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ABSTRACT

Trajectory prediction is a fundamental component of autonomous driving, requir-
ing models that can handle intermittent observation patterns such as variable-
length histories and missing data. Existing state-of-the-art methods, however, of-
ten assume fixed-length trajectories and complete input, which challenges their
applicability in real-world scenarios where sensor occlusions, communication de-
lays, and temporal sparsity are common. Moreover, conventional approaches typ-
ically address tasks such as trajectory prediction, variable-length modeling, or
missing data handling in isolation, making them less effective in multi-task set-
tings that naturally arise in practice. To address these challenges, we propose Uni-
versal Intermittent Trajectory Predictor (UI'T-Pred) that processes inputs with the
time index features, which capture temporal variations to effectively adapt to di-
verse input patterns within the domain. Particularly, we extend recent State Space
Models (SSMs) by introducing the Bidirectional Time Decay Mamba (BTD-
Mamba), designed to capture dependencies both forward and backward along
the sequence. By integrating a decay process, BTD-Mamba effectively analyzes
trajectories while maintaining relationships under intermittent observation. Fur-
thermore, the proposed prediction module employs state encoding to capture the
underlying motion patterns in the input data and models a multimodal trajectory
distribution to account for uncertainty in future predictions. These components
are fused through a unified fusion module, enabling the model to jointly reason
over observed dynamics and potential future behaviors. Extensive experiments on
Argoverse 1 and Argoverse 2 datasets validate the effectiveness of the proposed
model. By simultaneously handling prediction, variable-length observations, and
missing inputs within a universal architecture, the framework proposes to meet the
challenges of real-world autonomous driving systems.

1 INTRODUCTION

Trajectory prediction is a core challenge in autonomous driving, as safe navigation requires antici-
pating the future behaviors of surrounding agents under uncertain and dynamic conditions. While
deep learning models |Huang et al.|(2025); |[Karim et al.| (2024) has enabled significant progress, they
are designed for fixed-length trajectories and complete observations. In practice, however, observa-
tions are often intermittent: variable-length sequences arise when agents enter or exit the sensor’s
field of view at different times or are observed for varying durations, while missing data occurs due
to sensor occlusions or communication delays. This discrepancy in the observation can degrade the
performance of state-of-the-art methods unless the model explicitly handles these issues | Xu & Fu
(2024); |Qiu et al.| (2025).

Some of the approaches address the issue of variable length trajectories. [ Xu & Fu|(2024) attribute
length bias in Transformers to positional encoding and layer normalization, proposing specialized
subnetworks for different sequence lengths. |Li et al.|(2024b) introduce a length-agnostic knowl-
edge distillation (LaKD) module that dynamically transfers knowledge across trajectories. (Qiu et al.
(2025) proposes Contrastive Learning for Length Shift (CLLS), which uses contrastive learning
during training to help the model learn length-invariant features and reduce the effect of varying
observation lengths. Although these approaches show some effectiveness, they rely on generat-
ing multiple augmented versions of each trajectory sequence, which expands the input space and
increases the overall complexity of the training.
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Other methods like TranSPORTmer|Capellera et al.|(2024)) and MS-TIP|Chib et al.|(2024)) both apply
masking techniques within transformer frameworks to address missing data, with TranSPORTmer
applied to sports scenarios and MS-TIP designed for pedestrian trajectory recovery. In contrast,
U2Diff |Capellera et al.|(2025) simultaneously reconstructs missing agent states and estimates un-
certainty, focusing on the sports domain. However, these approaches depend on masking strategies
to reconstruct missing observations, but this adds complexity in handling masked vs. unmasked
inputs. Although effective in the sports and pedestrian domains, their applicability to autonomous
driving scenarios remains largely unexplored. Additionally, State-of-the-art methods usually address
prediction, variable-length observation, or missing input separately, overlooking the multi-task na-
ture of real-world systems. Since diverse scenarios might happen in real practice, it is essential to
develop a unified approach that can handle various input conditions, as illustrated in Figure.

To bridge the aforementioned challenges, we propose the

Universal Intermittent Trajectory Predictor (UIT-Pred), a -

unified architecture designed to effectively handle vary- max ﬁ(i}
ing input conditions in trajectory forecasting. UIT-

Pred transforms diverse input formats into a generaliz- Tien .
able schema through time-aware input representations. 0 &
Specifically, we derive two complementary temporal fea- T

tures from time indices: scaled timestamps to account for s ﬁiiij
varying time ranges, and inter-observation interval fea-

tures to capture the timing gaps between observations. Tl .
These temporal cues enable the model to capture mo- o
tion dynamics without depending on fixed time refer- __ Available — Missing
ences or explicit validity masks. Building on the capa- Observation Observation

bilities of recent State Space Models (SSMs), particularly
the Mamba architecture, we introduce an enhanced Bidi-
rectional Time Decay Mamba (BTD-Mamba) module,
which captures sequential dependencies in both forward
and backward directions across input observations. Addi-
tionally, a decay mechanism is incorporated to maintain
the continuity and integrity of temporal relationships de-
spite intermittent observations. Furthermore, in the pro-
posed prediction module, we introduce a learnable state
embedding to effectively capture the underlying dynam-

Figure 1: The following input condi-
tions reflect scenarios commonly en-
countered in real-world traffic systems:
(i) full observation is available; (ii) ob-
servations are available, but of variable
lengths; (iii) some observation points
are missing; and (iv) both variable-
length and missing observations occur
simultaneously.

ics of variable-length input sequences and missing obser-

vations. This embedding provides a compact yet informative representation of the agent’s motion
history, maintaining temporal continuity and capturing key behavioral patterns. To further enrich
this representation, we employ a cross-attention mechanism to integrate global context, including
nearby agents and road topology. Finally, the enhanced state embedding is fused with the agent’s
multimodal features through the proposed unified fusion module, enabling mutual learning and en-
hancing prediction accuracy.

Our contributions are summarized as follows: (i) We propose UIT-Pred, a generalizable architecture
that effectively handles diverse input conditions including variable-length histories and missing in-
put data in trajectory forecasting. (ii) We extend the Mamba architecture by introducing the Bidirec-
tional Time Decay Mamba (BTD-Mamba) module, designed to extract rich spatiotemporal features
from diverse forms of intermittent trajectory inputs. (iii) We introduce a novel prediction module
that generates a learnable state embedding to capture the dynamics of observed motion patterns,
which is then fused with the multimodal output to enhance trajectory prediction. (iv) Extensive ex-
periments on the Argoverse 1 and Argoverse 2 benchmarks demonstrate the consistent and strong
performance of our method.

2 RELATED WORK

2.1 TRAJECTORY PREDICTION

Trajectory prediction is the task of forecasting the future paths of moving agents, such as vehi-
cles, pedestrians, or cyclists, based on a sufficiently long, fixed-length history of observed positions.
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In recent years, numerous approaches have been developed to address this challenge |Chen et al.
(2025a), Messaoud et al.| (2025). To model interactions between agents and the map, graph neu-
ral networks Wang et al.| (2025a); |Chen et al. (2025b) and attention-based mechanisms |Xin et al.
(2025); Bharilya et al.|(2025); [Lee et al.| (2024); Huang et al.| (2025) have been widely employed.
Furthermore, to capture the inherent uncertainty of road agents, researchers generate multimodal
predictions using GANs Wang et al.| (2025b), flow-based models [Liang et al.|(2023), and diffusion
models [Capellera et al.| (2025), Wang et al.| (2024b), Neumeier et al.| (2024). Additionally, goal-
based approaches |Afshar et al.| (2024), Xing et al.| (2025) have gained traction, where multi-modal
goals are first generated through sampling or learning, followed by trajectory prediction conditioned
on these goals.

