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Figure 1: DemoGen is a fully synthetic approach for automatic demonstration generation. DemoGen
promotes the spatial generalization ability of visuomotor policies and can facilitate one-shot imita-
tion by adapting one human-collected demonstration into novel object configurations.

ABSTRACT

Visuomotor policies have shown great promise in robotic manipulation but often
require substantial human-collected data for effective performance. A key fac-
tor driving the high data demands is their limited spatial generalization capability,
which necessitates extensive data collection across different object configurations.
In this work, we present DemoGen, a low-cost, fully synthetic approach for auto-
matic demonstration generation. Using only one human-collected demonstration
per task, DemoGen generates spatially augmented demonstrations by adapting the
demonstrated action trajectory to novel object configurations. Visual observations
are synthesized by leveraging 3D point clouds as the modality and rearranging the
subjects in the scene via 3D editing. Empirically, DemoGen significantly enhances
policy performance across a diverse range of real-world manipulation tasks, show-
ing its applicability even in challenging scenarios involving deformable objects,
dexterous hand end-effectors, and bimanual platforms. Furthermore, DemoGen
can be extended to enable additional out-of-distribution capabilities, including dis-
turbance resistance and obstacle avoidance.

1 INTRODUCTION

Visuomotor policy learning has demonstrated remarkable competence for robotic manipulation
tasks Chi et al. (2023); Zhao et al. (2023); Fu et al. (2024); Ze et al. (2024b), yet it typically de-
mands large volumes of human-collected data. State-of-the-art approaches often require tens to
hundreds of demonstrations to achieve moderate success on complex tasks, such as spreading sauce
on pizza Chi et al. (2023) or making rollups with a dexterous hand Ze et al. (2024b). More intricate,
long-horizon tasks may necessitate thousands of demonstrations Zhao et al. (2024).

One key factor contributing to the data-intensive nature of these methods is their limited spatial
generalization Saxena et al. (2024); Tan et al. (2024) ability. Our empirical study in Sec. A sug-
gests that visuomotor policies Chi et al. (2023), even when coupled with pre-trained or 3D visual
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encoders Radford et al. (2021); Oquab et al. (2023); Ze et al. (2024b), exhibit limited spatial capac-
ity, typically confined to regions adjacent to the demonstrated object configurations. Such limitation
necessitates repeated data collection with repositioned objects until the demonstrated configurations
sufficiently cover the full tabletop workspace. This creates a paradox: while the critical actions
enabling dexterous manipulation are concentrated in a small subset of contact-rich segments, a sub-
stantial portion of human effort is spent teaching robots to approach objects in free space.

A potential solution to reduce redundant human effort is to replace the tedious relocate-and-recollect
procedure with automatic demonstration generation. Recent advances such as MimicGen Mandlekar
et al. (2023b) and its subsequent extensions Hoque et al. (2024); Garrett et al. (2024); Jiang et al.
(2024) have proposed to generate demonstrations by segmenting the demonstrated trajectories based
on object interactions. These object-centric segments are then transformed and interpolated into ex-
ecution plans that fit desired spatially augmented object configurations. The resulting plans are then
executed through open-loop rollouts on the robot, termed on-robot rollouts, to verify their correct-
ness and simultaneously capture the visual observations needed for policy training. Despite their
success in simulation, applying MimicGen-style strategies to real-world environments is hindered
by the high costs of on-robot rollouts, which are nearly as expensive as collecting raw demonstra-
tions. An alternative is to deploy via sim-to-real transfer Peng et al. (2018); Torne et al. (2024);
Yuan et al. (2024), though bridging the sim-to-real gap remains a significant challenge.

In this work, we introduce DemoGen, a data generation system that can be seamlessly plugged into
the policy learning workflow in both simulated and physical worlds. Recognizing the high cost of on-
robot rollouts represents a major barrier to practical deployment, DemoGen adopts a fully synthetic
pipeline that efficiently concretizes the generated plans into spatially augmented demonstrations.

For action generation, DemoGen develops the MimicGen strategy by incorporating techniques from
Task and Motion Planning (TAMP) Dalal et al. (2023); Cheng et al. (2023); Mandlekar et al. (2023a),
similar to the practice in the recently released SkillMimicGen Garrett et al. (2024). Specifically, we
decompose the source trajectory into motion segments moving in free space and skill segments in-
volving on-object manipulation through contact. During generation, the skill segments will be trans-
formed as a whole according to the augmented object configuration, and the motion segments will be
replanned via motion planning to connect the neighboring skill segments after transformation. With
the processed actions in hand, a core challenge is obtaining spatially augmented visual observations
without relying on costly on-robot rollouts. DemoGen employs a straightforward strategy: it selects
point clouds as the observation modality and synthesizes the augmented visual observations through
3D editing. The key insight is that point clouds, which inherently live in the 3D space, can be easily
manipulated to reflect the desired spatial augmentations. Generating augmented point cloud obser-
vations is reduced to identifying clusters of points corresponding to the interested subjects and then
applying the same spatial transformations used in the generated action plans.

We manifest the effectiveness of DemoGen by evaluating the performance of visuomotor policies
trained on DemoGen-generated datasets from only one human collected demonstration per task. To
assess spatial generalization, we adhere to a rigorous evaluation protocol in which the objects are
placed across the entire tabletop workspace within the end-effectors’ reach. We conduct extensive
real-world experiments, showing that DemoGen can be successfully deployed on both single-arm
and bi-manual platforms, using parallel-gripper and dexterous-hand end-effectors, from both third-
person and egocentric observation viewpoints, and with a range of rigid-body and deformable/fluid
objects. Meanwhile, the cost of generating one demonstration trajectory with DemoGen is merely
0.01 seconds of computation. Empirically, DemoGen significantly enhances policy performance,
generalizing to un-demonstrated configurations and achieving an average of 74.6% across 8 real-
world tasks. Additionally, we demonstrate that simple extensions under the DemoGen framework
can further equip imitation learning with acquired out-of-distribution generalization capabilities
such as disturbance resistance and obstacle avoidance. The code and datasets will be open-sourced.
Please refer to the website for robot videos.

