it is important to keep
in mind that, in our case, the dataset is split into 4 random
subsets. Therefore, only half of the images have HardNet
or SOSNet features. Finally, we compare against baselines
that only have access to their associated subset of dataset
images to demonstrate the actual merit of our work. This
corresponds to the realistic setup in which 4 types of devices
with incompatible descriptors map the same environment
but the mapping system cannot jointly leverage them. In
this case, both our approaches enable collaboration across
devices and significantly outperform all baselines – we con-
sistently register four times more images.

Figure 4 provides co-visibility statistics of the 3D points
for the Embed model. An overwhelming majority of the
3D points have at least 2 different description algorithms in
their tracks and more than 50% have 3 or 4. Furthermore,
the co-occurence matrix demonstrates that all descriptors
contributed (almost) equally to the map. We refer to the
supplementary material for statistics on the other datasets.



Dataset Madrid Metropolis – 453 images Gendarmenmarkt – 985 images Tower of London – 730 images

Method
% localized images Num.

3D pts.
Track
length

Reproj.
error

% localized images Num.
3D pts.

Track
length

Reproj.
error

% localized images Num.
3D pts.

Track
length

Reproj.
error0.25m 0.5m ∞ 0.25m 0.5m ∞ 0.25m 0.5m ∞

2◦ 5◦ 2◦ 5◦ 2◦ 5◦

St
an

da
rd BRIEF 57.0 64.2 72.4 18.3K 6.84 0.63 59.9 68.7 80.7 52.3K 6.31 0.82 64.9 68.5 74.2 48.1K 7.70 0.66

SIFT 78.1 83.7 95.1 39.4K 6.71 0.83 68.8 77.1 95.6 121.4K 5.53 0.95 74.2 76.7 97.1 90.0K 7.14 0.81
HardNet 89.2 95.4 100 47.4K 7.15 0.92 84.2 90.7 99.8 135.4K 6.40 1.01 83.0 87.7 100 104.5K 7.56 0.87
SOSNet 92.7 96.3 100 46.0K 7.22 0.92 85.5 89.2 99.9 128.4K 6.56 1.02 85.2 89.2 100 101.3K 7.67 0.86

R
ea

l-
w

or
ld BRIEF 3.1 4.9 6.0 1.9K 4.79 0.53 2.9 3.7 10.4 4.5K 4.36 0.72 10.4 11.5 11.8 5.8K 4.65 0.57

SIFT 14.1 16.6 21.6 6.1K 4.70 0.77 5.4 6.8 20.9 15.7K 4.29 0.89 13.0 16.0 17.1 15.2K 4.55 0.74
HardNet 10.8 13.9 21.4 8.8K 5.34 0.87 13.8 15.9 23.2 25.7K 4.67 0.95 16.0 17.8 18.6 22.1K 5.23 0.80
SOSNet 16.8 19.4 21.2 7.5K 4.70 0.85 13.6 14.8 23.5 26.7K 4.95 0.96 17.3 18.8 23.0 22.9K 5.32 0.80

O
ur

s Embed 80.6 84.3 92.1 36.3K 7.26 0.86 74.1 82.3 95.6 103.4K 6.45 0.98 77.3 81.2 97.9 88.5K 7.57 0.81

Progressive 77.0 82.8 88.7 31.2K 7.59 0.86 76.2 82.7 94.8 92.2K 6.58 0.98 79.2 83.2 96.6 76.0K 7.81 0.82

Table 2: Collaborative mapping. We report different reconstruction statistics from internet collected images. The first four
rows represent the standard evaluation protocol where each description algorithm has access to all images. The next four
rows present more realistic scenarios where each algorithm only has access to a quarter of the data. Finally, the last two rows
represent variants of our method enabling cross-descriptor reconstruction using the same splits as above.