Recently, the Mamba|Gu & Dao|(2023) framework has revived interest in state space models (SSMs)
as promising alternatives to Transformers [Vaswani et al.| (2017), owing to their ability to reduce
attention complexity and capture long-term dependencies. Mamba has shown strong potential across
diverse domains, including natural language processing Zhao et al.|(2025)); [Wang et al.| (2024a) and
computer vision [Hatamizadeh & Kautz| (2025); [Yu & Wang| (2025). Building on these advances,
our method integrates the strengths of Mamba with Transformer architectures to achieve superior
performance in the unified trajectory prediction task.

2.2 TRAJECTORY PREDICTION FOR LENGTH SHIFT

Trajectory prediction with variable observation lengths has received growing attention in recent
years. [ Xu & Ful| (2024) attribute length bias in Transformers to positional encoding and layer nor-
malization, proposing specialized subnetworks for different sequence lengths. |Li et al.|(2024b) intro-
duce a length-agnostic knowledge distillation (LaKD) module that dynamically transfers knowledge
across trajectories. (Qiu et al.| (2025)) proposes Contrastive Learning for Length Shift (CLLS), which
uses contrastive learning during training to help the model learn length-invariant features and reduce
the effect of varying observation lengths. Additionally, methods like ITPNet|Li et al.|(2024a), MOE
Sun et al.|(2022), DTO Monti et al.|(2022), and SingularTrajectory Bae et al.| (2024)) perform instan-
taneous trajectory prediction by forecasting future motion based on a very short history, typically
the last two time steps, but they depend on a fixed input length. In contrast, our proposed method
handles variable-length observations.

2.3 TRAJECTORY IMPUTATION

Trajectory imputation aims to reconstruct unobserved agent states by leveraging contextual and his-
torical motion data. Earlier work on time-series imputation has explored autoregressive RNNs for
filling in missing values |Cao et al.| (2018)). GC-VRNN [Xu et al.[(2023) couples a variational RNN
with a spatio-temporal GNN to reconstruct missing points and forecast futures in one framework.
Recently, TranSPORTmer Capellera et al.| (2024) applied input masking within a transformer archi-
tecture to impute missing observations, outperforming task-specific baselines in both player and ball
tracking. Similarly, MS-TIP |Chib et al.| (2024) employed diagonal masked self-attention in trans-
formers to recover missing data in pedestrian trajectories. U2Diff |Capellera et al.|(2025) introduced
a unified diffusion-based model that reconstructs missing agent states while estimating state-wise
uncertainty. While these methods focus on imputation, their primary applications are in sports or
pedestrian settings. The challenge of handling missing data in the context of autonomous driving
remains largely underexplored.

3 PROPOSED METHOD

Problem Definition In autonomous driving trajectory prediction, the goal is to forecast a target
agent’s future motion based on past observations and contextual information (e.g., maps and sur-
rounding agents). Real-world data often contain intermittent patterns, including variable-length
observations and missing values. Formally, for each agent, the observed sequence is denoted as
X ={Z1,%a,..., 2+, }, Where each Z, contains coordinates and velocity; the length ¢ varies and
some #; may be missing. The task is to predict the future trajectory Y = {1, ... s Utyea }» Where
each §j; represents agent positions over a horizon #p.q, using observations X and context. Here,
Liotal = tmax + Tprea denotes the full sequence length, with ¢,,,,, as the agent’s history length.
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Figure 2: Illustration of our UIT-Pred framework. For simplicity, the neighbor and map encoding
branches are omitted. Here, F" represents the encoded features of neighboring agents, and G!
denotes the encoded lane information.

3.1 TIME-AWARE INPUT REPRESENTATION

We represent each trajectory as a sequence of temporal states with spatial and contextual fea-
tures. For a given target agent, the input at each timestep ¢ consists of concatenated state fea-

tures including spatial coordinates :chl) and velocity velgi) to form a comprehensive feature vector

Xf = {x?) I Velgi)} where || denotes concatenation. To handle varying input lengths and missing

observations, we enhance the agent’s feature state by incorporating two complementary temporal
features. First, we compute a scaled timestamps,
Ti — Tmi
ti=1-——20 ¢, €[0,1] (1)
Tmax — Tmin

where 7; is the original absolute timestamp (e.g., 73 = [0,1, ..., %obs)). This maps each time index
to the range [0, 1], ensuring the model to learn temporal patterns in the observations without bias
toward any specific sequence length. Second, we compute the inter-observation interval feature,
which represents the time elapsed since the previous valid observation,

At,=1—Ti_1, 1>1, At; =0 2

The feature At; allow the model to reason about missing observations and We explicitly tell the

model how much time has passed since the previous observation., without explicitly relying on
binary validity masks. Thus, the final input at each timestep is represented as,

. . . . tO S

b = [2f? [vel® ¢, | A9

norm

3)
This formulation integrates spatial-temporal states, scaled timestamps to handle varying time ranges,
and inter-observation interval feature to represent the timing differences in the observation.

For each neighboring agent, the input representation is constructed similarly to that of the target
agent, using all available timestamps within a fixed observation window to form the feature vector
h”. For lane segment points, the input h! combines geometric and visibility information, following
the design in [Zhang et al.|(2024])). (refer to Appendix for further details).

3.2 BIDIRECTIONAL TIME-DECAY MAMBA (BTD-MAMBA)

Mamba blocks inherently support variable-length sequences through recurrent state-space updates.
Building on this, we introduce BTD-Mamba, as shown in Figure. [2] an enhanced state-space model
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designed to handle both variable-length and missing trajectory data. It extends Mamba by incor-
porating a time decay mechanism that modulates hidden states based on inter-observation intervals.
Initially, we compute forward and backward inter-arrival times as,

dt} = [Atg, Aty ..., Atg, 1], dt, = flip(dt}), dt"? = [dt}, dt}] 4)

The concatenated inter-arrival times dt("**) encode both forward and backward time gaps between
observations. We then project this into a scaling feature space using,

1
[ffa fb]eﬂip - eXp(ReLU((ﬁs(dt(ﬂb); WS)))

(&)

Here, ¢4(-) is a projection function parameterized by weights W, implemented as a multi-layer per-
ceptron (MLP) with ReLU activation. Equation[d]is designed to calculate the distance from the last
observation to the current time step, which helps quantify the influence of temporal gaps, particu-
larly when dealing with complex missing patterns. The key insight is that the influence of a variable
that has been missing for a period decreases over time. Therefore, in Equation [5] we utilize a neg-
ative exponential function combined with ReLU to ensure that the influence decays monotonically
within a reasonable range between 0 and 1. Moreover, we apply Mamba bidirectionally with a time-
decay mechanism, effectively capturing irregular temporal intervals and modeling temporal gaps by
leveraging inter-arrival times in both directions. The embedded sequence J* = {j1,j2, .- ;e I
where each j; is generated by passing h! through an MLP, is processed both in its original order and
reversed order J) = {j; ., J2,j1} by the revised Mamba block as described below,

obs? ¢ *
J/ = (Jt ® ff) * Cforw + th ((Jlf © fb) * Cback) (6)

where © is element-wise multiplication,  is convolution, Flip(-) reverses the sequence, and Ciopy,
Chack are learnable convolution kernels for forward and backward directions, respectively.

