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Abstract

In dueling bandits, an agent explores and exploits choices (i.e., arms) by learning
from their stochastic feedback in the form of relative preferences. Prior related
studies focused on unbiased feedback. In practice, however, the feedback provided
by evaluators can be biased. For example, human users are likely to provide biased
evaluation towards large language models due to their heterogeneous background.
In this work, we aim to minimize the regret in dueling bandits considering evalu-
ators’ biased feedback. We begin with a benchmark case where evaluators’ bias
information is known. Solving the known-bias case is nontrivial, because the
bias cannot be easily decoupled from the feedback. We overcome this challenge
and propose an unbiased arm performance estimator and a bias-sensitive dueling
bandits algorithm. We manage to analyze the regret, dealing with the complex
form of the estimator, and show that the feedback either matching or opposing
the ground-truth reduces the regret. Then, we study the case where evaluators’
bias information is unknown. The associated estimator can hardly be solved in
closed-form due to the non-convexity of the estimator solving problem. We address
this challenge and propose an extended bias-sensitive algorithm by incorporating
block coordinate descent. This algorithm is proven to achieve the same order of
regret (as in the known bias case) with a bounded error. Experiments show that
when compared with baselines, our algorithms reduces the regret by up to 86.9%.

1 Introduction

1.1 Motivation and Background

Multi-armed bandit (MAB) [1] is a widely used approach for online learning. It explores and exploits
a given set of choices (i.e., arms) to minimize a long-term regret. In standard MAB, the reward of
the selected arm is commonly represented by a real number, e.g., if pulling an arm of a slot machine
returns 5 dollars, then the reward can be represented by 5. As a result, the exploration and exploitation
decisions can be made based on these real-valued reward feedback. However, in many practical
systems, the real-valued reward feedback is unavailable. For example, consider a company that aims
at providing its users with high-quality user experience for question answering tasks by selecting
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from various large language models (LLMs), e.g., GPT-4 2], where these LLMs can be thought
of arms. Unlike prediction and classification, the output of an LLM is usually paragraphs that are
intrinsically subjective. Their ground-truth quality is hard to measure or may not even exist. This
makes it difficult to use a real-valued reward to represent the quality of and select an LLM [3} 4]

To address the unavailability of real-valued reward feedback, existing studies (e.g., [5H14]]) evaluated
arms based on qualitative comparison between a pair of arms, which are referred to as dueling bandits.
In these approaches, an agent selects two arms in each round for comparison. The agent then observes
the qualitative comparison result between the two arms, based on which the agent makes exploration
and exploitation decisions. Interested readers can refer to [[15] for a comprehensive survey.

Although these studies (e.g., [9,[15]) addressed the lack of real-valued reward feedback, they did not
consider an important scenario where the feedback is provided by biased evaluators. For example,
[16] suggested that the LLM selection of a company (which serves as an agent) should be based on
its users’ feedback. However, the users (who serve as evaluators) are humans. Their feedback may be
biased due to various factors, e.g., users’ expertise or demographic background. Biased feedback can
significantly degrade the performance of conventional dueling bandits approaches and increase the
long-term regret. We empirically show that the presence of biased evaluators increases the regret of
baselines by an average of 8.44 folds (see Appendix [K.g).

Some recent studies (e.g., [17, |18]]) considered biased feedback in conventional MAB settings.
However, those approaches are not applicable in dueling bandits due to a lack of real-valued rewards.
Other studies (e.g., [19-21]]) considered pairwise assessment with bias in mobile crowdsourcing,
while their goal is to find the best choice or the ranking of choices without considering the long-term
exploration-exploitation tradeoff. Thus, their algorithms and analytical frameworks are not applicable
to dueling bandits. While adversarial dueling bandits (e.g., [22]]) emphasized time-varying winning
probability matrices of arms, they do not consider evaluator-specific biased feedback.

1.2 Solution and Approach

In this work, we take into account the feedback provided by biased evaluators and propose bias-
sensitive upper confidence bound (UCB) algorithms with performance guarantee. Our proposed
approach for addressing biased evaluators can be readily extended to other dueling bandits algorithms
(e.g., relative confidence [10], relative UCB [[11]], double Thompson sampling [[12]) and improve their
performance (see Section [5). Specifically, we aim to answer the following questions:

Q1 How can we design an unbiased estimator for arm performance and a low-regret dueling
bandits algorithm in the presence of evaluators’ bias?

Q2 What is the performance guarantee of our algorithm?

Answering Q1 is challenging. (i) The bias of evaluators is usually unknown a priori. Thus, the
algorithm design requires a joint estimation of the evaluators’ bias and the winning probability of
arms, which makes the corresponding estimator solving problem non-convex. (ii) Even when the bias
of evaluators is known, such a design is non-trivial. An intuitive solution is to directly decouple the
bias from the observed feedback by equation transformation. However, this is proven to induce an
unbounded regret. We overcome the challenge by transforming the estimator design problem into a
convex optimization problem and theoretically derive an unbiased estimator and its confidence radius.

Answering Q2 is non-trivial, as the determined estimator and confidence radius from Q1 involve
evaluators’ heterogeneous bias levels, which makes the regret analysis for conventional dueling ban-
dits inapplicable. We overcome this challenge by applying equation transformation and introducing
auxiliary inequalities to support the regret analysis and derive the regret of our proposed algorithms.

Our main contributions are listed as follows:

* To the best of our knowledge, this is the first attempt that considers biased evaluators in
dueling bandits. Our approach is applicable to general arm performance models with deter-
ministic winning probability and general bias models that model feedback with conditional
probability. Meanwhile, it can be incorporated into existing dueling bandits approaches to
reduce their regrets under the presence of evaluators’ bias.

* We begin with the case where each evaluators’ bias level is known. We overcome challenge
QI1-(i1) and propose a bias-sensitive UCB algorithm. To address Q2, we theoretically
derive the long-term regret. Analytical results show that our proposed algorithm achieves



a sublinear regret, which is of the same order to those in conventional UCB algorithms of
dueling bandits.

* We further study the case where each evaluators’ bias level is unknown. We overcome
challenge Q1-(i) by decoupling evaluators’ bias from arm performance estimation when
initializing estimators and incorporating block coordinate descent (BCD) [23]]. We propose
an extended bias-sensitive UCB algorithm, and prove that this extended algorithm achieves
the same order of regret as in the known bias case with a bounded error.

» Experiments show that when compared with five baselines, our algorithms reduces the regret
by up to 86.9%. The reduction is more significant when the bias levels among evaluators
are more heterogeneous. Meanwhile, our estimator can be incorporated into baselines and
reduces their regrets by up to 75.9%.

2 System Setup

We consider an agent and a set of M evaluators M = {1, 2, ..., M} whose feedback can be biased.
There are a total of K arms, denoted by set £ = {1,2,..., K'}. Ineachtimeslott € T = {1,2,...,T},
an arbitrary evaluator arrives. The agent selects two arms for the evaluator. We consider a setting
where the evaluator evaluates the selected arms and, at the same time, provides pairwise comparison
feedback for the arms. Consider LLM evaluation as an example. A company (agent) selects two
LLMs (arms) to serve its users (evaluators). The users observe the inference output of the LLMs and
provide pairwise comparison feedback for the two LLMs. The goal of the agent is to minimize the
long-term regret of the selected arms (roughly speaking, maximize the chance that the best arm is
selected) based on the evaluators’ feedback

Arm Model: We consider a stochastic setting where an arm outperforms another arm with certain
probability [|15]. This probability is associated with the ground-truth performance of arms and cannot
be observed directly. Let o; > o; denote an observation that arm ¢ € C outperforms arm j € K, and
let Pr(o; > o;) denote the probability that arm ¢ outperforms j. For ease of presentation, we denote

pij = Pr(o; = o). 60

We assume Pr(o; > 0;) + Pr(o; < 0;) = 1, and do not consider the case where comparing o; and
o; leads to tie. As suggested by [24], ties can be handled by giving "half a point" to both arms,
reducing the problem to a tie-free case. Note that probability model in (T)) generalizes various models
as special cases, e.g., Bradley-Terry (BT) model [21]] and Logistic model [25].

In dueling bandits, a Condorcet winner (i.e., an arm ¢ with p;; > 1/2 forall j € K\ {i}) may not
exist [[15]]. As in many related works (e.g., [[13}|14]]), we define the best arm using Borda score:

0 £ 255 2 jex i) Pii- &
Intuitively, a larger 8; implies a higher probability that arm ¢ beats other arms on average. This metric
is suitable. For example, in LLM evaluation, a higher winning probability implies a higher chance
that users are satisfied with the inference results of the LLM. We consider Borda winner [|13, 14]

Definition 1 (Borda Winner). The best arm i* is the arm with the highest Borda score, i.e., i* =
arg max;e 0.

Evaluator Bias Model: We use o; -, 0; to denote the case where evaluator m € M provides a
feedback claiming that arm ¢ outperforms arm j. Note that o; >, o; and o; > o; may not match due
to the bias of evaluator m. There are various types of evaluators’ bias. In this work, we follow mobile
crowdsourcing studies (e.g., [21]) and introduce a coefficient 7,,, to characterize the probability that
evaluator m reveals a feedback that matches the ground-truth comparison result:

Nm = Pr(0; =m 0j | 0; = 0;). 3)

2 Although we use LLM as a motivating example, this work focuses on a general dueling bandits scenario
without targeting any particular application. To adapt it to the LLM setting, additional factors such as contextual
information would need to be incorporated into the arm selection and comparison process.

3Despite the rationale of using Borda winner, it may sometimes be inconsistent with the Condorcet winner
(if it exists). Thus, if finding the Condorcet winner is the primary goal, although our algorithms can still lead to
superior performance (see Section EI), the theoretical analyses in this work may no longer be applicable.



That is, given the fact that o; > o;, evaluator m with bias 7, claims o; >,, o; with probability
M- Note that Pr(o; >, 0; | 0; = 0;) + Pr(o; <pm 0; | 0; = 0j) = 1. Similarly, we exclude the
case where the evaluator reports no difference between arms. If this case happens, the evaluator can
randomize among the arms with equal probability and provides feedback. The bias model in (3) can
characterize various types of bias, such as ambiguity in perception and comparison [26] and diverse
roles of the evaluators [21]]. Consider bias resulting from diverse roles as an example. If n,,, = 1,
then evaluator m is a perfect evaluator. If n,, = 0.5, then evaluator m is a spammer who provides
random feedback. If ,,, = 0, then evaluator m is an atfacker which aims to worsen the choice of the
agent and always provides opposite feedback.

