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ABSTRACT

Trajectory prediction is a fundamental component of autonomous driving, requir-
ing models that can handle intermittent observation patterns such as variable-
length histories and missing data. Existing state-of-the-art methods, however, of-
ten assume fixed-length trajectories and complete input, which challenges their
applicability in real-world scenarios where sensor occlusions, communication de-
lays, and temporal sparsity are common. Moreover, conventional approaches typ-
ically address tasks such as trajectory prediction, variable-length modeling, or
missing data handling in isolation, making them less effective in multi-task set-
tings that naturally arise in practice. To address these challenges, we propose Uni-
versal Intermittent Trajectory Predictor (UIT-Pred) that processes inputs with the
time index features, which capture temporal variations to effectively adapt to di-
verse input patterns within the domain. Particularly, we extend recent State Space
Models (SSMs) by introducing the Bidirectional Time Decay Mamba (BTD-
Mamba), designed to capture dependencies both forward and backward along
the sequence. By integrating a decay process, BTD-Mamba effectively analyzes
trajectories while maintaining relationships under intermittent observation. Fur-
thermore, the proposed prediction module employs state encoding to capture the
underlying motion patterns in the input data and models a multimodal trajectory
distribution to account for uncertainty in future predictions. These components
are fused through a unified fusion module, enabling the model to jointly reason
over observed dynamics and potential future behaviors. Extensive experiments on
Argoverse 1 and Argoverse 2 datasets validate the effectiveness of the proposed
model. By simultaneously handling prediction, variable-length observations, and
missing inputs within a universal architecture, the framework proposes to meet the
challenges of real-world autonomous driving systems.

1 INTRODUCTION

Trajectory prediction is a core challenge in autonomous driving, as safe navigation requires antici-
pating the future behaviors of surrounding agents under uncertain and dynamic conditions. While
deep learning models Huang et al. (2025); Karim et al. (2024) has enabled significant progress, they
are designed for fixed-length trajectories and complete observations. In practice, however, observa-
tions are often intermittent: variable-length sequences arise when agents enter or exit the sensor’s
field of view at different times or are observed for varying durations, while missing data occurs due
to sensor occlusions or communication delays. This discrepancy in the observation can degrade the
performance of state-of-the-art methods unless the model explicitly handles these issues Xu & Fu
(2024); Qiu et al. (2025).

Some of the approaches address the issue of variable length trajectories. Xu & Fu (2024) attribute
length bias in Transformers to positional encoding and layer normalization, proposing specialized
subnetworks for different sequence lengths. Li et al. (2024b) introduce a length-agnostic knowl-
edge distillation (LaKD) module that dynamically transfers knowledge across trajectories. Qiu et al.
(2025) proposes Contrastive Learning for Length Shift (CLLS), which uses contrastive learning
during training to help the model learn length-invariant features and reduce the effect of varying
observation lengths. Although these approaches show some effectiveness, they rely on generat-
ing multiple augmented versions of each trajectory sequence, which expands the input space and
increases the overall complexity of the training.
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Other methods like TranSPORTmer Capellera et al. (2024) and MS-TIP Chib et al. (2024) both apply
masking techniques within transformer frameworks to address missing data, with TranSPORTmer
applied to sports scenarios and MS-TIP designed for pedestrian trajectory recovery. In contrast,
U2Diff Capellera et al. (2025) simultaneously reconstructs missing agent states and estimates un-
certainty, focusing on the sports domain. However, these approaches depend on masking strategies
to reconstruct missing observations, but this adds complexity in handling masked vs. unmasked
inputs. Although effective in the sports and pedestrian domains, their applicability to autonomous
driving scenarios remains largely unexplored. Additionally, State-of-the-art methods usually address
prediction, variable-length observation, or missing input separately, overlooking the multi-task na-
ture of real-world systems. Since diverse scenarios might happen in real practice, it is essential to
develop a unified approach that can handle various input conditions, as illustrated in Figure. 1.

Figure 1: The following input condi-
tions reflect scenarios commonly en-
countered in real-world traffic systems:
(i) full observation is available; (ii) ob-
servations are available, but of variable
lengths; (iii) some observation points
are missing; and (iv) both variable-
length and missing observations occur
simultaneously.

To bridge the aforementioned challenges, we propose the
Universal Intermittent Trajectory Predictor (UIT-Pred), a
unified architecture designed to effectively handle vary-
ing input conditions in trajectory forecasting. UIT-
Pred transforms diverse input formats into a generaliz-
able schema through time-aware input representations.
Specifically, we derive two complementary temporal fea-
tures from time indices: scaled timestamps to account for
varying time ranges, and inter-observation interval fea-
tures to capture the timing gaps between observations.
These temporal cues enable the model to capture mo-
tion dynamics without depending on fixed time refer-
ences or explicit validity masks. Building on the capa-
bilities of recent State Space Models (SSMs), particularly
the Mamba architecture, we introduce an enhanced Bidi-
rectional Time Decay Mamba (BTD-Mamba) module,
which captures sequential dependencies in both forward
and backward directions across input observations. Addi-
tionally, a decay mechanism is incorporated to maintain
the continuity and integrity of temporal relationships de-
spite intermittent observations. Furthermore, in the pro-
posed prediction module, we introduce a learnable state
embedding to effectively capture the underlying dynam-
ics of variable-length input sequences and missing obser-
vations. This embedding provides a compact yet informative representation of the agent’s motion
history, maintaining temporal continuity and capturing key behavioral patterns. To further enrich
this representation, we employ a cross-attention mechanism to integrate global context, including
nearby agents and road topology. Finally, the enhanced state embedding is fused with the agent’s
multimodal features through the proposed unified fusion module, enabling mutual learning and en-
hancing prediction accuracy.

Our contributions are summarized as follows: (i) We propose UIT-Pred, a generalizable architecture
that effectively handles diverse input conditions including variable-length histories and missing in-
put data in trajectory forecasting. (ii) We extend the Mamba architecture by introducing the Bidirec-
tional Time Decay Mamba (BTD-Mamba) module, designed to extract rich spatiotemporal features
from diverse forms of intermittent trajectory inputs. (iii) We introduce a novel prediction module
that generates a learnable state embedding to capture the dynamics of observed motion patterns,
which is then fused with the multimodal output to enhance trajectory prediction. (iv) Extensive ex-
periments on the Argoverse 1 and Argoverse 2 benchmarks demonstrate the consistent and strong
performance of our method.

2 RELATED WORK

2.1 TRAJECTORY PREDICTION

Trajectory prediction is the task of forecasting the future paths of moving agents, such as vehi-
cles, pedestrians, or cyclists, based on a sufficiently long, fixed-length history of observed positions.

2
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In recent years, numerous approaches have been developed to address this challenge Chen et al.
(2025a), Messaoud et al. (2025). To model interactions between agents and the map, graph neu-
ral networks Wang et al. (2025a); Chen et al. (2025b) and attention-based mechanisms Xin et al.
(2025); Bharilya et al. (2025); Lee et al. (2024); Huang et al. (2025) have been widely employed.
Furthermore, to capture the inherent uncertainty of road agents, researchers generate multimodal
predictions using GANs Wang et al. (2025b), flow-based models Liang et al. (2023), and diffusion
models Capellera et al. (2025), Wang et al. (2024b), Neumeier et al. (2024). Additionally, goal-
based approaches Afshar et al. (2024), Xing et al. (2025) have gained traction, where multi-modal
goals are first generated through sampling or learning, followed by trajectory prediction conditioned
on these goals.

Recently, the Mamba Gu & Dao (2023) framework has revived interest in state space models (SSMs)
as promising alternatives to Transformers Vaswani et al. (2017), owing to their ability to reduce
attention complexity and capture long-term dependencies. Mamba has shown strong potential across
diverse domains, including natural language processing Zhao et al. (2025); Wang et al. (2024a) and
computer vision Hatamizadeh & Kautz (2025); Yu & Wang (2025). Building on these advances,
our method integrates the strengths of Mamba with Transformer architectures to achieve superior
performance in the unified trajectory prediction task.