Interaction Representation The neighboring agent features h} are first embedded using an MLP

to produce J* € RN«*?  These embeddings are then passed through Mamba blocks and subse-
quently refined via residual layers with skip connections and normalization, as expressed below,

J" = MLP(h?), F = MambaBlocks(J"), F’' = Norm(F +J") (7)

Lane features h' are encoded via a PointNet-based encoder [Zhang et al.| (2024), yielding map em-
beddings G’ = PNEncoder(h!) € RV %4 Interactions among the target agent, neighbors, and map
are captured by concatenating their embeddings and passing them through a Transformer encoder.

I=[J ||F' |G, Z = TransformerEncoder(I,TI,T) (8)

where Z = [E! € R4 " ¢ RNexd Gl ¢ RNixd] ¢ RU+Na+N)xd captures joint contextual
representations for predicting the next trajectory. Here, IV, denotes the number of neighboring
agents, N; denotes the number of lane agents, and d is the embedding dimension.

3.3 PREDICTION MODULE

State Encoding for Intermittent Trajectories In our framework, to effectively capture the state
and temporal dynamics of trajectories amid variable sequence lengths and missing observations,
we introduce a Variable-Step Temporal Representation (VST) that accounts for unobserved, varying
sequence lengths, alongside a Missing-Step Temporal Embedding (MST) to handle missing data. For
a sequence of length #.,, we construct a time vector from ¢, down to t1,ax — tien + 1. The vector
t, € Z'w represents the variable-length unobserved time steps, with ., = tax — tien, While ,,
denotes the number of missing steps m;,

tv == [tmaxa v 7tmax - tlen + 1] ) tm = [mla "'mtm]a t= [t1;7 tm] (9)
These t are normalized, scaled, and passed through an MLP to generate learnable temporal features,
tocated = 0.1 X t + 0.1,  t/ = MLP (tyegreq) € RUEmTtur)xd (10)

The resulting embeddings t’ are added to repeated latent features of the target agent, enriched with
state information via a GRU,

t” =t @ GRU(E') € R(tmHtuw)xd (11)
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where @ denotes broadcasting addition across time, and t” = [¢/, ¢/ ] contains the final VST v; €
Rtwo x4 and MST m/, € R*»*? embeddings. Moreover, we integrate the observed sequence features
with the VST and MST embedding to create a unified observed sequence, enabling seamless learning
across all components. Initially, a ternary mask M € {0, 1, 2}t is constructed,
0 if time step t is observed,
M, =41 iftimestept € t,, (12)
2 iftime step ¢ € t},,.
Using this mask, we form the tensor p € RimaxXd wwhich combines observed data, the final VST
embedding, and the MST embedding, ensuring each time step is assigned the correct representation,
J'[4, 4], if M[i,t] =0
pli,t] =< t/n[i, k], ifM[i,t] =1 (13)
timplt, l], if M[i, t] =2
where j, k,! index into the observed data, VST embeddings, and MST embeddings respectively.

Finally, the reconstructed full past-length sequence p € Rf=ax*? is generated, enriched with agent
information A" = [E!, F] € RNa*1xd and lane information G' € R™1*4 through cross-attention,

p/ — D(p, At", Atn) c Rt,,,,,mxd7 p// _ 'D(p/, Gl, Gl) c Rtmamxd (14)
where D is the Transformer decoder for cross-attention, and p” encodes agent and lane information.

multi-modal trajectory distributions To generate a multimodal future trajectory for an agent,
we require both mode and state information. The initial mode vector v € R**? is embedded and
combined with the target agent’s encoding to form v’ € R¥*?, which is then refined via cross-
attention with agent A € RNa+1x4 and lane G' € RN ¥ information,

vi=v + Et, v = D(V/7Am, Atn), v = D(V/, Gl, Gl) (15)

where v/ € R¥*? represents the final mode vector. To generate the state vector t § E Ltered, a
normalized time embedding is constructed and fused with the GRU hidden states,

t’f =MLP(0.1-¢+0.1) ® GRU[Et} S Rtl’”“d, t=1,...,tyred (16)

The t'f -enriched states are refined via cross-attention with agent A" and lane G! information,
t7 =D(ty, A", A™), tf =D(t},G, G (17)
The final ’]ﬁ’ integrates both agent and lane information. Furthermore, the embedding of multimodal

future trajectory 8’ € Rfrrea***d jg generated by combining the mode vector v'”/ and state vectors
t// and refined with Z € R(NetN)xd,

s =v"otf, §"=D(s22) (18)

where s” € RtrreaXkxd ig the refined future trajectory embedding after processing.

"

Unified Mode Fusion for Prediction To capture relationships between past and future behaviors,
we fuse representations p”’ € R(FXtmazxd) (after repeating along k) and s” € R(EFXtpreaxd) jnto
psy € REXtmastkxtprea) xd by concatenating along the feature dimension ||feat (preserving tempo-
ral resolution) and into ps; € RF**totat Xdalong the temporal dimension ||;me (aligning sequences),

psf = [p// ||fea13//]7 pSt = [PH ||timeSN] (19)
These fused mode representations ps; and ps; are subsequently processed using cross-attention
mechanisms, producing the updated representations ps’f and ps},

pS/f =D (psf, Z, Z) c R(k’xtm,al"‘rkxtpred)Xd, ps; =D (psi, Z,7) € R**ttotar xd (20)
Finally, the outputs from the different blocks are summarized,
0 = ps; @ reshape,;,,, . (ps’) ® ps; € RF*Frorarxd (21)

The tensor o[—tpreq :| is used for downstream multimodal trajectory prediction, while olt,, t,,] is
used to predict the corresponding observations,

Y, 7= MLP(output{—tpreq :]), v, Tm = M LP(outputlt,, tm]), (22)

where Y € RF*trreax2 denotes the predicted future trajectories, # € R¥ represents the associated

mode probabilities, and &, € Rf«»*2 3, € R'*2 are the reconstructed variable-length steps and
missing observations, respectively.
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Model Training. To supervise the predicted trajectory and its confidence, we employ the Huber
loss for trajectory regression, denoted as Ly, along with the cross-entropy loss for confidence clas-
sification, denoted as Ljs. Additionally, the VST embeddings and MST embedding are supervised
using the Ly, and Ly, losses, respectively, both of which employ the same regression criterion.
Furthermore, an endpoint loss L. is incorporated for all agents, applying the same regression loss
function to improve endpoint accuracy. The model is trained end-to-end by combining all the losses,

Lot = wregLreg + Wets Lets + wuLu—reg + mem-reg + We Ly (23)

where Wyeg, Wels, Wy, Wi, We balance the contributions of Lyeg, Lets, Lu-reg, Lim-regs Let, respectively.
All weights are equal, and Ly, denote the overall loss of training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets & Evaluation Metric Our method is evaluated on two benchmark datasets such as Ar-
goverse 1|Chang et al.|(2019) with 323,557 sequences including 2 seconds of past data and 3 seconds
of future prediction, and Argoverse 2 |Wilson et al.|(2021) with 250,000 scenes providing 5 seconds
of observation and 6 seconds of prediction. We assess our approach using the standard metrics
MinADEy, MinF DEy, and M Ry, with k values of 1 and 6 commonly adopted as benchmarks.

Implementation Details Detailed training settings are included in the Appendix [A.3] section.

Table 1: Performance under different observation scenarios for Argo-

. . 4.2 RESULT
verse 2 validation dataset. Best results are shown in bold.