Based on (3)), the probability that evaluator m claims arm ¢ outperforms arm j is given by
P £ Pr(0; =m 05) = Nmpij + (1 — 0m)Djs- 4

Arm Selection and Regret: In time slot ¢ € 7, an evaluator arrives, and let m; € M denote
this evaluator. The agent selects two arms x1(¢) € K and z5(t) € K for the evaluator using a
dueling bandits algorithm (to be proposed in Sections [3|and . Let z(t) £ {x,(t), z2(t)}. Note
that 21 (t) # 2(¢) must hold before algorithm convergence; otherwise, no comparison between
arms is performed and hence there is no exploration in time ¢t. After evaluator m, evaluates both
chosen models x; () and x2(t), it sends a binary feedback to the agent, i.e., either 0, (1) =m, Oz, (1)
OF Oy, (#) *m, Oz, (¢)- Lhe binary feedback is commonly considered in dueling bandits [[15] and is
suitable for the scenario that lacks real-valued reward feedback from evaluators. Recall that in the
LLM example, it is easy for users to judge which output from the two LLMs is better, while it is
difficult for them to give real-valued score for the outputs of LLMs.

In this work, we focus on both average regret and weak regret, which are commonly considered
regrets in dueling bandits [[1]]. The average regret RegA (z(¢)) [10,|12]] and weak regret RegW (x(t))
[27] are defined as the average and maximum Borda score among the two selected arms, respectively:

RegA(w(t)) =0« — (Hxl(t) —+ F)xz(t))/Q, 5)
RegW(x(t)) = 0; — max{@ml(t), 9z2(t)}- (6)
For example, average regret refers to the case where a user retrieves information from the inference
outputs of both LLMs. Weak regret refers to the case where a user is satisfied as long as one of the

LLMs provides satisfactory output. Since all of our algorithms and theoretical results apply to both
average regret and weak regret, we use Reg(x(t)) to denote them.

The goal is to minimize the long-term round-average regret:

: T
mingg ez, 7 >—1 E[Reg(z (1)) ™
We solve problem (7)) for both known and unknown bias cases in Sections [3]and ] respectively.

3 Known Bias Case

In this section, we start with the benchmark case where the evaluators’ bias 7,, is known. In practical
systems, the bias could be obtained by running pre-evaluation tests, e.g., in the LLM example, the
company may estimate user bias through offering queries whose ground-truth answers are known.
We consider the setting where the set of available bias is finite. That is, 7, € B = {0}, 13, ..., 0%}
for all m € M, where B = |B5| and the superscript A is short for "available". As long as the number
of evaluators is finite, this assumption on finite bias set holds.

We build our algorithm based on UCB. Despite this, our ideas for addressing biased evaluators can
be incorporated into various baselines to reduce their regret (see Appendix [K.T). Note that even for
the known bias case, designing the algorithm is challenging. This is because when estimating the
pairwise winning probability of arms, the bias cannot be easily decoupled from the observed feedback
provided by evaluators. Meanwhile, the complex form of the winning probability estimator makes
deriving the associated confidence radius and analyzing round-average regret further challenging.

3.1 Bias-Sensitive UCB Algorithm

We first present the unbiased estimation of pairwise winning probability of arms and confidence
radius calculation respectively. Then, we show the algorithm details.



1) Unbiased Arm Performance Estimation: We aim to design an unbiased estimator of winning
probability matrix p £ (pij.i,J € IC) which will be incorporated into our bias-sensitive UCB
algorithm. Note that it is possible to obtain an unbiased estimator by transforming the problem into
conventional dueling bandits via decoupling the bias in ({@). However, such an estimator is sensitive
to the feedback of spammers, which can lead to an infinite round-average regret (see Appendix [A)).
To deal with this challenge, we first transform the estimator design problem into an optimization
problem. Then, we solve the problem to obtain the estimator.

Let ij (t) denote the number of feedback claiming o; >, o0;, and its evaluator has a bias 7,, = 7.
Let B;;(t) C B denote the set of bias index b such that N};(t) + N;(t) > 0. Designing an
estimator p(t) = (p;;(¢), 4,7 € K) is equivalent to finding the optimal estimator p(¢) that minimizes
the difference between the estimated value of p;; using the estimator and the approximate value
pe;(t) & Np(t)/(Np(t) + NE(t)). That is, p(t) minimizes the following problem:

ming 3, scicves,; o) (Mo Pij + (1 —15)pji — Py (t))?. ®

Problem (8) contains K? x M terms, each corresponding to exactly one decision variable p;;. Thus,
problem () can be equivalently transformed to a set of sub-problems of p;; (¢):

Pij(t) = argming,; [[wijpij + ¢yl ©

where wi; £ (21 — 1,0 € Byj(t)), ci; = (1 —np — p?;(t),b € Byj(t)). Based on Karush-Kuhn-
Tucker (KKT) conditions, the optimal solution to problem (9) satisfies (wiTjwij)ﬁij (t) = —W?jcij.
This results in the following unbiased estimator, with proof in Appendix

Lemma 1 (Arm Performance Estimator). After time slot t, the pairwise winning probability p;; in

is estimated by
A Zbe&-j(t) (277? —1) (ﬁ?j(t) -(1- 771?))
pij(t) = — : (10)
ZbeB,-j(t) (2ny — 1)
This estimator is unbiased, i.e., E[p;;(t)] = pi;. Based on (10), if an evaluator tends to be a spammer
(i.e., Ny, is closer to 0.5), a lower weight is assigned to the evaluator’s feedback.

2) Confidence Radius Calculation: We now derive the confidence radius of the estimator in Lemma
[I] This analysis is more challenging than that in conventional dueling bandits, because the estimator
is in the form of a weighted sum of the feedback statistics of evaluators considering their bias. The
involved sum, weighting, and shift operations require additional mathematical transformation to solve
the confidence radius based on Hoeffding inequality. The proof is given in Appendix

Definition 2 (Confidence Radius). We define the confidence radius as Pr(|p;;(t) — pi;| < 1i;(t)) >
1 — 2/t>* That is, r;;(t) is a one-dimensional bound such that |p;;(t) — p;ij| < ri;(t) occurs with a
probability no smaller than 1 — 2 /t>®, where parameter o > 0 controls the required probability.

Proposition 1 (Confidence Radius). The confidence radius r;;(t) in Definition|2|is determined by

alog(t)
2ven; ) 1205 =1 (N, (O+N?, (D)

ZbeBij(t) (27)1? - 1)2 ’

rij(t) = (11)

where log(t) is of natural base.

3) Algorithm Details: We now present the bias-sensitive UCB algorithm. The pseudocode is
provided in Algorithm [I]of Appendix D] The algorithm iterates for 7" rounds or until convergence.
At the beginning of each time slot ¢, the agent updates p;;(t—1) using (I0) and r;; (¢t —1) using (TT).
Then, it computes the upper confidence bound estimation of probability p;;:

UCB;;(t) = [pij(t — 1) +ri;(t = 1)), (12)

where []~ = min{-, UCB}. With this operator [-]~, the agent tends to randomly explore if all arms

are under-explored. We set UCB = 1 in the experiments [13]]. In (I2), if p;;(¢ — 1) is larger than
1/2, then arm 1 is likely to outperform arm j based on the historical observation, indicating a higher

*The term "bias" in "unbiased estimator" differs from that in "bias of evaluator". "Unbiased estimator"
implies that the expected value of the estimator equals the true value being estimated.



reward through exploiting model . If r;; (¢ — 1) is larger, then the uncertainty regarding arms ¢ and j
is higher, indicating stronger need to compare arms ¢ and j in the following time slot.

After that, the agents computes the UCB estimation of Borda score:
UCB;(t) = 557 2 ek iy UCBi; (1) (13)
Finally, the agent selects the two arms x1 (¢) and 22(¢) with the maximum values of UCB,(¢):
maxq ) UCBy, (4)(t) + UCBg, ) (1) (14)

Different from some existing works (e.g., [11]]) in dueling bandits that choose the best arm (e.g., with
the highest UCB) and its "strongest competitor”, our algorithm chooses the best and second best
arms (e.g., with the highest and second highest UCB values) for analytical simplicity. In Appendix [E]
we empirically show that replacing the second arm with the "strongest competitor" may degrade the
performance, especially when the number of arms is large or when a Condorcet winner does not exist.

3.2 Regret Analysis

We now bound the round-average regret of the proposed algorithm. The proof is given in Appendix
The proof path follows [[13]], while it is more difficult due to the complex form of the estimator and
confidence radius. Note that we essentially derive the bound for average regret. This bound is also
applicable to weak regret by relaxing it to average regret in the proof (see Appendix [F).

Theorem 1 (Regret of Bias-Sensitive UCB Algorithm). The bias-sensitive UCB algorithm with T
rounds has a round-average regret of

1 & UCB (K(K — 1)+ 2H)
7 ;Reg(w(t)) < 7
2UCBy/alog(T) ( H + B?log(BT?**) 2BK 1 15
* T T Ne-1y7) P

where H = 377° 1 g1y /oy 2% and T = 30, s (25 — 1)% /1By (t)|-

According to Theorem [I] we can determine the order of the round-average regret and its sublinearity.

Corollary 1 (Sublinear Regret). The round-average regret of Algorithm[l|is sublinear with an order
of O(y/Blog(T)/T/T).

This sublinearity result is consistent with and generalizes those existing works on dueling bandits
without considering evaluators’ bias (e.g., [13]]). Importantly, I reflects the average deviation of the
evaluators from spammers. When I is larger (i.e., evaluators tend to reveal feedback either matching
or opposing the ground-truth), the round-average regret is smaller.

4 Unknown Bias Case

We now solve the case where evaluators’ bias is unknown to the agent, and the bias of any evaluator
7m belongs to an infinite set [0, 1]. Our approach can be extended to the scenario with finite set of
bias by projecting the continuous estimated bias to discrete space. Since the set of evaluators is finite,
their bias comprises a finite set B = {n1,72, ..., 7ar}. Let N{}L(t) denote the number of feedback
sent by evaluator m and claiming o; >, 0;. Let M,,;(t) C M, which can be interpreted as the set
of evaluators m such that N7 (t) + N (t) > 0 for each pair of arms 7 and j. Let 7,,,(t) denote the
set of (i, j) pairs such that N7 (t) + NJ7(t) > 0 for each m € M.

Designing the extended bias-sensitive algorithm is highly non-trivial. This is because the estimation
of the arm performance and evaluation bias is highly coupled. In the following, we first present the
estimators for arm performance and evaluators’ bias. Then, we propose the extended bias-sensitive
algorithm that overcomes the aforementioned challenges. Finally, we analyze its regret.



