
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING TO ACHIEVE GOALS WITH
BELIEF STATE TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the “Belief State Transformer”, a next-token predictor that takes both
a prefix and suffix as inputs, with a novel objective of predicting both the next token
for the prefix and the previous token for the suffix. The Belief State Transformer
effectively learns to solve challenging problems that conventional forward-only
transformers struggle with, in a domain-independent fashion. Key to this success is
learning a compact belief state that captures all relevant information necessary for
accurate predictions. Empirical ablations show that each component of the model is
essential in difficult scenarios where standard Transformers fall short. For the task
of story writing with known prefixes and suffixes, our approach outperforms the
Fill-in-the-Middle method for reaching known goals and demonstrates improved
performance even when the goals are unknown. Altogether, the Belief State
Transformer enables more efficient goal-conditioned decoding, better test-time
inference, and high-quality text representations on small scale problems.

1 INTRODUCTION

Transformer models (Vaswani et al., 2017) have created a revolution in language modeling (Achiam
et al., 2023) with the capability to generate language with many emergent properties at large scale.
Examining these models for flaws in the pursuit of further progress, it’s notable that they struggle
with planning-heavy problems (Bubeck et al., 2023). How can we modify the architecture, objectives,
and algorithms to create a model more capable of reaching goals?

To make progress, we propose the new Belief State Transformer architecture and objective in Section 2.
Informally, a belief state is a sufficient amount of information from the past to predict the outcomes
of all experiments in the future, which can be expressed as either a distribution over underlying
world states or a distribution over future outcomes. The Belief State Transformer is similar to a
standard decoder-only Transformer (e.g., GPT2), except that it has encodings that run both forward
and backward. Both of these encodings are fed into output heads which predict not only the next
token after the prefix but also the previous token before the suffix as shown in Figure 1.

In Section 3 we then study in depth how the Belief State Transformer performs on a known-hard
problem, the star graph (Bachmann & Nagarajan, 2024) which is an elegantly simple sequential
prediction problem known to confound next token prediction approaches. It’s easy to show that
transformers can represent star graph solutions using known results (e.g., (Sanford et al., 2024)), so the
problem here is one of optimization. In particular, we discover that parity problems can be embedded
within star graph problems, with parity known as difficult for gradient-based optimizers. Shockingly,
despite throwing away the backward encoder for inference, the Belief State Transformer solves even
relatively difficult instances of star graphs with experiments detailed in Section 3.4. Analyzing this
discovery, the Belief State Transformer benefits from extra gradients, enabling avoidance of the
parity-by-gradient problem systematically. We also show that data augmentation approaches and
ablations of the Belief State Transformer cannot solve the star graph problem systematically.

Building on this discovery, Section 4 proves this is a general phenomenon: ideal Belief State
Transformers recover the full belief state in a compact representation for the output head. In contrast,
a forward-only transformer and even modifications which predict every future token do not. This
result implies that the Belief State Transformer learns maximal information from a sequence—there
is no other objective/representation which pulls more relevant information into a compact belief state.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

A W Y ZB D

Forward
Encoder

Backward
EncoderE V

Output
Head

Figure 1: The Belief State Transformer has two encoders, one running forward and one backward
with an output head for the next forward token and another for the previous backward token.

The Belief State Transformer creates new allowances which we further explore in Section 5. In
particular, it’s easy to specify a goal token (or tokens) explicitly to generate a goal-conditioned
sequence. We compare this to the fill-in-the-middle approach (Bavarian et al., 2022), finding that
the Belief State Transformer succeeds more effectively on the Tinystories dataset. The Belief State
approach also enables inference planning because rollouts can occur with the Next head and a
semi-independent evaluation of rollout quality can be enabled with the Prev head. Going further,
we can use the Belief State Transformer as an embedder, with the relevant embeddings significantly
superior to other transformer-based approaches.

Altogether, we show that the Belief State Transformer extracts more information (in theory and in
practice) from a set of sequences, enabling Transformer models to perform well in new regimes.
Performance at larger scale is of course an important question for further consideration.

2 THE BELIEF STATE TRANSFORMER

This section introduces the Belief State Transformer. We start by introducing the architecture and the
training objective then discuss how to utilize the model for inference.

2.1 ARCHITECTURE AND OBJECTIVE

Let x1:T be shorthand for the sequence x1, ..., xT . First, we set up the following networks:

Forward encoder F(x1:t) ▷ Encodes prefix
Backward encoder B(xt+k:T) ▷ Encodes suffix
Next decoder x̂t+1 ∼ Tn(· | F(x1:t),B(xt+k:T)) ▷ Predicts next token
Prev decoder x̂′

t+k−1 ∼ Tp(· | F(x1:t),B(xt+k:T)) ▷ Predicts previous token

(1)

The forward encoder aggregates the prefix into a latent F(x1:t), and the backward encoder aggregates
the suffix into a latent B(xt+k:T). We use GPT2-style encoders throughout our experiments, including
baselines. The output heads Tn and Tp then predict their respective tokens. In our experiments, the
parameters of Tn and Tp are tied with only the last layer differing. See Figure 1 for an illustration.

The Belief State Transformer objective is the straightforward sum of the objectives of forward and
backward Transformers conditioned on the prefix and suffix.

Et,x1:t,k≤T−t

[
log

1

Tn(xt+1 | F(x1:t),B(xt+k:T))
+ log

1

Tp(xt+k−1 | F(x1:t),B(xt+k:T)

]
(2)

An obvious alternative (called “Fill in the Middle" (Bavarian et al., 2022)) when both a prefix and
suffix are available is simply putting them together and then using a forward encoder. Information-
theoretically, Fill in the Middle works, but we’ll see that the Belief State Transformer has several
advantages: it causes the system to coalesce a compact belief state which has many benefits explored
here. This approach also extracts O(n2) gradients from sequences enabling a gradient based optimizer
to solve new problems as discussed in the next section. See Appendix D for code and scaling rules.

Training on all prefix-suffix pairs is surprisingly efficient. First, we cache all forward f0:T = {∀i ∈
[0 : T] : F(x1:i)} and backwards b1:T+1 = {∀i ∈ [1, T + 1] : B(xi:T)} latents. Then the loss

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Equation (2) is computed over training examples (fi, bj) and their labels (xi+1, xj−1) for valid i, j
with j−i > 1. We first compute the gradients of the output decoder, and then add them up to compute
the gradients of the encoders. Since there are O(n) gradients over the output head per position of the
forward or backward encoders this optimization saves a large amount of memory and compute.

2.2 BELIEF STATE INFERENCE

During inference time, the forward model Tn(F(x1:t),B(∅)) is given a prefix x1:t and an empty
suffix ∅. We always use autoregressive sampling (ARS), where we sample the next token x̂ from the
next token decoder, add it to the prefix, and repeat. Note that since B(∅) can be precomputed, this
approach requires no more parameters at inference time than a standard forward-only Transformer.
Later in Section 5, we study more complex inference approaches.

3 TESTING PLANNING ABILITIES WITH STAR GRAPHS

Figure 2: The Belief State Transformer outperforms baselines in all star graph navigation tasks.

Bachmann & Nagarajan (2024) propose the star graph problem as an elegantly simple yet challenging
task for forward Transformers to solve. In Figure 2, we reproduce their results while adding a
data augmentation baseline and the new Belief State Transformer results. Notably, the Belief State
Transformer performs exceptionally well without relying on domain-specific adaptations. In the
following sections, we explain the star graph problem, present a new theory to account for these
results, provide a detailed discussion of our experiments, and ablate key design choices.

3.1 THE STAR GRAPH PROBLEM

Figure 3: Illustration of the star
graph problem from Bachmann &
Nagarajan (2024).