1 2 3 4
number of algorithms in track

0

10

20

30

40

%
 o

f 3
D

 p
oi

nt
s

9.67

33.23

28.72 28.38

BRIEF SIFT HardNet SOSNet
Algorithm co-occurence (%)

BRIEF

SIFT

HardNet

SOSNet

57.93

40.66

43.49

43.51

40.66

69.35

52.83

51.52

43.49

52.83

74.85

57.66

43.51

51.52

57.66

73.69

Figure 4: Co-visibility statistics. For the Embed approach
on the Tower of London dataset, we report the % of 3D
points containing 1 − 4 distinct algorithms in their tracks
on the left. On the right, we visualize the co-occurence, i.e.,
the percentage of 3D points containing descriptors originat-
ing from 2 given description algorithms in their tracks.

6. Discussion

The main limitation comes from the same keypoint as-
sumption, as our work only considers the compatibility of
different description algorithms. While our assumption is
likely applicable for devices produced by a single manu-
facturer that has control over the entire pipeline, different
manufacturers likely use different keypoint detection al-
gorithms. Possible directions for future research include
studying cross-detector repeatability or improving feature
inversion techniques for better generalization with differ-
ent local feature detection pipelines. Despite our proposed
solution being only a first step, it still has significant real-
world applications: i) migration of existing maps from, e.g.,
handcrafted descriptors to learned ones and, similarly, con-
tinuous updates of learned descriptors in case of novel ar-
chitectures / losses / datasets, ii) support of legacy devices
inside maps built with newer descriptors, and iii) collabo-

rative mapping between devices of the same manufacturer
with different compute capabilities. Furthermore, while
we have made a significant step towards enabling cross-
descriptor localization and mapping, several challenges still
remain. Information loss. Each description algorithm only
encodes a subset of the information available in the input
patches and these subsets might be distinct for different
methods. This is further exacerbated in efficient real-world
applications taking advantage of quantization and dimen-
sionality reduction. One-to-many associations. A one-to-
one mapping may not even exist as two given patches might
lead to a similar descriptor for one algorithm but completely
different feature vectors for another one. Similarly to other
data-driven approaches, translation performance has to be
verified experimentally as there are no formal guarantees.
To address these limitations, future research could try to
take advantage of local or global context to better disam-
biguate the visual information.

7. Conclusion

We have identified, introduced, and formalized three
novel scenarios for localization and mapping in the presence
of heterogeneous feature representations. Towards address-
ing the open challenges underlying these scenarios, we pre-
sented the first principled solution to cross-descriptor local-
ization and mapping. We demonstrated the effectiveness of
our approach on representative and well-established bench-
marks. We believe our work will not only spark new re-
search on the topic of translating local image features but
will also make an immediate impact on commercial appli-
cations in the area of cloud-based localization and mapping.

Acknowledgments. This work was supported by the Microsoft
MR & AI Lab Zürich PhD scholarship.



Supplementary Material
This supplementary material provides the following in-
formation: first, we report additional experimental re-
sults on the Image Matching Workshop challenge [22], the
HPatches benchmark [7], the InLoc Indoor Visual Localiza-
tion dataset [53], and the Aachen Day-Night dataset [49].
Second, we provide further implementation details. Third,
we explain the protocol for generating pseudo-ground-truth
intrinsics and extrinsics for the Local Feature Evaluation
benchmark [51]. Fourth, we show co-visibility statistics for
the collaborative mapping experiments. Finally, we present
an ablation study comparing different architectures and loss
formulations.

A. Additional experimental results

In this section, we report additional experimental re-
sults. First, we evaluate our method on the Image Matching
Workshop (IMW) challenge [22] as well as the HPatches
descriptor evaluation benchmark [7]. Next, we provide a
per-scene breakdown on the full sequences of the HPatches
dataset [7]. Then, we study the impact of the joint embed-
ding dimension in the scenario of localization to a collabo-
rative map on the Aachen Day-Night dataset [49].