4.1 Arm Performance and Bias Estimation

Let p;;(t) and 7, (t) denote the estimation of p;; and n,, given our estimator, respectively. After
time slot ¢, the pairwise winning probability p;; in (I) is estimated using the same estimator as in
Lemmal|I| while replacing the ground-truth 7,,, with the estimated 7, (t), i.e.,

ZmeMU(t)(ﬁi? (t) - (l_ﬁm(t))) (2ﬁm(t) - 1)
2 mems,; 1) (2m(t) — 1)

Based on a similar idea as estimating the arm performance in Section 3.1} we formulate the problem
for estimating the bias of evaluator m € M:

Dij(t) = (16)

" 1 m 04 _
T () =argm;n§||Umn+b ||2+§||n—nm||2- (17)

In the first term, Uy, = (2pi;(t) — 1,4,7 € Tm(t)), and b™ = (1 — p;;(t) — Py} (t), 4, € Tm(1)),
where pj(t) = N7 (t)/ (N} (t) + NJ7(t)). It aims to find the best 7 that minimizes the estimation
error of bias given the recent p;;(t), similar as that in (9). The second term is introduced for the
algorithm to be proposed. Its goal is to restrict the gap between the previous estimation 7,,, and the
new estimation, where ~y balances the two terms. Solving via the KKT conditions yields the
estimator.

Lemma 2 (Bias Estimator). After time slot t, the bias of evaluator 1, in @) is estimated by
Sisegao(i(t) = D0 4 p(0) ~ 1) +37n
(t)
Dijedmn (20ii(t) —1)2 + 7

Estimators (I6) and (I8) form a system of equations, and solving them jointly yields p;;(¢) and
fim (t). However, p;;(t) and 7,,, (t) are highly coupled, i.e., the performance estimates depend on the
bias estimates and vice versa, and the joint estimation problem is non-convex. Although it is possible
to let p;;(t) and 7, (t) update iteratively using (I6) and (I8), parameter p;;(¢) usually converges
to local optimal solution p;;(t) = 0.5 due to the non-convexity. To address this, we decouple the
evaluation bias from the arm performance estimation when initializing the estimation in each time
slot and propose a BCD-based algorithm [23]].

4.2 Extended Bias-Sensitive UCB Algorithm

We present the extended bias-sensitive UCB algorithm. Its pseudocode is given in Algorithm 2] of
Appendix [G} At the beginning of time slot ¢, estimators py;(t — 1) and 7, (t — 1) are computed.
Specifically, estimator p;; (¢ — 1) is first set to p7} (¢t — 1) = Nt —1) /(N —1)+ N2t —1)),
i.e., the estimation of arm performance ignoring the evaluators’ bias. This process decouples the
impact of evaluators’ bias estimation and that of inaccurate performance and bias estimation in the
past time slots. Based on this p;; (¢ — 1), estimator 7),,, (¢ — 1) is computed using (I8). Then, according
to BCD [23], p;;(t — 1) and 9, (t — 1) are updated in sequence twice. We empirically show in
Appendix that performing such updates twice leads to the best performanceE] Either increasing
or decreasing the rounds of updates leads to regret increase.

After that, the agent estimates the confidence radius 7;; (¢ — 1) with the estimated bias j,,, (¢ — 1):

R alog(i—1)
2omeMi;(¢) [2m (= 1) = 1|\/(N;;L(t£§+1\(;;f(p1))
> omems, (t—1)(20m(t = 1) = 1)?

Note that this is not the actual confidence radius for the estimators and thus leads to additional regret
in decision making (see Section[4.3). Finally, ps;(t — 1) and #;;(¢ — 1) are substituted into to
compute UCB;(t), and the arms that optimize problem (T4)) are selected.

Fig(t —1)= (19)

>Note that these steps on the initialization and first update of $;;(t — 1) and #,,, (t — 1) in each time slot are
used to stabilize the estimation and can be skipped after a certain number of time slots once the estimation is
relatively accurate for convergence acceleration. We empirically find that such a time slot threshold can be set in
the form of cK log K, where c is a tunable coefficient.



4.3 Regret Analysis

We first quantify the actual confidence radius under estimators in (16) and (I8), with which we are
able to bound the regret of Algorithm[2] The proof is given in Appendix

Lemma 3 (Confidence Radius). Given the estimators in (16) and (18), the confidence radius is

Smemsyo PR/ = 80| Loern,o 2EG e

ZmeMij(t) (Qﬁm(t) - 1)2 ZmeMij(t) (Qﬁm(t) - 1)2 ’
where () £ (B7(8) — (1= 7))/ (2 — 1), () 2 (T(E) — (1= (1)) /(201 (1) — 1),
Enm(t) £ (277m - 1)/(2ﬁm (t)— 1)~

Quantifying the regret using the difference between #;;(t) and r7;(¢) is challenging, because the
mapping from the confidence radius to the exact probability an estimation falls within the radius can
hardly be solved, due to the complex form of estimators. Thus, we define a parameter £ ().

Tfj(t) =

(20)

Definition 3 (Parameter £(t)). For each time slot t, let £(t) denote the minimum non-negative value
such that £(t) > 5 (HF (P (i () — pig] < r55(8))) — P (|Bis () — pij| < 745(t))), where HF(-) is
the tight lower bound of P (| (t) — pi;| < r;(t)).

As will be seen in Theorem 2] a lower &(¢) leads to a lower regret. There are various cases that ensure
§(t) = 0. Although it is hard to derive all the cases due to the complex form of 7;;(¢) and r{;(t), we

list two examples: (i) 745 (t) = r5;(t); (il) 7m(t) = 1 and 7y, (t) € (0.5, 1] for all m € M.

Then, the round-average regret can be determined, with the proof given in Appendix

Theorem 2 (Regret of Extended Bias-Sensitive Algorithm). Under Definition 3] the extended bias-
sensitive UCB algorithm based on estimators in (16) and (I8)) has a round-average regret of

1 T @ (K(K — 1) +2 (H + ZtT:K(K—l)/Q-‘rl 5(”))
T ;Reg@(t)) < T

2UCB+/alog(T) ( H + B?log(BT?**) 2BK 1
+ - Ve =] @b

T VT

When compared with Theorem E] for known bias case, the round-average regret under unknown
bias case has the same order but incorporates an additional bounded error related to £(¢). If £(¢) is
monotonically decreasing and converges to zero as t — oo, then this bounded error approaches zero.
However, due to the non-convexity of the joint estimation problem, proving this convergence is an
open problem under BCD. In Appendix [J} we empirically show that this bounded error is small and
can approach zero.

S Experiments

We consider that the user bias follows a Beta distribution Beta(a, 8g) [21]]. We use the BT model
to model the winning probability of arms [21]], i.e., p;; = e* /(e® + €% ), where s; is a coef-
ficient associated with arm i following Gaussian distribution A (u, 0?) and a Condorcet winner
typically exists under this model. Unless otherwise specified, we set 7,,, ~ Beta(ag = 2,85 = 1)
and s; ~ N(p = 0,0% = 2). Through empirical tests, we set & = 0(Xme ;1) (20m —
1))?/ (X mems; v 120m — 1])?, where ag = 0.51 [11] and 7;, can be the recent estimated value
for unknown bias case. The term « relies on the recent estimation of 7,, and helps to mitigate the
over-exploration due to the presence of evaluators’ bias. We set coefficient ¢ = 50. Our code is
built based on open source code [28]] for dueling bandits. Experiments are conducted on a compute
platform with an AMD Ryzen 7 7800X3D (8-core) processor and 64 GB of RAM (4800 MHz). We
run each experiment for 100 times and show the average results in this section. The results with
standard error can be found in Appendix

We compare our algorithms with five baselines in dueling bandits: Relative Confidence (denoted
by "RC") [10], Relative UCB (denoted by "RUCB") [11]], a Bayesian method Double Thompson



Cumulative Average Regret ({) Cumulative Weak Regret ({)
Arm Heter. o2 Bias Concentr. ay Arm Heter. o2 Bias Concentr. oy
1.0 20 40 1.0 20 3.0 1.0 20 40| 1.0 20 3.0
RC 1374 1338 967 | 2845 1338 687 | 596 525 502 | 1847 525 278
RUCB 1906 2134 1154|2832 2134 1185|1018 1144 719 | 1829 1144 506
DT 1396 1425 942 | 2621 1425 640 | 445 492 375 |1428 492 191
MBTW 1220 1509 726 | 1769 1509 1448 | 175 162 140 | 569 162 92
UCB 1283 1426 732 | 2581 1426 706 | 553 548 336 | 1583 548 153
RC-B(*) | 1378 1611 1050 | 2207 1611 803 | 649 869 727 | 1119 869 502
RUCB-B(*)| 993 1120 709 | 1191 1120 1055 | 422 480 370 | 604 480 446
DT-B(*) 430 411 344 | 631 411 280 | 198 210 168 | 436 210 110
BS-UN(*) | 690 689 387 | 825 689 637 | 194 161 94 | 340 161 92

BS-K(*) | 654 713 407 | 554 713 624 | 116 90 79 | 60 90 82

Table 1: Performance under diverse arm heterogeneity (denoted by "heter.") and bias concentration
(denoted by "concentr.") with 10 arms and 10 evaluators. Our methods are marked with ''(*)'". The
best, second, and third best results are marked in bold, underline, and dashed underline, respectively.

(denoted by "DT") [12]], Modified Beat The Winner (denoted by "MBTW") [27], UCB (which follows
[13]] but omits the cost constraint). Meanwhile, we incorporate our bias-sensitive estimation in
Algorithm [2] and obtain bias-sensitive versions of RC, RUCB, and DT (see Appendix [K.T). They
are denoted by "[Baseline Name]-B". Our Algorithms [I] and 2] are denoted by BS-K and BS-UN
for known and unknown bias cases, respectively. We use "(*)" to mark our methods (including the
bias-sensitive versions of baselines and our proposed BS-K and BS-UN). Experiments are conducted

under unknown bias case, expect for those of BS-K. We show the cumulative regret 23:1 Reg(x(t))
because (i) the values of round-average regret are very small, and (ii) cumulative regret can infer
marginal regret in figures. In Table|l} the round-average regret can be obtained by dividing the
cumulative regret by 7' = 10000.