AND ANALYSIS

Model I/N Scenarios minADE; minFDE; MR; minADEg minFDEg MRg
Missing + Var. 2.1672 49458 06457 08889 15834 02065  Performance under
. Var. Obs 20281 45055 06320 08177 15054 0.1971 . .
DeMo-Orig  \picinoOnly 16637 41427 05944 06837 13234 01666  Different  Observation

FullObs  1.6041 40521 05889 06625 12999 0.1623  Settings. We  evaluate

Missing + Var. 1.6732 41777 05960 06812 1.33277 0.1683 the overall performance
Var. Obs 16613 41580 05955 06760 13261 0.1663 Of the proposed method
Missing Only  1.6747 4.1703 0.5956 0.6863 1.3419 0.1697 under various input con-
FullObs 16341 41049 05914 06719 13187 0.164 I
ull Obs 63 049 03914 06719 13187 0164 Giione on the Argoverse

Missing + Var.  2.1137  5.0919 0.6735 0.8291  1.5985 0.2130 2 dataset, as presented in
Forecast-mae-Orig Mi\::irﬁgogily 20186 4.8589 0.6406 0.7892  1.5182 0.2034 Tablem The label Missing

DeMo-RSD

22330 51860 0.6649 0.8524  1.6087 0.2195 L. .
Full Obs 1.8165 45536 0.6218 0.7244  1.4273 0.1877 + Var indicates scenarios

8246 45432 06201 07335 14406 0.1908 where inputs have vari-
Missing + Var. 1. . . .7 E .1 :
Var Obs 18146 45202 06204 07202 14354 o100z  Aable lengths and contain
Missing Only  1.8302 45558 0.6224 0.7346 14423 0.1918  missing data. Var  Obs
Full Obs 18098 45198 06200 07279 14332 0.105  refers to inputs with vari-

Forecast-mae-RSD

Missing + Var. 1.5896 39584 05778 06519 12284 0.1580  able lengths only, without

UIT-Pred Var. Obs 1.5867  3.8597 0.5669 0.6479  1.2331 0.1592 missing data. Missing Only
(Train-full)  Missing Only  1.5781  3.8146 05693 0.6332 12377 0.1554 - -
Full Obs 13513 38643 05618 06394 12483 01515  denotes inputs that contain

missing data. Finally, Full

Missing + Var.  1.5882 39402 05717 06562 12326 01551 Ops represents complete

UIT-Pred Var. Obs 15749  3.9281 05693 0.6490 12316 0.1525 . .

(Train-mixed)  Missing Only 15711 39059 05692 06491 12481 0,527  inputs with fixed length.
FullObs 15508 3.8784 0.5677 0.6436 12455 01526 The models DeMo-Orig

and Forecast-mae-Orig

are trained exclusively on
fully observed, fixed-length inputs and are evaluated across all input conditions to examine their
generalization capability. In contrast, DeMo-RSD and Forecast-mae-RSD are trained on inputs
with randomly assigned sequence lengths, where certain time steps are also randomly dropped
during training. This training setup is referred to as RSD (Random Sequence Drop). Train-full
denotes training on complete trajectories only, whereas Train-mixed denotes training on complete
trajectories with simulated intermittent observations (variable-length truncation and random missing
values).
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The performance of DeMo-Orig and Forecast-mae-Orig degrades significantly under the Miss-
ing + Var, Var.  Obs, and Missing Only settings, demonstrating their limitations in han-
dling missing or variable-length inputs. In contrast, DeMo-RSD and Forecast-mae-RSD, al-
though trained with the RSD strategy, do not show notable improvements in these challeng-
ing scenarios. This suggests that RSD alone is not sufficient to ensure adaptability across di-
verse input conditions. The proposed model, UIT-Pred, demonstrates promising results across
all input conditions. (See Appendix [A.2.1] for comparisons on the Argoverse 1 dataset.)

Table 2: Comparison of methods on the Argoverse 2 and Argov- Performance under Different
erse 1 validation sets under variable-length observations. Observation  Lengths. The
Dataset Method ~ minADE; minFDE; MR; minADEs minFDEs MRg performance of the proposed

HiVT-Orig 25502 65586 0.7455 1.0561  2.1093 0.3275 approach 18 evaluated in Ta-
HiVI-RM 22848  6.0548 0.7249 0.9457 19283 0.2994 ble 2] with different observation
HiVE-DTO 22769  6.0548 0.7275 09324  1.8946 0.2903 VT O

HiVT-FLN 22786  6.0464 0.7240 09287  1.8838 0.2891 lengths. .The HiVT-Orig and
HIVE-LaKD 22066 58769 07161 09183 18686 02791  QCNet-Orig models refer to

QCNet-Orig  2.1006  5.2219 0.6299 0.8339 1.3849 0.1884 the origina] versions of HiVT

QCNet-RM 17452 44404 05957 07508 13184 0.1671 . . i
QCNetDTO 17713 44900 05979 07454 12024 01611 and QCNet trained using fixed

QCNet-FLN 16940 42373 05808 07370 12595 0.159  length observed trajectories as
QCNetLakD 16574  4.1505 0.5753 07258 12420 01555  ipput. In contrast, HiVT-RM

our 15749 39281 0.5693 0.6490 12316 0.1525 and QCNet-RM introduce ran-

dom masking to the observed
HiVT-Orig 14733 31834 05267 07255 10740 0.1124 : : : -
HIVERM 14189 30599 05104 07070 10447 01053  rajectories  during training
HIVEDTO 13999 30262 05056 07032 10350 01039 to simulate inputs of varying

HIVTELN - 14011 30288 05051 07026 10325 0.1033  Jepgths, Variants such as

HiVI-LaKD 1.3317  2.8799 04901 0.6807 0.9864 0.0928 . .
QCNet-Orig  1.1656  2.4021 03860 0.5791  0.7399 0.0734 HiVI-DTO, HiVI-FLN, and

QCNet-RM  1.0995 22550 03630 0.5684 0.7115 00703  HiVI-LaKD represent config-
QCNetDTO 10708 22303 03563 05418  0.6848 00671  yravion that use HiVT as the
QCNetFLN 10631 22083 03579 05411 06680 0.0671 . :

QCNet-LaKD 09982 20718 03439 05240 06581 00s40  backbone, combined with the

our 08086 17343 02871 03693 o901 ooso D10, Flexilength ~Network
(FLN), and Length-agnostic
Knowledge Distillation (LaKD)
modules, respectively. Similarly, QCNet-DTO, QCNet-FLN, and QCNet-LaKD use QCNet as the
backbone in combination with the same modules.

Argoverse 2

Argoverse 1

The results demonstrate that the proposed model consistently outperforms all baseline methods, in-
cluding QCNet-FLN, QCNet-LaKD, HiVI-FLN, and HiVT-LaKD, across both data sets. As these
baselines are specifically designed to handle variable-length inputs, this comparison highlights the
generalizability of our approach. Furthermore, our method also surpasses HiVI-Orig and QCNet-
Orig, reinforcing the importance of trajectory prediction frameworks tailored for variable-length ob-
servations. Despite the use of random masking in HiVT-RM and QCNet-RM, our model still achieves
superior performance, demonstrating the advantages of our structured design under varying input
lengths. Overall, proposed method achieves state-of-the-art results across multiple configurations,
confirming its effectiveness and adaptability.