A star graph (depicted in Figure 3) G(d, l) is a graph with d
paths of length l emanating out from the start node. To construct
a graph, nodes ni are sampled uniformly from {1, . . . , N}. A
training example is formatted as a sequence containing the edge
list E , the start and end nodes, and a path of length l from start
to end: [E | n1, nl | n1, n2, n3, . . . nl]. Despite its simplicity,
modern next token prediction models fail to solve it.

This task captures a core challenge found in practical planning
tasks like story writing, where creating a coherent narrative
requires the author to keep the story’s resolution and backstory
in mind while progressing through each plot point.

3.2 WHY DO FORWARD-ONLY APPROACHES FAIL?

As shown by (Bachmann & Nagarajan, 2024, Appendix F.2) through extensive experiments, next-
token predictors quickly learn a “flawed cheat” strategy: soon after training begins, forward-only
transformers learn to arbitrarily select a neighbor of the current node since, aside from the start node,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

each node has only one outgoing edge. This flawed strategy leads the model to choose a neighbor of
the start node without accounting for the designated goal during inference, limiting the test accuracy
to 1/d, where d is the number of neighbors of the start node. The key issue with this flawed cheat is
that once the model learns it, finding the correct solution becomes exceedingly difficult. To better
understand this challenge, we provide formal evidence of its difficulty for gradient optimization.
Theorem 1 (Informal). Once the “flawed cheat” strategy is perfected, learning the correct path is at
least as difficult as learning full parity functions.

A full proof is provided in Appendix A. The full parity problem is a notoriously hard problem
for gradient-based optimizers (e.g., Shalev-Shwartz et al., 2017; Abbe & Sandon, 2023). In fact,
it is conjectured that learning the full parity function requires exponentially many samples and
computations in the input dimension (e.g., Abbe & Boix-Adsera, 2022).

The analysis in this section indicates that once the flawed cheat is perfected, the limited supervision
available for the task leads to significant intractability.

3.3 HOW DOES THE BELIEF STATE TRANSFORMER SUCCEED?

The Belief State Transformer is trained to predict the previous token for every suffix, which prevents
the problem from collapsing into the parity problem described in Theorem 1. At a high level, for our
approach to reduce to the parity problem, a large number of gradients must approach zero. However,
the Belief State Transformer ensures that the information necessary to construct path suffixes (e.g.,
n2:l) is present in the input to the output head. From this information, predicting n2 is straightforward,
allowing the model to solve the problem effectively.

This is an instance of a more general phenomenon: the Belief State Transformer naturally converges
toward extracting a compact, complete belief state as discussed further in Section 4.1.

3.4 EXPERIMENTAL RESULTS ON STAR GRAPH

Here, we provide details on the Stargraph results in Figure 2. We run experiments on three types of
graphs: G(2, 5), G(5, 5), G(2, 20). In each experiment, we choose one graph topology and generate
many example graph sequences, with all methods receiving the same amount of data and every
baseline receiving at least as much computation as the Belief State Transformer uses. For evaluation,
the models are conditioned on the edge list, start, goal, and current path, with the task of next node
prediction: p(ni | E , n1, nl, n1:i−1). We report the path accuracy, which is the percentage of correct
path generations during the test time, over 10,000 evaluation graphs.

Empty suffix at inference. The Belief State Transformer trains an additional encoder B for suffixes.
However, as discussed in Section 2.2, we remove the dependency on B during inference time by
pre-computing the backward latent b∅ = B(∅) with an empty suffix (i.e. an “end-of-sentence” token)
and proceed with auto-regressive sampling of the Next decoder Tn(· | F(E , n1, nT , n1, . . . ni), b∅).
The model is still able to produce goal-conditioned behavior since the goal node nT is present in the
prefix input to the forward encoder.

Baselines. We compare against several baselines.

• Forward-only next-token prediction: This baseline follows the conventional strategy of training
a Transformer with the next token prediction objective and teacher forcing, i.e., the model is trained
by feeding the correct previous token as input.

• Data augmentation: A common strategy to improve performance is to employ some form of data
augmentation, although this requires some domain expertise to perform (Lee et al., 2024). This
baseline augments the training data by replacing the goal with subgoals to potentially improve the
learning of goal-conditioned behaviors. Specifically, the goal node, usually the terminal node in the
path, is replaced with an intermediate node in the path. Then, a Transformer is trained with the
next-token objective on this augmented dataset.

• Fill-in-the-middle: The FIM approach (Bavarian et al., 2022) moves a span of text from the
middle to the end, and then trains the transformer with next token prediction. This can be seen as a
generalization of the data augmentation approach, where rather than using intermediate nodes, we
supplement the input with paths from the future.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Teacherless: Proposed by Bachmann & Nagarajan (2024), the teacherless approach refers to a
Transformer trained to predict the entire path

∏T
i=1 p(ni | E , n1, nT) in one forward pass without

providing access to tokens from a partial path.

Our code and baselines adopt the GPT2 Transformer architecture, using standard hyperparameter
settings for number of layers, embedding dimension, etc. All models are trained on the same dataset
with the same training budget. See Appendix B for additional training information and model setup.

3.5 RESULTS

As seen in Figure 2, the Belief State Transformer successfully learns to solve all the graphs. Since
the Belief State Transformer uses an empty suffix, the parameter counts at inference time are very
similar with minor variations driven by variations in output heads.

The baselines have varying degrees of success. The forward only baseline achieves at most a 1/d
success rate, as it learns to output valid paths at random during inference time.

The data augmentation and FIM baselines also performs poorly. We suspect that despite having
access to additional information like intermediate sub-goals or paths, the gradients which the model
is exposed to are still inadequate to encourage the development of appropriate representations due to
the easy availability of shortcut solutions for most subgoals / paths.

The teacherless baseline, while successful in some smaller graphs like G(2, 5), fails to solve more
complicated graphs with more arms (G(5, 5)) or with longer path lengths (G(2, 20)), reproducing
prior results of Bachmann & Nagarajan (2024).

3.6 BELIEF STATE TRANSFORMER VARIANTS

Next, we ablate the Belief State Transformer to characterize its performance. The Belief w/o Prev
ablation removes the previous token decoder and its objective from the training. The Belief w/o
Backward ablation removes the backward encoder B from the training and inference process.

Figure 4: Ablations of the Belief State Transformer on the star graph. Both the belief state objective
and the backward encoder are crucial.

The results in Figure 4 show that both the belief state objective and backward encoder are important
components of the Belief State Transformer, and removing either drops performance back down to
randomly guessing amongst valid paths. Prediction of the Prev token forces the Transformer to learn
to represent long term dependencies which ends up being useful for goal-conditioned navigation.

4 BELIEF STATE TRANSFORMER ANALYSIS

In this section, we show that the Belief State Transformer discovers a compact belief state, and that
the forward-only and teacherless approaches do not1. First, we formally define a belief state.

1The fact that the forward-only approach does not produce a compact belief state is well known. We formalize
it here to contrast with the Belief State Transformer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 1 (Belief State). For any probability distribution over a set of sequences P (x1:T), for
any partial sequence s = x1:t, a vector vs is a belief state for s if there exists a randomized function
g(vs) which can sample from the conditional distribution P(xt+1:T |x1:t).

By definition, a belief state captures all available information relevant for predicting the future tokens.
Once the belief state is learned, there is no additional useful information to be gained—everything
necessary for future predictions is already encoded within it.