Algorithm Comparison: Tables [T] and [2] show the cumulative regret after 10000 rounds. The
algorithm convergence and standard error are shown in Appendix The numerical bias estimation
error can be found in Appendix We have the following observations. (i) Our proposed BS-UN
and BS-K algorithms achieve superior performance under both average and weak regrets, ranked
top three among all algorithms for most cases. When compared with RC, RUCB, DT, MBTW, and
UCB, the average regret reduction of BS-UN can be up to 71.0%, 70.9%, 68.5%, 56.0%, and 68.0%,
respectively; the weak regret reduction of BS-UN can be up to 81.6%, 86.9%, 76.2%, 40.2%, 78.5%,
respectively. (ii) The bias-sensitive versions of baselines usually achieve lower regret than their
original versions, showing the effectiveness of our estimators. For RUCB and DT, their average regret
reduction can be up to 58.0% and 75.9%, respectively; their weak regret reduction can be up to 67.0%
and 69.5%, respectively.

Impact of ap: Our BS-K and BS-UN algorithms are more beneficial when bias concentration oy
is lower. Specifically, a smaller o implies a higher degree of evaluators’ bias. In Table |1} when
ap reduces from 3.0 to 2.0, the average and weak regrets of baselines increase by up to 1.23 times
and 2.58 times, respectively. However, the average and weak regret increasing are 0.08 and 0.75 for
BS-UN and 0.14 and 0.09 for BS-K, respectively.

Impact of o2: A larger o2 implies a higher degree of arm heterogeneity. Since the evaluators’ bias is
not accounted by the baselines, a larger heterogeneity makes it easier to identify the best arm and
hence a lower regret. As the evaluators’ bias is accounted by our methods, a moderate heterogeneity
can be sufficient for identifying the best arm and reducing the regrets.

Impact of Evaluators and Arms: From Table |2} (i) our methods are not sensitive to the number
of evaluators. As the number of evaluators increases from 5 to 20, the average and weak regrets of
our BS-UN increase by —0.10 and —0.35 times, respectively; those of our BS-K increase by 0.08
and 0.32 times, respectively. (ii) The increasing in the number of arms increases the regrets of our
methods. This is acceptable, because in the LLM evaluation example, the number of users (i.e.,
evaluators) is always large, while the number of LLMs (i.e., arms) is usually small, e.g., around 10.
We further evaluate large-scale settings with 100 evaluators and 100 arms in Appendix |K.4



Cum. Average Regret ({) Cum. Weak Regret ({)
Method Num. of Eval. Num. of Arms Num. of Eval. Num. of Arms
5 15 20 5 15 20 5 15 20 5 15 20
RC 1590 1142 1301 | 561 2250 2568 | 689 409 497 | 85 1303 1626
RUCB 2293 1924 2042 | 813 2277 2499 | 1272 979 1067 | 181 1356 1593
DT 1548 1073 1221 | 695 1854 2006 | 491 295 349 | 142 702 802
MBTW 1444 1452 1509 | 1218 1260 1330 | 177 124 182 | 48 307 438
UCB 1604 1099 1252 | 631 1752 2115 709 387 491 | 77 971 1264
RC-B(*) | 1801 1370 1694 | 575 2301 2707 | 934 785 1005 | 198 1492 1993
RUCB-B(*)| 964 1102 1115| 820 1360 1868 | 392 468 483 |243 707 1146
DT-B(*) 360 375 344 | 169 736 1156 | 177 165 169 | 77 308 578
BS-UN(*) | 688 722 621 | 626 929 1157 | 121 97 79 |108 364 543
BS-K(*) 588 600 638 | 469 881 1021 | 57 73 75 21 306 420

Table 2: Impact of the number of evaluators (denoted by “Eval.") and arms. Unless specified in the
column title, the default number of arms and evaluators is 10. Qur methods are marked with “(*)".

Ablation Study: When compared with the alternative estimator given in Appendix [A] our arm
performance estimators in (I0) and (T6) reduce the average regret by 58.3% and 42.1% and weak
regret by 78.1% and 61.6% for known and unknown bias cases, respectively. When compared with
other estimators (e.g., estimators based on conditional probability expression and other estimator
update procedures), our bias estimators in reduces the average and weak regrets by 11.2% —
49.1% and 13.1% — 75.5%, respectively. Please refer to Appendix [K.6|for details.

6 Conclusion and Limitations

This work presents the first study on addressing evaluators’ bias in dueling bandits. We overcome the
challenge of non-convexity and bias heterogeneity and propose bias-sensitive algorithms with regret
bounds. When compared with baselines, our algorithms reduces the regret by up to 86.9%, especially
when the evaluators’ bias levels are more heterogeneous. Meanwhile, our proposed estimator can be
incorporated into baselines and achieve a regret reduction of up to 75.9%.

The main limitations of this work contain four parts. First, the bias of each evaluator is modeled to
be deterministic and unchanged across time. To extend the model to stochastic and diverse bias, we
may learn from adversarial dueling bandits and extend the techniques from addressing time-varying
winning probability to time-varying bias. Second, the regret bound for BS-UN contains a term &(¢),
which was not derived in closed form. It is important to derive the specific expression of it to reveal
further insights, overcoming the difficulty in analyzing the performance of a BCD algorithm for
non-convex problem. Third, the recent bias modeling is only evaluator-dependent. It is interesting
to consider arm-dependent bias, characterizing evaluators’ distinctive bias toward arms. Fourth,
this work is motivated by human bias in feedback. It would be beneficial to construct real-world
experiments with humans for algorithm evaluation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have summarized and discussed the main contributions and scope of this
paper in the abstract and Section 1 Introduction.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of this work in the second paragraph of
Section 6 Conclusion and Limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided assumptions in the main text. We have provided complete
proofs for Lemmal[I} Proposition [I] Theorem [I] Lemma 3] and Theorem 2]in Appendices
[CL[FL[H] and[l} respectively. We provided one sentence to explain the proof of Lemma2]in
the main text, as the proof is straightforward.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the settings of probability model, bias model, parameters in
Section 5 Experiments. Due to the space limit, we provided the settings and explanations of
baselines in Appendix [K]

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included the code in supplementary material. The experiments in this
work do not rely on datasets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all parameters we used and their reference (if applicable).
The experiments in this work do not involve data splits, optimizers, and training details.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the standard error of the experimental results in this work.
They are provided in Appendix [K]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the information on compute resources in the first paragraph
of Section

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This work does not have human subjects or participants and data-related
concerns.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the society impacts in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used an open source code [28]] as the framework for conducting experiments.
This open source code was released on GitHub with MIT License. We have cited it.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have included an instruction for the code in supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix A An Alternative Estimator

It is possible to derive an alternative unbiased estimator by directly substituting ﬁi?j (t) &
NP () /N () + NJi(t) as pfy for n,,, = 1; into @). This leads to the following estimator:
Definition 4 (An Alternative Estimator). After time slot t, we propose to approximate p;; in (1) using

N () A
w7 (] — )
. 1 NE (6)+ N2, (t) (L=
(1) = Yy i (22)
Pig(®) |Bi; (t)] 2y =1

beB;;(t)

Although we can prove that this alternative estimator is unbiased, this estimator p;;(t) approaches
infinite when there exist evaluators that are spammers, i.e., when there exists b € 3 such that ;' = 0.5.
This is not practical, as we cannot prevent the existence of spammers in practical systems.

Formally, under this estimator in Definition 4] the confidence radius and the associated round-average
regret (i.e., the regret under our proposed bias-sensitive algorithm while replacing the estimator and
confidence radius accordingly) can be determined as follows. The proofs are similar as those in the
main context and hence omitted here.

Lemma 4 (Confidence Radius under the Alternative Estimator). The confidence radius r;;(t) in
Definition[2)is determined by

1 alog(t)
() = , 23
O = T, 2, \ 5w Mg 1 29

Lemma 5 (Regret under the Alternative Estimator). The bias-sensitive UCB algorithm under the
estimator in Definition d|and confidence radius in Lemmad| has a round-average regret of

T
;;Reg@:(t)) SR ((K s

, (K —~1)KUCB/alog(T) <<1_1>+HB"1+<2 OnLA . )) e
5 B |

F T T8 7118

where T’ 2 minyep VI2np —11.

When comparing with the round-average regret of our proposed bias-sensitive algorithm in Theorem
this regret is different in terms of I'. As we can expect, if there exists any evaluator that is a

spammer (i.e., n; = 0.5), then T is equal to zero, making the round-average regret approaches
infinite.

(14 UCB) + H(1 +KUCB)>

Appendix B Proof for Lemmal]]

By substitute (T0) into E[p;;(¢)], we have

N3 (1)
oy Dreto @~ (& [ | -0 )
Efpi;(t)] = - . (25)
ZbeBij(t) (2my — 1)
Since event 0; >, 0; for any ¢’ < ¢ is a Bernoulli trial which holds with probability Pr(o; >, 0;),
E[NZ (1) /(Np(t) + N2i(t))] = Pr(o; =, 0;) for any m ensuring 7,, = n;. By substituting (@) into
@, we have E[ﬁ” (t)] = Dij-

Appendix C Proof for Proposition 1]

To alleviate the coupling of the randomness among time slots, we introduce a B x t table. Cell
(b € B,s € T) corresponds to the s-th times that {i, j} is selected for evaluators of bias b. Let
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Nibj’s denote the number of time slots ¢’ (i) until (i.e., on and before) the s-th times that {%, j} is
selected for the evaluators with bias 7, such that (ii) evaluator m sends a feedback with o; >, 0;,
and (iii) 7, = 7. Let qu denote the fraction of feedback sent by the evaluators of bias b claiming

0; =m 0; among the first s times that {4, j} is selected for the evaluators of bias b. That is,

b,s
T == (26)

S

Then, according to Hoeffding Inequality, for any ¢ > 0,
log(t 2
Pr ( aog()) 12 o

_b,s —b,s
(i) . 20
where E[Qf’s] denotes the expected value of Q?J’-s considering the randomness of evaluator feedback.

q'LJ - E qz]

According to @), E| ‘L y | can be determined by
E[7;°] = nypi + (1 — n) (1 — pij)- (28)
Substituting into the inequality on the left-hand side of (27)), we have

alog(t)
—

1@ — (i + (1 =) (1 = piy))| < (29)

Multiplying both sides by |2n; — 1| and substituting (26), inequality can be transformed into

alog(t
< fonp 1y B )

S

Nibj,s A A A 2
—— = (1 =np) | @y —1) —pi; (205 — 1)

Let s = N7 (t) + N?;(t) and hence Nibj’s = NJ;(t). Based on triangle inequality, considering
for all possible b € BB;;(t), the following inequality holds:

Ny () N
| QKﬁM+mw*“m)%’liﬁﬂm*

beB;;(t beBi;(t)
Finally, dividing both sides of the inequality in Pr(-) by Zbe&j ) |2np — 1|%, we show that r;;(¢)

alog(t) 2
<3 - 1 )1 s a
beBn (1) Np(t) + N2 (1) t
defined in (T) is the confidence radius given the definition of p;;(¢).