Table 3: Prolonged block occlusions where  Table 4:  Gradient-Based Timestep Removal,
contiguous segments of L frames are removed ~ rank past timesteps by saliency (|0L/0z:|) and

from the observation history to mimic long oc-  remove the top-k most influential frames, yield-
clusions like parked trucks or tunnels for Argo-  ing the strongest adversarial perturbation for Ar-
verse 2 validation dataset. goverse 2 validation dataset.

L |minADE; minFDE; MR; minADEg minFDEs MRg k |minADE; minFDE; MR; minADE¢ minFDEs MRg

10| 1.6415  4.0336 05831 0.6762 12628 0.1594 3| 1.6470 40280 0.5741 06748  1.2788 0.1579

20| 16526 41589 0.5944 0.6827 1.2869 0.1563 5| 16669 39836 0.5836 0.6898  1.2917 0.1593

30| 1.6802 42125 0.6026 07053 13172 0.1669 8| 17110 41125 05826 07053 13172 0.1622

40| 17048 43037 06183 07135 13317 0.1725 10| 17521 42037 0.6083 07343  1.3491 0.1701

Performance Under Block Occlusion. To simulate real-world structured missingness, we ap-
plied block occlusions in Table 3] removing L = 10-40 consecutive frames (20-80% of the input).



Under review as a conference paper at ICLR 2026

As L increases, performance degrades marginally because UIT-Pred effectively captures temporal
dependencies and underlying motion cues, enabling accurate trajectory prediction across long gaps.

Performance under Adversarial Missing Patterns. In Table top-k frames are re-
moved to simulate worst-case missing data.  Dropping the top-3 or top-5 frames, al-
ready a strong perturbation, has minimal impact on prediction, indicating that UIT-Pred
does not rely on a small set of critical frames. Performance degrades only under ex-
treme removals (k=8-10), where large high-gradient regions are lost, yet the drop re-
mains gradual, showing strong resilience even under adversarial missing patterns.

Ablation of Each Component. Ta- Table 5: Component Study of Proposed Model for Argov-

ble [§] presents a component study erse 2 validation dataset
of the proposed model, evaluating IP|TAIR BTD-M. PM|minADE; minFDE; MR; minADEs minFDE; MRg

1.8528  4.6447 0.6442 0.8189 1.4668 0.1915
v 1.8071 43175 0.6257 0.7538 1.4381 0.1830

the contributions of the Time-Aware
Input Representation (TAIR), BTD-

1
2
. 3 v 17847 42176 0.6137 07381 14169 0.1798
Mamba (BTD-M.), and the Predictor 4 V| 17516 40163 06149 07257 14037 0.1705
Module (PM). When BTD-Mamba is 5| v v 169028 39826 0.6037 07081 13569 0.1629
6| v V| 16683 39471 05973 06822 13244 0.1648
not used, the model depened only on 5 v /| 16528 39714 05901 06962 13062 0.1631
the forward Mamba module without 8| v /| 15882 39402 05717 06562 12326 0.1551

Time Decay (TD) and when the PM
is excluded, separate MLPs are used for each prediction. The model performs the worst when none
of the components are used (ID-1), highlighting their necessity. Introducing at least one component
(ID-2, 3, 4) leads to noticeable performance gains, as each individual module provides valuable
information. When any two components are combined (ID-5, 6, 7), the model benefits from their
complementary strengths, further improving performance. Finally, the best results are achieved
when all three components are used together (ID-8), highlighting their benefit of integration.

Alternative = Decay  Parame-

terizations. We evaluate the

model under four alternative Table 6: Performance under alternative temporal-decay pa-
temporal-decay parameterizations, rameterizations across different observation scenarios on the
exponential decay [ff, fb]emp = Argoverse 2 validation dataset.

cxp((i)s (dt(f,b) ;Ws)) ) [ffa fb]o’ = Model  I/N Scenarios minADE; minFDE; MR; minADEg minFDEg MRg

b, L . . Missing+ Var. 16087 39887 0.5749 0.6637 12851 0.1562
o (¢s(dth?; Wy)), sigmoid gating  sigmoia Var. Obs 15845  3.9407 0.5683 0.6568 12719 0.1523

_ b. Gating
e, fb]e = 0(¢S(dtf ,Wd)) s gy, MissingOnly 15793 39339 05702 06591 12705 0.I515
. . tble Ruobs 15659 3.8939 0.5669 0.6575 12680 0.1518
linear-clipped decay [f¢, fplin =

. b . . .
chp(l —-B- qﬁs(dt(f* ) Wa), 0, 1), Linegy Missing + Var. 1.6139 40112 05769 0.6595 1.2740 0.1552
d ftolus-i d Clioy  Var.Obs 15923 39789 0.5772 06535  1.2636 0.1536
an SO pus-mversle ecay i 1;13]‘ Missing Only  1.5788  3.9346 0.5727 0.6517 12580 0.1528
[fe, folsp = Trsoftphe . (@ T W) £Iblin FullObs 15682 3.9264 05737 0.6484  1.2540 0.1512
soitplu s STWa
as summarized in Table [} Here, Softplus  Missing + Var. 16117 40067 05731 0.6609 12798 0.1543

. an n he forward an Var. Obs 15814  3.9506 0.5685 0.6520 1.2669 0.1528
Jr and fy denote the forward and Inverse  \riccing Only 15692 3.9120 0.5677 0.6555  1.2628 0.1528

backward temporal scaling factors, (e fol ™ Ry ops 1.5576  3.8978 0.5647 0.6472  1.2566 0.1509
respectively, applied to the features.

. . o . Missing + Var. 15882 3.9402 0.5717 0.6562 12326 0.1551
The function ¢4(-) is a projection  Exponental 'y 0 B 00 00T 05603 06490 12316 01525

function parameterized by weights [f?icfiy Missing Only  1.5711  3.9059 0.5692 0.6491 12481 0.1527
W,, implemented as a multi-layer fblee Ryl Obs 15508 3.8784 0.5677 0.6436  1.2455 0.1526

perceptron (MLP). The operator

o(+) denotes the sigmoid function and (3 is a constant set to 1. We observe that exponential decay
performs best across all I/N scenarios because its continuous-time form, with range (0, o), provides
smooth, non-saturating attenuation that preserves temporal cues across all gap sizes and remains
stable for dt. In contrast, the sigmoid output is bounded in (0, 1), so moderate or large dt values
push it rapidly toward saturation, compressing mid-range differences and reducing sensitivity.
Linear-clipped decay, restricted to [0, 1], suppresses information too abruptly; once the linear
term exceeds this interval, clipping prevents representing stronger decay, producing hard cutoffs
even for moderately large dt. Softplus-inverse decay, also in the (0, 1) range, behaves similarly
to exponential under full observations but decays more aggressively for large dt. This strong
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At

Figure 3: Qualitative results of the proposed model with varying input observations. Black: observed
history; red: missing points; magenta: ground truth future; blue: predicted future trajectory.

suppression helps in missing-only settings by down-weighting outdated information, but leads to
slightly worse performance in mixed scenarios where such aggressive decay removes useful context.

Decay component of BTD-Mamba.

We assess the learned decay in BTD-

Mamba using three variants: (i) a fixed Table 7: Impact of fixed, no, and learned decay in
exponential decay (constant 0.5), (i) no BTD-Mamba for the Argoverse 2 validation set.
decay, .and (iii) the learned decay. As Method  |minADE; minFDE; MR; minADEg minFDEs MRg
shown in Table both fixed and no-decay o O T O TS 06036 07045 13459 0.1858
settings yield higher minADE, minFDE, No-decay | 1.6529  4.0284 05903 0.6925 1.3163 0.1628
and MR under intermittent Observations’ Learned—decay 1.5882 3.9402 0.5717 0.6562 1.2326 0.1551
while the learned decay maintains the

best performance. Fixed decay fails because a single rate cannot capture diverse motion patterns
or gap lengths, and no decay performs worst due to stale states persisting over long gaps. These
results show that adaptive, learned decay is essential for robustness under intermittent observations.