2 RELATED WORKS

Visuomotor policy learning. Represented by Diffusion Policy Chi et al. (2023) and its exten-
sions Ze et al. (2024b); Ke et al. (2024); Prasad et al. (2024); Wang et al. (2024b;a), visuomotor
policy learning refers to the imitation learning methods that learn to predict actions directly from vi-
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sual observations in an end-to-end fashion Levine et al. (2016). The end-to-end learning objective is
a two-edged sword. Its flexibility enables visuomotor policies to learn dexterous skills from human
demonstrations, extending beyond rigid-body pick-and-place. However, the absence of structured
skill primitives makes such policies intrinsically data-intensive. The conflicts between the huge data
demands and the great expense of robotic data collection have driven recent data-centric research,
including data collection systems Chi et al. (2024b); Cheng et al. (2024); Li et al. (2024), collabo-
rative gathering of large-scale datasets O’Neill et al. (2024); Khazatsky et al. (2024), and empirical
studies on data scaling Zhao et al. (2024); Lin et al. (2024). Instead of scaling up via pure human
labor, DemoGen aims to show that synthetic data generation can help save much of the human effort.

Data-efficient imitation learning. Attempting to develop manipulation policies from only a hand-
ful of demonstrations, data-efficient imitation learning methods often build on the principles of Task
and Motion Planning (TAMP), while incorporating imitation learning to replace some components
in the TAMP pipeline. A common approach is to learn the end-effector poses for picking and plac-
ing Zeng et al. (2021); Simeonov et al. (2022); Wen et al. (2022); Xue et al. (2023); Gao et al. (2024).
The whole trajectories are generated using motion planning toolkits Kuffner & LaValle (2000) and
then executed in an open-loop manner. Some methods extend this idea to more complex scenarios
by learning to estimate the states of manipulated objects in the environment and replaying demon-
strated trajectory segments centered around the target objects Johns (2021); Valassakis et al. (2022);
Di Palo & Johns (2022; 2024). While these approaches are effective for simpler, Markovian-style
tasks Vosylius & Johns (2024), their reliance on open-loop execution limits their application to more
dexterous tasks requiring closed-loop retrying and re-planning. In contrast, DemoGen leverages the
TAMP principles for synthetic data generation to train closed-loop visuomotor policies, thus effec-
tively combining the merits of both approaches.

Data generation for robotic manipulation. Automated demonstration generation offers the oppor-
tunity to breed capable visuomotor policies with significantly reduced human efforts. A branch of
recent works attempts to generate demonstrations by leveraging LLM for task decomposition and
then using planning or reinforcement learning for subtask resolution Wang et al. (2023a); Hua et al.
(2024); Wang et al. (2023b). An alternative line of research is exemplified by MimicGen Mandlekar
et al. (2023b) and its extensions Hoque et al. (2024); Garrett et al. (2024); Jiang et al. (2024). Unlike
generating demonstrations from the void, MimicGen adapts some human-collected source demon-
strations to novel object configurations by synthesizing corresponding execution plans. However,
execution plans produced by the MimicGen framework are not ready-to-use demonstrations in the
form of observation-action pairs. To bridge this gap, the MimicGen family Mandlekar et al. (2023b);
Hoque et al. (2024); Garrett et al. (2024); Jiang et al. (2024) relies on costly on-robot rollouts, which
poses significant challenges for the deployment on physical robots. Building upon MimicGen and
its extensions, DemoGen incorporates their strategies for generating execution plans, but replaces
the expensive on-robot rollouts with an efficient, fully synthetic generation process. This enables
DemoGen to generate real-world demonstrations cost-effectively.

3 DemoGen METHODS

3.1 PROBLEM FORMULATION

A visuomotor policy π : O 7→ A directly maps the visual observations o ∈ O to the predicted
actions a ∈ A. To train such a policy, a dataset D of demonstrations must be prepared. We define a
source demonstration Ds0 ⊆ D as a trajectory of paired observations and actions conditioned on an
initial object configuration: Ds0 = (d0, d1, . . . , dL−1|s0), where each dt = (ot, at) represents an
observation-action pair, s0 denotes the initial configuration, and L is the trajectory length. DemoGen
is designed to augment a human-collected source demonstration by generating a new demonstration
conditioned on a different initial object configuration: D̂s′0

= (d̂0, d̂1, . . . , d̂L−1|s′0).
Specifically, assuming the task involves the sequential manipulation of K objects
{O1, O2, . . . , OK}, the initial object configuration s0 is defined as the set of initial poses of
these objects: s0 = {TO1

0 ,TO2
0 , . . . ,TOK

0 }, where TO
t denotes the SE(3) transformation from the

world frame to an object O at time step t. The action at consists of the robot arm and robot hand
commands, represented as at = (aarmt , ahandt ), where aarmt ≜ AEE

t is the target SE(3) end-effector
pose in the world frame, and ahandt can either be a binary signal for a parallel gripper’s open/close
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action or a higher-dimensional vector for controlling the joints of a dexterous hand. The observation
ot includes both the point cloud data and the proprioceptive feedback from the robot: ot =

(opcdt , oarmt , ohandt ), where oarmt and ohandt reflect the current state of the end-effector, with the same
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Figure 2: Pre-processing the source
demonstration. The raw point cloud
observations are processed by cropping,
clustering, and down-sampling. The
source action trajectory is parsed into
motion and skill segments by referring
to the object semantic masks.

dimensionality as the corresponding actions.

3.2 PRE-PROCESSING SOURCE DEMONSTRATION

Segmented point cloud observations. To improve the
practical applicability in real-world scenarios, we utilize
a single-view RGBD camera for point cloud acquisition.
The raw point cloud observations are first preprocessed
by cropping the redundant points from the background
and table surface. We assume the retained points are asso-
ciated with either the manipulated object(s) or the robot’s
end-effector. A clustering operation Ester et al. (1996)
is then applied to filter out the outlier points in noisy
real-world observations. Subsequently, the point cloud
is downsampled to a fixed number of points (e.g., 512
or 1024) using farthest point sampling to facilitate pol-
icy learning Qi et al. (2017). For the first frame of the
trajectory, we employ Grounded SAM Ren et al. (2024)
to obtain the segmentation masks for the manipulated ob-
jects from the RGB image. These masks are then applied
to the pixel-aligned depth image and projected onto the
3D point cloud, as shown in Fig. 2.