Appendix D Bias-Sensitive UCB Algorithm

Algorithm [T|shows the pseudocode of our proposed bias-sensitive UCB Algorithm.

Algorithm 1 Bias-Sensitive UCB Algorithm

1: for each time slot ¢ = 1 to T" do

2:  Update p;;(t—1) using (I0) and r;;(¢—1) using (LT));

3:  Estimate UCB,(t) using (I3) for i € K;

4:  Select the arms z1 (¢) and x2(¢) that optimize problem (T4);
5: end for

Appendix E  An Alternative Algorithm that Selects the ''Best Competitor"'

In our algorithm, in each time slot ¢, the agent selects the arms with the highest and second highest
UCB values as the first arm (denoted by z1 (¢)) and the second arm (denoted by x2(t)), respectively,
ie., 71(t) = argmax;exc UCB;(t) and x2(t) = argmax;ci\ {2, (r)} UCB;(t). As an alternative,
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Table 3: Methods considered for comparing the selection of the second arm.

First Arm Second Arm Arm/Bias Estimation
RUCB-B Randomly pick from an  "Strongest competitor"” RUCB-B/Our
optimistic arm pool
BS-K-Modified Highest UCB "Strongest competitor" Our/Known Bias
BS-K Highest UCB Second highest UCB Our/Known Bias
BS-UN-Modified Highest UCB "Strongest competitor" Our/Our
BS-UN Highest UCB Second highest UCB Our/Our

Table 4: Comparison of the selection of the second arm under BT Model. Different columns
correspond to different number of arms.

Cumulative Average Regret Cumulative Weak Regret

10 20 30 50 10 20 30 50
RUCB-B 1943 2914 4280 8990 | 685 1444 2451 6468
BS-Modified-K | 756 1308 1592 5155 | 59 322 644 1732
BS-K 868 1361 1748 4440 | 57 336 537 1256
BS-Modified-UN | 829 1469 1951 5643 | 96 418 815 2291
BS-UN 990 1461 1834 4109 | 92 477 687 1355

the agent may choose the "strongest competitor" of the first arm as the second arm, i.e., x2(t) =
arg max;cx\ { (1)} UCBiz, (1) (t). In the following, we empirically show that for the second arm,
considering the second best arm (i.e., the one with the second highest UCB) and the "strongest
competitor" of the first arm achieve similar performance for many of the cases, while the former can
achieve better performance when the number of arms is large or a Condorcet winner does not exist.

To conduct such experiments, we compare five methods as shown in Table[3} Specifically, RUCB-B
is built upon Relative UCB [11]] while incorporating our bias estimation method. BS-K-Modified and
BS-UN-Modified correspond to the methods choosing the "strongest competitor" of the first arm as
the second arm, incorporated with our arm and bias estimation methods. BS-K and BS-UN are our
proposed approaches.

Bradley-Terry (BT) Model: Table[d]shows the results under the same arm performance modeling as
the main experimental results, i.e., where BT model is considered. In this case, a Condorcet winner
always exists. First, for many of the cases, BS-K-Modified and BS-K (as well as BS-UN-Modified
and BS-UN) achieve similar average and weak regrets. This indicates that those two methods for
choosing the second arm do not make significance difference. Second, when there are 50 arms,
our BS-K and BS-UN always outperform BS-K-Modified and BS-UN-Modified, respectively. This
implies that independently selecting two arms (rather than having the selection of the second arm rely
on the first arm) for exploration is more beneficial for arm performance estimation when the number
of arms is large.

Non-Existence of a Condorcet Winner: The arm performance matrix is initialized with the BT
model. To remove the Condorcet winner, for each arm, we randomly select two arms that are initially
weaker than this arm and increase their winning probabilities (that beat this arm) to a random value
within range (0.5,0.6). In Table|5| when a Condorect winner does not exist, our BS-K and BS-UN
always outperform BS-K-Modified and BS-UN-Modified in terms of the average regret, respectively.
In this case, the "strongest competitor" of the first arm may perform badly when compared with other
arms, so selecting the "strongest competitor" as the second arm may lead to a high regret and hence
increase the average rerget. RUCB-B achieves the worst performance. This result shows that the
choice of the first arm makes more significant impact than that of the second arm.

Appendix F  Proof for Theorem I]

We first present the proof details. Then, we prove an auxiliary inequality used in the proof.
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Table 5: Comparison of the selection of the second arm under non-existence of a Condorcet winner.
Different columns correspond to different number of arms.

Cumulative Average Regret Cumulative Weak Regret
10 20 30 50 10 20 30 50
RUCB-B 3619 3966 4918 8619 | 1133 1913 2841 6238
BS-Modified-K | 2602 2387 2625 5205 | 224 476 865 2297
BS-K 1715 1787 2146 4737 | 198 588 755 1631
BS-Modified-UN | 2742 2701 2808 5418 | 276 811 990 2661
BS-UN 1401 1768 2186 4648 | 437 697 907 1960

F.1 Proof Details

This proof essentially derives the bound for average regret, while it works for weak regret by relaxing
the weak regret to average regret in inequality (a) of (33).

Based on the definition of average regret RegA (x(t)),

T T
> RegA(z(t) = Y E [0 — (00,(1) + Ouar) /2] - (32)
t=1 t=1

We define Z(t) = {z1(t), z2(t)} as the set of arms that are selected in time slot ¢. We determine the
upper bound as follows:

O — (02, () + Oy (1)) /2

—
Q
~

< O _% ZiEI(t) ‘9i+% ZieI(t) (UCB;(t)—UCB;«(t))

(b)

< 5 Yiez(r (UCBy(t) — 6;) + 6;- — UCB;- (1) (33)
(C) UCBLJ t)— ij

e ZiEI(t) Dz #

2 pi*;—UCB,+ ; (t)
+K—1 Zj;ﬁi* 2 '

Inequality (a) holds because arm ¢ € Z(t) is selected by the algorithm and hence UCB,(t) —
UCB;-(t) > 0. Note that if weak regret is considered, we can relax the weak regret to average
regret using max{0,, (), 0z, (1)} > Ziel(t) 6;/2 in (a). Inequality (b) holds by rearranging the

terms. Inequality (c) holds based on the definition of ¢; in () and UCB,(t) in (T3). Let ®(t) £
Ziel’(t) Zj;ﬁi (UCB;;(t) — pij)/2 and let $o(2) & Zj;&i* (pi+j — UCB;+;(t))/2. Thus,

SB[ = (o +Oos)/2] < _— STE 0]+ KL;M%W. G4

In the following, we will bound the above two terms Zthl E[®;(t)] and Zthl E[®2(t)], respectively.

Bound Zthl E[®4(¢)]: At the beginning of Algorithm each dueling pair will be selected once.
This holds because at the beginning of the algorithm, the arms have not been explored such that
that UCBs cannot been computed, so their UCBs’ are initially set to be large values to enable the
exploration. This is consistent with existing works [11}|13]]. These selections of each dueling pair
take a total of ¢ty = C'(K, 2) rounds. Thus, the regret during rounds 1 to ¢y is given as follows:

i]E[(I)l(t)] < (K — 1)UCBt,, (35)

t=1
where UCB is the upper limit of UCB;;(¢) for4,j € N.

Then, we focus on the rounds after ¢, i.e., t = {top + 1, ..., T'}. During these rounds, we define the
following events for models ¢ and j:

o Eij(t): Pij(t) — piy > riz(t);
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* &,j(t): complement of &;;(t).
In particular, event &;;(t) corresponds to the case where p;;(¢) has been overestimated and exceeds

the upper confidence bound. This case induces UCB;;(t) > p;;. When event £;;(t) happens,
UCB;;(t) — pij < 2r;(t). Thus, we can bound Ztht 41 E[®1(?)] as follows:

T

> El Z El Y ZUCB” U AUCB () > py) |, (36)

t=to+1 t=to+1 Li€Z(t)j#i

where 1(-) is the indicator function, i.e., 1(z > y) = 0if > y, and 1(z > y) = 0 otherwise. Since
exactly one of events &£;;(t) and £;;(¢) happens,

UCB;;(t) — pij
E|> > ] ———9 ) TU1(UCBy;(t) > pij)
IEZ(t) j#i

=E| >, ZUCB” P (UCB (1) 2 piy) 1(E5(2)

i€L(t)jF#i

E[®1,1(¢)]

UCB,;( : _
+E Z Z J pjl(UCBZJ( t)>pij)1(Ei;(t))
1€L(t) jA

E[®1,2(t)]
(37)

Substituting into (36),
T
> E[@1(t) Z E[®; 1 ( Z E[®; o (38)

t=to+1 t=to+1 t=to+1
We now bound these two terms Z?:tm—l E[®,1(¢)] and ZtT:tg-i-l E[®; 2(t)] respectively.
Bound ZtT:tOH E[®4,1(t)]: Since event &;;(¢) implies UCB;;(t) > p;;, we have
S imtyi1 BI@1 ()]
St B[Sz T T 1E (1)

< E;F:toﬂ E|E [EiGI(t) EH&Z P[&;(t )]UCB IZ(t) } (39)
(i) T E|E 1 . UCB I

= Et:tmtl Eiel(t) Z;;ﬁz 2 |

< (K-1)UCBY.°, . t~2

Inequality (d) holds due to Definition [2]and Proposition [I]

Bound ZtT:to+1 E[®,2(t)]: It is straightforward that ZtT:t0+1 E[®2(t)] = E[ZtT:tOH Dy 5(1)].
According to the definition of event £;;(t), we have

S ior1 Pra(t)

ﬂgﬂxwﬁ@mxﬂﬁ (40

<
< yalog(T Zt to+1 Z(t)UCB.