Computational Efficiency. UIT-Pred shows strong

computational efficiency in Table [§] across both Argov-

erse datasets. With 7.5M parameters, training requires Table 8: Computational efficiency of
900-1200 min on two RTX A5000 GPUs, while infer- the proposed model using two NVIDIA
ence uses 6.5M parameters and achieves real-time speeds RTX A5000 GPUs. Abbr.: TTT - To-
of 2.1-2.4 ms per sample at 0.51-0.52 GFLOPs, despite tal Training Time, IT/S - Inference Time
the bidirectional SSM and transformer architecture. per Sample, TP - Training Parameters,
IP - Inference Parameters, BS - Batch
Size, F/S - FLOPs per Sample.

Qualitative Result. Figure shows the proposed

, - TIT IT/S TP IP F/S
model S .perf.orr;llarj:e during 2a(}eft-turnTrﬁlaneu(\llelr aftf an Datasets — ah sy M) M) BS (G)
Intersection in the Argoverse 2 dataset. the model eftec- Argoverse2 900 2.11 7.53 6.55 128 0.52
tively handles all input conditions, aligning well with the Argoverse 1 1200 2.45 7.48 650 128 051

real-world requirements of autonomous driving. Addi-
tional qualitative results across diverse driving scenarios
are provided in Appendix

5 CONCLUSION

In this work, we introduce UIT-Pred, a universal architecture that addresses real-world challenges
in autonomous driving by handling diverse input types for trajectory prediction. We propose a
time-aware input representation that helps the model focus on motion dynamics across diverse input
conditions rather than absolute durations. Furthermore, we extend a state space model to develop the
BTD-Mamba module and introduce a novel predictor, jointly capturing complex temporal dynamics
to enhance trajectory prediction accuracy. Comprehensive experiments on the Argoverse 1 and
Argoverse 2 datasets demonstrate effectiveness of our approach.

10
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

Input Representation for Neighbours and Lane information. Using the vectorized representa-
tion approach [Zhang et al.|(2024), the trajectories of all agents and the geometric representation of
lane segments are modeled as polylines composed of interconnected points. We employ an agent-
centric normalization strategy (Cheng et al.| (2023), which transforms all inputs into a coordinate
system centered on the target agent. The historical trajectories of N, agents are represented as X",
which include coordinates and velocity changes over a length of T},,,x timesteps. Furthermore, we
incorporate two time-related features, scaled timestamps to manage varying time ranges, and inter-
observation interval features to capture timing differences between observations, to construct the
time-aware input representation h”.

Lane segments are encoded as h', which includes the number of lane segments within a specified
radius around the target agent, the number of points in each polyline, and lane features such as
coordinates and availability. All coordinates within each lane segment are normalized relative to
their geometric centers, providing a standardized reference frame for subsequent processing and
analysis [Bharilya et al.[(2025).

Evaluation Metric. We assess our approach using several widely accepted metrics in trajectory
prediction research Wilson et al.|(2021). The MinAD E), metric calculates the average Euclidean
distance between the predicted trajectories and the actual ground truth paths. The MinF D Ej, met-
ric, on the other hand, measures the prediction error specifically at the endpoints of the trajectories.
To evaluate failure rates, the miss rate (M Ry, ) counts instances where the endpoint error MinF DEj,
exceeds a threshold of 2 meters. In these metrics, k denotes the number of trajectory modes pre-
dicted, with evaluations conducted for both single-mode predictions (k = 1) and multi-modal pre-
dictions (k = 6).

Implementation Details. The framework is implemented in PyTorch and trained on an NVIDIA
RTX A5000 GPU. Models are trained end-to-end for 60 epochs using the AdamW optimizer, with
a batch size of 128, a learning rate of 0.001, and a weight decay of 0.01. We use a cosine learning
rate schedule with a 10-epoch warm-up phase. An agent-centric coordinate system samples scene
elements within a 150-meter radius around the agents of interest. The embedding dimension d is
set to 128. Each Mamba block contains 4 layers, the Transformer encoder has 5 layers, and the
Transformer decoder D(-, -, -) in the prediction module is used for cross-attention, where the first
argument is the query, the second is the key, and the third is the value. It consists of two layers.

Formulation of Loss Functions. To optimize the model, we use the Huber loss for trajectory
regression L., and cross-entropy loss for confidence classification L. A winner-take-all strategy
is applied, optimizing only the best prediction while minimizing the average error relative to the
ground truth,

tpred 2
o . (t7c) Y (tvc)
Lreq = ke{]{r,lzl,l.l.‘,ﬁ}< Z Zth(Ygt Y )> 24

t=1 c=1

where Yk(t’c) denotes the predicted future trajectory for mode k at timestamp ¢ along coordinate c,

Yg(f <) represents the corresponding ground truth, #,eq is the total number of future time steps, and &

indicates the number of predicted modes. For confidence classification, we apply the cross-entropy
loss,

K

Las =) (H[Ygt] log () + (1 — I[Yy]) log(1 — frk)> (25)

k=1

where 7, is the predicted probability for the k-th trajectory, and I[Yy,] is an indicator function that
equals 1 if the k-th trajectory is closest to the ground truth, and O otherwise.

14
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To supervise the missing-step temporal embedding, the loss Ly s is computed as,

tm

b = 35 3 () 2

m=1c=1

where t,,, is the number of missing data in the observation. Here, m indexes the missing points,
and m(m ) and £\ denote the ground truth and predicted values of the missing data, respectively,

along d1mension c. The function Ly, refers to the Huber loss used for regression.

Moreover, to supervise the variable-step temporal embedding, the loss L., is defined as,

tuw

vrg—ZZth( L)), 27)

v=1c=1

where t,,, denotes the number of unobserved time steps with variable length. Here, v indexes the un-

() A(v)

observed tokens, and Ty and

along dimension c.

represent the ground truth and predicted values, respectively,

Endpoint loss. To predict endpoints, we utilize a dynamic multi-layer perceptron (MLP) with
weights that are adaptively generated based on the input, referred to as the adaptive MLP. The
adaptive MLP takes as input the agent features [E?, F"'] and meta-information mi of all agents.
The meta-information includes the agent’s position and normalized velocity at last observed times-
tamps. These inputs are concatenated and passed through an MLP with learnable parameters

Wrheat, 1, Weeat,2 and biases beoat, 1, breas,2, to Obtain a latent representation, f,

f = (erat,2 2 (erat,l[Et; Fn]y ml] + bfeat,l) + bfeat,Q) (28)

with ¢ denoting the ReLU activation. Subsequently, two sets of dynamic weights Wy and W5 are
generated by applying learnable linear transformations W, and Wys to f, reshaped accordingly.