A.1. Image Matching Workshop challenge

We evaluate the performance of descriptor translation on
the stereo and multi-view tasks of the IMW challenge [22].
Given the large number of methods to consider3, we re-
strict the evaluation to the 3 validation scenes as follows:
the smallest one (Reichstag) is used for parameter tuning
(thresholds for the ratio test and RANSAC), while the other
two (Sacre Coeur and Saint Peter’s Square) are used for
evaluation. We use the 2048 OpenCV SIFT keypoints with
default parameters provided by the authors. For consis-
tency, we retrain the encoder-decoder approach on patches
extracted according to OpenCV SIFT keypoints on the same
3190 random internet images part of the Oxford-Paris revis-
ited retrieval dataset distractors [43].

We report results under two evaluation protocols in Ta-
ble 3. First, we consider the case of directional translation.
For a given direction (A → B), in each image pair, we use
the target description algorithm (B) in the first image and
we translate source descriptors to target ones in the second
image. Note that this does not correspond to a realistic sce-
nario on the multi-view task, as the same image might use
different descriptors in different image pairs. Second, we
consider the case of collaborative mapping using the joint
embedding. To this end, we randomly split the images of

3The benchmark rules limit each team to a maximum of 2 submissions
per week to avoid parameter tuning on the test set.

Descriptor
Stereo Multi-view

AUC (%) AUC (%)

R
ea

l.

5◦ 10◦ 5◦ 10◦

St
an

da
rd BRIEF 35.3 41.8 31.9 36.5 3

SIFT 41.4 49.2 41.4 48.7 3
HardNet 51.4 59.9 55.9 63.5 3
SOSNet 51.4 60.1 58.6 66.2 3

D
ir

ec
tio

na
l

BRIEF→ SIFT 25.2 31.5 14.9 17.6 7
BRIEF→ HardNet 35.3 42.7 36.5 40.8 7
BRIEF→ SOSNet 39.8 47.5 40.3 46.9 7

SIFT→ HardNet 42.7 51.1 48.7 55.4 7
SIFT→ SOSNet 45.1 53.5 47.3 55.2 7

HardNet→ SOSNet 49.4 57.8 56.9 64.3 7

E
m

be
d

BRIEF, SIFT, 1/2 39.5 47.1 41.6 48.1 3
BRIEF, HardNet, 1/2 42.4 50.3 46.2 52.8 3
BRIEF, SOSNet, 1/2 41.3 48.9 45.2 51.9 3
SIFT, HardNet, 1/2 46.8 55.1 53.4 61.3 3
SIFT, SOSNet, 1/2 46.2 54.4 49.9 57.6 3

HardNet, SOSNet, 1/2 50.4 58.9 57.6 64.9 3

All, 1/4 42.3 50.1 46.7 53.5 3

Table 3: Image Matching Workshop challenge. We report
results on the IMW challenge under two evaluation proto-
cols: directional translation and collaborative mapping us-
ing the joint embedding.

each dataset into balanced subsets, one for each descrip-
tion algorithm. Following the original evaluation proto-
col, we run each method three times and report the average
over all runs. Once again, we notice an increase in perfor-
mance when translating handcrafted to learned descriptors
and matching them against natively extracted ones. Further,
in the binary collaborative scenario, the results are generally
in between the results of the individual descriptors.

A.2. HPatches benchmark

To analyze the raw matching performance between orig-
inal and translated descriptors, we evaluate our method on
the HPatches benchmark [7]. There are three different
tasks, notably patch verification, image matching and patch
retrieval. For the translated methods (denoted A→ B), we
use the target description algorithm (B) directly in the ref-
erence patches and we translate source descriptors to target
ones for all other patches. Results are reported in Figure 5.
As in our previous experiment, we notice an improvement
in performance when translating handcrafted to learned de-
scriptor. Furthermore, while some translated descriptors
achieve worse performance than the baselines (e.g., Hard-
Net → SOSNet), all three tasks are possible in this previ-
ously unfeasible cross-descriptor scenario.

A.3. InLoc Indoor Visual Localization dataset

We also evaluate descriptor translation on the challeng-
ing InLoc Indoor Visual Localization dataset [53]. We fol-



Figure 5: HPatches. We report verification, matching, and retrieval results on the HPatches dataset. Color of the marker
indicates Easy, Hard, and Tough noise. For the patch verification task, diamonds and stars show results with negatives from
the same sequence and from different sequences, respectively. For the image matching task, crosses and triangles denote
illumination and viewpoint results, respectively.