4.1 BELIEF STATE DISCOVERY

We first show that successfully optimizing a Belief State Transformer results in a compact belief state.
Theorem 2. Let D = P (x1:T) represent any given probability distribution over a set of sequences.
Consider an ideal Belief State Transformer that satisfies the following conditions for all prefixes x1:t

and suffixes xt+k+1:T :

Tn(xt+1 | F(x1:t),B(xt+k+1:T)) = P(xt+1 | x1:t, xt+k+1:T), (3)
Tp(xt+k | F(x1:t),B(xt+k+1:T)) = P(xt+k | x1:t, xt+k+1:T). (4)

Then, for any partial sequence x1:t supported by D, the forward encoding of the ideal Belief State
Transformer, F(x1:t), is a belief state for x1:t.

Proof. Let st = x1:t denote the prefix. To prove that ft := F(st) is a belief state for st, we must
show that, given ft, one can sample from the conditional distribution P(xt+1:T | st).
The key observation is that the conditional distribution can be decomposed as follows:

P(xt+1:T | st) = P(xT | st)P(xT−1 | st, xT) · · ·P(xt+1 | st, xt+2:T).

For an ideal Belief State Transformer, this decomposition can be rewritten as:

= Tp

(
xT | ft,B(∅)

)
· Tp

(
xT−1 | ft,B(xT)

)
· · ·Tp

(
xt+1 | ft,B(xt+2:T)

)
,

Thus, using the forward encoding ft, one can generate the remaining sequence xt+1:T by sampling
in reverse order—first sampling xT , then xT−1 conditioned on xT , and so on, until xt+1. Each step
involves using the Prev decoder and updating the backward encoder with the newly generated token.

Since the forward encoding ft enables sampling from the conditional distribution P(xt+1:T | st) in
this way, it follows that ft is a belief state for st.

4.2 NEXT-TOKEN PREDICTION DOES NOT GUARANTEE BELIEF STATES

Theorem 2 establishes that an ideal Belief State Transformer learns correct belief states. In contrast,
the following two theorems demonstrate a fundamental limitation of standard next-token predictors
and their variants when viewed from the belief state perspective.
Theorem 3. Consider a standard next-token predictor with a forward encoder F and output head T
such that

T(F(x1:t)) = P(xt+1 | x1:t). (5)

There exists a distribution P (x1:t) over sequences and a next-token predictor of the form Equation (5)
such that the input to the output head is not a belief state.

The proof is provided in Section A.2. Next, we analyze the case of teacherless training (see Sec-
tion 3.4), where the model is asked to predict multiple future tokens at once.
Theorem 4. Consider the teacherless setting where, for predicting H tokens into the future, the
model is of the form

Tj(F(x1:t)) = P(xt+j | x1:t) for j = 1, 2, . . . ,H. (6)

There exists a distribution D = P (x1:t) over sequences and a teacherless model satisfying Equa-
tion (6) such that the input to the output head is not a belief state.

The proof is provided in Section A.3. In summary, the analysis in this section underscores the inherent
limitations of next-token predictors: the input to the output head fails to capture the belief state.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTING WITH THE BELIEF STATE TRANSFORMER

Given a model jointly trained on prefixes and suffixes, the representation is useful in new ways which
are not available to simple forward Transformers. Here we detail two different forms of search based
on forward and backward probabilities (respectively) as well as belief state embedding extractions.

Setup. We use TinyStories (Eldan & Li, 2023), a dataset consisting of synthetic short stories.
TinyStories aims to represent key challenges in text generation while keeping training tractable for
small to medium scale models. We tokenize the dataset into a vocabulary space of size 1000, and
discard stories greater than 256 tokens long resulting in a dataset consisting of 2.7 million stories.

During evaluation, the models generate text using prefix-suffix snippets from an evaluation set of 100
unseen stories. Given stories from two competing models, GPT4 is then asked to output an analysis of
each story examining multiple factors (e.g. grammar, flow, cohesiveness, creativity) before outputting
a final recommendation. We follow best practices in evaluating with multiple trials and shuffling
choice order. We report the winrate and confidence interval (CI) for each model. See Appendix C.2
for more details and examples of the GPT4 judge outputs and scoring.

5.1 GOAL-CONDITIONED TEXT GENERATION

In the goal-conditioned setting, the user provides the model with a prefix and suffix, and the model
infills the text in between. See below for an example of the prefix and suffix. We describe a goal-
conditioned planning procedure with the Belief State Transformer for text generation in Algorithm 1.

Algorithm 1 Goal-conditioned Planning
Require: prompt x1:t, goal xt+k:T , horizon k, rollouts n

1: Priority Queue Q← (1, x1:t)
2: Candidates C ← ∅

Roll-outs start here
3: for j = 1, . . . , n do
4: (priority r, sequence s)← pop(Q)
5: while |s| < t+ k − 1 do
6: Greedy generation

xmax ← argmaxx Tn(x | F(s),B(xt+k:T))
7: Priority queue update for future generation

value Tmax = Tn(xmax | F(s),B(xt+k:T))
8: for x ̸= xmax do
9: Q← (r · Tn(x | F(s),B(xt+k:T))

Tmax
, s+ x)

10: s← s+ xmax

11: Appending C with greedy generation
C ← C ∪ {s+ xt+k:T }

12: Scoring
Output: argmaxx1:T∈C of Equation (7)

Method. The algorithm performs n roll-outs.
In each roll-out (starting at line 3), a candi-
date trajectory is generated that differs from
the greedy trajectory but maintains high prob-
ability. The key features of the process are as
follows:

1. Greedy generation: Starting with a se-
quence s popped from the priority queue Q, a
candidate trajectory is extended from left-to-
right up to a maximum length k using argmax
greedy selection (line 6). The completed tra-
jectory is appended to the set of candidates C
(line 11).

2. Priority queue update for future generation:
Simultaneously, the priority queue Q is up-
dated to track alternative candidate sequences.
This is done by appending non-greedy tokens
to the queue, with their priority set by the rela-
tive suboptimality of each token. Specifically,
lines 8 and 9 add alternative tokens with prior-
ity equal to the current sequence priority multiplied by the ratio of the alternative token’s probability
to that of the greedy token. Since this ratio is ≤ 1, priorities decreases with suboptimality. Also, this
ensures that partial sequences of different lengths remain comparable, as suboptimality is independent
of sequence length. This encourages branching at ambiguous points.

3. Scoring: Once candidate trajectories are generated, they are scored by evaluating the consistency
of generated tokens xt+1:t+k−1 with the goal xt+k:T using the next-head probability:

T∏
i=t+k

Tn(xi | F(x1:i−1),B(xi+1:T)) (7)

We then return the highest-scoring trajectory based on Equation (7).

Baseline. We select the Fill-in-the-middle (FIM) (Bavarian et al., 2022) approach as a natural
goal-conditioned baseline. FIM trains a single forward-only transformer where the input is the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

concatenated suffix and prefix, and the objective is next token prediction. Because the forward-only
approach is radically less efficient, we sample suffixes uniformly at random during training. During
inference, beam search (Graves, 2012) is performed to search for high-probability sequences.

For fair comparisons, we train the FIM and Belief State Transformer with a similar amount of
resources in terms of wall-clock and GPU usage, and set the architecture configuration so that the
number of parameters between models is similar (80M for Belief, 85M for FIM). During inference
time, we configure the search methods so that the computational budget is similar, i.e. setting the
number of beams and depth to the values we use in Algorithm 1. See Appendix C.1 for more details.

Table 1: Goal-conditioned results.

FIM Belief Tie

Winrate 21% 64% 15%
CI (13%, 30%) (54%, 74%) (8%, 24%)

Results. As seen in Table 1, GPT4 prefers the Belief State
transformer 64% of the time with a binomial confidence
interval of [54%, 74%]. Qualitatively, the stories of Belief
State Transformer are superior to FIM in several ways.
The Belief State outputs more frequently display clear
narrative structure, with a beginning, middle, and end,
while the FIM model tends to generate shorter stories with
simpler structure and repetitions. The FIM model also frequently failed to connect its completions to
the suffix, resulting in abrupt and grammatically incorrect transitions. See below for an example.