2.2 TRAJECTORY PREDICTION FOR LENGTH SHIFT

Trajectory prediction with variable observation lengths has received growing attention in recent
years. Xu & Fu (2024) attribute length bias in Transformers to positional encoding and layer nor-
malization, proposing specialized subnetworks for different sequence lengths. Li et al. (2024b) intro-
duce a length-agnostic knowledge distillation (LaKD) module that dynamically transfers knowledge
across trajectories. Qiu et al. (2025) proposes Contrastive Learning for Length Shift (CLLS), which
uses contrastive learning during training to help the model learn length-invariant features and reduce
the effect of varying observation lengths. Additionally, methods like ITPNet Li et al. (2024a), MOE
Sun et al. (2022), DTO Monti et al. (2022), and SingularTrajectory Bae et al. (2024) perform instan-
taneous trajectory prediction by forecasting future motion based on a very short history, typically
the last two time steps, but they depend on a fixed input length. In contrast, our proposed method
handles variable-length observations.

2.3 TRAJECTORY IMPUTATION

Trajectory imputation aims to reconstruct unobserved agent states by leveraging contextual and his-
torical motion data. Earlier work on time-series imputation has explored autoregressive RNNs for
filling in missing values Cao et al. (2018). GC-VRNN Xu et al. (2023) couples a variational RNN
with a spatio-temporal GNN to reconstruct missing points and forecast futures in one framework.
Recently, TranSPORTmer Capellera et al. (2024) applied input masking within a transformer archi-
tecture to impute missing observations, outperforming task-specific baselines in both player and ball
tracking. Similarly, MS-TIP Chib et al. (2024) employed diagonal masked self-attention in trans-
formers to recover missing data in pedestrian trajectories. U2Diff Capellera et al. (2025) introduced
a unified diffusion-based model that reconstructs missing agent states while estimating state-wise
uncertainty. While these methods focus on imputation, their primary applications are in sports or
pedestrian settings. The challenge of handling missing data in the context of autonomous driving
remains largely underexplored.

3 PROPOSED METHOD

Problem Definition In autonomous driving trajectory prediction, the goal is to forecast a target
agent’s future motion based on past observations and contextual information (e.g., maps and sur-
rounding agents). Real-world data often contain intermittent patterns, including variable-length
observations and missing values. Formally, for each agent, the observed sequence is denoted as
X̃ = {x̃1, x̃2, . . . , x̃tobs}, where each x̃i contains coordinates and velocity; the length tobs varies and
some x̃i may be missing. The task is to predict the future trajectory Ŷ = {ŷ1, . . . , ŷtpred}, where
each ŷj represents agent positions over a horizon tpred, using observations X̃ and context. Here,
ttotal = tmax + tpred denotes the full sequence length, with tmax as the agent’s history length.

3
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Figure 2: Illustration of our UIT-Pred framework. For simplicity, the neighbor and map encoding
branches are omitted. Here, Fn represents the encoded features of neighboring agents, and Gl

denotes the encoded lane information.

3.1 TIME-AWARE INPUT REPRESENTATION

We represent each trajectory as a sequence of temporal states with spatial and contextual fea-
tures. For a given target agent, the input at each timestep i consists of concatenated state fea-
tures including spatial coordinates x

(i)
t and velocity vel(i)t to form a comprehensive feature vector

X̃t
i =

[
x
(i)
t ∥ vel(i)t

]
where ∥ denotes concatenation. To handle varying input lengths and missing

observations, we enhance the agent’s feature state by incorporating two complementary temporal
features. First, we compute a scaled timestamps,

ti = 1− τi − τmin

τmax − τmin
, ti ∈ [0, 1] (1)

where τi is the original absolute timestamp (e.g., τi = [0, 1, . . . , tobs]). This maps each time index
to the range [0, 1], ensuring the model to learn temporal patterns in the observations without bias
toward any specific sequence length. Second, we compute the inter-observation interval feature,
which represents the time elapsed since the previous valid observation,

∆ti = τi − τi−1, i > 1, ∆t1 = 0 (2)

The feature ∆ti allow the model to reason about missing observations and We explicitly tell the
model how much time has passed since the previous observation., without explicitly relying on
binary validity masks. Thus, the final input at each timestep is represented as,

ht
i =

[
x
(i)
t ∥ vel(i)t ∥ t(i)norm ∥∆t(i)

]tobs

i=1
(3)

This formulation integrates spatial-temporal states, scaled timestamps to handle varying time ranges,
and inter-observation interval feature to represent the timing differences in the observation.

For each neighboring agent, the input representation is constructed similarly to that of the target
agent, using all available timestamps within a fixed observation window to form the feature vector
hn
i . For lane segment points, the input hl combines geometric and visibility information, following

the design in Zhang et al. (2024). (refer to Appendix A.1 for further details).

3.2 BIDIRECTIONAL TIME-DECAY MAMBA (BTD-MAMBA)

Mamba blocks inherently support variable-length sequences through recurrent state-space updates.
Building on this, we introduce BTD-Mamba, as shown in Figure. 2, an enhanced state-space model

4
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designed to handle both variable-length and missing trajectory data. It extends Mamba by incor-
porating a time decay mechanism that modulates hidden states based on inter-observation intervals.
Initially, we compute forward and backward inter-arrival times as,

dtt
f = [∆t0,∆t1, . . . ,∆tTobs−1], dtt

b = flip(dtt
f ), dt(f,b) = [dtt

f ,dt
t
b] (4)

The concatenated inter-arrival times dt(f,b) encode both forward and backward time gaps between
observations. We then project this into a scaling feature space using,

[ff, fb]exp =
1

exp
(
ReLU

(
ϕs(dt

(f,b);Ws)
)) (5)

Here, ϕs(·) is a projection function parameterized by weights Ws, implemented as a multi-layer per-
ceptron (MLP) with ReLU activation. Equation 4 is designed to calculate the distance from the last
observation to the current time step, which helps quantify the influence of temporal gaps, particu-
larly when dealing with complex missing patterns. The key insight is that the influence of a variable
that has been missing for a period decreases over time. Therefore, in Equation 5 we utilize a neg-
ative exponential function combined with ReLU to ensure that the influence decays monotonically
within a reasonable range between 0 and 1. Moreover, we apply Mamba bidirectionally with a time-
decay mechanism, effectively capturing irregular temporal intervals and modeling temporal gaps by
leveraging inter-arrival times in both directions. The embedded sequence Jt = {j1, j2, . . . , jtobs},
where each ji is generated by passing ht

i through an MLP, is processed both in its original order and
reversed order Jt

b = {jtobs , . . . , j2, j1} by the revised Mamba block as described below,

J ′ =
(
J t ⊙ ff

)
∗ Cforw + Flip

((
J t
b ⊙ fb

)
∗ Cback

)
(6)

where ⊙ is element-wise multiplication, ∗ is convolution, Flip(·) reverses the sequence, and Cforw,
Cback are learnable convolution kernels for forward and backward directions, respectively.

Interaction Representation The neighboring agent features hn
i are first embedded using an MLP

to produce Jn ∈ RNa×d. These embeddings are then passed through Mamba blocks and subse-
quently refined via residual layers with skip connections and normalization, as expressed below,

Jn = MLP(hn
i ), F = MambaBlocks(Jn), F′ = Norm(F+ Jn) (7)

Lane features hl are encoded via a PointNet-based encoder Zhang et al. (2024), yielding map em-
beddings G′ = PNEncoder(hl) ∈ RNl×d. Interactions among the target agent, neighbors, and map
are captured by concatenating their embeddings and passing them through a Transformer encoder.

I = [J′ ∥ F′ ∥ G′] , Z = TransformerEncoder(I, I, I) (8)

where Z = [Et ∈ R1×d, Fn ∈ RNa×d, Gl ∈ RNl×d] ∈ R(1+Na+Nl)×d captures joint contextual
representations for predicting the next trajectory. Here, Na denotes the number of neighboring
agents, Nl denotes the number of lane agents, and d is the embedding dimension.

3.3 PREDICTION MODULE

State Encoding for Intermittent Trajectories In our framework, to effectively capture the state
and temporal dynamics of trajectories amid variable sequence lengths and missing observations,
we introduce a Variable-Step Temporal Representation (VST) that accounts for unobserved, varying
sequence lengths, alongside a Missing-Step Temporal Embedding (MST) to handle missing data. For
a sequence of length tlen, we construct a time vector from tmax down to tmax − tlen + 1. The vector
tv ∈ Ztuv represents the variable-length unobserved time steps, with tuv = tmax − tlen, while tm
denotes the number of missing steps mi,

tv = [tmax, . . . , tmax − tlen + 1] , tm = [m1, ...mtm ], t = [tv, tm] (9)

These t are normalized, scaled, and passed through an MLP to generate learnable temporal features,

tscaled = 0.1× t+ 0.1, t′ = MLP(tscaled) ∈ R(tm+tuv)×d (10)

The resulting embeddings t′ are added to repeated latent features of the target agent, enriched with
state information via a GRU,

t′′ = t′ ⊕GRU(Et) ∈ R(tm+tuv)×d (11)

5
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where ⊕ denotes broadcasting addition across time, and t′′ = [t′v, t
′
m] contains the final VST v′t ∈

Rtuv×d and MST m′
t ∈ Rtm×d embeddings. Moreover, we integrate the observed sequence features

with the VST and MST embedding to create a unified observed sequence, enabling seamless learning
across all components. Initially, a ternary mask M ∈ {0, 1, 2}tmax is constructed,

Mi,t =


0 if time step t is observed,
1 if time step t ∈ t′v,

2 if time step t ∈ t′m.