—
N

€

where Z(t) is equal to

DI 2n — 1] ' @)

10 S 0 e, 0 (21 — 1% (N (1) + NE(D))
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Inequality (e) holds because event &;;(t) implies UCB;;(t) — p;; < 2r;;(t). Let I £
e, v (2my = 1)%/|Bi;(t)]. We now have ZtT:t 11 2(0):

T .
S =Y YY - i ¥ Miczom )

t=to+1 t=to+1ick j£i beBy; (t) ij (t) + N]l‘)i(t)

In Appendix we prove that the upper bound of Zfzto +1 E[Z(#)] is given as follows:

T
> Ez)] < Q(KF_ Diven Q(KF_ U g2 log(BT?*) + @\/[((K 1T, 43)

t=to+1

where H = Y777, | t~2*. By substituting (@3) into @0),

T
E l > D1s()

t=to+1

2BKT

2 20
H + B?log(BT*") + 1

2(K — 1)UCB+/alog(T)
r (

) (44

To sum up, by substituting (33), (39), and (@4}, we can determine the bound of 3, E[®, (¢)]:

1 > E[®1(t)] < UCB(ty + H)

t=1

9UCB/a log(T 9BKT
+ %g() <H+32 log(BT™) + 1/ == 1) . (45)

Bound Zthl E[®2(t)]: According to the definition of ®5(t), we can determine the following
inequality:

Pixg — UCBi* i(t
NOESY %ﬂ()upi*j > UCB;+ (1)) (46)
i
Hence, considering the iteration before and after ¢y rounds,
Zi 1 E[@a()]
B B 1
< 2 Z jFi* UC + Zt to+1 Z JAi* % 2 (47)
< K [UCBtO + UCBY 2, o4 t‘20‘]

Substituting (@3)) and completes the proof.
F.2 Upper Bound of Zf:to 11 E[Z(t)]

We now derive the bound of ZtT,tO +1 E[Z(1)]. Recall that

T .
166 € Z(t)[2nf — 1
S - ¥ YNl 3 M .
t=to+1 t=to+1ick j#i beB o) ij(t) +N]l?i(t)

The evaluation selection frequency n;;(t) £ (n?j (t))pep satisfies the total frequency constraint

> e (t) = Nij(t). Recall that B = |B|. Define the event

N N log(Bt2*)
Xi; (N, t) £ {there exists b € Bs.t. ni’j -5 < — \/T nd ang = N} , 49

beB
and let X{;(V,t) be its complement. Since we suppose n;;(t) follows the uniform multinominal
distribution with total selection number of N;;(t), nfj (t) follows the binominal distribution with
probability 1/B. Applying Hoeffding Inequality, this leads to

Pr(nl (1) — Ny (1)/B < —) < exp(——2

) (50)
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for any b € B and for any € > 0. By taking e = /N;;(t) log(Bt2*)/2, we obtain
Pr(X;;(Nyj(t),1)) < B - exp(—log(Bt**)) < 7>, (51
Recall that nl; (t) = N};(t) + Nl-’-(t). Thus,

d Xij (Nij(£),1)) + 1(XE (Ni (), 1)) 10 € T(6)|2n2 — 1
A0 ZZZ - 3 (i € Z(t)) 20" — 1

b
t=to+1 t=to+1i€l j#i K beB;; (t) nij (t)

1(i € T(t))1(Xy; (Nij (£), t
< ZZZ € F( (t),1)

t=to+1ieK j#i

E?:t0+1 Z1 (t)

T

1(i € Z(t))1(X 5 (Nyz (), 1) A —1
" Z ZZ F‘Bij‘ Z |77b |

b
t=to+1iek j#i beB;;(t) L7 (t)

Zg‘:t0+1 Z2 (t)

(52)
For the first item on E?:toﬂ Zy(t),
T g I
Y. ElZa®ml=5 D Y1 € I(t)Pr(Xy;(Ny (1), 1))
t=to+1 t=to+1i<j
2K —1) — 9
— —2«
<SS Dt
t=to+1

For the second item on ZtT:tOH Zy(t), we define m(t) £ B?log(Bt>*). For n > m(t), we have

n nlog(Bt2>) n
5V 5 —235=>1L Then, we can conclude that

2 X5 (n,T
S zm< i ey Ly D)
t=to+1 1<j n=1 | 7']| beB;; flf](n)
9 Ni; (T)
< T Z (eIt Z f(n,T),
1<j 4
9 N (T) 54
=) _1(iez(t > fn,T)
1<j n=m(t)
9 Ni; (T)
53 1(i € Z(t)) B’ log(BT**) + Y f(n,T) |,
1<j n=m(T)

where ni’J( n) is the number of times that evaluators with bias b participate among these n selections.

Meanwhile, f(n,t) forn > B is defined as follows:

1 1
f(n,t):= max —
{Tl}LB=1 B B i=1 \/‘E
B
i=1
n nlog(Bt?>) |
4 o - 5 1) AR Ba
=B 2 'C

B e {1,2,...,min{n,|B|}}.
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We define an auxiliary function g(n, t, B) as follows:

1 1
g(n,t,B) := max —Z
{w}B,.B B = \/Ti

S.t. Z T; =N,

i=1

n nlog(Bt3®)
i> - 7, 1,...,B'
TN T 2 'e

It is easy to show that f(n,t) = g(n,t,min(n, B)) < g(n,t, B) < y/22. This leads to

Nij(T) Niy(T)
> fln,t) < V2B —— < /2BNy(T)
n=m(t) n=1 n
Hence,
Ni; (T) 9
Zo(t) < = 1(i € Z(t))B?log(BT?*) + 2BN1~T>
3 70 FZ(( (0)B108(BT*) + \ /28N, (T)

< 2E D) g2 1og (BT %ﬁ \/K (K =1) ) Ny(T)

r —
1<g

= @32 log(BT?*) + @\/K(K —1T.

Combining Z;(t) and Z5(t), we get

T
> E[Z(t)] < Q(KF* Yy Z(KF’ U g2 log(BT?%) + @\/K(K — 1T,
t=to+1

where H = Y777, | 172

Appendix G Extended Bias-Sensitive UCB Algorithm

Algorithm 2] presents the extended bias-sensitive UCB algorithm for unknown bias case.

(56)

(57)

(58)

(59)

Algorithm 2 Extended Bias-Sensitive UCB Algorithm

1: for each time slott = 1to 7" do
Set pij(t — 1) = py}(t — 1), compute 7, (¢ — 1) using (I8);
Repeat twice
Update p,;(t — 1) using (16), update #,,, (¢ — 1) using (I8);
Compute #;;(t — 1) using (19);
Substitute p;; (¢t — 1) and 7;; (¢t — 1) into (IZ) and (I3) to compute UCB,(t), i € K;
Select the arms x1 (¢) and x2(¢) that optimize problem (T4);
end for

As we mentioned in the main context, line 2 and the first update of p;; (¢ — 1) and #,,, (¢t — 1) in line 4
can be skipped after a certain number of time slots once the estimation tends to be relatively accurate
to accelerate the convergence. We empirically find that this time slot threshold can be set in the form
of cK log K. We set ¢ = 50 in experiments. The explanation of the twice update in lines 3—4 can be

found in Appendix [K.7
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Appendix H Proof for Lemma 3|

The proof path is similar as that for Proposition[I] To alleviate the coupling of the randomness among
requests, we introduce a M x ¢ table. Cell (m € M,s € T) corresponds to the s-th times that
{7, 7} is selected for evaluator m. Let N;"* denote the number of time slots ¢’ (i) until (i.e., on and
before) the s-th times that {4, j } is selected for evaluator m and (ii) evaluator m sends a feedback
with 0; >, 0;. Let azlj’s denote the fraction of feedback sent by evaluator m claiming o; >, 0;
among the first s times that {z, j} is selected for that evaluator. That is,

—m,s NZ?;L7S
qij’ = — (60)
s
Then, according to Hoeffding Inequality, for any ¢ > 0,
—m,s —m,s « 1Og(t) 2
Pr(qZ;? —Efg;7]l < 8) 1- e (61)
where E[g;;*] denotes the expected value of 7;;** considering the randomness of feedback due to
arm winning probability and evaluator bias. According to @), E QZL ®] can be determined by
E[g;;°] = tmpij + (1 — 1m) (1 — pij).- (62)
Substituting (62)) into the inequality on the left-hand side of (61]), we have
s alog(t
17;;" — mpij + (L= 0m) (1 = piy))| < S )~ (63)

Then, multiplying both sides by |27}, (¢) — 1|, the following inequality holds for all m € M and
seT:

alog(t)
s

| (N33 /s = (1= 1)) (200 (£) = 1) = (200 — 1) (27 () = 1)pij| < [27m (£) —1] - (64)

Let s = N/7(t) + N7 (t) and hence N;;"* = N/7(t). Then, we reorganize the inequality expression
inside function Pr(-). By extracting e" () = (20m — 1)/(20m(t) — 1) at the left-hand side of
the inequality and substituting ¢ (t) £ (N/7(t) /(N7 (t) + N7H(t)) — (1 = 0n))(20m — 1) and
A;?(t) = (NG @)/ (NFH(E) + N () — (1 = fm(t )))(2nm( ) — 1), we have the following:

D165 0) — piy (2 (8) — 107+ (G550 ~ G50 < [20(0) ~ 11 D 65)

By triangle inequality and rearranging the inequality expression, we can obtain the following inequal-
ity:

127)m () — 1] alog(t)
lem @)\ Nip(t) + N (t)
(66)
Based on triangle inequality, considering (66) for all possible m € M, ;(t), the following inequality
holds:

A

G (t) = pij (2 (1) — 1)2‘ <

O/ (e (®)? = 5] +

N™
E : <Nm(t)”+(j\)/vm(t) - (1 - f]m(ﬂ)) (Qﬁm(t> - 1) - E pij(Qﬁm(t) - 1)2
) iJ Ji

meM;(t meMi;(t)
: |20)m () — 1] alog(t) 2
< 3 |enw/enw?-dnml- 2 > 1
—= 17 m n m m - 20
e ) mento@ lem(®)] N (t) + Nji (1) t

(67)

Dividing both sides of the inequality in Pr(-) by factor } M (1) (2A)m(t) — 1)?, we complete the
proof.
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Appendix I Proof for Theorem 2]

The proof path is exactly same as that in Appendix [Fexcept that the event probability P[&;;(¢)] in
(39) and P[p;~; > UCB;+;(t)] in are changed. Specifically, as in Appendix [F for any request
t=1to+1,...,T, there are two possible events:

© Eij(t): Pis(t) — pij > 7ij (1)
* &;j(t): complement of &;;(t).
According to Definition 3]

1-P Ai't—1'<Ai't 1-P Ai‘t—i‘g’f';?zt
PlE;(t)] = (1545 (t) 2p/1|—711()] < (D3 (t) 2193‘ ]()} 4 D). (68)
By Lemma 3} (1 —P[|p;;(t) — pij| < r5(0)])/2 + &(t) < 1/ + £(t) and hence P[€;;(t)] <
1/t + £(t). Due to the same reason, P[p;«; > UCB;-;(t)] < 1/t2* 4 £(t). Substituting P[€;;(¢)]
in and IP[p;«; > UCB;«(t)] in (7)), we complete the proof.