Sc
en

ar
io

Database
descriptor

Query
descriptor

% localized queries
DUC1 DUC2

0.25m 0.5m 0.25m 0.5m

St
an

da
rd BRIEF BRIEF 25.3 36.4 22.9 41.2

SIFT SIFT 32.3 47.5 27.5 45.0
HardNet HardNet 36.4 52.5 30.5 54.2
SOSNet SOSNet 34.8 50.5 30.5 53.4

C
on

t.
de

pl
oy

m
en

t

BRIEF→
SIFT 28.3 39.9 22.1 40.5

HardNet 29.8 43.9 30.5 40.5
SOSNet 31.8 43.4 23.7 40.5

SIFT→ HardNet 36.4 50.0 31.3 50.4
SOSNet 36.4 53.5 33.6 50.4

HardNet→ SOSNet 33.3 48.5 30.5 55.7

C
ro

ss
-d

ev
ic

e

SIFT← BRIEF 29.3 40.9 25.2 42.0

HardNet← BRIEF 30.3 46.5 27.5 48.1
SIFT 36.4 51.0 33.6 55.7

SOSNet←
BRIEF 29.8 44.9 29.0 45.0
SIFT 34.8 51.0 33.6 53.4

HardNet 37.4 50.5 29.0 49.6

Table 4: InLoc Indoor Visual Localization. Localization
under continuous deployment. A reference map is built
using the database description algorithm. The descriptors of
this map are translated to a target query descriptor. Cross-
device localization. A reference map is built using the
database description algorithm. The descriptors of query
images are translated to be compatible with the map.

low the regular evaluation protocol for local features [53].
For each query, we retrieve top 10 related images accord-
ing to NetVLAD [5] global descriptors. 2D-2D matches are
established between the query image and each retrieved im-
age. Next, keypoints in database images are back-projected

to 3D using the ground-truth LiDAR scans to obtain a set of
2D-3D matches. Finally, RANSAC pose estimation is ran
for each set of 2D-3D matches and the pose with the highest
number of inliers is selected. For this experiment, we use
DoG keypoints extracted using COLMAP.

The results are shown in Table 4. As with previous ex-
periments, we notice a significant uptick in performance
when matching translated hand-crafted descriptors against
natively extracted learned ones, notably for the lower local-
ization threshold.

A.4. Localization to collaborative maps

We train our encoder-decoder approach with varied joint
embedding dimensions. We present results in the case of lo-
calization to crowd-sourced maps on the Aachen Day-Night
dataset [49] in Table 5. To recall, in this scenario, the set
of database images is split in 4 balanced subsets, one for
each description algorithm. For query images, we extract
SOSNet [54] descriptors. Both query and database features
are then translated to the joint space for matching. Increas-
ing the dimensionality past 128 does not have any benefits
in terms of performance. Interestingly, the 64-dimensional
variant performs better than SIFT [28] despite using a het-
erogeneous map. Finally, even the 32-dimensional variant
drastically outperforms native BRIEF [10] localization.

A.5. HPatches sequences

We present a per-scene comparison between state-of-the-
art descriptors on the full HPatches sequences [7] follow-
ing the evaluation protocol of Dusmanu et al. [15]. We
report the absolute difference between the area under the
mean matching accuracy curve up to 5 pixels for different
pairs of descriptors in Figure 6. Despite SOSNet [54] drasti-