Prefix: Once upon a time, there was a king. He was a big and strong king who ruled over his kingdom. One day, he
wanted to take a nice and long bath, so he filled the bathtub with warm water
Belief: . He got in and started to wash. The king was very busy, but he was so busy that he didn’t notice the water was
getting too hot. Suddenly, he felt a sharp pain in his foot. He looked down and saw it burning. He was very scared and
he quickly put his foot in the water. The king was very worried. He
FIM: and lots of bubbles. He stepped into the bathtub and started to play with the bubbles. Suddenly, the king
noticed that one of the bubbles was getting bigger and bigger. He asked the king, "What’s happening?" The king
replied, "The bubble is getting bigger and bigger. It’s getting
Suffix: quickly grabbed a cloth and began to clean it up. The king got so hot from cleaning up the mess that he
decided to take another soak in the bathtub. He put a lot of bubbles in the water to make it nice and bubbly. He relaxed
again and felt all the worries wash away.

In this example, the Belief State Transformer’s story has a clear narrative structure with setup, conflict
and resolution. It is also able to correctly connect the prefix, generated text, and suffix. On the other
hand, the FIM model has repetitions (“bigger and bigger”), confusing dialogue where a previously
unmentioned person asks the king a question, and an abrupt and grammatically incorrect transition to
the suffix (“It’s getting quickly grabbed”). See Appendices C.2 and C.3 for more examples as well as
the grade reports and evaluation outputs of the GPT4 judge.

5.2 UNCONDITIONAL TEXT GENERATION

Method. Next, we investigate the unconditional setting, or when the goal is unknown. We propose
to largely reuse the logic in Algorithm 1, where we set the goal to the empty input z′∅ := {∅}. Rather
than scoring the sequences with the next head Tn we propose to use the previous head Tp over a
fixed amount of suffix tokens k. In short, to accommodate unconditional generation, we just use the
empty token and score with the previous head.

T∏
i=T−k

Tp(xi | F(x1:i−1),B(xi+1:T)) (8)

We choose to use the previous head rather than the next head as a semi-independent evaluator of
next-generated tokens to reduce the bias associated with self-evaluation. By scoring over the last k
tokens, this selects for trajectories whose endings are more likely.

Table 2: Unconditioned results.

FIM Belief Tie

Winrate 28% 41% 31%
CI (20%, 38%) (31%, 51%) (22%, 41%)

Results. As seen in Table 2, the Belief State transformer
outperforms the FIM model. The Belief State Transformer
outputs consistently have correct grammar, whereas the
FIM models often abruptly end in the middle of sentences.
This grammatical flaw is consistently picked up by the
GPT4 judge, and results in the FIM’s lower winrate. See
below for an example.

Prefix: You don’t have to be scared of the loud dog, I’ll protect you". The mole felt so safe with the little girl. She was
very kind and the mole soon came to trust her. He was

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Belief: so gentle and kind. The little girl was so happy to have a new friend. She wanted to show the mole all her
favorite things. She took him to the park and showed him all the different things she could see. The mole was so
excited to see the different things. He ran around and played with the other kids. He even found a ball and a toy car.
The little girl was so happy to see the mole having fun.

FIM: always there to protect her. One day, the mole was walking through the woods when he heard a loud noise.
He looked up and saw a big, scary dog. The dog was barking and growling at the mole. The mole was so scared that
he ran away as fast as he could. The dog chased after the mole, but the mole was too fast. The dog was getting closer
and clos

Suffix: ∅

5.3 ABLATIONS

Table 3: Ablations

FIM Belief Beamsearch Tie

Winrate 27% 51% 22%
CI (19%, 37%) (40%, 61%) (14%, 41%)

FIM Belief Next Score Tie

Winrate 34% 36% 30%
CI (24%, 44%) (26%, 47%) (21%, 40%)

Finally, we conduct a few ablations to verify our design
choices. First, the Belief Beamsearch ablation uses beam-
search to generate the candidate set rather than the priority
queue scheme in Algorithm 1. Next, in the unconditioned
setting, the Belief Next Score ablation uses the next head
Tn to score the suffix instead of Tp.

Table 3 shows the performance drops in both cases. The
Belief Beamsearch outputs is more prone to repetition
than Algorithm 1. Next, the Belief Next Score ablation
frequently outputs stories that end abruptly and incorrectly,
similar to the FIM baseline in the unconditional setting.

5.4 UNDERSTANDING BELIEF STATES

We investigated the representations learned by the Belief State Transformer to provide insight into
what the states capture and how they are learned. First, we verified that the representations are indeed
belief states, by training small MLP networks from the first hidden state on the G(2,5) Stargraph
to predict the future token on a specific timestep. We found that the Belief State Transformer has
the information to predict all future tokens, while the information contained within the state learned
using the Forward-Only objective is incomplete (Figure 5, left).

0 --> 1 0 --> 2 0 --> 3 0 --> 40.0

0.5

1.0
Future Token Prediction Accuracy

w/o context Forward-Only Belief State 0 5 10 15 20 25 30 35
Iterations (x 1000)

0.00

0.25

0.50

0.75

1.00
Future Token Prediction Accuracy

0 --> 1
0 --> 2
0 --> 3
0 --> 4

Figure 5: Probing results on star graphs show that Belief State Transformer’s learned representation
captures more information about future tokens (left). Additionally, this belief state develops earlier in
training for tokens which are further in the future (right).

An analysis of how the probe accuracy improved over the course of training revealed a clear trend.
The belief state captures information about the tokens at the end of the sequence at the beginning of
training, while information about the earlier tokens is learned later (Figure 5).

The same probing technique can understand how well the Belief State successfully captures in-
formation about the graph description. We found that the Belief State Transformer captures more
information about the graph description than the Forward-Only model (Figure 6). Capturing the
graph description completely is sufficient but not necessary for learning the belief state, since all the
information in the graph description might not be used for predicting the future tokens.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160.0

0.5

1.0
Graph Description Prediction Accuracy

w/o context Next-token Belief State

Figure 6: We probe the representations for the graph description tokens, and find that the Belief State
embeddings contain more information.

6 OTHER RELATED WORK

Several papers explore non-left-to-right approaches, both during training and generation time. ELMo
(Peters et al., 2018) was a prominent approach that trained language embeddings using bidirectional
RNNs. Next, BERT (Devlin et al., 2018) used transformers to infill masked sequences, acquiring
embeddings that incorporate context from both sides of the sequence.

Gu et al. (2019) model the generation order as latent variables and performs beam search over the
generation order itself to produce the final text. This is beneficial because in general, the best ordering
for decoding is task-dependent. On the other hand, Welleck et al. (2019) explore generating text in
a binary tree order, but their model struggles to outperform traditional left-to-right autoregressive
generation in tasks like language modeling, machine translation, sentence completion, and word
reordering. In Nguyen et al. (2024), they propose training two separate transformers and implement
several strategies to “meet in the middle” during decoding. In contrast, our approach involves
jointly training a transformer capable of both forward and backward decoding, which has important
implications for creating compact belief states. A general study of the quality of backward prediction
is done in Papadopoulos et al. (2024) discovering that backward prediction is possible but generally
slightly worse than forwards prediction. Somewhat further afield, combined forward/backward
decoding approaches with RNNs have proved useful (Mou et al., 2015; Serdyuk et al., 2018; Mangal
et al., 2019) and similarly for neural machine translation (Liu et al., 2016; Zhang et al., 2018).