Appendix J Discussion on ()

Let A(T) = + Z;‘F:tg 41 &(t). Proving limp_, o A(T') — 0 can be challenging due to the non-convex
joint bias and winning probability estimation problem in (I7). Instead, we provide the following
evidences to show that A(T') can be small and may approach zero.

(i) As t — oo, we show that 7),,, (t) — 7, + €. Showing this result analytically is challenging. This
is because due to the non-convexity, proving such a performance guarantee under BCD remains an
open problem. We empirically show the convergence of the bias estimation error |9, (t) — 7| in

Appendix

(i) As t — oo, if 7, (t) — nm + €, then we show that £(t) is non-increasing and converge to
value e, so limp_,oo A(T) — ec. Here, € decreases as |e| decreases, and it approaches zero
if ¢ — 0. Specifically, recall that parameter £(¢) is the minimum non-negative value such that
£(t) = 5 (HF (P (Ipij(t) — pij| < r5;(t))) — P (|pij(t) — pij| < 745(t))). There are two possible
cases: (a) ry;(t) < 7i;(t), under which £(t) = 0 always holds; (b) r7;(t) > 7i;(t), under which
&(t) > 0. We can show that if 7, (t) — n,,, + €, then based on the definition of confidence radius,
the gap between 77 (t) and #;;(t) changes continuously, so the analysis can focus on case (b). Based
on Hoeffding inequality and the definition of £(¢),

P (19i; () — pij| < rg;(t)) > 1—2/8%%, (69)

P ([pij(t) — pisl < 7i5(t)) > 1 — 2/t + £(t). (70)
Based on the definition of confidence radius, as 7,,(t) — 7, + €, there exists a sequence G&(t)
such that 7;;(t; &(t)) = ry;(t) with &(t) is non-decreasing and approaches a. Here, 7;(t; &(t))
is the formulation of #;;(t) with @ = &(t) substituted. Consequently, as &(t) — «, &(t) is non-
increasing and approaches to ¢ as t — co. On the other hand, we would like to clarify that it is
almost impossible to empirically show the convergence of £(t), because £(t) is defined based on
the probability that the estimation falls within a certain range (rather than a deterministic value) and
hence difficult to compute in practice.

Summing up evidences (i) and (ii), then as ¢ — oo, we have £(t) — ¢ and limp_,o A(T) — €,
i.e., A(T) can be small and possibly as small as zero when T is sufficiently large.

Appendix K Additional Experiments

K.1 Incorporating Our Estimators into Baselines

In this section, we describe how to incorporate our estimators into RC, RUCB, and DT and obtain
their bias-sensitive versions RC-B, RUCB-B and DT-B. The modification ideas are similar: (i)
introduce a 3-dimensional (3D) array V to record the choices of multiple evaluators; (ii) replace the
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Figure 1: Algorithm convergence: (a) cumulative average regret, and (b) cumulative weak regret.

arm performance estimator in baselines with our estimators presented in 2-5 of our Algorithm [2} (iii)
map the result back to the case without the definition of V such that the other steps in the original
baselines remain applicable. The details of the bias-sensitive versions RC-B, RUCB-B, and DT-B are
given as follows, where their main differences rely on which line to modify and what notations to use.

RC-B: Modify Algorithm 1 in [[10]:
* Line 2: Initialize a 3D array V < Ox « x x pr, Where M is the number of evaluators;
* Line 12: Replace it with lines 25 in our Algorithm and set U;;(t) = pi; + 7ij3
* Line 16: Replace it with V%, <= V% 4+ 1if ¢ =, d, and let Wi; = >, . V5.

RUCB-B: Modify Algorithm 1 in [[11]:
* Line 1: Initialize a 3D array V < Ox x x x ar, Where M is the number of evaluators;
* Line 4: Replace it with lines 2—5 in our Algorithm 2} and set u;; = pi; + 745
* Line 14: Replace it with Vc’fi — Vc’fi +1lifc-p d,andlet Wi =3, V;’;

DT-B: Modify Algorithm 1 in [12]:

e Line 1: Initialize a 3D array V <— Ox « x x ar, Where M is the number of evaluators;

* Line 4: Replace it with lines 2-5 in our Algorithm and set u;; = pi; + 155 and l;; =
Pij — Tijg;

 Line 17: Replace it with V;’; — VZ’; +1ifi =y j,andlet By = >, VZ’;

K.2 Algorithm Convergence and Standard Error

Figure [T] shows the convergence of average and weak regrets of our methods and other baselines. We
have the following observations. First, our proposed BS-UN and BS-K methods have much lower
average and weak regrets than baselines (marked with dashed line). When ¢ = 10000, the reduction
of average regret is more than 40%. Second, when compared with the baselines (marked with
dashed lines), their bias-sensitive versions (marked with solid lines) achieve slower regret increase,
verifying the capability of the bias estimation technique of our methods. This reduction is especially
significant for DT and RUCB. Third, the performance of BS-UN and BS-K are similar, indicating the
effectiveness of the bias estimation proposed in our methods.

Tables[6] and [/l show the results of Table[I] with standard error. Tables [8]and[9]show those of Table 2l
Here, the standard error is defined as the standard deviation divided by the number of experiments
(i.e., 100 in this work).
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Arm Heter. o2 Bias Concentr. ag
1.0 2.0 4.0 1.0 2.0 3.0
RC 137411 60% 133811.30% 967+r0.01% | 2845+0.16% 133811.30% 08711.38%
RUCB 190610.43% 21341070% 115410.27% | 283210.179% 213410.70% 118510.93%
DT 139612019 142519509  9424150% | 206211068% 142510507 6404314%
MBTW | 122041.92% 150941.50% 72641.01% | 176942.10% 15094+1.50% 144811729
UCB 1283 19.00% 142610.46% 73242.46% | 258110.09% 142619.46% 706+3.20%
RC-B (*) | 137841150 16111163% 10501088% | 220741489 16114163 80312.00%
RUCB-B (*)| 9931058% 112010.47% 709+0.49% | 11914501% 112040479 105510.38%
DT-B (*) 30-3.90% 144309 34413009 | 631414539 41lig30% 28044139
BS-UN (*) | 6904+363% 689+508% 387+0.15% | 825+11.41% 6894508% 637+3.08%
BS-K (*) | 6544420% 7131466% 40713809 | 55443201%  T131466% 624+4.05%
Table 6: Cumulative average regret () in Table|l| with standard error.
Arm Heter. o2 Bias Concentr. agp
1.0 2.0 4.0 1.0 2.0 3.0
RC 5961004%  525i046%  50211.85% | 184710329  525i046% 27811.75%
RUCB 10184 0.709% 11444110%  7191053% | 182940.35% 11444110% 50611 42%
DT 45,5109 4924545%  3751a.02% | 14284000% 4924545% 191i652%
MBTW | 1754 11.96% 162+12.80% 14041288% | 569+853% 102112809 92+16.14%
UCB 55313.10%  54843.35%  33013.39% | 15831160% 548i335% 15314.76%
RC-B (*) | 6491148% 869+1145% 727+0.97% | 111943359 869+1145% 50241.83%
RUCB-B (*)| 4221087% 4801065% 370+056% | 60411235% 4801065% 44040.54%
DT-B (*) | 19846.03% 21047559% 16814779 | 436101009 2104755% 11017509
BS-UN (*) | 194.g709, 161i0446% 9444.01% | 340420.14% 161i9446% 92410.05%
BS-K(*) | 1165926% 90114.02%  794s36% | 60i630%  90114.00% 82111.70%

Table 7: Cumulative weak regret (J) in Table[l| with standard error.

K.3 Bias Estimation Error

Figure[2]shows the convergence of the bias estimation error |}, (¢) — 7, | within 40000 rounds for our
methods, including our proposed BS-UN and the bias-sensitive versions of baselines RC-B, RUCB-B,
and DT-B. The following table shows the bias estimation error after 40000 rounds:

(Num. of Arms, Num. of Evaluators) | (10,10) (20,20) (50,50)
RC-B (*¥) 0.03 0.02 0.06
RUCB-B (*) 0.03 0.04 0.04
DT-B (*) 0.10 0.08 0.16
BS-UN (%) 0.04 0.04 0.03

Both the table and figure verify the convergence of the estimation error to small values for all our
methods under diverse network scale.

K.4 Large-Scale Settings

To enable a more stable performance under large-scale settings, we make a minor modification on
Algorithm [2] such that step 2 is skipped after THR, = cn logn iterations, where we set ¢ = 50 due
to its empirical performance. This is reasonable because step 2 is used for determining a suitable
initialization of 7,,’s. Once the 7,,,’s have been approximately converged, no further initialization
is needed. The result is presented in Table[T0} First, our proposed BS-UN achieves lower average
and weak regrets than baselines under large-scale settings. Second, DT-B also has lower regrets than
the baselines. This indicates that by incorporating our bias estimation technique, DT-B is able to
address biased evaluator. Finally, perhaps counter-intuitive, under the large-scale settings, BS-UN
outperforms BS-K. This is because the winning probability estimation at earlier iterations is relatively
inaccurate, and BS-UN tends to explore more than BS-K and hence achieves better performance
when the number of arms and evaluators are large.
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Figure 2: Bias estimation error: (a) (10, 10), (b) (20, 20), and (c) (50, 50).
Number of Evaluators Number of Arms
5 15 20 5 15 20
RC 159041 359 11421150% 130111.66% | 201i2.03% 225010.64% 256810.06%
RUCB 229310.49% 192440729 20424075% | 81311.16% 227710.21% 2499+0.10%
DT 1548,15.20% 107343.04% 122140409 | 69541979 185411.48% 200641 43%
MBTW | 14441, 979, 145241 879, 150941 959 | 121841.959% 126041.69% 133041.77%
UCB 16041 5.18% 10994374% 125243309% | 63144089 175210.01% 211540.36%
RC-B (*) | 180141919 1370418095 169441 75% | 575+338% 230110329 270710.06%
RUCB-B (*)| 964.10.46% 110210.48% 111540379 | 82046.95% 13604+0.469% 186810.37%
DT-B (*) | 36015209 375i551% 344is5.17% | 16948389  73643.00% 115642 79%
BS-UN (*) | 68846.84% 122+4.06% 0214324% | 6261908% 92941769 113741.16%
BS-K (*) | 58844.20% 60043409 038+455% | 469+43.56% 88linroy 102145959

Table 8: Cumulative average regret ({) in Table 2| with standard error.