W1 = reshape(Wy; - f+ bat) (29)

Wy = reshape(Wdz . f + bdz) (30)

The first hidden layer activations Fy;; are computed by applying a linear transformation W to the
input feature f, followed by layer normalization and a non-linear activation function . The final
prediction e, is then obtained by applying a second linear transformation W5 to Fy,

Fy = go(LayerNorm(Wl : f)), (31)
Jep = Wa - Fipy (32)

This formulation enables dynamic adaptation of the prediction weights conditioned on the input
features and meta information, allowing the model to flexibly predict agent endpoints. To improve
the accuracy of endpoint predictions, we employ a dedicated loss defined as,

L= Z ZL‘“ ( s ) gpftmas c)) (33)

n=1c=1

where L measures the discrepancy between the predicted endpoint €p,, and the ground truth end-
point Yg(ttﬂ{‘d ) of the n' h agent, computed using the Huber loss function.

A.2 MORE EXPERIMENTAL RESULTS

A.2.1 PERFORMANCE UNDER DIFFERENT OBSERVATION SETTINGS.

The performance of the proposed model on the Argoverse 1 dataset under different input conditions
is shown in Table [0l
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Table 9: Performance under different observation scenarios for Argoverse 1 validation dataset

Model I/N Scenarios minADE; minFDE; MR; minADEg minFDEg MRg

Missing + Var.  2.3924  4.6935 0.6172  0.9052 1.4566 0.1751
Var. Obs 2.1506 42475 05993 0.8311 1.3058 0.5993

DeMo-Orig  nriciing Only 34942 6.6470 07808 14078  2.2559 0.3238
Full Obs 12903 27863 046495 05926  0.9534 0.0830
Missing + Var.  1.5100  3.1800 0.5174 0.6504  1.0569 0.1010
Var. Obs 1.5798 33039 0.5380 0.6538  1.0576 0.1022
DeMo-RSD

Missing Only  2.7708 1.8213  0.7421  1.0927 1.8213  0.2572
Full Obs 1.3999 29870 0.5030 0.6145 0.9946 0.0918

Missing + Var.  1.7647 3.6791 0.6153 0.7315 1.2033  0.1175
Var. Obs 1.4734  3.1700 0.5340 0.6669 1.0936  0.0964
Missing Only  2.2504  4.4974 0.6836  0.8654 1.4303 0.1757
Full Obs 1.3470 29207 0.0901 0.6223 1.0222  0.0901

Forecast-mae-Orig

Missing + Var.  1.4679 3.1545 0.5226  0.6643 1.0849 0.0952
Var. Obs 1.4576 3.1298 0.5243  0.6599 1.0759 0.0945
Missing Only  1.7459 3.6371 0.6066 0.7206 1.1881 0.1172
Full Obs 1.4338 3.0894 05120 0.6554 1.0707  0.0949

Forecast-mae-RSD

Missing + Var.  0.8212 1.7826  0.3028 0.3956  0.6018 0.0698
Var. Obs 0.8086 1.7343  0.2871  0.3693 0.5901 0.0510
Missing Only  0.8123 1.7365 0.2816 0.3756  0.5902 0.0511
Full Obs 0.7943 1.7029 02718 03346  0.5726 0.0467

Our

A.2.2 PERFORMANCE UNDER BURST DROPOUT.

We introduce burst-interval missingness (Table [I0), where multiple short gaps (5-30 frames) are
distributed throughout the sequence to mimic intermittent sensor dropout or brief occlusions. In the
burst-size column, max indicates the maximum possible length of each dropped segment, while fix
specifies a constant number of frames per burst. The max setting produces higher errors because it
introduces more severe and occasionally longer gaps, making temporal continuity harder to recon-
struct. UIT-Pred remains stable even under this more challenging regime, whereas the fix setting is
easier due to its consistent gap lengths, which lead to more predictable agent trajectories. Notably,
UIT-Pred can be further improved by incorporating burst-shape augmentation without requiring any
architectural modifications.

A.2.3 PERFORMANCE UNDER INTERSECTION-BASED DROPPING.

To evaluate the model under structured occlusions, Table E] reports results for two forms of
intersection-based dropping. (1) Probability-based dropping removes each point with high prob-
ability (0.8) when it lies inside an intersection polygon and with low probability (0.1) otherwise.
(2)Intersection block occlusion removes a continuous block of (L) points once the trajectory enters
an intersection. Despite differing in how drops are applied, both methods produce nearly identical
errors because they focus missing segments around intersections, regions with inherently complex
motion, leading to temporal gaps of similar effective severity. UIT-Pred remains robust under both
settings, demonstrating strong generalization across localized temporal dropout.

A.2.4 ABLATION STUDY OF BTD-MAMBA COMPONENTS.

Table [T2] presents an ablation study analyzing different configurations of the BTD-Mamba module.
Using only the forward Mamba (Fwd) or backward Mamba (Bwd) results in similar performance,
with slightly better results for Fwd. Combining both directions (Fwd+Bwd) improves performance
across all metrics, indicating that bidirectional context benefits trajectory modeling. The addition of
Time Decay (TD) further enhances performance when combined with either Fwd or Bwd, showing
that temporal relationships contribute useful dynamics. The best performance is achieved when
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Table 10: Burst-interval missingness where repeated short gaps in frames within the input sequences,
simulating brief occlusions in the Argoverse 2 validation dataset.

#Frames | Burst Size | minADE; minFDE; MR; minADEs minFDEs  MRg

5(10%) max =2 1.5724 3.9096  0.5655 0.6490 1.2502  0.1554
7 fix =2 1.5662 3.8932  0.5659  0.6480 1.2498  0.1528
10(20%) max =5 1.6176 3.9759 05739  0.6678 1.2717  0.1555
v fix =5 1.5909 39390 0.5696  0.6570 1.2631  0.1554
20(40%) max =10 1.7162 41129 05832  0.7071 1.3108  0.1620
v fix =10 1.6933 4.0904 0.5812  0.7019 1.3089  0.1629
30(60%) max =10 2.0012 44932  0.6111 0.8406 1.4373  0.1830
v fix =10 1.9376 44227  0.6051 0.8092 1.4159  0.1802

Table 11: Comparison of two intersection-based occlusion mechanisms, probability-based dropping
and block occlusion, on the Argoverse 2 validation dataset.

Method \ minADE; minFDE; MR; minADEg minFDEg MRg
Probability-based Dropping | 1.6552 4.0185 0.5926 0.6659 1.2894 0.1593
Block occlusion 1.6431 3.9926 0.5812 0.6623 1.2773  0.1576

all three components such as Fwd, Bwd, and TD are integrated, forming the complete BTD-Mamba
module. This full configuration achieves the lowest minADE and minFDE, as well as the lowest miss
rate, demonstrating the complementary nature of bidirectional processing and temporal differencing.

A.2.5 ABLATION STUDY ON PREDICTOR MODULE COMPONENTS.

Table[T3|evaluates the impact of three components in the predictor module: State Encoding for Inter-
mittent Trajectories (SEIT), Multi-Modal Trajectory Distributions (MMTD), and Unified Mode Fu-
sion (UMF). When MMTD is not used, separate MLPs replace it for mode and state prediction. The
baseline model without these components (ID-1) performs the worst. Incorporating each component
individually (ID-2 to ID-4) yields moderate improvements, indicating their standalone effectiveness.
Combinations of two components (ID-5 to ID-7) further enhance performance, demonstrating com-
plementary strengths. The full model with all three components enabled (ID-8) achieves the best
results, confirming that TEIT, MMTD, and UMF together significantly improve trajectory prediction
accuracy across all metrics.

A.2.6 ABLATION STUDY ON THE DEPTH OF BTD-MAMBA AND TRANSFORMER ENCODER.