The concept of employing multiple decoding blocks has been explored in other works. For example,
MEDUSA (Cai et al., 2024) leverages post-training on multiple decoders to accelerate decoding,
achieving up to a twofold increase in speed. Similarly, multi-head learning (Gloeckle et al., 2024)
focuses on training models to predict multiple next tokens simultaneously. Although these approaches
are focused on computational performance, they align with our theoretical insights, as predicting
multiple tokens fosters the creation of more robust representations of future contexts.

Shai et al. (2024) show that transformers create a non-compact representation of belief states within
their residual stream. Compact belief states are accessible in state-space models (Hasani et al., 2020;
Gu & Dao, 2023), although this comes with different trade-offs compared to transformer-based
approaches. For example, the Mamba training process is known to fail on star graphs (Bachmann &
Nagarajan, 2024).

7 CONCLUSION

The Belief State Transformer advances goal-conditioned next-token predictors, effectively addressing
the limitations of traditional forward-only transformers. The ability of our model to learn a compact
belief state provides a maximal solution: since the belief state contains all the information useful in
predicting the future, no more complex objective can elicit more information. Through experiments
with both star graphs and story writing tasks, we have demonstrated the necessity of each component
of our model, particularly in challenging scenarios where standard transformers struggle.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Looking ahead, while our results demonstrate the superior performance of the Belief State Transformer
in small scale story writing, exploring its application to other goal-conditioned tasks would be valuable.
Our current experiments serve as proof-of-concept. Further investigation into the scalability of our
approach to larger practical scenarios is essential.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning: quantifying the
cost of symmetry. Advances in Neural Information Processing Systems, 35:17188–17201, 2022.

Emmanuel Abbe and Colin Sandon. Polynomial-time universality and limitations of deep learning.
Communications on Pure and Applied Mathematics, 76(11):3493–3549, 2023. doi: https://
doi.org/10.1002/cpa.22121. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpa.22121.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Forty-first
International Conference on Machine Learning, 2024.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711,
2012.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with automatically inferred
generation order. Transactions of the Association for Computational Linguistics, 7:661–676, 2019.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid time-
constant networks, 2020. URL https://arxiv.org/abs/2006.04439.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=dsUB4bst9S.

Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Agreement on target-bidirectional
neural machine translation. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 411–416, San Diego, California, June 2016.
Association for Computational Linguistics. doi: 10.18653/v1/N16-1046. URL https://
aclanthology.org/N16-1046.

Sanidhya Mangal, Poorva Joshi, and Rahul Modak. Lstm vs. gru vs. bidirectional rnn for script
generation. arXiv preprint arXiv:1908.04332, 2019.

12

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22121
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22121
https://arxiv.org/abs/2006.04439
https://openreview.net/forum?id=dsUB4bst9S
https://aclanthology.org/N16-1046
https://aclanthology.org/N16-1046

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lili Mou, Rui Yan, Ge Li, Lu Zhang, and Zhi Jin. Backbone language modeling for constrained
natural language generation. CoRR, abs/1512.06612, 2015. URL http://arxiv.org/abs/
1512.06612.

Anh Nguyen, Nikos Karampatziakis, and Weizhu Chen. Meet in the middle: A new pre-training
paradigm. Advances in Neural Information Processing Systems, 36, 2024.

Vassilis Papadopoulos, Jérémie Wenger, and Clément Hongler. Arrows of time for large language
models. arXiv preprint arXiv:2401.17505, 2024.

ME Peters, M Neumann, M Iyyer, M Gardner, C Clark, K Lee, and L Zettlemoyer. Deep contextual-
ized word representations. corr. arXiv preprint arXiv:1802.05365, 2018.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. arXiv preprint arXiv:2402.09268, 2024.

Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordoni, Adam Trischler, Chris Pal, and Yoshua
Bengio. Twin networks: Matching the future for sequence generation, 2018. URL https:
//arxiv.org/abs/1708.06742.

Adam S. Shai, Sarah E. Marzen, Lucas Teixeira, Alexander Gietelink Oldenziel, and Paul M.
Riechers. Transformers represent belief state geometry in their residual stream, 2024. URL
https://arxiv.org/abs/2405.15943.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In International Conference on Machine Learning, pp. 3067–3075. PMLR, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text
generation. In International Conference on Machine Learning, pp. 6716–6726. PMLR, 2019.

Zhirui Zhang, Shuangzhi Wu, Shujie Liu, Mu Li, Ming Zhou, and Tong Xu. Regularizing neural
machine translation by target-bidirectional agreement, 2018. URL https://arxiv.org/
abs/1808.04064.

13

http://arxiv.org/abs/1512.06612
http://arxiv.org/abs/1512.06612
https://arxiv.org/abs/1708.06742
https://arxiv.org/abs/1708.06742
https://arxiv.org/abs/2405.15943
https://arxiv.org/abs/1808.04064
https://arxiv.org/abs/1808.04064

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS OF THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

In this section, we provide a formal statement and a proof of Theorem 1.

As discussed in the main text, the starting point of our argument is the observation by (Bachmann
& Nagarajan, 2024, Appendix F.2) that the model quickly learns the aforementioned “flawed cheat”
solution, which prevents it from learning the true solution. Specifically, next-token predictors rapidly
adopt this flawed shortcut, but make little progress in correctly predicting the first vertex on the path.
Below, we provide formal evidence that learning the flawed cheat indeed hinders the model from
learning the true solution.

In essence, once the flawed cheat solution is perfected, the model receives supervision only from the
prediction of the first vertex after the starting node. This effectively reduces the star graph task to the
following simplified task:

Task 1. Given a stargraph and a goal node, predict the correct neighbor of the starting node.

The formal statement of Theorem 1 is that Task 1 is at least as difficult as learning the full parity
function (i.e., predicting whether the sum of the elements in a binary string is even or odd).

Theorem 5. For every full parity problem, there exists a stargraph such that solving Task 1 provides
a solution to the parity problem.

Notably, empirical evidence shows that gradient-based methods struggle to learn the full parity
function in standard training setups, especially in high dimensions (e.g., Shalev-Shwartz et al., 2017;
Abbe & Sandon, 2023). It has been also conjectured that learning the full parity function requires a
number of samples and computations exponential in the input dimension (e.g., Abbe & Boix-Adsera,
2022). Consequently, Task 1 inherits this difficulty, as it encapsulates learning the full parity function
as a special case.

𝒙 𝟏 = 𝟎

0

1

-1

2

-2

-3

3

𝒙 𝟐 = 𝟏

4

-4

𝒙 𝟑 = 𝟏

. . .

Parity

Star Graph

. . .

5

-5

𝒙 𝟒 = 𝟎

-6

6

𝒙 𝟓 = 𝟏

Figure 7: Reduction from learning parity to learning star graph. Note that if parity(x) = 0 (even),
then the shortest path from center 0 to vertex n passes 1. Otherwise, it passes −1. As a result, solving
the star graph instance induced by x implies correctly predicting the parity of x.

Proof of Theorem 5. Consider a star graph with 2n+1 vertices. For simplicity, we index the vertices
by −n, . . . ,−1, 0, 1, . . . , n. Given a binary string x ∈ {0, 1}n, we generate a star graph instance as
follows: First we make vertex 0 the center and connect it to vertex ±1. For each i ∈ {1, . . . , n− 1},
if x[i] = 0 we connect vertex i to i+ 1 and vertex −i to −i− 1. Otherwise, we connect i to −i− 1
and −i to i+ 1. We illustrate this reduction in Figure 7.