Sc
en

ar
io

Descriptor
% localized queries

Day (824 images) Night (98 images)
0.25m, 2◦ 0.5m, 5◦ 0.25m, 2◦ 0.5m, 5◦

St
an

da
rd BRIEF 76.1 81.4 32.7 36.7

SIFT 82.5 88.7 52.0 61.2
HardNet 86.2 92.2 64.3 72.4
SOSNet 86.4 92.7 65.3 75.5

C
ol

la
bo

ra
tiv

e Embed 256 84.6 -1.8 90.8 -1.9 58.2 -7.1 64.3 -11.2

Embed 128 84.8 -1.6 90.9 -1.8 57.1 -8.2 60.2 -15.3

Embed 64 83.7 -2.7 89.1 -3.6 56.1 -9.2 61.2 -14.3

Embed 32 80.3 -6.1 86.8 -5.9 45.9 -19.4 49.0 -26.5

Embed 16 75.1 -11.3 80.8 -11.9 30.6 -34.7 33.7 -41.8

Table 5: Localization to collaborative maps – embedding
dimension. The database images are partitioned in 4 bal-
anced subsets, one for each description algorithm. We use
SOSNet for query images. Both database and query de-
scriptors are translated to the joint embedding space.

cally outperforming BRIEF [10] and SIFT [28] overall, the
handcrafted descriptors achieve better matching accuracy
on a significant number of scenes. Similarly, while Hard-
Net [34] and SOSNet have a similar overall performance,
there are still small scene-to-scene variations. Thus, it is
unclear whether existing learned descriptors (e.g., SOSNet)
are the best under all conditions.

B. Further implementation details
To encourage and facilitate future research on the

topic of collaborative localization and mapping from
heterogeneous devices, the code of our method and the
evaluation protocols will be released as open source
at https://github.com/mihaidusmanu/cross-
descriptor-vis-loc-map.

The architectures used throughout our experiments are
detailed in Table 6. Our approach was implemented in
Python using PyTorch [41] and Kornia [46]. For the learned
descriptors, we use the official Liberty [56] pre-trained
weights released by the authors. Training the encoder-
decoder approach for all 4 description algorithms takes
around 30 minutes on a single NVIDIA RTX 2080Ti.

C. Pseudo-ground-truth generation
Similar to other datasets [49, 22], we generate pseudo-

ground-truth intrinsics and extrinsics for the Local Feature
Evaluation benchmark [51] via an initial Structure-from-
Motion process. For each dataset, there are four steps:

• We extract SOSNet [54] descriptors around DoG [28]
keypoints obtained using COLMAP [50] with default
parameters. We exhaustively match all images using a
mutual nearest neighbors matcher enforcing the ratio
test [28] with a threshold of 0.9.
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Figure 6: HPatches sequences breakdown. We report the
per-scene absolute difference in the area under the mean
matching accuracy curve up to 5 pixels between different
descriptors. While SOSNet has a better overall perfor-
mance, it does not outperform BRIEF or SIFT on all scenes.
Similarly, while smaller, there are still scene-to-scene dif-
ferences between the two learned descriptors.

https://github.com/mihaidusmanu/cross-descriptor-vis-loc-map
https://github.com/mihaidusmanu/cross-descriptor-vis-loc-map


BRIEF

Layer Batch
norm. Activation Output

dim.

Encoder

input 512
hidden1 X ReLU 1024
hidden2 X ReLU 1024
embed 128

Decoder

embed 128
hidden1 X ReLU 1024
hidden2 X ReLU 1024
output Sigmoid 512

SIFT

Layer Batch
norm. Activation Output

dim.

Encoder

input 128
hidden1 X ReLU 1024
hidden2 X ReLU 1024
embed 128

Decoder

embed 128
hidden1 X ReLU 1024
hidden2 X ReLU 1024
output ReLU 128

HardNet / SOSNet

Layer Batch
norm. Activation Output

dim.

Encoder

input 128
hidden1 X ReLU 256
hidden2 X ReLU 256
embed 128

Decoder

embed 128
hidden1 X ReLU 256
hidden2 X ReLU 256
output 128

Table 6: Architectures. We use shallow MLPs with 2 hidden layers for all methods. For the handcrafted algorithms
(BRIEF [10], SIFT [28]) we use larger hidden layers as these descriptors encode lower level image structures. The joint
embedding is `2 normalized and so is the output if required (i.e., in the case of SIFT [28], HardNet [34], SOSNet [54]).