(12)

Using this mask, we form the tensor p ∈ Rtmax×d, which combines observed data, the final VST
embedding, and the MST embedding, ensuring each time step is assigned the correct representation,

p[i, t] =


J′[i, j], if M[i, t] = 0

t′m[i, k], if M[i, t] = 1

t′imp[i, l], if M[i, t] = 2

(13)

where j, k, l index into the observed data, VST embeddings, and MST embeddings respectively.
Finally, the reconstructed full past-length sequence p ∈ Rtmax×d is generated, enriched with agent
information Atn = [Et, Fn] ∈ RNa+1×d and lane information Gl ∈ RNl×d through cross-attention,

p′ = D(p, Atn, Atn) ∈ Rtmax×d, p′′ = D(p′, Gl, Gl) ∈ Rtmax×d (14)
where D is the Transformer decoder for cross-attention, and p′′ encodes agent and lane information.

multi-modal trajectory distributions To generate a multimodal future trajectory for an agent,
we require both mode and state information. The initial mode vector v ∈ Rk×d is embedded and
combined with the target agent’s encoding to form v’ ∈ Rk×d, which is then refined via cross-
attention with agent Atn ∈ RNa+1×d and lane Gl ∈ RNl×d information,

v′ = v +Et, v′′ = D(v′, Atn, Atn), v′′′ = D(v′, Gl, Gl) (15)
where v′′′ ∈ Rk×d represents the final mode vector. To generate the state vector tf ∈ Ztpred , a
normalized time embedding is constructed and fused with the GRU hidden states,

t′f = MLP(0.1 · t+ 0.1)⊕ GRU[Et] ∈ Rtpred×d, t = 1, . . . , tpred (16)

The t′f -enriched states are refined via cross-attention with agent Atn and lane Gl information,

t′′f = D(tf , A
tn, Atn), t′′′f = D(t′′f , G

l, Gl) (17)
The final t′′′f integrates both agent and lane information. Furthermore, the embedding of multimodal
future trajectory s′ ∈ Rtpred×k×d is generated by combining the mode vector v′′′ and state vectors
t′′′f and refined with Z ∈ R(1+Na+Nl)×d,

s′ = v′′′ ⊕ t′′′f , s′′ = D(s, Z, Z) (18)

where s′′ ∈ Rtpred×k×d is the refined future trajectory embedding after processing.

Unified Mode Fusion for Prediction To capture relationships between past and future behaviors,
we fuse representations p′′ ∈ R(k×tmax×d) (after repeating along k) and s′′ ∈ R(k×tpred×d) into
psf ∈ R(k×tmax+k×tpred)×d by concatenating along the feature dimension ∥feat (preserving tempo-
ral resolution) and into pst ∈ Rk×ttotal×dalong the temporal dimension ∥time (aligning sequences),

psf = [p′′ ∥feats
′′], pst = [p′′ ∥times

′′] (19)
These fused mode representations psf and pst are subsequently processed using cross-attention
mechanisms, producing the updated representations ps′f and ps′t,

ps′f = D (psf , Z, Z) ∈ R(k×tmax+k×tpred)×d, ps′t = D (pst, Z, Z) ∈ Rk×ttotal×d (20)
Finally, the outputs from the different blocks are summarized,

o = pst ⊕ reshapetime(ps
′
f )⊕ ps′t ∈ Rk×ttotal×d (21)

The tensor o[−tpred :] is used for downstream multimodal trajectory prediction, while o[tv, tm] is
used to predict the corresponding observations,

Ŷ , π̂ = MLP (output[−tpred :]), x̂v, x̂m = MLP (output[tv, tm]), (22)

where Ŷ ∈ Rk×tpred×2 denotes the predicted future trajectories, π̂ ∈ Rk represents the associated
mode probabilities, and x̂v ∈ Rtuv×2, x̂m ∈ Rtm×2 are the reconstructed variable-length steps and
missing observations, respectively.

6
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Model Training. To supervise the predicted trajectory and its confidence, we employ the Huber
loss for trajectory regression, denoted as Lreg, along with the cross-entropy loss for confidence clas-
sification, denoted as Lcls. Additionally, the VST embeddings and MST embedding are supervised
using the Lu-rg and Lm-rg losses, respectively, both of which employ the same regression criterion.
Furthermore, an endpoint loss Let is incorporated for all agents, applying the same regression loss
function to improve endpoint accuracy. The model is trained end-to-end by combining all the losses,

Ltotal = wregLreg + wclsLcls + wuLu-reg + wmLm-reg + weLet (23)

where wreg, wcls, wu, wm, we balance the contributions of Lreg, Lcls, Lu-reg, Lm-reg, Let, respectively.
All weights are equal, and Ltotal denote the overall loss of training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets & Evaluation Metric Our method is evaluated on two benchmark datasets such as Ar-
goverse 1 Chang et al. (2019) with 323,557 sequences including 2 seconds of past data and 3 seconds
of future prediction, and Argoverse 2 Wilson et al. (2021) with 250,000 scenes providing 5 seconds
of observation and 6 seconds of prediction. We assess our approach using the standard metrics
MinADEk, MinFDEk, and MRk, with k values of 1 and 6 commonly adopted as benchmarks.

Implementation Details Detailed training settings are included in the Appendix A.3 section.

Table 1: Performance under different observation scenarios for Argo-
verse 2 validation dataset. Best results are shown in bold.

Model I/N Scenarios minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

DeMo-Orig

Missing + Var. 2.1672 4.9458 0.6457 0.8889 1.5834 0.2065
Var. Obs 2.0281 4.5055 0.6329 0.8177 1.5054 0.1971

Missing Only 1.6637 4.1427 0.5944 0.6837 1.3234 0.1666
Full Obs 1.6041 4.0521 0.5889 0.6625 1.2999 0.1623

DeMo-RSD

Missing + Var. 1.6732 4.1777 0.5960 0.6812 1.33277 0.1683
Var. Obs 1.6613 4.1589 0.5955 0.6769 1.3261 0.1663

Missing Only 1.6747 4.1703 0.5956 0.6863 1.3419 0.1697
Full Obs 1.6341 4.1049 0.5914 0.6719 1.3187 0.1646

Forecast-mae-Orig

Missing + Var. 2.1137 5.0919 0.6735 0.8291 1.5985 0.2130
Var. Obs 2.0186 4.8589 0.6406 0.7892 1.5182 0.2034

Missing Only 2.2330 5.1860 0.6649 0.8524 1.6087 0.2195
Full Obs 1.8165 4.5536 0.6218 0.7244 1.4273 0.1877

Forecast-mae-RSD

Missing + Var. 1.8246 4.5432 0.6201 0.7335 1.4406 0.1908
Var. Obs 1.8146 4.5292 0.6204 0.7292 1.4354 0.1902

Missing Only 1.8302 4.5558 0.6224 0.7346 1.4423 0.1918
Full Obs 1.8098 4.5198 0.6200 0.7279 1.4332 0.1905

UIT-Pred
(Train-full)

Missing + Var. 1.5896 3.9584 0.5778 0.6519 1.2284 0.1580
Var. Obs 1.5867 3.8597 0.5669 0.6479 1.2331 0.1592

Missing Only 1.5781 3.8146 0.5693 0.6332 1.2377 0.1554
Full Obs 1.5513 3.8643 0.5618 0.6394 1.2483 0.1518

UIT-Pred
(Train-mixed)

Missing + Var. 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551
Var. Obs 1.5749 3.9281 0.5693 0.6490 1.2316 0.1525

Missing Only 1.5711 3.9059 0.5692 0.6491 1.2481 0.1527
Full Obs 1.5508 3.8784 0.5677 0.6436 1.2455 0.1526