Parsing the source trajectory. Following previous work Mandlekar et al. (2023b); Garrett et al.
(2024), we assume that the execution trajectory can be parsed into a sequence of object-centric
segments. Since the robot must initially approach the object in free space before engaging in on-
object manipulation through contact, each object-centric segment can be further subdivided into two
stages: motion and skill. For example, the trajectory in Fig. 2 is divided into four stages: 1) move to
the flower, 2) pick up the flower, 3) transfer the flower to the vase, 4) insert the flower into the vase.

We can easily identify the skill segments associated with a given object by checking whether the
distance between the geometric center of the object’s point cloud and the robot’s end-effector falls
within a predefined threshold, illustrated by the spheres in Fig. 2. The intermediate trajectories
between two skill segments are classified as motion segments. Formally, we represent an interval
of time stamps as: τ = (tstart, tstart + 1, . . . , tend − 1, tend) ⊆ (0, 1, . . . , L − 1), which can
be used as an index sequence for the extraction of the corresponding segments from a sequence of
demonstrations, actions, or observations. For instance, d[τ ] = (dtstart , dtstart+1, . . . , dtend−1, dtend)
represents the extracted subset of source demonstration indexed by τ . Using this notation, we parse
the source demonstration into alternating motion and skill segments according to the index sequence
(τm

1 , τ s
1 , . . . , τ

m
K , τ s

K): Ds0 = (d[τm
1 ], d[τ s

1 ], . . . , d[τ
m
K ], d[τ s

K ]|s0).

3.3 TAMP-BASED ACTION GENERATION

The generation process begins by selecting a target initial configuration s′0 =

{TO1
′

0 ,TO2
′

0 , ...,TOK
′

0 }. We can compute the spatial transformation under the homogeneous
matrix representation by: ∆s0 = {(TO1

0 )−1 · TO1
′

0 , . . . , (TOK
0 )−1 · TOK

′

0 }. Recall that the
actions consist of both robot arm and robot hand commands. The robot hand commands define the
interactive actions on the object, e.g., holding the flower with the gripper, or rolling up the dough
with the dexterous hand. Since they are invariant of the spatial transformation, ahandt should remain
unchanged regardless of the object configuration: âhandt = ahandt , ∀ t, so, s

′
0.

In contrast, the robot arm commands should be spatially equivariant to the object movements in
order to adjust the trajectory according to the altered configuration. Specifically, for the motion
and skill segments involving the k-th object, we adapt the robot arm commands AEE[τm

k ],AEE[τ s
k]

following a TAMP-based procedure illustrated in Fig. 3.
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Figure 3: Illustrations for action generation. (Left) Ac-
tions in the motion stage are planned to connect the neigh-
boring skill segments. (Right) Actions in the skill stage
are transformed uniformly as a whole.

For the skill segments with dexterous
on-object behaviors, the spatial rela-
tions between end-effectors and objects
must remain relatively static. Thus, the
entire skill segments are transformed
following the corresponding objects:
ÂEE[τ s

k] = AEE[τ s
k] · (T

Ok
0 )−1 ·TOk

′

0 .
For the motion segments moving in free
space, the goal of the generated actions
is to chain the adjacent skill segments.
Therefore, we plan the robot arm com-
mands in the motion stage via motion
planning: ÂEE[τm

k ] = MotionPlan(ÂEE[τ s
k−1][−1], ÂEE[τ s

k][0]), where the starting pose for
motion planning is taken from the last frame of the previous skill segment, and the ending pose is
from the first frame of the current skill segment. For simple uncluttered workspaces, linear inter-
polation suffices. For complex environments requiring obstacle avoidance, an off-the-shelf motion
planning method Kuffner & LaValle (2000) is employed.

3.4 FULLY SYNTHETIC OBSERVATION GENERATION

Adapting proprioceptive states. The observations consist of point cloud data and proprioceptive
states. Since the proprioceptive states share the same semantics with the actions, they should un-
dergo the same transformation: ôhandt = ohandt , ∀ t, so, s

′
0; ôarmt = oarmt · (AEE

t )−1 · ÂEE
t .

Synthesizing point cloud observations. To synthesize the spatially augmented point clouds for
the robot and objects, we employ a simple segment-and-transform strategy. Apart from the target
transformations, the only required information for synthesis is the segmentation masks for the K
objects on the first frame of the source demonstration, obtained in Sec. 3.2.

For each object, we define 3 stages. In the to-do stage, the object is static and unaffected by the robot,
and its point cloud is transformed according to the initial object configuration (TOk

0 )−1 · TOk
′

0 . In
the doing stage, the object is in contact with the robot, and its point cloud is merged with the end-
effector’s point cloud. In the done stage, the object remains in its final state. These stages are
easily identified by referencing the trajectory-level motion and skill segments. For the robot’s end-
effector, its point cloud undergoes the same transformation as indicated by the proprioceptive states
(AEE

t )−1 · ÂEE
t . Given the assumption of a cropped workspace, the point clouds for the robot and

the objects in the doing stage can be separated by subtracting the object point clouds in the to-do
and done stages from the scene point cloud. A concrete example of this process is shown in Fig. 4.
More examples of the synthetic trajectories in real-world experiments can be found in Fig. 21.
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Figure 4: Illustrations for synthetic visual observation generation. Objects in the to-do stage
are segmented and transformed by the target object configurations. Objects in the doing stage are
merged with the end-effector and transformed according to the proprioceptive states.
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4 EXPERIMENTS IN THE SIMULATOR

Policy. Both in the simulator and real world, we select DP3 Ze et al. (2024b) as the visuomotor
policy, which predicts actions by consuming point cloud and proprioception observations. For a fair
comparison, we fix the total training steps counted by observation-action pairs, resulting in an equal
training cost regardless of the dataset size. The training details are listed in Appendix B.1.

Tasks. We design 8 tasks adapted from the MetaWorld Yu et al. (2020) benchmark, illustrated
in Fig. 5. To strengthen the significance of spatial generalization, we modify these tasks to have
enlarged object randomization ranges, as listed in Appendix D.1.

Generation and evaluation. We write scripted policies for these tasks and prepare only 1 source
demonstration per task for demonstration generation. We also produce 10 and 25 source demonstra-
tions per task using the scripted policy as a reference for human-collected datasets. Based on the one
source demonstration, we leverage DemoGen to generate 100 spatially augmented demonstrations
for the tasks containing the spatial randomization of one object. Since the tasks concerning two
objects have a more diverse range of object configurations, 200 demonstrations are generated.

