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Abstract

Vision-language models (VLMs) have sig-
nificantly advanced multimodal AI by learn-
ing joint representations of visual and tex-
tual data. However, their progress is hin-
dered by challenges in acquiring high-quality,
aligned datasets, including issues of cost, pri-
vacy, and scarcity. On the other hand, synthetic
data, created through the use of generative
AI—which can even include VLMs—offers
a scalable and cost-effective solution to these
challenges. This paper presents the first com-
prehensive survey on bridging VLMs and syn-
thetic data, exploring both the role of synthetic
data in VLMs and the role of VLMs in syn-
thetic data. First, we provide a preliminary
overview by briefly explaining the architec-
ture of two basic VLMs and, after studying a
large number of previous works, offer an exten-
sive survey of the previously proposed method-
ologies and potential future directions in this
area. The repository for this work is avail-
able at https://github.com/mghiasvand1/
Awesome-VLM-Synthetic-Data.

1 Introduction

In recent years, vision-language models (VLMs)
have emerged as a transformative class at the
intersection of computer vision and natural lan-
guage processing. As (Qi et al., 2024b) noted, by
learning joint representations from both modali-
ties and bridging the gap between them, remark-
able progress has been achieved in various tasks
involving visual and textual content. However,
their advancement heavily depends on high-quality
datasets with well-aligned visual and textual infor-
mation. Collecting such resources is expensive and
time-consuming, and these issues, along with chal-
lenges such as data scarcity and privacy concerns,
pose a significant bottleneck to further progress.

Synthetic data has emerged as a promising direc-
tion, offering automatic approaches for data gener-
ation aimed at replacing or augmenting real-world

data. With rapid advancements in generative AI
models—including large language models (LLMs)
and VLMs—using these models in the synthetic
data generation process has become a prevalent
strategy for many tasks. Thanks to their strong
instruction-following capabilities and deep prompt
understanding (Liu et al., 2023c), developed dur-
ing the instruction-tuning phase (Liu et al., 2023b;
Peng et al., 2023), generative models can be used in
a controlled and scalable way to produce synthetic
datasets. Compared to manual data construction
or algorithms not based on generative AI, this ap-
proach yields higher-quality data while also being
more customizable and cost-effective.

The role of synthetic data in LLMs and the role
of LLMs in synthetic data have been extensively
explored in previous surveys. For example, (Liu
et al., 2024d) provides an overview of applications
in which synthetic data has been utilized within the
scopes of training or evaluation, such as reasoning,
alignment, and factuality. Similarly, (Tan et al.,
2024) reviews studies in which LLMs themselves
functioned as data annotators, examining three key
aspects: annotation generation, annotation assess-
ment, and annotation utilization. (Long et al., 2024)
surveyed works that focused on LLM-driven syn-
thetic data, including its generation through differ-
ent approaches, its curation, and even its evaluation
through direct or indirect methods. (Wang et al.,
2024b) emphasized LLM-oriented data synthesis,
covering the role of synthetic data throughout the
full lifecycle of LLMs and across their core func-
tionalities. However, unlike the role of synthetic
data in LLMs or vice versa—and other topics in
VLMs previously explored in surveys, such as hal-
lucination (Liu et al., 2024a), prompt engineering
(Gu et al., 2023), alignment and evaluation (Li et al.,
2025d)—a deep and focused survey on bridging
VLMs and synthetic data has yet to be conducted.

In summary, this study thoroughly explores the
VLM-Synthetic Data bridge by considering the role
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of VLMs in synthetic data and the role of synthetic
data in VLMs, surveying 125 papers and propos-
ing potential future directions. To the best of our
knowledge, it is the first focused attempt to inves-
tigate this area within a survey paper. Section 2
provides an explanation of the architecture of two
basic VLMs as a preliminary. Section 3 compre-
hensively surveys previous related works that meet
the condition mentioned in that section, and in Sec-
tion 4, we present several future directions based
on our findings from exploring this area.

2 Preliminary

In this section, we briefly describe the architecture
of two common and basic VLMs for a better un-
derstanding of the following concepts. These two
are CLIP (Radford et al., 2021) and LLaVA (Liu
et al., 2023b), and as (Ghosh et al., 2024) noted,
they were developed to follow the goals of vision-
language understanding and text generation with
multimodal input, respectively.

2.1 CLIP Architecture
The pretraining procedure involves a vision en-
coder e and a text embedding model e′ to en-
code each image-text pair in the training batch
{(ij , tj)}nj=1, with size n. Images are encoded
into embeddings eij ∈ Rde and texts into embed-
dings e′tj ∈ Rde′ , where de and de′ are the output
dimensions of the vision and text encoder mod-
els, respectively. Two linear projection matrices,
Wi ∈ Rde×d for images and Wt ∈ Rde′×d for texts,
project the encoded representations into a joint em-
bedding space of dimension d. Denoting the batch
matrices of embeddings as:

Ei = [ei1 , . . . , ein ]
⊤ ∈ Rn×de

Et =
[
e′t1 , . . . , e

′
tn

]⊤ ∈ Rn×de′

The projections are computed as:

Zi = EiWi, Zt = EtWt

Next, each row of the Zi, Zt ∈ Rd×n projections
is normalized, creating ẑi, ẑt ∈ Rd×n, respectively.
Then, the similarity matrix S ∈ Rn×n is computed,
where each entry S[i, t] measures the similarity
between image i and text t via their dot product,
scaled by a temperature parameter τ ∈ R:

S = ẑ⊤i ẑt × exp (τ)

CLIP then computes a symmetric contrastive loss
over the batch, consisting of two cross-entropy

losses: one for predicting the correct text given
an image, and another for predicting the correct
image given a text. Finally, the model optimizes all
learnable parameters to minimize this loss.