4.2 RESULT
AND ANALYSIS

Performance under
Different Observation
Settings. We evaluate
the overall performance
of the proposed method
under various input con-
ditions on the Argoverse
2 dataset, as presented in
Table 1. The label Missing
+ Var indicates scenarios
where inputs have vari-
able lengths and contain
missing data. Var. Obs
refers to inputs with vari-
able lengths only, without
missing data. Missing Only
denotes inputs that contain
missing data. Finally, Full
Obs represents complete
inputs with fixed length.
The models DeMo-Orig
and Forecast-mae-Orig
are trained exclusively on

fully observed, fixed-length inputs and are evaluated across all input conditions to examine their
generalization capability. In contrast, DeMo-RSD and Forecast-mae-RSD are trained on inputs
with randomly assigned sequence lengths, where certain time steps are also randomly dropped
during training. This training setup is referred to as RSD (Random Sequence Drop). Train-full
denotes training on complete trajectories only, whereas Train-mixed denotes training on complete
trajectories with simulated intermittent observations (variable-length truncation and random missing
values).
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The performance of DeMo-Orig and Forecast-mae-Orig degrades significantly under the Miss-
ing + Var, Var. Obs, and Missing Only settings, demonstrating their limitations in han-
dling missing or variable-length inputs. In contrast, DeMo-RSD and Forecast-mae-RSD, al-
though trained with the RSD strategy, do not show notable improvements in these challeng-
ing scenarios. This suggests that RSD alone is not sufficient to ensure adaptability across di-
verse input conditions. The proposed model, UIT-Pred, demonstrates promising results across
all input conditions. (See Appendix A.2.1 for comparisons on the Argoverse 1 dataset.)

Table 2: Comparison of methods on the Argoverse 2 and Argov-
erse 1 validation sets under variable-length observations.

Dataset Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Argoverse 2

HiVT-Orig 2.5502 6.5586 0.7455 1.0561 2.1093 0.3275
HiVT-RM 2.2848 6.0548 0.7249 0.9457 1.9283 0.2994
HiVT-DTO 2.2769 6.0548 0.7275 0.9324 1.8946 0.2903
HiVT-FLN 2.2786 6.0464 0.7240 0.9287 1.8838 0.2891

HiVT-LaKD 2.2066 5.8769 0.7161 0.9183 1.8686 0.2791
QCNet-Orig 2.1006 5.2219 0.6299 0.8339 1.3849 0.1884
QCNet-RM 1.7452 4.4404 0.5957 0.7508 1.3184 0.1671
QCNet-DTO 1.7713 4.4900 0.5979 0.7454 1.2924 0.1671
QCNet-FLN 1.6940 4.2373 0.5808 0.7370 1.2595 0.1596

QCNet-LaKD 1.6574 4.1505 0.5753 0.7258 1.2420 0.1555

our 1.5749 3.9281 0.5693 0.6490 1.2316 0.1525

Argoverse 1

HiVT-Orig 1.4733 3.1834 0.5267 0.7255 1.0740 0.1124
HiVT-RM 1.4189 3.0599 0.5104 0.7070 1.0447 0.1053
HiVT-DTO 1.3999 3.0262 0.5056 0.7032 1.0350 0.1039
HiVT-FLN 1.4011 3.0288 0.5051 0.7026 1.0325 0.1033

HiVT-LaKD 1.3317 2.8799 0.4901 0.6807 0.9864 0.0928
QCNet-Orig 1.1656 2.4021 0.3860 0.5791 0.7399 0.0734
QCNet-RM 1.0995 2.2550 0.3630 0.5684 0.7115 0.0703
QCNet-DTO 1.0708 2.2303 0.3563 0.5418 0.6848 0.0671
QCNet-FLN 1.0631 2.2083 0.3579 0.5411 0.6680 0.0671

QCNet-LaKD 0.9982 2.0718 0.3439 0.5240 0.6581 0.0640

our 0.8086 1.7343 0.2871 0.3693 0.5901 0.0510

Performance under Different
Observation Lengths. The
performance of the proposed
approach is evaluated in Ta-
ble 2 with different observation
lengths. The HiVT-Orig and
QCNet-Orig models refer to
the original versions of HiVT
and QCNet trained using fixed-
length observed trajectories as
input. In contrast, HiVT-RM
and QCNet-RM introduce ran-
dom masking to the observed
trajectories during training
to simulate inputs of varying
lengths. Variants such as
HiVT-DTO, HiVT-FLN, and
HiVT-LaKD represent config-
urations that use HiVT as the
backbone, combined with the
DTO, FlexiLength Network
(FLN), and Length-agnostic
Knowledge Distillation (LaKD)

modules, respectively. Similarly, QCNet-DTO, QCNet-FLN, and QCNet-LaKD use QCNet as the
backbone in combination with the same modules.

The results demonstrate that the proposed model consistently outperforms all baseline methods, in-
cluding QCNet-FLN, QCNet-LaKD, HiVT-FLN, and HiVT-LaKD, across both data sets. As these
baselines are specifically designed to handle variable-length inputs, this comparison highlights the
generalizability of our approach. Furthermore, our method also surpasses HiVT-Orig and QCNet-
Orig, reinforcing the importance of trajectory prediction frameworks tailored for variable-length ob-
servations. Despite the use of random masking in HiVT-RM and QCNet-RM, our model still achieves
superior performance, demonstrating the advantages of our structured design under varying input
lengths. Overall, proposed method achieves state-of-the-art results across multiple configurations,
confirming its effectiveness and adaptability.

Table 3: Prolonged block occlusions where
contiguous segments of L frames are removed
from the observation history to mimic long oc-
clusions like parked trucks or tunnels for Argo-
verse 2 validation dataset.
L minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

10 1.6415 4.0336 0.5831 0.6762 1.2628 0.1594
20 1.6526 4.1589 0.5944 0.6827 1.2869 0.1563
30 1.6802 4.2125 0.6026 0.7053 1.3172 0.1669
40 1.7048 4.3037 0.6183 0.7135 1.3317 0.1725

Table 4: Gradient-Based Timestep Removal,
rank past timesteps by saliency (|∂L/∂xt|) and
remove the top-k most influential frames, yield-
ing the strongest adversarial perturbation for Ar-
goverse 2 validation dataset.

k minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

3 1.6470 4.0280 0.5741 0.6748 1.2788 0.1579
5 1.6669 3.9836 0.5836 0.6898 1.2917 0.1593
8 1.7110 4.1125 0.5826 0.7053 1.3172 0.1622

10 1.7521 4.2037 0.6083 0.7343 1.3491 0.1701

Performance Under Block Occlusion. To simulate real-world structured missingness, we ap-
plied block occlusions in Table 3, removing L = 10–40 consecutive frames (20–80% of the input).
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As L increases, performance degrades marginally because UIT-Pred effectively captures temporal
dependencies and underlying motion cues, enabling accurate trajectory prediction across long gaps.

Performance under Adversarial Missing Patterns. In Table 4, top-k frames are re-
moved to simulate worst-case missing data. Dropping the top-3 or top-5 frames, al-
ready a strong perturbation, has minimal impact on prediction, indicating that UIT-Pred
does not rely on a small set of critical frames. Performance degrades only under ex-
treme removals (k=8–10), where large high-gradient regions are lost, yet the drop re-
mains gradual, showing strong resilience even under adversarial missing patterns.

Table 5: Component Study of Proposed Model for Argov-
erse 2 validation dataset
ID TAIR BTD-M. PM minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

1 1.8528 4.6447 0.6442 0.8189 1.4668 0.1915
2

√
1.8071 4.3175 0.6257 0.7538 1.4381 0.1830

3
√

1.7847 4.2176 0.6137 0.7381 1.4169 0.1798
4

√
1.7516 4.0163 0.6149 0.7257 1.4037 0.1705

5
√ √

1.6928 3.9826 0.6037 0.7081 1.3569 0.1629
6

√ √
1.6683 3.9471 0.5973 0.6822 1.3244 0.1648

7
√ √

1.6528 3.9714 0.5901 0.6962 1.3062 0.1631
8

√ √ √
1.5882 3.9402 0.5717 0.6562 1.2326 0.1551

Ablation of Each Component. Ta-
ble 5 presents a component study
of the proposed model, evaluating
the contributions of the Time-Aware
Input Representation (TAIR), BTD-
Mamba (BTD-M.), and the Predictor
Module (PM). When BTD-Mamba is
not used, the model depened only on
the forward Mamba module without
Time Decay (TD) and when the PM
is excluded, separate MLPs are used for each prediction. The model performs the worst when none
of the components are used (ID-1), highlighting their necessity. Introducing at least one component
(ID-2, 3, 4) leads to noticeable performance gains, as each individual module provides valuable
information. When any two components are combined (ID-5, 6, 7), the model benefits from their
complementary strengths, further improving performance. Finally, the best results are achieved
when all three components are used together (ID-8), highlighting their benefit of integration.