Results analysis. The evaluation results for the simulated tasks are presented in Tab. 1. DemoGen
significantly enhances the policy performance compared with the source demonstration baseline.
The policies trained on DemoGen-generated datasets also outperform those trained on 10 source
demonstrations and get close to 25 source demonstrations. This indicates DemoGen has the po-
tential to maintain the policy performance with over 20× reduced human effort for data collection.
Additionally, we found a visual mismatch problem between the synthetic and real-captured obser-
vations, which poses a limitation for the effectiveness of DemoGen. Illustrations and the empirical
consequence of the visual mismatch problem are provided in Appendix C.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Figure 5: Tasks for simulated evaluation on spatial generalization. Purple and sky-blue rectan-
gles mark the workspaces for demonstration generation and evaluation, respectively.

Table 1: Simulated evaluation of DemoGen for spatial generalization. We report the maxi-
mum/averaged success rates over 3 seeds.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly Averaged

1 Source 0/0 4/4 55/50 39/23 17/16 11/11 0/0 0/0 16/13
DemoGen 76/73 92/84 100/100 95/92 100/100 100/95 79/77 86/83 91/88

10 Source 29/29 54/52 100/100 90/89 100/99 94/89 44/38 47/45 70/68
25 Source 82/74 90/84 100/100 100/100 100/100 100/100 95/93 83/79 94/91

5 EXPERIMENTS IN THE REAL WORLD

5.1 SPATIAL GENERALIZATION ON SINGLE-ARM PLATFORMS

Tasks. On the Franka Panda single-arm platform, we design 3 tasks using the original Panda grip-
per and 4 tasks using an Allegro dexterous hand as the end-effector. A task summary is provided in
Tab. 2. The motion and skill trajectories of these tasks are visualized in Fig. 7 and the task descrip-
tions are provided in Appendix D.2. For all tasks, a single Intel Realsense L515 camera is adopted
to capture point cloud observations, as depicted in Fig. 6(a).

Evaluation protocol. To evaluate spatial generalization, we define a large planar evaluation
workspace, the size of which corresponds to the maximum reach of the robot arm. Illustrated in
Fig. 6(b), We uniformly sample 12 points within this irregularly-shaped workspace as the coordi-
nates for potential object configurations, with a 15cm spacing between the neighbors. To determine
the actual evaluated configurations for each task, we perform manual trials using kinematic teaching
to confirm the feasibility of each configuration.
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Source Generated

(a) (b) (c)

Figure 6: Protocol for evaluating spatial generalization. (a) Setups on the single-arm platform.
(b) Illustration for the full-size evaluation workspace. (c) Illustration for the generation strategy
targeting the evaluated configurations along with small-range perturbations.

Spatula-Egg Flower-Vase Mug-Rack

Dex-Rollup Dex-Drill Dex-Coffee

Figure 7: Tasks for real-world evaluation on spatial generalization. Spatula-Egg and Dex-Rollup
are one-stage tasks involving contact-rich behaviors. Flower-Vase, Mug-Rack, Dex-Drill, and Dex-
Coffee are two-stage tasks requiring precise manipulation.

Table 2: Real-world tasks for spatial gener-
alization evaluation. ActD: action dimension.
#Obj: number of manipulated objects. #Eval:
number of evaluated configurations. #GDemo:
number of generated demonstrations.

Task Platform ActD #Obj #Eval #GDemo

Spatula-Egg Gripper 6 1 10 270
Flower-Vase Gripper 7 2 4×4 432
Mug-Rack Gripper 7 2 4×4 432
Dex-Cube Dex. Hand 22 1 10 270
Dex-Rollup Dex. Hand 22 1 12 324
Dex-Drill Dex. Hand 22 2 3×3 243
Dex-Coffee Dex. Hand 22 2 3×3 243
Fruit-Basket Bimanual 14 2 4×6 72

Generation strategy. As in the simulated envi-
ronments, we collect only one source demon-
stration for each task. However, real-world
point cloud observations are often noisy, with
issues such as flickering holes in the point
clouds or projective smearing around object
outlines. The imitation learning policy can
overfit these irregularities if only one demon-
stration is provided. To mitigate this issue,
we replay the source demonstration twice and
capture the corresponding point cloud observa-
tions. The altogether 3 point cloud trajectories
enrich the diversity in visual degradations and help alleviate the overfitting problem.

We set the generated object configurations to correspond to the evaluated configurations. However,
human operators cannot always place objects with perfect precision in the real world, yet we found
visuomotor policies are sensitive to even small deviations. Thus, we further augment the gener-
ated object configurations by adding small-range perturbations. Specifically, for each target con-
figuration, we generate 9 demonstrations with (±1.5cm) × (±1.5cm) perturbation to mimic slight
placement variations in the real world. The final generated configurations are shown in Fig. 6(c).

In summary, the total number of generated demonstrations is calculated as 3× (#Eval)× 9, which
represents the 3 source demonstrations, multiplied by the number of evaluated configurations, and
further multiplied by the 9 perturbations. The detailed counts for each task are listed in Tab. 2.

Results analysis. The performance of visuomotor policies Ze et al. (2024b) trained on 3 source
demonstrations and DemoGen-generated demonstrations are reported in Tab. 3. Agents trained
solely on source demonstrations exhibit severe overfitting behaviors, blindly replicating the demon-
strated trajectory. In Appendix D.3, we evaluate the policy performance trained on datasets contain-
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Table 3: Real-world evaluation of DemoGen for spatial generalization. The success rates are
averaged on 5 repetitions for each evaluated configuration. The evaluated configurations for each
task are counted in Tab. 2, and visualized in Fig. 8.

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket Averaged

Source 10.0 6.3 6.3 10.0 8.3 11.1 11.1 25.0 11.0
DemoGen 88.0 82.5 85.0 78.0 76.7 55.6 40.0 90.8 74.6

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube

Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket

= 0% > 0% > 40% > 60% > 80%

Figure 8: Spatial heatmaps for real-world evaluation. The success rate for each coordinate is
calculated as the average across all relevant trials. For example, each coordinate of the vase in the
Flower-Vase task is in combination with 4 coordinates of the flower, including the one appearing in
the source demonstration. This results in a total of 20 trials, given 5 repetitions per combination.

ing additional human-collected demonstrations. We found the spatial effective range of the trained
policies is upper-bounded by the demonstrations, aligned with the empirical study in Appendix A.