• We run COLMAP [50] for geometric verification and
mapping. All images with less than 100 3D points are
not considered during the next steps.

• We run geometric verification and mapping again on
the remaining images – this time all intrinsics are fixed
to the estimates from the previous step.

• We rescale the final model with respect to Google
Maps by manual correspondence clicking to obtain fi-
nal pseudo-ground-truth metric poses.

D. Collaborative mapping – co-visibility

Figures 13 and 14 report additional co-visibility statis-
tics for our approaches to collaborative mapping from het-
erogeneous descriptors on the benchmark of Schönberger et
al. [51]. The “Embed” approach translating everything to
the joint embedding space generally manages to have more
balanced models. This is especially noticeable in the per-
centage of 3D points containing at least one BRIEF descrip-
tor in their tracks. However, this comes at a cost, as learned
features (i.e., HardNet, SOSNet) are less represented than
in the “Progressive” approach.

We show a qualitative comparison of point-clouds in Fig-
ure 15. We compare the real-world point-clouds (i.e., where
each description algorithm only has access to a quarter of
images) with the proposed crowd-sourced reconstruction.
Our method is able to successfully match descriptors of dif-
ferent types yielding significantly more complete 3D mod-
els. On the most difficult landmark containing strongly
symmetric structures and multiple night images (Gendar-
menmarkt), we notice that some individual reconstructions
are unable to recover the correct ground-truth scene geom-
etry (notably BRIEF and SIFT).
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Figure 7: Pair vs. encoder-decoder. We report the perfor-
mance of SIFT to HardNet translation on the full sequences
from the HPatches dataset. The encoder-decoder (ED) net-
work performs on par with the pair network despite being
trained for 4 description algorithms at once.

E. Ablation study

In this section, we study the impact of architecture and
losses on our data-driven translation approach. For this
purpose, we consider the full sequences of the well-known
HPatches dataset [7]. Following the protocol introduced by
Dusmanu et al. [15], we report the mean matching accuracy
of a mutual nearest-neighbor matcher for different thresh-
olds up to which a match is considered correct. In each
sequence, the first image is treated as query and matched
against the other five. For translation experiments, the query
descriptors are translated from a source description algo-
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Figure 8: Naive matching. Matching different descrip-
tors by running nearest neighbor search from one descriptor
space to the other does not yield any correct matches.

rithm (e.g., SIFT [28]) to a target one (e.g., HardNet [34]))
and matched against natively extracted descriptors (e.g.,
HardNet) in the other images.

E.1. Naive matching

We first try naively matching different descriptors by
running nearest neighbor search from one descriptor space
to the other. Results are reported in Figure 8. BRIEF can-
not be matched against SOSNet due to the different dimen-
sionality. SIFT does not yield any correct matches when
matched directly against SOSNet. This is also valid for
HardNet, despite using the same backbone architecture and
training data as SOSNet. Thus, it is impossible to naively
match different descriptors and, without cross-descriptor
matching, the final 3D models would be disconnected.

E.2. Pair vs. encoder-decoder

We compare a pair network trained specifically for SIFT
to HardNet translation with an encoder-decoder network
trained for all 4 description algorithms. We use the same
dataset and hyper-parameters. We set the number of weights
of the pair network equal to that of the encoder of SIFT con-
catenated with the decoder of HardNet. Results are reported
in Figure 7. The performance of both approaches is similar.
However, the encoder-decoder network can be trained once
no matter the number of description algorithms and has the
advantage of a joint embedding.

E.3. Number of description algorithms

In Figure 9, we show an ablation based on the number
of different description algorithm used during training. We
report the matching performance when matching HardNet
to SOSNet features in the joint space. We consider 3 vari-
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Figure 9: Number of description algorithms. The perfor-
mance gain is minimal when training the encoder-decoder
approach using the learned descriptors only.

ants of the encoder-decoder architecture trained with dif-
ferent algorithm subsets: 4 was trained with all descriptors
(BRIEF, SIFT, HardNet, SOSNet), 3 with SIFT, HardNet,
SOSNet, and 2 only with HardNet and SOSNet. As can
be seen, the performance gain is marginal when training
exclusively with the learned methods. We believe the per-
formance loss when compared to raw descriptors is due to
enforcing consistency between different methods.