Table 6: Performance under alternative temporal-decay pa-
rameterizations across different observation scenarios on the
Argoverse 2 validation dataset.

Model I/N Scenarios minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Sigmoid
Gating
[ff , fb]σ

Missing + Var. 1.6087 3.9887 0.5749 0.6637 1.2851 0.1562
Var. Obs 1.5845 3.9407 0.5683 0.6568 1.2719 0.1523

Missing Only 1.5793 3.9339 0.5702 0.6591 1.2705 0.1515
Full Obs 1.5659 3.8939 0.5669 0.6575 1.2680 0.1518

Linear
Clipped
[ff , fb]lin

Missing + Var. 1.6139 4.0112 0.5769 0.6595 1.2740 0.1552
Var. Obs 1.5923 3.9789 0.5772 0.6535 1.2636 0.1536

Missing Only 1.5788 3.9346 0.5727 0.6517 1.2580 0.1528
Full Obs 1.5682 3.9264 0.5737 0.6484 1.2540 0.1512

Softplus
Inverse
[ff , fb]sp

Missing + Var. 1.6117 4.0067 0.5731 0.6609 1.2798 0.1543
Var. Obs 1.5814 3.9506 0.5685 0.6520 1.2669 0.1528

Missing Only 1.5692 3.9120 0.5677 0.6555 1.2628 0.1528
Full Obs 1.5576 3.8978 0.5647 0.6472 1.2566 0.1509

Exponential
Decay

[ff , fb]exp

Missing + Var. 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551
Var. Obs 1.5749 3.9281 0.5693 0.6490 1.2316 0.1525

Missing Only 1.5711 3.9059 0.5692 0.6491 1.2481 0.1527
Full Obs 1.5508 3.8784 0.5677 0.6436 1.2455 0.1526

Alternative Decay Parame-
terizations. We evaluate the
model under four alternative
temporal-decay parameterizations,
exponential decay [ff, fb]exp =

1

exp(ϕs(dt(f,b);Ws))
, [ff , fb]σ =

σ
(
ϕs(dt

f,b;Wd)
)
, sigmoid gating

[ff , fb]σ = σ
(
ϕs(dt

f,b;Wd)
)

,
linear-clipped decay [ff , fb]lin =
clip
(
1− β · ϕs(dt

(f,b);Wd), 0, 1
)
,

and softplus-inverse decay
[ff , fb]sp = 1

1+softplus(ϕs(dt(f,b);Wd))
,

as summarized in Table 6. Here,
ff and fb denote the forward and
backward temporal scaling factors,
respectively, applied to the features.
The function ϕs(·) is a projection
function parameterized by weights
Wd, implemented as a multi-layer
perceptron (MLP). The operator
σ(·) denotes the sigmoid function and β is a constant set to 1. We observe that exponential decay
performs best across all I/N scenarios because its continuous-time form, with range (0,∞), provides
smooth, non-saturating attenuation that preserves temporal cues across all gap sizes and remains
stable for dt. In contrast, the sigmoid output is bounded in (0, 1), so moderate or large dt values
push it rapidly toward saturation, compressing mid-range differences and reducing sensitivity.
Linear-clipped decay, restricted to [0, 1], suppresses information too abruptly; once the linear
term exceeds this interval, clipping prevents representing stronger decay, producing hard cutoffs
even for moderately large dt. Softplus-inverse decay, also in the (0, 1) range, behaves similarly
to exponential under full observations but decays more aggressively for large dt. This strong
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Figure 3: Qualitative results of the proposed model with varying input observations. Black: observed
history; red: missing points; magenta: ground truth future; blue: predicted future trajectory.

suppression helps in missing-only settings by down-weighting outdated information, but leads to
slightly worse performance in mixed scenarios where such aggressive decay removes useful context.

Table 7: Impact of fixed, no, and learned decay in
BTD-Mamba for the Argoverse 2 validation set.

Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Fixed-decay 1.6824 4.1138 0.6036 0.7045 1.3459 0.1858
No-decay 1.6529 4.0284 0.5903 0.6925 1.3163 0.1628

Learned-decay 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551

Decay component of BTD-Mamba.
We assess the learned decay in BTD-
Mamba using three variants: (i) a fixed
exponential decay (constant 0.5), (ii) no
decay, and (iii) the learned decay. As
shown in Table 7, both fixed and no-decay
settings yield higher minADE, minFDE,
and MR under intermittent observations,
while the learned decay maintains the
best performance. Fixed decay fails because a single rate cannot capture diverse motion patterns
or gap lengths, and no decay performs worst due to stale states persisting over long gaps. These
results show that adaptive, learned decay is essential for robustness under intermittent observations.

Table 8: Computational efficiency of
the proposed model using two NVIDIA
RTX A5000 GPUs. Abbr.: TTT - To-
tal Training Time, IT/S - Inference Time
per Sample, TP - Training Parameters,
IP - Inference Parameters, BS - Batch
Size, F/S - FLOPs per Sample.

Datasets TTT
(min)

IT/S
(ms)

TP
(M)

IP
(M) BS F/S

(G)

Argoverse 2 900 2.11 7.53 6.55 128 0.52
Argoverse 1 1200 2.45 7.48 6.50 128 0.51

Computational Efficiency. UIT-Pred shows strong
computational efficiency in Table 8 across both Argov-
erse datasets. With 7.5M parameters, training requires
900–1200 min on two RTX A5000 GPUs, while infer-
ence uses 6.5M parameters and achieves real-time speeds
of 2.1–2.4 ms per sample at 0.51–0.52 GFLOPs, despite
the bidirectional SSM and transformer architecture.

Qualitative Result. Figure 3 shows the proposed
model’s performance during a left-turn maneuver at an
intersection in the Argoverse 2 dataset. The model effec-
tively handles all input conditions, aligning well with the
real-world requirements of autonomous driving. Addi-
tional qualitative results across diverse driving scenarios
are provided in Appendix A.3.

5 CONCLUSION

In this work, we introduce UIT-Pred, a universal architecture that addresses real-world challenges
in autonomous driving by handling diverse input types for trajectory prediction. We propose a
time-aware input representation that helps the model focus on motion dynamics across diverse input
conditions rather than absolute durations. Furthermore, we extend a state space model to develop the
BTD-Mamba module and introduce a novel predictor, jointly capturing complex temporal dynamics
to enhance trajectory prediction accuracy. Comprehensive experiments on the Argoverse 1 and
Argoverse 2 datasets demonstrate effectiveness of our approach.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sepideh Afshar, Nachiket Deo, Akshay Bhagat, Titas Chakraborty, Yunming Shao, Balarama Raju
Buddharaju, Adwait Deshpande, and Henggang Cui Motional. Pbp: Path-based trajectory predic-
tion for autonomous driving. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 12927–12934. IEEE, 2024.

Inhwan Bae, Young-Jae Park, and Hae-Gon Jeon. Singulartrajectory: Universal trajectory predictor
using diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 17890–17901, 2024.

Vibha Bharilya, Ashok Arora, and Neetesh Kumar. Self-supervised transformer for trajectory pre-
diction using noise imputed past trajectory. IEEE Transactions on Intelligent Transportation
Systems, 2025.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

Guillem Capellera, Luis Ferraz, Antonio Rubio, Antonio Agudo, and Francesc Moreno-Noguer.
Transportmer: A holistic approach to trajectory understanding in multi-agent sports. In Proceed-
ings of the asian conference on computer vision, pp. 1652–1670, 2024.

Guillem Capellera, Antonio Rubio, Luis Ferraz, and Antonio Agudo. Unified uncertainty-aware
diffusion for multi-agent trajectory modeling. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 22476–22486, 2025.

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hart-
nett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking and
forecasting with rich maps. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8748–8757, 2019.

Kai Chen, Xiaodong Zhao, Yujie Huang, Guoyu Fang, Xiao Song, Ruiping Wang, and Ziyuan Wang.
Socialmoif: Multi-order intention fusion for pedestrian trajectory prediction. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 22465–22475, 2025a.

Wangxing Chen, Haifeng Sang, Jinyu Wang, and Zishan Zhao. Dstigcn: Deformable spatial-
temporal interaction graph convolution network for pedestrian trajectory prediction. IEEE Trans-
actions on Intelligent Transportation Systems, 2025b.