Similar to the effects of manually covering the workspace with human-collected demonstrations,
DemoGen-generated datasets enable the agents to display a more adaptive response to diverse eval-
uated configurations, resulting in significantly higher success rates. DemoGen consistently enhances
the performance across all the evaluated tasks. To further investigate the generalization capabilities
enabled by DemoGen, we visualize the spatial heatmaps for the evaluated configurations in Fig. 8.
The heatmaps reveal high success rates on configurations close to the demonstrated ones, while the
performance diminishes as the distance from the demonstrated configuration increases. We attribute
this decline to the visual mismatch problem, as discussed in Appendix C.

Table 4: The time cost for generating real-
world demonstrations. The computational cost
is measured on a single-process procedure.

Single o-a Pair A Trajectory Whole Dataset

MimicGen 2.1 s 2.1min 83.7 h
DemoGen 0.00015 s 0.010 s 22.0 s

Generation cost. We compare the time cost of
real-world demonstration generation between
MimicGen Mandlekar et al. (2023b) and De-
moGen. We estimate MimicGen’s time cost by
multiplying the duration of replaying a source
trajectory by the number of generated demon-
strations and adding an additional 20 seconds
per trajectory for human operators to reset the
object configurations. Note that MimicGen involves continuous human intervention, while the time
cost of DemoGen is purely computational, without any human/robot involvement.

5.2 SPATIAL GENERALIZATION ON BIMANUAL HUMANOID

Task. In addition to the tasks on the single-arm platform, we also designed a Fruit-Basket task on a
bimanual humanoid platform, illustrated in Fig. 9. The Fruit-Basket task is distinguished from the
previous tasks by three key features: 1) Bimanual manipulation. The robot simultaneously grasps
the basket with one arm and the banana with the other. The right arm then places the basket in
the center of the workspace, while the left arm places the banana into the basket. 2) Egocentric
observation. The camera is mounted on the robot’s head Ze et al. (2024a). While the robot’s base is
immobilized in this task, the first-person view opens opportunities for future deployment in mobile
manipulation scenarios. 3) Out-of-distribution orientations. Still using a single human-collected
demonstration, the banana is placed with orientational offsets (i.e., 45◦, 90◦, and 135◦) relative
to the original demonstration during evaluation, while the basket position is randomized within a
translational 10 cm × 5 cm workspace.
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Bimanual Humanoid O.O.D. Orientations

rot=0° rot=45°

rot=90° rot=135°

(a) (b)
Egocentric

Observation

Bimanual 
Manipulation

Figure 9: Bimanual humanoid platform. (a)
Egocentric observations and bimanual manipula-
tion. (b) The Fruit-Basket task involves the out-
of-distribution orientations during evaluation.

Generation strategy. The generation pro-
cedure follows a similar approach as on the
single-arm platform. Specifically, the human-
collected demonstration is replayed twice,
yielding 3 source demonstrations. DemoGen
generates synthetic demonstrations by indepen-
dently adapting the actions of both arms to
the respective transformations of the objects.
Small-range perturbations are omitted due to
lower precision requirements. A challenge in
synthesizing point cloud observations with ori-
entational offsets lies in the limited view pro-
vided by the single camera. To address this is-
sue, the humanoid robot adopts a stooping posture, enabling a near bird’s-eye view perspective. This
adjustment allows for more effective point cloud editing to simulate full-directional yaw rotations.

Results analysis. The success rates for both the source and generated datasets are compared in
Tab. 3, and the spatial heatmap is shown in Fig. 8. The high success rate of 90.8% demonstrates
the effectiveness of DemoGen on bimanual humanoid platforms and its ability to help policies gen-
eralize to out-of-distribution orientations. A more detailed analysis is presented in Appendix D.4.

(a) (b) (c)

(d) (e)

Figure 10: DemoGen for disturbance resistance.
(a-c) Illustration, initial, and ending states of the
Sauce-Spreading task. (d) Disturbance applied for
evaluation. (e) Standard generation strategy.

5.3 DISTURBANCE RESISTANCE

Task and evaluation protocol. We consider a
Sauce-Spreading task (Fig. 10(a)) adapted from
DP Chi et al. (2023). Initially, the pizza crust
contains a small amount of sauce at its center
(Fig. 10(b)). The gripper maneuvers the spoon
in hand to approach the sauce center and peri-
odically spread it to cover the pizza crust in a
spiral pattern (Fig. 10(c)). During the sauce-
spreading process, disturbances are introduced
by shifting the pizza crust twice to the neigh-
boring spots within the workspace. We con-
sider 5 neighboring spots (Fig. 10(d)) and conduct 5 trials per spot, resulting in 25 trials. For
quantitative evaluation, we measure the sauce coverage on the pizza crust. Additionally, we re-
port a normalized sauce coverage score, where 0 represents no operation taken, and 100 cor-
responds to human expert performance. Detailed calculations are provided in Appendix D.5.

t= 4

4

Figure 11: Illustration for ADR.

Generation strategies. A standard generation strategy
selects 15 intermediate spots (Fig. 10(e)) observed dur-
ing the disturbance process as the initial object configu-
rations for a standard DemoGen data generation proce-
dure. To specifically enhance disturbance resistance, we
propose a specialized strategy named Augmentation for
Disturbance Resistance (ADR), illustrated in Fig. 11. In
ADR, the pizza crust is artificially displaced to nearby
positions at certain time steps to simulate the disturbance.
The robot’s end-effector, holding the spoon, initially re-
mains static and subsequently interpolates its motion to
re-approach the displaced crust before continuing the periodic spreading motion.

Table 5: Evaluation results
for disturbance resistance.

Coverage Score

Standard 34.2 40.4
w/ ADR 61.2 92.3

Initial State 13.2 0
Human Expert 65.2 100

Results analysis. Tab. 5 presents the sauce coverage and normal-
ized scores for both the standard DemoGen and the ADR-enhanced
DemoGen strategies. Raw evaluation results and detailed defini-
tions for the metrics are presented in Appendix D.5. We found
the ADR strategy significantly outperforms the standard DemoGen,
achieving performance comparable to human experts. In the video,
we showcase the ADR-enhanced policy is still robust under up to 5
successive disturbances. These findings underscore the critical role
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of the demonstration data in enabling policy capabilities. The ability to resist disturbances does not
emerge naturally but is acquired through targeted disturbance-involved demonstrations.