The parity of x can now be determined by the first step towards target vertex n. Specifically, if
parity(x) = 0 (even), then the first vertex is 1. Otherwise, it is −1. Consequently, if an algorithm can
solve Task 1 for star graphs generated in this way, then it equivalently solves learning the full parity
problem.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 3

We prove this theorem by constructing a counterexample. Consider the distribution D that is uniform
over the sequences {ACA,BCB}. Our goal is to show that there exists an ideal next-token predictor,
in the sense of Equation (5), that does not learn a belief state.

First, note that an ideal next-token predictor achieves a log loss of 1 bit on the first token and 0 log
loss on all subsequent tokens. Define the forward encoder F(x1:t) to output a two-dimensional vector
for any partial sequence x1:t. Specifically, we define the encoding as follows:

F(∅) = (−1,−1),
F(A) = F(B) = (−1, 1),

F(AC) = (1,−1),
F(BC) = (1, 1).

Next, we define the output head T for the next-token predictions:

T(−1,−1) = uniform(A,B),

T(−1, 1) = C,

T(1,−1) = A,

T(1, 1) = B.

It can be verified that this setup achieves the optimal performance: a 1-bit log loss on the first token
(since A and B are equally likely), and 0 log loss on subsequent tokens (since the continuation of
the sequence is fully deterministic). However, the key observation is that F(A) = F(B) = (−1, 1) is
not a belief state for the remainder of the sequence. This is because any function g(−1, 1) applied
to this encoding outputs a distribution that is independent of whether the initial token was A or B.
Thus, the encoding fails to capture the information necessary to distinguish between the two possible
continuations of the sequence, violating the definition of a belief state. Therefore, this next-token
predictor does not output a belief state, completing the proof.

A.3 PROOF OF THEOREM 4

We again use a counterexample construction to prove this theorem. Consider the distribution D,
which is uniform over the four sequences {DAA,DBB,SAB, SBA}. Here, the initial tokens D
and S determine whether the next symbol is doubled or not. Our goal is to demonstrate that a
teacherless model, in the sense of Equation (6), does not learn a belief state.

First, we construct an ideal teacherless model that suffers a log loss of 2 bits on each token except for
the last token. Note that this is the minimal log loss achievable. Define the forward encoder F(x1:t)
to output a two-dimensional vector for any partial sequence x1:t. Specifically, we define the encoding
as follows:

F(∅) = (−1,−1),
F(D) = F(S) = (−1, 1),

F(DA) = F(SB) = (1,−1),
F(DB) = F(SA) = (1, 1).

Now, define the output head for predicting the next tokens at different time steps as follows:

T1((−1,−1)) = uniform(S,D),

T2((−1,−1)) = uniform(A,B),

T3((−1,−1)) = uniform(A,B),

T1((−1, 1)) = uniform(A,B),

T2((−1, 1)) = uniform(A,B),

T1((1,−1)) = A,

T1((1, 1)) = B.

This teacherless model clearly achieves the minimal log loss. However, the key observation is that
F(S) = F(D) = (−1, 1) is not a belief state for the remainder of the sequence. The reason is that any

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

function g(−1, 1) applied to this encoding outputs a distribution that is independent of whether the
initial token was S or D. Thus, the encoding fails to capture the necessary information for predicting
the future tokens. Therefore, this teacherless model does not output a belief state, completing the
proof.

B STAR GRAPH DETAILS

In this section, we provide detailed descriptions of the star graph experiments from Section 3.4.

• Data Generation. We use the data generation code from the official codebase. To generate
the star graph structure, each node ni is sampled uniformly from the set {1, . . . , N}. For all
experiments, we set N = 50, and we generate 8M examples for each data set.

• Data Tokenization. We follow the same tokenization settings as in (Bachmann & Nagarajan,
2024, Section G.1).

• Architectures. Both the forward and backward encoders consist of nlayers = 6 layers with an
embedding dimension of 768, nhead = 8 attention heads, and an MLP expansion factor of 1.
The baselines use the same configuration.

• Training Details. In all cases, we use the AdamW optimizer with a weight decay strength
of 0.1. For G(2, 5), the learning rate is set to η = 3 · 10−4, while for G(5, 5) and G(2, 20), a
smaller learning rate of η = 1 · 10−4 is used. We run all experiments for 100 epochs to ensure
convergence. All models run quickly, finishing 100 epochs in less than 2 hours. The belief state
transformer reaches ≈ 100% accuracy in a few minutes on the easier graphs. Each model is
trained on a single A100 / H100 GPU with 80GB memory.

• Evaluation. We evaluate the models on 10,000 unseen graphs. To succeed, the model must
output the entire path correctly, and we report the success rate.

B.1 BASELINE DETAILS

We use the official codebase from Bachmann & Nagarajan (2024) to instantiate and train the baselines.

• Forward-only. This baseline trains a transformer to do next-token prediction over the sequence
data. Teacher forcing is used during training, so the model gets ground truth intermediate
sequences as input.

• Data Augmentation. Here, our data augmentation process entails simply modifying the data
using some domain knowledge, before feeding it into the standard forward-only transformer
training process.
Given the original training sequences [E | n1, nl | n1, n2, n3, . . . nl], we propose to replace the
task specification n1, nl with n1, n

′ where n′ ∼ {n2 . . . nl−1} is an intermediate node in the
path. The resulting training sequence would then look like: [E | n1, n

′ | n1, n2, n3, . . . nl]. The
idea here is that replacing the long horizon goal with a subgoal closer to the start would make
learning the goal conditioning easier.

• Fill-in-the-Middle. This is similar to the domain augmentation baseline, except we replace
intermediate nodes with intermediate suffixes nj , . . . nT . The input to the transformer is then:
[E | n1, nT | nj , nj+1, . . . nl | n1, n2, n3, . . . nl]. During training time, we uniformly sample
suffixes of different lengths.

• Teacherless. This baseline changes the objective from next-token prediction, to multiple token
prediction. Given the graph description, start and goal, [E | n1, nl] the model needs to predict
the path [n1, n2, n3, . . . nl] in a single forward pass.

C TINYSTORIES EXPERIMENTS

We train all models on a single A100 / H100 GPU with 80GB memory.

C.1 TRAINING

The Belief State Transformer’s encoders have the following settings: nlayers = 8, blocks with
embedding dimension edim = 768, and nheads = 8. The textheads Tn,Tp are implemented as a single

16

https://github.com/gregorbachmann/Next-Token-Failures

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3-layer MLP with dimensionality 512 and ReLU activations that outputs two predictions. The total
model size is 80 million parameters.

The FIM baseline trains a forward only transformer with the following settings: nlayers = 12, blocks
with embedding dimension edim = 768, and nheads = 8. The total model size is 85 million parameters.

The FIM baseline’s training is simple—for a given prefix x1:t, we prepend a random suffix xk:T for
k ∼ U(t+ 2, T) and train the transformer to predict xt+1. We create as many prefix-suffix inputs as
the GPU memory allows. Even then, for longer sequences, it becomes increasingly intractable for the
FIM baseline to train on all possible prefix-suffix inputs.

The Belief State Transformer on the other hand, is able to train on all O(T 2) possible prefix-suffix
combinations for a sequence of length T , by carefully accumulating text head gradients over all pairs
before computing the forward and backward encoder gradients. Without such a scheme, training goes
from a few hours to multiple days. As a result, the Belief State Transformer is only around 3− 5×
slower than the FIM baseline’s suffix-sampling update, yet is able to train on all O(T 2) possible
prefix-suffix inputs.

We trained the Belief State transformer on 1 epoch of the TinyStories dataset with 2.7M stories, with
a batch size of 256. The training takes around 5 hours for 1 epoch. Because the FIM baseline goes
through an epoch more quickly than the Belief State transformer, we allow it to run for multiple
epochs with a max training time of 5 hours, and use early stopping on the validation loss to select the
best checkpoint.