Jie Cheng, Xiaodong Mei, and Ming Liu. Forecast-mae: Self-supervised pre-training for motion
forecasting with masked autoencoders. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8679–8689, 2023.

Pranav Singh Chib, Achintya Nath, Paritosh Kabra, Ishu Gupta, and Pravendra Singh. Ms-tip: impu-
tation aware pedestrian trajectory prediction. In International Conference on Machine Learning,
pp. 8389–8402. PMLR, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 25261–25270,
2025.

Yizhou Huang, Yihua Cheng, and Kezhi Wang. Trajectory mamba: Efficient attention-mamba fore-
casting model based on selective ssm. In Proceedings of the Computer Vision and Pattern Recog-
nition Conference, pp. 12058–12067, 2025.

Rezaul Karim, Soheil Mohamad Alizadeh Shabestary, and Amir Rasouli. Destine: Dynamic goal
queries with temporal transductive alignment for trajectory prediction. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2230–2237. IEEE, 2024.

Seongju Lee, Junseok Lee, Yeonguk Yu, Taeri Kim, and Kyoobin Lee. Mart: Multiscale relational
transformer networks for multi-agent trajectory prediction. In European Conference on Computer
Vision, pp. 89–107. Springer, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rongqing Li, Changsheng Li, Yuhang Li, Hanjie Li, Yi Chen, Ye Yuan, and Guoren Wang. Itpnet:
Towards instantaneous trajectory prediction for autonomous driving. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1643–1654, 2024a.

Yuhang Li, Changsheng Li, Ruilin Lv, Rongqing Li, Ye Yuan, and Guoren Wang. Lakd: Length-
agnostic knowledge distillation for trajectory prediction with any length observations. Advances
in Neural Information Processing Systems, 37:28720–28744, 2024b.

Rongqin Liang, Yuanman Li, Jiantao Zhou, and Xia Li. Stglow: A flow-based generative framework
with dual-graphormer for pedestrian trajectory prediction. IEEE transactions on neural networks
and learning systems, 2023.

Kaouther Messaoud, Matthieu Cord, and Alexandre Alahi. Towards generalizable trajectory pre-
diction using dual-level representation learning and adaptive prompting. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 27564–27574, 2025.

Alessio Monti, Angelo Porrello, Simone Calderara, Pasquale Coscia, Lamberto Ballan, and Rita
Cucchiara. How many observations are enough? knowledge distillation for trajectory forecasting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6553–6562, 2022.

Marion Neumeier, Sebastian Dorn, Michael Botsch, and Wolfgang Utschick. Reliable trajectory
prediction and uncertainty quantification with conditioned diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3461–3470, 2024.

Ruiqi Qiu, Jun Gong, Xinyu Zhang, Siqi Luo, Bowen Zhang, and Yi Cen. Adapting to observation
length of trajectory prediction via contrastive learning. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 1645–1654, 2025.

Jianhua Sun, Yuxuan Li, Liang Chai, Hao-Shu Fang, Yong-Lu Li, and Cewu Lu. Human trajectory
prediction with momentary observation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6467–6476, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Chengyue Wang, Haicheng Liao, Bonan Wang, Yanchen Guan, Bin Rao, Ziyuan Pu, Zhiyong Cui,
Cheng-Zhong Xu, and Zhenning Li. Nest: A neuromodulated small-world hypergraph trajectory
prediction model for autonomous driving. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 808–816, 2025a.

Jingyuan Wang, Yujing Lin, and Yudong Li. Gtg: Generalizable trajectory generation model for
urban mobility. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
834–842, 2025b.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models. Advances in Neural Information Processing
Systems, 37:62432–62457, 2024a.

Yixiao Wang, Chen Tang, Lingfeng Sun, Simone Rossi, Yichen Xie, Chensheng Peng, Thomas
Hannagan, Stefano Sabatini, Nicola Poerio, Masayoshi Tomizuka, et al. Optimizing diffusion
models for joint trajectory prediction and controllable generation. In European Conference on
Computer Vision, pp. 324–341. Springer, 2024b.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandel-
wal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse
2: Next generation datasets for self-driving perception and forecasting. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Guipeng Xin, Duanfeng Chu, Liping Lu, Zejian Deng, Yuang Lu, and Xigang Wu. Multi-agent
trajectory prediction with difficulty-guided feature enhancement network. IEEE Robotics and
Automation Letters, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zebin Xing, Xingyu Zhang, Yang Hu, Bo Jiang, Tong He, Qian Zhang, Xiaoxiao Long, and Wei
Yin. Goalflow: Goal-driven flow matching for multimodal trajectories generation in end-to-end
autonomous driving. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 1602–1611, 2025.

Yi Xu and Yun Fu. Adapting to length shift: Flexilength network for trajectory prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15226–
15237, 2024.

Yi Xu, Armin Bazarjani, Hyung-gun Chi, Chiho Choi, and Yun Fu. Uncovering the missing pattern:
Unified framework towards trajectory imputation and prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9632–9643, 2023.

Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 4484–4496, 2025.

Bozhou Zhang, Nan Song, and Li Zhang. Demo: Decoupling motion forecasting into directional
intentions and dynamic states. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=rbtnRsiXSN.

Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding, Siteng Huang, and Donglin Wang. Cobra:
Extending mamba to multi-modal large language model for efficient inference. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 10421–10429, 2025.

13

https://openreview.net/forum?id=rbtnRsiXSN


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETTINGS

Input Representation for Neighbours and Lane information. Using the vectorized representa-
tion approach Zhang et al. (2024), the trajectories of all agents and the geometric representation of
lane segments are modeled as polylines composed of interconnected points. We employ an agent-
centric normalization strategy Cheng et al. (2023), which transforms all inputs into a coordinate
system centered on the target agent. The historical trajectories of Na agents are represented as Xn,
which include coordinates and velocity changes over a length of Tmax timesteps. Furthermore, we
incorporate two time-related features, scaled timestamps to manage varying time ranges, and inter-
observation interval features to capture timing differences between observations, to construct the
time-aware input representation hn.

Lane segments are encoded as hl, which includes the number of lane segments within a specified
radius around the target agent, the number of points in each polyline, and lane features such as
coordinates and availability. All coordinates within each lane segment are normalized relative to
their geometric centers, providing a standardized reference frame for subsequent processing and
analysis Bharilya et al. (2025).

Evaluation Metric. We assess our approach using several widely accepted metrics in trajectory
prediction research Wilson et al. (2021). The MinADEk metric calculates the average Euclidean
distance between the predicted trajectories and the actual ground truth paths. The MinFDEk met-
ric, on the other hand, measures the prediction error specifically at the endpoints of the trajectories.
To evaluate failure rates, the miss rate (MRk) counts instances where the endpoint error MinFDEk

exceeds a threshold of 2 meters. In these metrics, k denotes the number of trajectory modes pre-
dicted, with evaluations conducted for both single-mode predictions (k = 1) and multi-modal pre-
dictions (k = 6).

Implementation Details. The framework is implemented in PyTorch and trained on an NVIDIA
RTX A5000 GPU. Models are trained end-to-end for 60 epochs using the AdamW optimizer, with
a batch size of 128, a learning rate of 0.001, and a weight decay of 0.01. We use a cosine learning
rate schedule with a 10-epoch warm-up phase. An agent-centric coordinate system samples scene
elements within a 150-meter radius around the agents of interest. The embedding dimension d is
set to 128. Each Mamba block contains 4 layers, the Transformer encoder has 5 layers, and the
Transformer decoder D(·, ·, ·) in the prediction module is used for cross-attention, where the first
argument is the query, the second is the key, and the third is the value. It consists of two layers.

Formulation of Loss Functions. To optimize the model, we use the Huber loss for trajectory
regression Lreg and cross-entropy loss for confidence classification Lcls. A winner-take-all strategy
is applied, optimizing only the best prediction while minimizing the average error relative to the
ground truth,

Lreg = min
k∈{1,2,...,6}

( tpred∑
t=1

2∑
c=1

Lhl(Y
(t,c)
gt , Ŷ

(t,c)
k )

)
(24)

where Ŷ
(t,c)
k denotes the predicted future trajectory for mode k at timestamp t along coordinate c,

Y
(t,c)
gt represents the corresponding ground truth, tpred is the total number of future time steps, and k

indicates the number of predicted modes. For confidence classification, we apply the cross-entropy
loss,

Lcls =

K∑
k=1

(
I[Ygt] log(πk) + (1− I[Ygt]) log(1− π̂k)

)
(25)

where π̂k is the predicted probability for the k-th trajectory, and I[Ygt] is an indicator function that
equals 1 if the k-th trajectory is closest to the ground truth, and 0 otherwise.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

To supervise the missing-step temporal embedding, the loss Lm-rg is computed as,

Lm-rg =

tm∑
m=1

2∑
c=1

Lhl

(
x
(m,c)
gt , x̂(m,c)

m

)
(26)

where tm is the number of missing data in the observation. Here, m indexes the missing points,
and x

(m,c)
gt and x̂

(m,c)
m denote the ground truth and predicted values of the missing data, respectively,

along dimension c. The function Lhl refers to the Huber loss used for regression.