5.4 OBSTACLE AVOIDANCE

Task. Similar to the case of disturbance resistance, the visuomotor policy’s ability to avoid obstacles
is also imparted through demonstrations containing obstacle-avoidance behaviors. To investigate
such capability, we introduce obstacles to a Teddy-Box task, where the dexterous hand grasps the
teddy bear and transfers it into the box on the left (Fig. 12(a)). Trained on the source demonstrations
without obstacles, the visuomotor policy fails to account for potential collisions, e.g., it might knock
over the coffee cup placed in the middle (Fig. 12(b)).

Source Demo     Generated Demo

(b)  Collision Obstacle Avoidance(d)

(a) (c)

Figure 12: DemoGen for obstacle avoidance. (ab) Policy
trained on the source demonstration collides with the unseen
obstacle. (cd) Policy trained on the generated dataset could
avoid diverse-shaped obstacles.

Generation strategy. To gen-
erate obstacle-involved demonstra-
tions, we augment the real-world
point cloud observations by sam-
pling points from simple geometries,
such as boxes and cones, and fus-
ing these points into the original
scene (Fig. 12(c)). Obstacle-avoiding
trajectories are generated by a mo-
tion planning tool Kuffner & LaValle
(2000), which enables collision-free
actions.

Evaluation and results analysis.
For evaluation, we position 5 every-
day objects with diverse shapes in the
middle of the workspace (Fig. 12(d))
and conduct 5 trials per object, result-
ing in a total of 25 trials. The agent
trained on the augmented dataset suc-
cessfully bypasses obstacles in 22 out
of 25 trials. Notably, in scenarios without obstacles, the agent follows the lower trajectory observed
in the source demonstrations, indicating its responsiveness to environmental variations.

6 CONCLUSION

In this work, we introduced DemoGen, a fully synthetic data generation system designed to facilitate
visuomotor policy learning by mitigating the need for large volumes of human-collected demonstra-
tions. Through TAMP-based action adaption and 3D point cloud manipulation, DemoGen generates
spatially augmented demonstrations with minimal cost, significantly improving visuomotor policy’s
spatial generalization capability across a wide range of real-world tasks and platforms. Furthermore,
we extend DemoGen to generate demonstrations incorporating disturbance resistance and obstacle
avoidance behaviors, endowing the trained policies with the corresponding capabilities.

Limitations. Although we have demonstrated the effectiveness of DemoGen, it has several limi-
tations. First, DemoGen relies on the availability of segmented point clouds, which limits its ap-
plicability in highly cluttered or unstructured environments. Second, DemoGen is not suitable for
tasks where spatial generalization is not required, such as in-hand reorientation Chen et al. (2022)
or push-T Florence et al. (2022); Chi et al. (2023) with a fixed target pose. Third, the performance
of DemoGen is affected by the visual mismatch problem caused by the constraint of single-view
observation, which is discussed in detail in Appendix C.

Future works. Future works could explore mitigating the impact of visual mismatch, potentially
by leveraging techniques such as contrastive learning or 3D generative models. Another avenue
for future research is to use additional human-collected demonstrations as source data, aiming to
identify the optimal balance between policy performance and the overall cost of data collection.
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A EMPIRICAL STUDY: SPATIAL GENERALIZATION CAPABILITY OF
VISUOMOTOR POLICIES

In this section, we present a brief empirical study examining the spatial generalization capability of
visuomotor policies. We demonstrate how the lack of such generalization contributes to the data-
intensive nature of learning visuomotor policies.

A.1 VISUALIZATION OF SPATIAL EFFECTIVE RANGE

Spatial generalization refers to the ability of a policy to perform tasks involving objects placed in
configurations that were not seen during training. To gain an intuitive understanding of spatial gen-
eralization, we visualize the relationship between the spatial effective range of visuomotor policies
and the spatial distribution of demonstration data.

Tasks. We evaluate a Button-Large task adapted from the MetaWorld Yu et al. (2020) benchmark,
where the robot approaches a button and presses it down. The object randomization range is mod-
ified to a 30 cm × 40 cm = 1200 cm2 area on the tabletop workspace, covering most of the end-
effector’s reachable space. Noticing the large size of the button makes it pressed down even if the
press motion does not precisely hit the center, we also examine a more precision-demanding variant,
Button-Small, where the button size is reduced by a factor of 4.

Policy. We adopt 3D Diffusion Policy (DP3)Ze et al. (2024b) as the studied policy, as our bench-
marking results indicate that 3D observations provide superior spatial generalization compared to
2D approaches. Training details are provided in Appendix B.1.

Evaluation. To visualize the spatial effective range, we uniformly sample 21 points along each
axis within the workspace, resulting in a total of 441 distinct button placements. Demonstrations
are generated using a scripted policy, with 4 different spatial distributions ranging from single
to full. The performance of each configuration is evaluated on the 441 placements, enabling a
comprehensive assessment of spatial generalization. The visualization result is presented in Fig. 13.

Key findings. Overall, the spatial effective range of visuomotor policies is closely tied to the dis-
tribution of object configurations seen in the demonstrations. Specifically, the effective range can
be approximated by the union of the areas surrounding the demonstrated object placements. Thus,
to train a policy that generalizes well across the entire object randomization range, demonstrations
must cover the full workspace, resulting in substantial data collection costs. Furthermore, as task
precision requirements increase, the effective range shrinks to more localized areas, necessitating a
greater number of demonstrations to adequately cover the workspace.

Button-Large Single Demo Sparse Demos Dense Demos Full DemosButton-Small

O O O O O O O O O O O

O O O O O O O O O O O
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Figure 13: Qualitative visualization of the spatial effective range. The grid maps display dis-
cretized tabletop workspaces from a bird’s-eye view under different demonstration configurations.
Dark green spots mark the locations where buttons are placed during the demonstrations. Each grid
cell corresponds to a policy rollout with the button placed at that location. Blue, yellow, green,
and gray grids denote successful executions for the Button-Large, Button-Small, both tasks, and no
tasks, respectively.

A.2 BENCHMARKING SPATIAL GENERALIZATION CAPABILITY

The practical manifestation of the spatial generalization is reflected in the number of demonstrations
required for effective policy learning. In the following benchmarking, we explore the relationship
between the number of demonstrations and policy performance to determine how many demonstra-
tions are sufficient for effective training.
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Full Half Fixed

Figure 14: The Precise-Peg-Insertion task. A
total of 3 workspace sizes is considered. Purple
and sky-blue rectangles mark the workspaces for
demonstration and evaluation, respectively.