K.5 Additional Baselines

We have conducted experiments on Doubler [29]], MultiSBM [29]], MaxInP [30], and MaxMinLCB
[31)). Table[IT]provides the experimental results. As can be observed, our proposed BS-K and BS-UN
approaches always outperform baselines in terms of both weak and average regrets.

K.6 Ablation Study: Description and Weak Regret

We first describe the estimators we considered in ablation study. For the arm performance estimator
in Figure |§| (a) and (c), we compare the following:

 Weighted-Voting-UN: estimator in (22)) while replacing the actual evaluator bias with the
estimated bias in (T8));

* Weighted-Voting-K: estimator in (22);
* Minimum-Deviation-UN: estimator in (T6)

* Minimum-Deviation-K: estimator in (T0).

For the evaluator bias estimation in Figure 3| (b) and (d), we compare two groups of estimators: con-
ditional probability expression-based estimator (denoted by “COND"); optimization-based estimator
(denoted by “OPT"), which is the bias estimator in (T8). For the group of COND estimators, the bias
is estimated by

>0 (2Pi; — 1)1(pi; > 0.5)1(p;; > 0.5)
22,5 (20 — 1)1(pi; > 0.5)

which is derived based on the definition of 7, in (3). For either of COND and OPT estimators,
calculating the estimated 7,,, and p;; are challenging, as the calculation corresponds to solving
complex equation system (e.g., the equation system comprising (T6) and (I8) or comprising (16)) and
(71)). Thus, we compare three approaches to calculate their estimated values based on our designed
estimators:

(71

)

ﬁm:
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Number of Evaluators Number of Arms

5 15 20 5 15 20
RC 6891045% 4091i270%  4974006% | 85+a46% 130341079 162640.11%
RUCB 127240.87%  979+1.10% 106711.209% | 181io379%  135640.33% 159310.17%
DT A91i537%  29516.58% 349+531% | 1424426% 7024339% 80243829
MBTW | 177 41153% 124+1378% 182412.35% | 48+16.45% 307+49.63%  43847.83%
UCB 709:351%  3871s5.0m%  49Niaaan | TTx1s.0m% 9Tir01 126410.50%
RC-B (*) | 9341113 7851150% 100541.70% | 19843779 149240489 199340.12%
RUCB-B (*)| 3924070% 468+060% 483+0.61% | 243+23.70% 707+40.77%  114640.58%
DT-B (*) | 1774883% 165410779 169+050% | TT417.31%  308+488%  S578+4.14%
BS-UN (*) | 12143516% 97+6.20%  19+3.80% | 1084s52.06% 36414089 4312049
BS-K (%) 5719.01%  73+045%  T5+11.06% | 21i19.88%  306.7.60%  42015.40%

Table 9: Cumulative weak regret (J) in Table [2| with standard error.

Cum. Weak Regret (]) Cum. Average Regret ({)

(Num. of Arms, Num. of Eval.) (50,50) (100,100) (50,50) (100,100)
RC 17494 L 0.019 18711 40.009% | 1844110019 1929810 00%
RUCB 166251 9.06% 17887 10.02% | 1793110039 18705+10.01%
DT 36341 30.11% T656418.17% | 6288.115.60% 1099349 96%
MBTW 2170438.93% 3123+423.24% | 1029313699 1201345 45%
UCB 153984 0.26% 1641040959 | 17196191395 1785314 12%
RC-B(*) 18074 4+0.009% 1871640.00% | 18754 10.00% 1931310.00%
RUCB-B(*) 1560911 099 1787140.06% | 1742410620, 1869410 03%
DT-B(*) 1481111909, 2850.9.70% | 1907 110.57%  3703.18.56%
BS-UN(¥) 1628, 4.94% 32801957% | 9307 4085% 1153310.92%
BS-K(*) 382541.03%  1787110.00% | 10648, 0.58% 18696.40.01%

Table 10: Algorithm performance under large-scale settings.

 Last Round Preference (denoted by “P"): Estimate evaluators’ bias based on the estimated
arm performance in the previous time slot, and then update the arm performance estimation
using (T6);

* Mean Preference (denoted by “MP"): Estimate evaluators’ bias based on ), P} (t —
1)/M, and then update the arm performance estimation using (T6));

* Mean Preference with User Bias (denoted by “BMP"): The approach presented in Algorithm

To sum up, we compare seven approaches with different bias estimators and calculation methods: the
case where the ground-truth bias is known (denoted by “Known"), which serves as the benchmark,
COND-P, COND-MP, COND-BMP, OPT-P, OPT-MP, and OPT-BMP.

Now, we show the ablation study on average and weak regrets in Figure 3] Our proposed arm
performance estimator leads to a much lower average and weak regrets than that in Appendix [A] In
addition, our proposed bias estimation approach achieves an average and weak regret that is closer to
the case where the ground-truth bias is known, when compared with the other approaches.

K.7 Ablation Study: Times in Estimation Updates

Table [12] shows the evaluation of different times of the estimation updates in lines 3—4 of Algorithm 2}
Note that to show a relatively obvious performance gap, we conducted experiments under a relatively
large scale setting with 50 arms and 10 evaluators.

It can be observed that "updating twice" leads to the best performance. Further increasing the times
of updates does not improve the performance. Intuitively, the main idea is to find a better initial point
for a more accurate estimation in each time slot. According to Algorithm[2] in line 2 of each time
slot, the arm performance estimation p;; (¢ — 1) is initialized as the estimation ignoring the bias, and
then the bias estimation 7}, (¢ — 1) is initialized based on the recent arm performance estimation.
Note that up to now, it is obvious that both the bias and arm performance are far from an ideal initial
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Table 11: Experimental results under additional baselines.

Weak Regret () Average Regret (|)

Arm Heter. 0 Bias Concentr. o Arm Heter. 02 Bias Concentr. oy

Doubler 791 815 889 | 1743 815 432 | 1612 1655 1693 | 2683 1655 885
MultiSBM 865 958 1045|1735 958 475 | 1710 1908 2055 | 2747 1908 1089
MaxInP 1394 1600 1617 | 2006 1600 711 | 2267 2539 2541|2982 2538 1289

MaxMinLCB | 501 494 501 | 1613 494 220 | 1193 1227 1210|2628 1227 668

BSK(*) | 116 90 79 | 60 90 82 | 654 713 407 | 554 713 624
BS-UN(*) 194 161 94 | 340 161 92 | 690 689 387 | 825 689 637

—Known

COND-P  —OPT-P
—COND-MP OPT-MP
4004—COND-BMP —OPT-BMP(*)

1000 —weighted-Voting-UN
Weighted-Voting-K
8001 — Minimum-Deviation-UN(*)
—Minimum-Deviation-K(*)

. B

> g

i s

S &

T 600 =

4] g

< 4001 B

B _g 200

= ©

2 200/ E

E p

£
3 o O 0
0 500 1000 1500 2000 0 500 1000 1500 2000
Rounds Rounds
(a) (b)
1000 v ~N/atno. - |—Known

= we!ghted Vot!ng UN 9400 COND-P —OPT-P

5 eighted-Voting-K =) — COND-MP OPT-MP

@ 8001 —Minimum-Deviation-UN(*) v

o Inimum cﬁ300, —COND-BMP —OPT-BMP(*)

x —Minimum-Deviation-K(*) <

3 600 2

% 5 200

2 400 2

5 g 00]

2 200 2100

3 3

(@) 0 01

0 500 1000 1500 2000 0 500 1000 1500 2000

Rounds Rounds
©) (d

Figure 3: Ablation study: average regret of estimators on (a) arm performance and (b) bias; weak
regret of estimators on (c) arm performance and (d) bias.

point for estimation update, because they are determined by ignoring the bias. To address, in line
4, we update p;;(t — 1) and 7, (¢t — 1) for the first time. This step leads to a better initial point (for
estimation update) by considering the bias. After that, the second update of and corresponds to the
actual updates of the estimation.

K.8 Regret Increase under Biased Evaluators

Table[T3] shows the algorithm performance without and with evaluators’ bias, motivating this work on
addressing biased evaluators. We have the following observations. (i) With the presence of evaluators’
bias, algorithms experience obvious increase of average and weak regrets, leading to the necessity
of proposing methods to address the evaluators’ bias. (ii)) When there are no evaluators’ bias, our
proposed methods do not induce huge performance degradation, i.e., the average and weak regrets of
our proposed methods remain relatively low. (iii) When evaluators’ bias exist, our proposed methods
achieve lower average and weak regret than most of the baselines.
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Table 12: Ablation Study: Different Number of Estimation Updates.

Cum. Weak Regret (}) | Cum. Average Regret (]) | Rate of Best Arm ()
Without Line 2 3752 6311 0.79
Update once 2060 5416 1.00
Update twice 1904 5339 1.00
Update 3 times 2021 5371 1.00
Update 4 times 1983 5369 1.00
Cumulative Weak Regret (|) Cumulative Average Regret (].)

NoBias  Beta(2,1) Increase | No Bias Beta(2,1) Increase
RC 12211 399  5254046%  (x4.31) | 23241139 133841399 (x5.78)
RUCB 15410839 114441009 (XT7.43) | 58210349 213440.70% ( )
DT 324465% 492+545% (x15.19) | 14815049 142510509  ( )
MBTW | 1li15.47% 162110809 (x14.15) [ 152410719 153911569% ( )
UCB 13i5119% 54813359 (x42.26) | 4010019 14264946% ( )
RC-B(*) 171:‘:1'32% 869i1'45% ><509) 264i1.18% 1611i1.63% (X610)
( )

( )

( )

)

DT-B(*) | 36118.02% 210417550  (X5.78) | 12645449  4114430%
BS-UN(¥) | 31i086% 161ios46% (x5.24) | 44710779  68945.98%
BS-K(*) | 4lio44% 90114009  (X2.22) | 458.0.40% T13i466% (x1.56

Table 13: Regret increase under the presence of evaluators’ bias. The methods marked with (*)"
are our methods. The best, second, and third best results are marked in bold text, underline, and
dashed underline, respectively. All these experiments are conducted under unknown bias case, expect
for those of BS-K.

(

RUCB-B(*) | 36141061 48010.65% (x1.33) | 8871036% 112040.47%
(
(

Appendix L.  Society Impact

This work has positive society impact on improving the dueling bandits algorithm performance in the
presence of biased evaluators. For negative society impact, it may enable the agent (e.g., a platform)
to detect the bias of evaluators, leading to certain privacy leakage. To address this, the proposed
algorithm may be packed into package and restrict the access of the agent to the bias estimation result.
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