E.4. Loss

We investigate the effect of different losses on the
encoder-decoder approach.

Matching loss. We first study the usefulness of the match-
ing loss. For this purpose, we randomly select 512 patches
from our training dataset. We extract the 4 descriptors from
each patch and map them to the joint space using their as-
sociated encoders. Finally, we use t-SNE [31] for visualiza-
tion. For clarity, we only plot 128 descriptors of each type
in Figure 11. Training without a matching loss yields a rep-
resentation that cannot be used for cross-descriptor match-
ing. However, HardNet and SOSNet seem coherent sug-
gesting that learned descriptors focus on similar informa-
tion. When leveraging the matching loss, all descriptors are
well aligned. Furthermore, as shown by Figure 10, enforc-
ing matchability in the joint space does not have a signifi-
cant impact on the pair-wise translation.

Final loss. We study three variations of the final loss used
for training. First, we consider the formulation presented
in the main paper which takes into account interactions be-
tween all encoders and decoders:

LTquadratic =
1

|A|2
∑

Ai,Aj∈A2

LTi→j , (8)
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Figure 10: Matching loss. We report the performance of
SIFT to HardNet translation on the full sequences from the
HPatches dataset. The matching loss makes the joint space
suitable for establishing correspondences and does not have
a negative impact on pair-wise translation.

Figure 11: t-SNE visualization of the joint space. We
visualize the embedding of 128 training patches with dif-
ferent description algorithms. Without matching loss, the
handcrafted and learned descriptors are not coherent.

LMquadratic =
1

|A|2
∑

Ai,Aj∈A2

LMi→j . (9)

Second, the translation loss can be replaced by the tradi-
tional auto-encoder loss [9] defined as:

LTauto-encoder =
1

|A|
∑
Ai∈A

LTi→i , (10)

while the matching loss is kept as is:

LMauto-encoder =
1

|A|2
∑

Ai,Aj∈A2

LMi→j . (11)

Third, we propose a linear relaxation of our losses as:

LTlinear =
1

|A|
∑
Ai∈A

LTi→σ(i) , (12)
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Figure 12: Loss ablation. We report the performance of
SIFT to HardNet translation on the full sequences from the
HPatches dataset. We train our encoder-decoder approach
with different losses. Taking into account the interaction
between encoders and decoders of different description al-
gorithms is required for better performance.

LMlinear =
1

|A|
∑
Ai∈A

LMi→σ(i) , (13)

with σ a permutation of {1, . . . , |A|} chosen randomly at
every optimization iteration. In each case, the final loss is a
weighted sum of the translation and matching losses:

L∗ = LT∗ + αLM∗ . (14)

We train the encoder-decoder approach for all 4 descrip-
tion algorithms (i.e., BRIEF, SIFT, HardNet, SOSNet) with
the same architecture and hyper-parameters using each loss
independently. We report the results for SIFT to HardNet
translation in Figure 12. The auto-encoder loss performs
poorly as it does not consider the interaction between the
encoders and decoders of different description algorithms.
To speed up the training process (especially for larger col-
lections of algorithms), one can use the linear variant of our
losses as it yields similar performance.
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Figure 13: Co-visibility statistics – “Embed”. For the
“Embed” approach, we report the % of 3D points contain-
ing 1− 4 distinct algorithms in their tracks on the left. On
the right, we visualize the co-occurence, i.e., the percent-
age of 3D points containing descriptors originating from 2
given description algorithms in their tracks.
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Figure 14: Co-visibility statistics – “Progressive”. For
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containing 1 − 4 distinct algorithms in their tracks on the
left. On the right, we visualize the co-occurence, i.e., the
percentage of 3D points containing descriptors originating
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