Tasks. To suppress the occurrence of inac-
curate but successful policy rollouts, we de-
sign a Precise-Peg-Insertion task. We con-
struct a T-shaped peg, whose upper end has
a cross-section of 6 cm × 6 cm, and the bot-
tom end has a cross-section of 3 cm × 3 cm.
The hole in the green socket has a cross-section
of 4 cm × 4 cm. This shape enforces a strict
fault tolerance of 1 cm during both the picking
and insertion stages, asking for millimeter-level
precision. Both objects are randomized in a
40 cm× 20 cm workspace in the full setting.
The randomization range is halved into 20 cm× 10 cm in the half setting.

# demos

DP Scratch 1 8 18 22 38 44 56 44

25 50 75 100 150 200 300 400

DP+R3M

DP+CLIP
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DP3

4 17 50 61 79 83 89 92

2 8 39 53 78 89 94 96

3 11 29 49 86 92 96 98
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Figure 15: Quantitative benchmarking on the spatial
generalization capacity. We report the relationship be-
tween the agent’s performance in success rates and the
number of demonstrations used for training when differ-
ent visuomotor policies and object randomization ranges are
adopted. The results are averaged over 3 seeds.

Policies. In addition to Diffusion Pol-
icy (DP)Chi et al. (2023) and 3D Dif-
fusion Policy (DP3)Ze et al. (2024b)
trained from scratch, we explore the
potential of pre-trained visual repre-
sentations to enhance spatial general-
ization. Specifically, we replace the
train-from-scratch ResNet He et al.
(2016) encoder in DP with pre-
trained encoders including R3M Nair
et al. (2023), DINOv2 Oquab et al.
(2023), and CLIP Radford et al.
(2021). Detailed implementations are
provided in Appendix B.2.

Demonstrations. We vary the num-
ber of demonstrations from 25 to 400.
The object configurations are ran-
domly sampled from a slightly larger
range than the evaluation workspace
to avoid performance degradation
near workspace boundaries. A visu-
alization is provided in Fig. 14.

Evaluation. In the full workspace, both the peg and socket are placed on 45 uniformly sampled
coordinates, resulting in 2025 distinct configurations for evaluation. For the half and fixed
settings, the number of evaluated configurations is 225 and 1, respectively.

Key findings. The degree of object randomization significantly influences the required demon-
strations. Therefore, an effective evaluation protocol for visuomotor policies must incorporate a
sufficiently large workspace to provide enough object randomization. On the other hand, both 3D
representations and pre-trained 2D visual encoders contribute to improved spatial generalization
capabilities. However, none of these methods fundamentally resolve the spatial generalization prob-
lem. This indicates the agent’s spatial capacity is not inherently derived from the policy itself but
instead develops through extensive traversal of the workspace from the given demonstrations.
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B POLICY TRAINING AND IMPLEMENTATION DETAILS

We select 3D Diffusion Policy (DP3) Ze et al. (2024b) as the visuomotor policy used for real-world
and simulated experiments. We compare its performance against 2D Diffusion Policy (DP) Chi et al.
(2023) in the empirical study in Sec. A. We list the training and implementation details as follows.

B.1 DETAILS FOR POLICY TRAINING

For a fair comparison, we fix the total training steps counted by observation-action pairs to be 2M for
all evaluated settings, resulting in an equal training cost regardless of the dataset size. To stabilize
the training process, we use AdamW Loshchilov (2017) optimizer and set the learning rate to be
1e−4 with a 500 step warmup.

In real-world experiments, we use the DBSCAN Ester et al. (1996) clustering algorithm to discard
the outlier points and downsample the number of points in the point cloud observations to 1024. In
the simulator, we skip the clustering stage and downsample the point clouds to 512 points.

We follow the notation in the Diffusion Policy Chi et al. (2023) paper, where To denotes the obser-
vation horizon, Tp as the action prediction horizon, and Ta denotes the action execution horizon. In
real-world experiments, we set To = 2, Tp = 8, Ta = 5. We run the visuomotor policy at 10Hz.
Since Ta indicates the steps of actions executed on the robot without re-planning, our horizon set-
tings result in a closed-loop re-planning latency of 0.5 seconds, responsive enough for conducting
dexterous retrying behaviors and disturbance resistance. In the simulator, since the tasks are simpler,
we set To = 2, Tp = 4, Ta = 3.

B.2 PRE-TRAINED ENCODERS FOR DIFFUSION POLICIES

To replace the train-from-scratch ResNet18 He et al. (2016) visual encoder in the original Diffusion
Policy architecture, we consider 3 representative pre-trained encoders: R3M Nair et al. (2023), DI-
NOv2 Oquab et al. (2023), and CLIP Radford et al. (2021). R3M utilizes a ResNet He et al. (2016)
architecture and is pre-trained on robotics-specific tasks. DINOv2 and CLIP employ ViT Dosovit-
skiy et al. (2021) architectures and are pre-trained on open-world vision tasks. These encoders are
widely used in previous works Chi et al. (2024a); Lin et al. (2024) to enhance policy performance.
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C LIMITATION: THE VISUAL MISMATCH PROBLEM

Figure 16: Illustration for the visual
mismatch problem. The appearance
changes due to the perspective change.

While the one-shot imitation experiment verifies the
effectiveness of DemoGen, it also reveals its limita-
tion: synthetic demonstrations generated from one source
demonstration are not as effective as the same number of
human-collected demonstrations. We attribute the perfor-
mance gap to the visual mismatch problem under the con-
straint of a single-view observation perspective. When
objects move through 3D space, their appearance changes
due to variations in perspective. An illustration is provided in Fig. 16. However, synthetic demon-
strations consistently reflect a fixed side of the object’s appearance seen in the source demonstration.
This discrepancy causes a visual mismatch between the synthetic and real-captured data.

C.1 PERFORMANCE SATURATION.