Table[T4]investigates the impact of varying the depth i.e., the number of stacked layers, of the BTD-
Mamba module and the Transformer Encoder on model performance. Increasing the depth of both
modules generally improves results, as seen when moving from 3 to 4 layers, leading to reduced
minADE, minFDE, and Miss Rate (MR). The best performance is observed with 4 layers of BTD-
Mamba and 5 layers of the Transformer Encoder, achieving the lowest across all metrics. Moreover,
performance slightly declines when the BTD-Mamba depth is increased to 5 layers alongside 5

Table 12: Component Study of BTD-Mamba for Argoverse 2 validation dataset.
Method \ minADE; minFDE; MR; minADEg minFDEg MRg

Fwd 1.6816  4.1148 0.6027 0.7011 1.3463 0.1804
Bwd 1.6901 4.1757 0.6134 0.7128 1.3524  0.1749
Fwd+Bwd 1.6529  4.0284 0.5903 0.6925 1.3163  0.1628
Fwd+TD 1.6425 4.0143 0.5901 0.6911 1.3047  0.1609
Bwd+TD 1.6546  4.0112 0.5928 0.6836 1.3142  0.1628
BTD-Mamba | 1.5882 3.9402 0.5717 0.6562 1.2326  0.1551
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Table 13: Component Study of Predictor Module for Argoverse 2 validation dataset.
ID | SEIT MMTD UMF | minADE; minFDE; MR; minADEs minFDEs MRg

1 - - - 1.6474  4.2143 0.6245 0.6957 1.2764 0.1802
20V - - 1.6349 42094 0.6137 0.6835 1.2638 0.1782
3| - vV - 1.6298  4.2072 0.6048 0.6804 1.2477  0.1756
41 - - vV 1.6164  4.1537 0.6013 0.6787 1.2416  0.1726
50 vV vV - 1.6064  4.1121 0.5912 0.6765 1.2569 0.1683
6| - vV 1.6092  4.0154 0.5936 0.6627 1.2535 0.1647
71 - vV vV 1.5914  3.9668 0.5805 0.6613 1.2476  0.1589
8| v vV v 1.5882  3.9402 0.5717 0.6562 1.2326  0.1551

Table 14: Depth Study of BTD-Mamba and Transformer Encoder for Argoverse 2 validation dataset.
BTD-M T-Enc \ minADE; minFDE; MR; minADEg minFDEgs MRg

3 3 1.6226  4.0151 0.5926 0.6844 1.2531 0.1629
4 4 1.6048 39197 0.5802 0.6614 1.2494  0.1600
4 5 1.5882  3.9402 0.5717 0.6562 1.2326  0.1551
5 5 1.5901 3.9937 0.5826 0.6632 1.2471 0.1622

Transformer layers, suggesting a trade-off where excessive depth in BTD-Mamba fails to yield fur-
ther benefits. Overall, a moderate depth configuration balances model complexity and predictive
accuracy effectively.

A.2.7 ABLATION STUDY ON THE IMPACT OF AUXILIARY LOSSES.

Table T3] presents an ablation study that evaluate contribution of three auxiliary losses: the endpoint
loss (Le), regression loss over variable-step temporal embedding (L), and regression loss for
missing-step temporal embedding (L.¢). The baseline model without any auxiliary loss (ID-1)
shows the weakest performance across all metrics. Introducing each loss individually (ID-2 to ID-
4) yields consistent improvements, demonstrating their individual effectiveness. Both L., and
L. lead to greater gains than L. Combining two of the losses (ID-5 to ID-7) further improves
performance, showing their complementary effects. The best results are obtained when all three
auxiliary losses are applied simultaneously (ID-8), achieving the lowest minADE, minFDE, and
MR. These findings confirm that auxiliary supervision strengthens the model’s ability to learn more
accurate trajectory representations.

A.2.8 ABLATION STUDY ON THE SENSITIVITY OF LOSS WEIGHTS.

We conducted a loss-weight sensitivity analysis, as shown in Table in which we (i) report per-
formance using fixed weighting schedules, shown in the first and last rows with varying weights
for each loss and (ii) evaluate a learned, uncertainty-based weighting scheme in the second row. In
the uncertainty-based weighting scheme, we introduce learnable uncertainty parameters s; for each

Table 15: Impact of Auxilary Losses for Argoverse 2 validation dataset.
ID|Le Lyvg Ly |minADE; minFDE; MR; minADEs minFDEs MRg

1| - - - 1.6284  4.2591 0.6137 0.6814 1.2641 0.1795
210y - - 1.6211 4.1918 0.6093 0.6787 1.2601  0.1725
30 - - 1.6159  4.0166 0.5935 0.6749 1.2538 0.1617
4 - - vV 1.6117  4.0137 0.5931 0.6732 1.2546  0.1629
50V vV - 1.6026  4.0118 0.5874 0.6726 1.2525 0.1658
6|+ - Vv 1.5984  3.9971 0.5846 0.6815 1.2437 0.1604
71 - Vv 1.5907 39473 0.5824 0.6810 1.2429  0.1598
81 v v 1.5882 3.9402 0.5717 0.6562 1.2326  0.1551
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Table 16: Weight sensitivity study of loss for Argoverse 2 validation dataset.
Wreg Wels Wy Wi We \minADEl minFDE; MR; minADEg minFDEg MRg
1 1 050502 1.6204 4.0284 0.5723 0.6569  1.2664 0.1554

- - - - -] 16214 41926 0.6098 0.6783 12616 0.1722
1 1 1 1 1 1.5882  3.9402 0.5717 0.6562  1.2326 0.1551

task-specific loss, regression (Lieg), classification (L), variable-step temporal embedding (L),
missing-step temporal embedding (L, ), and the endpoint loss (L. ), to automatically balance multi-
task training. Each parameter is initialized to O (corresponding to unit variance) and optimized
jointly with the model. Under this scheme, the combined loss is defined as follows,

1
Lioa = Z 3 (Li - exp(—si) + si) (34)
where i € {reg,cls,v, m,e}. This approach learns the relative weighting of each task based on
observed uncertainty, removing the need for manual tuning. The inferred standard deviations, o; =

exp(s;), provide interpretable uncertainty measures.

Notably, the uniform weighting configuration (wyeg = Wels = Wy, = Wy, = we = 1) achieves the
best overall performance, with the lowest minADE, minFDE, and MR across both top-1 and top-
6 predictions. This suggests that while uncertainty-based weighting can adaptively balance tasks,
equal weighting is sufficient in our setup, providing strong performance without additional com-
plexity. The results highlight the robustness of our multi-task training formulation and indicate that
all task-specific losses contribute meaningfully to trajectory prediction.

A.3 MORE QUALITATIVE RESULTS

The qualitative results are presented in Figure[d] showcasing the performance of the proposed model
across diverse driving scenarios. The first row illustrates an intersection scenario where the agent
executes a right turn, requiring awareness of both lane geometry and surrounding context. The
second row demonstrates the agent’s behavior on a curved path, highlighting the model’s ability to
capture smooth trajectory changes over time. The third row presents a straight-driving scenario in
dense traffic, where the model must accurately predict future motion despite limited maneuvering
space and potential occlusions. Across all scenarios, the columns depict different input conditions,
including variable-length observations and missing data. The proposed model consistently produces
coherent and accurate trajectory predictions, demonstrating its adaptability to a wide range of real-
world input conditions.
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Figure 4: Qualitative results of the proposed model with varying input observations on Argoverse 2

dataset. Black: observed history; red: missing points; magenta: ground truth future; blue: predicted
future trajectory.
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