Moreover, to supervise the variable-step temporal embedding, the loss Lv-rg is defined as,

Lv-rg =

tuv∑
v=1

2∑
c=1

Lhl

(
x
(v,c)
gt , x̂(v,c)

v

)
, (27)

where tuv denotes the number of unobserved time steps with variable length. Here, v indexes the un-
observed tokens, and x

(v,c)
gt and x̂

(v,c)
v represent the ground truth and predicted values, respectively,

along dimension c.

Endpoint loss. To predict endpoints, we utilize a dynamic multi-layer perceptron (MLP) with
weights that are adaptively generated based on the input, referred to as the adaptive MLP. The
adaptive MLP takes as input the agent features [Et, Fn] and meta-information mi of all agents.
The meta-information includes the agent’s position and normalized velocity at last observed times-
tamps. These inputs are concatenated and passed through an MLP with learnable parameters
Wfeat,1,Wfeat,2 and biases bfeat,1, bfeat,2, to obtain a latent representation, f̃ ,

f̃ = φ
(
Wfeat,2 φ

(
Wfeat,1[E

t, Fn];mi] + bfeat,1
)
+ bfeat,2

)
(28)

with φ denoting the ReLU activation. Subsequently, two sets of dynamic weights W1 and W2 are
generated by applying learnable linear transformations Wd1 and Wd2 to f̃ , reshaped accordingly.

W1 = reshape
(
Wd1 · f̃ + bd1

)
(29)

W2 = reshape
(
Wd2 · f̃ + bd2

)
(30)

The first hidden layer activations Fd1 are computed by applying a linear transformation W1 to the
input feature f , followed by layer normalization and a non-linear activation function φ. The final
prediction ŷep is then obtained by applying a second linear transformation W2 to Fd1,

Fd1 = φ
(
LayerNorm(W1 · f)

)
, (31)

ŷep = W2 · Fd1 (32)

This formulation enables dynamic adaptation of the prediction weights conditioned on the input
features and meta information, allowing the model to flexibly predict agent endpoints. To improve
the accuracy of endpoint predictions, we employ a dedicated loss defined as,

Let =

N∑
n=1

2∑
c=1

Lhl

(
Y

(tpred,c)
gt,n , êp(tpred,c)

n

)
(33)

where Let measures the discrepancy between the predicted endpoint êpn and the ground truth end-
point Y (tpred,c)

gt,n of the nth agent, computed using the Huber loss function.

A.2 MORE EXPERIMENTAL RESULTS

A.2.1 PERFORMANCE UNDER DIFFERENT OBSERVATION SETTINGS.

The performance of the proposed model on the Argoverse 1 dataset under different input conditions
is shown in Table 9.
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Table 9: Performance under different observation scenarios for Argoverse 1 validation dataset

Model I/N Scenarios minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

DeMo-Orig

Missing + Var. 2.3924 4.6935 0.6172 0.9052 1.4566 0.1751
Var. Obs 2.1506 4.2475 0.5993 0.8311 1.3058 0.5993

Missing Only 3.4942 6.6470 0.7808 1.4078 2.2559 0.3238
Full Obs 1.2903 2.7863 0.46495 0.5926 0.9534 0.0830

DeMo-RSD

Missing + Var. 1.5100 3.1800 0.5174 0.6504 1.0569 0.1010
Var. Obs 1.5798 3.3039 0.5380 0.6538 1.0576 0.1022

Missing Only 2.7708 1.8213 0.7421 1.0927 1.8213 0.2572
Full Obs 1.3999 2.9870 0.5030 0.6145 0.9946 0.0918

Forecast-mae-Orig

Missing + Var. 1.7647 3.6791 0.6153 0.7315 1.2033 0.1175
Var. Obs 1.4734 3.1700 0.5340 0.6669 1.0936 0.0964

Missing Only 2.2504 4.4974 0.6836 0.8654 1.4303 0.1757
Full Obs 1.3470 2.9207 0.0901 0.6223 1.0222 0.0901

Forecast-mae-RSD

Missing + Var. 1.4679 3.1545 0.5226 0.6643 1.0849 0.0952
Var. Obs 1.4576 3.1298 0.5243 0.6599 1.0759 0.0945

Missing Only 1.7459 3.6371 0.6066 0.7206 1.1881 0.1172
Full Obs 1.4338 3.0894 0.5120 0.6554 1.0707 0.0949

Our

Missing + Var. 0.8212 1.7826 0.3028 0.3956 0.6018 0.0698
Var. Obs 0.8086 1.7343 0.2871 0.3693 0.5901 0.0510

Missing Only 0.8123 1.7365 0.2816 0.3756 0.5902 0.0511
Full Obs 0.7943 1.7029 0.2718 0.3346 0.5726 0.0467

A.2.2 PERFORMANCE UNDER BURST DROPOUT.

We introduce burst-interval missingness (Table 10), where multiple short gaps (5–30 frames) are
distributed throughout the sequence to mimic intermittent sensor dropout or brief occlusions. In the
burst-size column, max indicates the maximum possible length of each dropped segment, while fix
specifies a constant number of frames per burst. The max setting produces higher errors because it
introduces more severe and occasionally longer gaps, making temporal continuity harder to recon-
struct. UIT-Pred remains stable even under this more challenging regime, whereas the fix setting is
easier due to its consistent gap lengths, which lead to more predictable agent trajectories. Notably,
UIT-Pred can be further improved by incorporating burst-shape augmentation without requiring any
architectural modifications.

A.2.3 PERFORMANCE UNDER INTERSECTION-BASED DROPPING.

To evaluate the model under structured occlusions, Table 11 reports results for two forms of
intersection-based dropping. (1) Probability-based dropping removes each point with high prob-
ability (0.8) when it lies inside an intersection polygon and with low probability (0.1) otherwise.
(2)Intersection block occlusion removes a continuous block of (L) points once the trajectory enters
an intersection. Despite differing in how drops are applied, both methods produce nearly identical
errors because they focus missing segments around intersections, regions with inherently complex
motion, leading to temporal gaps of similar effective severity. UIT-Pred remains robust under both
settings, demonstrating strong generalization across localized temporal dropout.

A.2.4 ABLATION STUDY OF BTD-MAMBA COMPONENTS.

Table 12 presents an ablation study analyzing different configurations of the BTD-Mamba module.
Using only the forward Mamba (Fwd) or backward Mamba (Bwd) results in similar performance,
with slightly better results for Fwd. Combining both directions (Fwd+Bwd) improves performance
across all metrics, indicating that bidirectional context benefits trajectory modeling. The addition of
Time Decay (TD) further enhances performance when combined with either Fwd or Bwd, showing
that temporal relationships contribute useful dynamics. The best performance is achieved when
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Table 10: Burst-interval missingness where repeated short gaps in frames within the input sequences,
simulating brief occlusions in the Argoverse 2 validation dataset.
#Frames Burst Size minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

5(10%) max =2 1.5724 3.9096 0.5655 0.6490 1.2502 0.1554
fix =2 1.5662 3.8932 0.5659 0.6480 1.2498 0.1528

10(20%) max =5 1.6176 3.9759 0.5739 0.6678 1.2717 0.1555
fix =5 1.5909 3.9390 0.5696 0.6570 1.2631 0.1554

20(40%) max =10 1.7162 4.1129 0.5832 0.7071 1.3108 0.1620
fix =10 1.6933 4.0904 0.5812 0.7019 1.3089 0.1629

30(60%) max =10 2.0012 4.4932 0.6111 0.8406 1.4373 0.1830
fix =10 1.9376 4.4227 0.6051 0.8092 1.4159 0.1802

Table 11: Comparison of two intersection-based occlusion mechanisms, probability-based dropping
and block occlusion, on the Argoverse 2 validation dataset.

Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Probability-based Dropping 1.6552 4.0185 0.5926 0.6659 1.2894 0.1593
Block occlusion 1.6431 3.9926 0.5812 0.6623 1.2773 0.1576

all three components such as Fwd, Bwd, and TD are integrated, forming the complete BTD-Mamba
module. This full configuration achieves the lowest minADE and minFDE, as well as the lowest miss
rate, demonstrating the complementary nature of bidirectional processing and temporal differencing.

A.2.5 ABLATION STUDY ON PREDICTOR MODULE COMPONENTS.

Table 13 evaluates the impact of three components in the predictor module: State Encoding for Inter-
mittent Trajectories (SEIT), Multi-Modal Trajectory Distributions (MMTD), and Unified Mode Fu-
sion (UMF). When MMTD is not used, separate MLPs replace it for mode and state prediction. The
baseline model without these components (ID-1) performs the worst. Incorporating each component
individually (ID-2 to ID-4) yields moderate improvements, indicating their standalone effectiveness.
Combinations of two components (ID-5 to ID-7) further enhance performance, demonstrating com-
plementary strengths. The full model with all three components enabled (ID-8) achieves the best
results, confirming that TEIT, MMTD, and UMF together significantly improve trajectory prediction
accuracy across all metrics.

A.2.6 ABLATION STUDY ON THE DEPTH OF BTD-MAMBA AND TRANSFORMER ENCODER.

Table 14 investigates the impact of varying the depth i.e., the number of stacked layers, of the BTD-
Mamba module and the Transformer Encoder on model performance. Increasing the depth of both
modules generally improves results, as seen when moving from 3 to 4 layers, leading to reduced
minADE, minFDE, and Miss Rate (MR). The best performance is observed with 4 layers of BTD-
Mamba and 5 layers of the Transformer Encoder, achieving the lowest across all metrics. Moreover,
performance slightly declines when the BTD-Mamba depth is increased to 5 layers alongside 5

Table 12: Component Study of BTD-Mamba for Argoverse 2 validation dataset.
Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Fwd 1.6816 4.1148 0.6027 0.7011 1.3463 0.1804
Bwd 1.6901 4.1757 0.6134 0.7128 1.3524 0.1749

Fwd+Bwd 1.6529 4.0284 0.5903 0.6925 1.3163 0.1628
Fwd+TD 1.6425 4.0143 0.5901 0.6911 1.3047 0.1609
Bwd+TD 1.6546 4.0112 0.5928 0.6836 1.3142 0.1628

BTD-Mamba 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551
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Table 13: Component Study of Predictor Module for Argoverse 2 validation dataset.
ID SEIT MMTD UMF minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

1 - - - 1.6474 4.2143 0.6245 0.6957 1.2764 0.1802
2

√
- - 1.6349 4.2094 0.6137 0.6835 1.2638 0.1782

3 -
√

- 1.6298 4.2072 0.6048 0.6804 1.2477 0.1756
4 - -

√
1.6164 4.1537 0.6013 0.6787 1.2416 0.1726

5
√ √

- 1.6064 4.1121 0.5912 0.6765 1.2569 0.1683
6

√
-

√
1.6092 4.0154 0.5936 0.6627 1.2535 0.1647

7 -
√ √

1.5914 3.9668 0.5805 0.6613 1.2476 0.1589
8

√ √ √
1.5882 3.9402 0.5717 0.6562 1.2326 0.1551

Table 14: Depth Study of BTD-Mamba and Transformer Encoder for Argoverse 2 validation dataset.
BTD-M T-Enc minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

3 3 1.6226 4.0151 0.5926 0.6844 1.2531 0.1629
4 4 1.6048 3.9197 0.5802 0.6614 1.2494 0.1600
4 5 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551
5 5 1.5901 3.9937 0.5826 0.6632 1.2471 0.1622

Transformer layers, suggesting a trade-off where excessive depth in BTD-Mamba fails to yield fur-
ther benefits. Overall, a moderate depth configuration balances model complexity and predictive
accuracy effectively.

A.2.7 ABLATION STUDY ON THE IMPACT OF AUXILIARY LOSSES.

Table 15 presents an ablation study that evaluate contribution of three auxiliary losses: the endpoint
loss (Let), regression loss over variable-step temporal embedding (Lu-rg), and regression loss for
missing-step temporal embedding (Lm-rg). The baseline model without any auxiliary loss (ID-1)
shows the weakest performance across all metrics. Introducing each loss individually (ID-2 to ID-
4) yields consistent improvements, demonstrating their individual effectiveness. Both Lu-rg and
Lm-rg lead to greater gains than Let. Combining two of the losses (ID-5 to ID-7) further improves
performance, showing their complementary effects. The best results are obtained when all three
auxiliary losses are applied simultaneously (ID-8), achieving the lowest minADE, minFDE, and
MR. These findings confirm that auxiliary supervision strengthens the model’s ability to learn more
accurate trajectory representations.

A.2.8 ABLATION STUDY ON THE SENSITIVITY OF LOSS WEIGHTS.

We conducted a loss-weight sensitivity analysis, as shown in Table 16, in which we (i) report per-
formance using fixed weighting schedules, shown in the first and last rows with varying weights
for each loss and (ii) evaluate a learned, uncertainty-based weighting scheme in the second row. In
the uncertainty-based weighting scheme, we introduce learnable uncertainty parameters si for each

Table 15: Impact of Auxilary Losses for Argoverse 2 validation dataset.
ID Let Lu-rg Lm-rg minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

1 - - - 1.6284 4.2591 0.6137 0.6814 1.2641 0.1795
2

√
- - 1.6211 4.1918 0.6093 0.6787 1.2601 0.1725

3 -
√

- 1.6159 4.0166 0.5935 0.6749 1.2538 0.1617
4 - -

√
1.6117 4.0137 0.5931 0.6732 1.2546 0.1629

5
√ √

- 1.6026 4.0118 0.5874 0.6726 1.2525 0.1658
6

√
-

√
1.5984 3.9971 0.5846 0.6815 1.2437 0.1604

7 -
√ √

1.5907 3.9473 0.5824 0.6810 1.2429 0.1598
8

√ √ √
1.5882 3.9402 0.5717 0.6562 1.2326 0.1551
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Table 16: Weight sensitivity study of loss for Argoverse 2 validation dataset.
wreg wcls wu wm we minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

1 1 0.5 0.5 0.2 1.6204 4.0284 0.5723 0.6569 1.2664 0.1554
- - - - - 1.6214 4.1926 0.6098 0.6783 1.2616 0.1722
1 1 1 1 1 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551

task-specific loss, regression (Lreg), classification (Lcls), variable-step temporal embedding (Lv),
missing-step temporal embedding (Lm), and the endpoint loss (Le), to automatically balance multi-
task training. Each parameter is initialized to 0 (corresponding to unit variance) and optimized
jointly with the model. Under this scheme, the combined loss is defined as follows,

Ltotal =
∑
i

1

2
(Li · exp(−si) + si) (34)

where i ∈ {reg, cls, v,m, e}. This approach learns the relative weighting of each task based on
observed uncertainty, removing the need for manual tuning. The inferred standard deviations, σi =√

exp(si), provide interpretable uncertainty measures.

Notably, the uniform weighting configuration (wreg = wcls = wu = wm = we = 1) achieves the
best overall performance, with the lowest minADE, minFDE, and MR across both top-1 and top-
6 predictions. This suggests that while uncertainty-based weighting can adaptively balance tasks,
equal weighting is sufficient in our setup, providing strong performance without additional com-
plexity. The results highlight the robustness of our multi-task training formulation and indicate that
all task-specific losses contribute meaningfully to trajectory prediction.

A.3 MORE QUALITATIVE RESULTS

The qualitative results are presented in Figure 4, showcasing the performance of the proposed model
across diverse driving scenarios. The first row illustrates an intersection scenario where the agent
executes a right turn, requiring awareness of both lane geometry and surrounding context. The
second row demonstrates the agent’s behavior on a curved path, highlighting the model’s ability to
capture smooth trajectory changes over time. The third row presents a straight-driving scenario in
dense traffic, where the model must accurately predict future motion despite limited maneuvering
space and potential occlusions. Across all scenarios, the columns depict different input conditions,
including variable-length observations and missing data. The proposed model consistently produces
coherent and accurate trajectory predictions, demonstrating its adaptability to a wide range of real-
world input conditions.
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Figure 4: Qualitative results of the proposed model with varying input observations on Argoverse 2
dataset. Black: observed history; red: missing points; magenta: ground truth future; blue: predicted
future trajectory.
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