Algorithm 2 Beam Search

Require: text x1:t, goal xt+k:T , number of steps K, beams n
1: Priority Queue Q0 ← (1, ∅)
2: for k = 1 to K − 1 do
3: for j = 1 to n do
4: if |Qk−1| > 0 then
5: (priority r, sequence u)← pop(Qk−1)
6: for Possible x̃ do
7: Qk ← (rTn(x̃ | F(xt+k:T + x1:t + u)), u+ x̃)
8: Output: top(n,QK)

The FIM model uses beam search (Graves, 2012) to find high probability sequences at inference time.
At a high level, beam search only examines and expands upon a fixed amount of paths during search
to keep search tractable. To keep the inference time resources comparable, We use the same number
of paths as trajectories we generate in Algorithm 1, which is 120.

C.2 EVALUATION

We evaluate the models on 100 held out stories from the TinyStories dataset. For each story, we use
the first 50 tokens for the prompt, and last 100 tokens for the suffix. The choice of 100 for the suffix
length is due to the varying length of the stories - shorter stories would often just receive padding
tokens as the suffix if the suffix window wasn’t long enough.

We use GPT4 to judge the quality of generated text. Given two generated stories, one from each
model, we ask GPT4 to analyze the stories and output a recommendation on which story is superior.
The stories are anonymized and shuffled to prevent information leakage about its author before we
feed it to GPT4. For every evaluation, we shuffle the story ordering once, and repeat the the evaluation
3 times for a total of 6 GPT4 evaluations for every story. Since we evaluate across 100 held out
stories, this amounts to 600 total queries to GPT4. We use the OpenAI API to automate the process.

Here is an example input we feed into GPT4.

System Prompt: You are evaluating two story generation models. First, analyze the outputs and note their properties.
Then, make an argument for why one is better than another, or say that both are roughly equal.
Story 1:
Once upon a time, in a warm and sunny place, there was a big pit. A little boy named Tom liked to play near the pit.
One day, Tom lost his red ball. He was very sad. Tom asked his friend, Sam, "Did you see my red ball?" Sam said,
"No, but let’s look together." They looked and looked, but they could not find the red ball. Tom was very sad. Then, a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

big bird came and dropped the red ball. The bird had the red ball in its beak. Tom and Sam were so happy! They said,
"Thank you, bird!" The bird flew away, and Tom played with his red ball all day.
Story 2:
Once upon a time, in a warm and sunny place, there was a big pit. A little boy named Tom liked to play near the pit.
One day, Tom lost his red ball. He was very sad. Tom asked his friend, Sam, for help. "Sam, can you help me find my
red ball?" Sam said, "Yes, I will help you." They looked and looked, but they could not find the red ball. Just when
they were about to give up, a big bird flew down from the sky. The bird had the red ball in its beak! The bird dropped
the ball into the pit. Tom and Sam were so happy. They thanked the bird and played with the red ball

Then, GPT4 responds with:

Analysis of Outputs:
Story 1:
Grammar and Style: - Simple and clear sentences, with correct grammar throughout. - Repetitive usage of "Tom
was very sad". - "Tom and Sam were so happy!" creates a clear and optimistic conclusion.
Narrative Flow: - Introduction: Sets the scene with Tom and the pit. - Conflict: Tom loses his red ball. - Resolution:
A big bird returns the ball. - Conclusion: Ends with Tom playing all day, providing a satisfying closure.
Story 2:
Grammar and Style: - Generally grammatically correct. - Uses a more varied sentence structure. - Dialogue
includes direct speech ("Sam, can you help me find my red ball?"), adding a personal touch.
Narrative Flow: - Introduction: Similar setup with Tom and the pit. - Conflict: Tom loses his red ball, seeks Sam’s
help. - Resolution: Big bird returns the ball, but drops it into the pit. - Conclusion: The story seems to end abruptly
without further explanation about retrieving the ball from the pit.
Argument for Which Story is Better:
Conclusion Analysis: - **Story 1** concludes clearly with Tom playing all day, which establishes a definite
and satisfying ending for the reader. - **Story 2** leaves a gap in logic—though the bird returns the ball, it drops it
into the pit, and we don’t see how Tom and Sam retrieve it. The absence of this information feels like an incomplete
ending.
Grammar and Narrative: - Both stories are grammatically correct and maintain simple language, making them
suitable for young readers. - Story 1 employs more repetition, which could be beneficial for reinforcement but
potentially tedious for some readers. Story 2 introduces more varied dialogue which might be more engaging.
Overall Conclusion: - Given that Story 1 has a logical setup, development, and conclusion, **Story 1** is the
better option. It provides a clear, satisfying end where Tom is happy and continues to play. Story 2, while containing
more engaging dialogue, fails to wrap up the narrative logically, leaving the reader with lingering questions about the
outcome.

As seen in the example above, GPT4 is able to consider multiple factors about the story, from low
level grammar and vocabulary choices, to higher level concepts like cohesiveness and logical flow,
and uses these factors to make its final recommendation.

C.3 MODEL OUTPUTS

Here are additional stories generated by the Belief State transformer in the goal-conditioned setting.

Story 1: You don’t have to be scared of the loud dog, I’ll protect you". The mole felt so safe with the little girl. She
was very kind and the mole soon came to trust her. He was so gentle and kind. The little girl was so happy to have a
new friend. She gave the mole a big hug and they played together all day. They ran around the garden and laughed and
had lots of fun. When it was time to go home, the little girl hugged the mole and said goodbye. The mole was so
happy to have a friend like her and they promised to always be friends.
Story 2: Once upon a time, in a warm and sunny place, there was a big pit. A little boy named Tom liked to play near
the pit. One day, Tom lost his red ball. He was very sad. Tom asked his friend, Sam, "Did you see my red ball?" Sam
said, "No, but let’s look together." They looked near the pit and found the red ball. Tom was very happy. He said,
"Thank you, Sam!" But then, a big dog came and took the red ball. Tom and Sam were scared. They wanted the ball
back. They ran after the dog. The dog ran into the pit and disappeared. Tom and Sam were sad. They went into the pit
to search. It was dark and scary. They could not find the ball. They tried to get out, but the pit was too deep. Tom and
Sam were stuck in the pit. They called for help, but no one could hear them. They were sad and scared, and they never
got out of the pit.
Story 3: Once upon a time there was a little girl named Lucy. She loved to go to the store to buy sweets with her
mom and dad. On this special day, Lucy entered the store with her mom. Lucy saw a big, red ball. She asked her
mom, "Can I have the ball, please?" Her mom said, "No, Lucy. We don’t have enough money today. We have to go
home and get a new one." Lucy was sad, but she understood. She asked her mom, "Can we get a new ball?" Her mom
smiled and said, "Yes, we can get a new one. But first, we have to be peaceful and kind to her. Have patience and
understanding. Together, you can both be happy!" So, Lucy smiled at the girl and said, "Can we play together?" The
little girl softened and smiled back. She agreed to share the toy and even let Lucy have a turn first. Lucy and the little
girl played together happily.

And some outputs for the FIM baseline, over the same prefix / suffix pairs from above.