A notable consequence of the visual mismatch problem is the phenomenon of performance satura-
tion. An empirical analysis is conducted on the Pick-Cube task. In Fig. 17(a), we fix the spatial
density of target object configurations in the synthetic demonstrations and increase their spatial
coverage by adding more synthetic demonstrations. The curve indicates that the performance im-
provement plateaus once the spatial coverage exceeds a certain threshold. This saturation occurs
because the visual mismatch intensifies as the distance between the source and synthetic object con-
figurations increases, making additional synthetic demonstrations ineffective. In Fig.17(b), similar
performance saturation is observed when we increase the density while fixing the spatial coverage.
This indicates excessive demonstrations are unnecessary once they sufficiently cover the workspace.

Figure 17: Performance Saturation. We report the policy performance boost w.r.t. the increase of
synthetic demonstrations over 3 seeds.
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D EXPERIMENTAL DETAILS

D.1 RANDOMIZATION RANGES FOR SIMULATED TASKS

In Fig. 5, we illustrated the simulated tasks for the evaluation on spatial generalization. To strengthen
the significance of spatial generalization, we enlarge the original object randomization ranges in the
MetaWorld Yu et al. (2020) tasks. For demonstration generation, we select a slightly larger range
than the evaluation workspace to avoid performance degradation near the workspace boundaries.
The detailed workspace sizes are listed in Tab. 6.

Table 6: Object randomization ranges in simulated tasks. All the reported sizes have the units in
centimeters.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Object(s) Cube Button Drawer Faucet Toaster Box × Lid Red × Green Pillar × Hole
Evaluation 40×40 40×40 15×15 30×30 20×30 (2.5×30)2 (15×15)2 (10×30)2

DemoGen 48×48 48×48 20×20 40×40 25×40 (7.5×40)2 (20×20)2 (15×40)2

D.2 TASK DESCRIPTIONS FOR REAL-WORLD TASKS

In Fig. 7, we illustrated the real-world tasks for the evaluation on spatial generalization. We describe
these tasks in the text as follows, where we mark the verbs for motion and skill actions in the
corresponding colors.

1. Spatula-Egg. The gripper holds a spatula in hand. The robot maneuvers the spatula to first
move toward the fried egg and then 1) slide beneath the egg, 2) lift the egg leveraging the
contact with the plate’s rim, 3) carry the egg and maintain stable suspension.

2. Flower-Vase. The gripper moves toward the flower, picks it up, reorients it in the air while
transferring toward the vase, and finally inserts it into the vase.

3. Mug-Rack. The gripper moves toward the mug, picks it up, reorients it in the air while
transferring toward the rack, and hangs it onto the rack.

4. Dex-Cube. The dexterous hand moves toward the cube and grasps up the cube.
5. Dex-Rollup. The dexterous hand moves toward a piece of plasticine and wraps it multiple

times until it is fully coiled. The required times of the wrapping motion may vary due to
the distinct plasticity of every hand-molded piece of plasticine.

6. Dex-Drill. The dexterous hand moves toward the drill, grasps it up, transfers it toward the
cube, and finally touches the cube with the drill.

7. Dex-Coffee. The dexterous hand moves toward the kettle, grasps it up, transfers it toward
the coffee filter, and finally pours water into the filter.
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D.3 INCREASED HUMAN-COLLECTED DEMONSTRATIONS
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Figure 18: Real-world comparison between
DemoGen-generated and human-collected
datasets. The DemoGen-generated dataset is
based on 3 source demonstrations.

In Tab. 3, we compare the DemoGen-generated
dataset against 3 human-collected source
demonstrations. In Fig. 18, we provide a refer-
ence on how the increase of source demonstra-
tions leads to the enhancement of policy per-
formance on the Dex-Cube task. To further un-
derstand the policy capacity enabled by human-
collected demonstrations, we visualize the spa-
tial heatmaps of human-collected datasets in
Fig. 19. By comparing the demonstrated con-
figurations and the spatial effective range of the
resulting policies, we found the policy capacity
is upper-bounded by the demonstrated configu-
rations. This is in line with the findings in the
empirical study.

3 Source 5 Source 8 Source 10 Source

= 0% > 0% > 40% > 60% > 80%

Figure 19: Visualization of the policy performance trained on human-collected datasets. (Up-
per row) The demonstrated configurations. (Bottom row) The spatial heatmaps with success rates
averaged on 5 trials.

D.4 DETAILED ANALYSIS OF THE BIMANUAL HUMANOID EXPERIMENT

The orientational augmentations share the same visual mismatch problem as translational augmen-
tation. The policy performs as expected when the generated orientations are close to the orientation
in the source demonstration. As the orientational difference increases, we observed the policy might
react to the orientation in the current visual observation with actions for mismatched orientations.

Additionally, we found the spatial generalization problem persists in mobile manipulation scenarios.
This is mainly due to the physical constraints of real-world environments, such as kitchen counter-
tops or fruit stands, as demonstrated in our experiments, where terrain limitations prevent the base
from approaching objects at arbitrary distances. Consequently, the base typically moves to a fixed
point at a specific distance from the object, after which the robot conducts a standard non-mobile
manipulation process at the fixed base position.
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D.5 DISTURBANCE RESISTANCE EXPERIMENTS DETAILS

D.5.1 EVALUATION METRICS

The sauce coverage score is computed as follows. First, we distinguish between green background
and red sauce in the HSV color space. The identified background is set to black, the sauce is set to
red, and the rest which should be the uncovered crust is set to white. Second, due to the highlights
on the sauce liquid, some small fragmented points of the sauce may be identified as the crust. To
address this, we apply smoothing filtering followed by dilation and erosion, where the kernel size is
9×9. Finally, the coverage is calculated as the ratio of red areas (sauce) over non-black areas (sauce
+ uncovered crust).

D.5.2 RAW EVALUATION RESULTS

For quantitative evaluation, we perform 5 repetitions for each of the 5 disturbance directions, result-
ing in 25 trials for both strategies.

Regular DemoGen DemoGen w/ ADR

Figure 20: Raw evaluation results in the Sauce-Spreading task. (Top) Examples of the processing
results for metric calculation. (Bottom) Compared with the regular DemoGen, the policy trained
with the ADR strategy better spreads the sauce to cover the crust under external disturbance.
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D.6 VISUALIZATION OF DemoGen-GENERATED TRAJECTORIES

In Fig. 4, we gave a concrete example of the trajectory of synthetic visual observations. We provide
more examples in Fig. 21 by showcasing the key frames of source and generated demonstrations.
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Figure 21: More examples of the trajectories consisting of synthetic visual observations.
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