Story 1: You don’t have to be scared of the loud dog, I’ll protect you". The mole felt so safe with the little girl. She
was very kind and the mole soon came to trust her. He said, "Don’t be scared, I’m here to protect you". The little girl
was so happy and thanked the mole for keeping her safe. From then on, the little girl and the mole were the best of
friends.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Story 2: Once upon a time, in a warm and sunny place, there was a big pit. A little boy named Tom liked to play near
the pit. One day, Tom lost his red ball. He was very sad. Tom asked his friend, Sam, for help. "Sam, can you help me
find my red ball?" Tom said. Sam said, "Yes, I will help you." They looked and looked, but they could not find the red
ball. They were very sad. Then, a big bird flew down from the sky. The bird had the red ball in its beak! The bird
dropped the ball into the pit. Tom and Sam were so happy. They said, "Thank you, bird!"They went into the pit to
search. It was dark and scary. They could not find the ball. They tried to get out, but the pit was too deep. Tom and
Sam were stuck in the pit. They called for help, but no one could hear them. They were sad and scared, and they never
got out of the pit.
Story 3: Once upon a time there was a little girl named Lucy. She loved to go to the store to buy sweets with her mom
and dad. On this special day, Lucy entered the store with her mom and dad. When they arrived at the store, Lucy was
so excited to see all the different kinds of sweets. She couldn’t believe her eyes when she saw all the different kinds of
sweets. She couldn’t believe her eyes when she saw all the different kinds of sweets. Lucy’s mom smiled at her and
said, " to be peaceful and kind to her. Have patience and understanding. Together, you can both be happy!" So, Lucy
smiled at the girl and said, "Can we play together?" The little girl softened and smiled back. She agreed to share the
toy and even let Lucy have a turn first. Lucy and the little girl played together happily.

D TRAINING THE BELIEF STATE TRANSFORMER

We present pytorch pseudocode illustrating a simplified implementation of the belief state transformer
(Figure 8). Additionally, we present a slightly more complex version which computes and accumulates
the gradients for the text head MLP before backpropagating gradients into the encoders (Figure 9).
This implementation is more computationally efficient as it avoids backpropagating through the large
transformer encoders multiple times. Gloeckle et al. (2024) adopts a similar strategy to efficiently
compute gradients of an encoder with multiple heads.

We define the training overheads. Let the sequence length be n. To scale with batch size, one would
multiply the batch size with the following equations. Let h be the cost related to the output head size,
and e be the cost of soft attention.

GPT: O(hn+en2), first term is cost of doing text_head(fi) for f1:t, second term is cost of encoding
the tokens x1:t with attention to produce f1:t.

BST: O(hn2 + en2), first term is cost of doing text_head(fi, bj) for all valid pairs in the O(n2)
prefix-suffix pairs, second term is cost of encoding the prefix and suffix tokens with attention. Note
that at inference, BST is O(hn+ en2).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

import torch
import torch.nn as nn

def belief_state_objective(enc_F, enc_B, text_head, x):
bs, T = x.shape
forward_state = enc_F(x)
backward_state = enc_B(x.flip(1)).flip(1)
ft = torch.arange(T, dtype=torch.int32)
bt = torch.arange(T, dtype=torch.int32)
combinations = torch.cartesian_prod(ft, bt)
combinations = combinations[(combinations[:, 1]-combinations[:, 0]>=2)]
fb_pairs = combinations.clone()
fb_pairs = fb_pairs[combinations[:,1] < T]
f_idxs = fb_pairs[:, 0]
b_idxs = fb_pairs[:, 1]
nt_idxs = (combinations[:, 0] + 1)
f = forward_state[:, f_idxs]
b = backward_state[:, b_idxs]
single_labels_f = x[:, nt_idxs].unsqueeze(2)
single_labels_b = x[:, b_idxs].unsqueeze(2)
single_labels = torch.cat((single_labels_f, single_labels_b), dim=2)
logits = text_head(torch.cat([f, b],dim=2))
fb_numpairs = fb_pairs.shape[0]
logits = logits.reshape((bs, fb_numpairs, 2, -1))
logits = logits.reshape((bs*fb_numpairs*2, -1))
single_labels = single_labels.reshape((bs*fb_numpairs*2))
loss = nn.CrossEntropyLoss()(logits, single_labels)
return loss

if __name__ == ’__main__’:
batch_size = 8
T = 12
m = 512
num_tokens = 100
#Use dummy function in place of actual autoregressive transformer
enc_F = nn.Sequential(nn.Embedding(num_tokens, m), nn.Linear(m, m))
enc_B = nn.Sequential(nn.Embedding(num_tokens, m), nn.Linear(m, m))
text_head = nn.Sequential(nn.Linear(m*2, m), nn.LeakyReLU(), nn.Linear(

m, num_tokens*2))
x = torch.randint(0, num_tokens, size=(batch_size,T))

loss = belief_state_objective(enc_F, enc_B, text_head, x)
print(loss)

Figure 8: A simple implementation of the belief state transformer objective

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

import torch
import torch.nn as nn

def belief_state_objective(all_f, all_b, text_head, x):
bs, T = x.shape
forward_state = all_f
backward_state = all_b.flip(1)
ft = torch.arange(T, dtype=torch.int32)
bt = torch.arange(T, dtype=torch.int32)
combinations = torch.cartesian_prod(ft, bt)
combinations = combinations[(combinations[:, 1]-combinations[:, 0]>=2)]
fb_pairs = combinations.clone()
fb_pairs = fb_pairs[combinations[:,1] < T]
f_idxs = fb_pairs[:, 0]
b_idxs = fb_pairs[:, 1]
nt_idxs = (combinations[:, 0] + 1)
f = forward_state[:, f_idxs]
b = backward_state[:, b_idxs]
single_labels_f = x[:, nt_idxs].unsqueeze(2)
single_labels_b = x[:, b_idxs].unsqueeze(2)
single_labels = torch.cat((single_labels_f, single_labels_b), dim=2)
logits = text_head(torch.cat([f, b],dim=2))
fb_numpairs = fb_pairs.shape[0]
logits = logits.reshape((bs, fb_numpairs, 2, -1))
logits = logits.reshape((bs*fb_numpairs*2, -1))
single_labels = single_labels.reshape((bs*fb_numpairs*2))
loss = nn.CrossEntropyLoss()(logits, single_labels)
return loss

if __name__ == ’__main__’:
batch_size = 8
T = 12
m = 512
num_tokens = 100
#Use dummy function in place of actual autoregressive transformer
enc_F = nn.Sequential(nn.Embedding(num_tokens, m), nn.Linear(m, m))
enc_B = nn.Sequential(nn.Embedding(num_tokens, m), nn.Linear(m, m))
text_head = nn.Sequential(nn.Linear(m*2, m), nn.LeakyReLU(), nn.Linear(

m, num_tokens*2))
x = torch.randint(0, num_tokens, size=(batch_size,T))
f = enc_F(x)
b = enc_B(x)

just get the text head computation graph
_f = f.detach()
_b = b.detach()
_f.requires_grad = True
_b.requires_grad = True

loss = belief_state_objective(_f, _b, text_head, x)
compute text head gradients over all prefix/suffix pairs.
loss.backward()
Update encoders with 1 backward pass.
f.backward(_f.grad)
b.backward(_b.grad)

Figure 9: Efficient computation of all prefix-suffix losses.

21

	Introduction
	The Belief State Transformer
	Architecture and Objective
	Belief State Inference

	Testing Planning Abilities with Star Graphs
	The Star Graph Problem
	Why do forward-only approaches fail?
	How does the Belief State Transformer Succeed?
	Experimental Results on Star Graph
	Results
	Belief State Transformer Variants

	Belief State Transformer Analysis
	Belief State Discovery
	Next-token Prediction Does Not Guarantee Belief States

	Experimenting with the Belief State Transformer
	Goal-conditioned Text Generation
	Unconditional Text Generation
	Ablations
	Understanding Belief States

	Other related work
	Conclusion
	Proofs of Theoretical Results
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4

	Star Graph Details
	Baseline details

	TinyStories experiments
	Training
	Evaluation
	Model Outputs

	Training the Belief State Transformer