2.2 LLaVA Architecture

The architecture includes a vision encoder e and a
decoder-only LLM denoted as f , with the word
embedding dimension df . Given a sample im-
age–question–answer triplet (i, q, a), the vision en-
coder first produces Ei ∈ Rpe×de , which repre-
sents the encoded image, where pe is the number
of patches the encoder divides the image into, and
de is the encoding dimension. A projection matrix
W ∈ Rde×df is then applied to map these encoded
features into the LLM’s word embedding space:

Hi = EiW ∈ Rpe×df

Considering Hq ∈ Rm×df as the embedding repre-
sentation of the question, where m is the number
of tokens in the question, the concatenated repre-
sentation for the input is formed as follows:

X =

[
Hi

Hq

]
∈ R(pe+m)×df

which is then fed into the LLM, and this model
autoregressively outputs logits at each step t:

ℓt = f
(
X, a<t

)
∈ R|V|

where V is the LLM vocabulary set and a<t denotes
the previously generated tokens. These logits are
turned into probabilities via the softmax:

p(at | i, q, a<t) =
exp

(
ℓ
(at)
t

)
∑

v∈V exp
(
ℓ
(v)
t

)
The total conditional likelihood of the grounded
answer a = (a1, . . . , aT ) is defined as follows:

p(a | i, q) =
T∏
t=1

pθ(at | i, q, a<t)

This probability is used to calculate the negative
log-likelihood loss, which is minimized by updat-
ing θ, the set of trainable parameters, which was
set to {W} in the pretraining stage.
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3 VLMs and Synthetic Data

This section surveys prior works—grouped based
on the main task they addressed—in which one of
the following criteria is met: (i) it proposes a syn-
thetic data generation process utilizing VLMs and
uses the data for an AI model, or (ii) it generates
synthetic data without VLM involvement by using
other generative AI models, such as LLMs or dif-
fusion models, but later employs it for VLMs. The
first criterion addresses the role of VLMs in syn-
thetic data and that of synthetic data (via VLMs)
in VLMs, while the second considers the role of
synthetic data (via non-VLM generative AI mod-
els) in VLMs—together examining both the role of
VLMs in synthetic data and vice versa.

3.1 Instruction-Tuning & Alignment

TextBind (Li et al., 2023b) tackles the challenge of
creating high-quality multimodal instruction data
using accessible image-caption pairs. It selects di-
verse image samples via k-means on image encod-
ings, then uses a text-only LLM fed with captions
to generate multi-turn conversations, followed by
post-processing for data quality.
LLaVA (Liu et al., 2023b) bases the use of syn-
thetic data for VLM instruction tuning by replacing
images with captions and using bounding boxes,
followed by employing a text-only LLM with few-
shot examples to generate QA pairs in conversa-
tional, descriptive, and complex reasoning formats.
LLaVAR (Zhang et al., 2023) enhances text-rich
image comprehension in instruction tuning by se-
lecting relevant images via an image classifier, re-
ducing noise with clustering, extracting text using
two OCR tools, and generating captions with a
captioning model. A text-only LLM then creates
conversational instruction data from the captions
and extracted texts.
LVIS-Instruct4V (Wang et al., 2023) resolves in-
consistencies in multimodal instruction data gener-
ation without image inputs by using GPT-4V with
precise prompts to produce conversational data
through self-reasoning and detailed image descrip-
tions based on bounding box information.
LLaVA-Med (Li et al., 2023a) improves biomedical
image comprehension through instruction tuning
by gathering biomedical images and using their
captions or related text to prompt GPT-4 for gener-
ating conversational question-answering data.
STIC (Deng et al., 2024b) enhances self-generated
preference data for image comprehension us-

ing only unlabeled images, generating preferred
samples via step-by-step engineered description
prompts, and dispreferred ones through image cor-
ruption or poor prompting.
VLFeedback (Li et al., 2024c) removes the need
for human annotation via scaled alignment, using a
pool of VLMs to answer diverse instructions and
ranking responses by helpfulness, visual fidelity,
and ethical consideration to build a preference an-
notation dataset.
InBoL (Wang et al., 2024e) enables answer refusal
for insufficiently informative questions by gener-
ating candidate responses for an image-question-
answer triplet, using an answer-grounded LLM-as-
a-Judge to select correct and incorrect responses.
It also modifies questions to be unanswerable
and generates an incorrect answer. Data is cat-
egorized based on confidence, creating pairs of
chosen-rejected, correct-refusal, correct-incorrect,
and refusal-incorrect.
Multimodal Self-Instruct (Zhang et al., 2024b) im-
proves models for daily tasks by proposing a visual
idea, prompting an LLM to generate related text
and code, executing the code to create a synthetic
image, then generating QA pairs and enriching an-
swers with strong reasoning.
ALLaVA (Chen et al., 2024c) addresses scaling effi-
ciency by relying on rich synthetic data rather than
model size. It introduces compact models trained
on instruction data constructed through the steps of
image selection, fine-grained captioning, diverse
and complex questioning, and detailed answering.
Agri-LLaVA (Wang et al., 2024c) focuses on agri-
cultural domain tuning by aligning features using
pest and disease data, and generating knowledge-
based synthetic instructions through multi-turn con-
versations grounded in agricultural images and
web-sourced textual knowledge.
MM-Instruct (Liu et al., 2024b) broadens in-
struction tuning by using an LLM to generate
application-based instructions for each image-
description pair. Instructions are clustered via k-
means, and representative ones are selected. CLIP
retrieval selects the best instruction per image,
which, along with the description and few-shot
examples, is used to generate the final output.
VIGC (Wang et al., 2024a) tackles multimodal data
generation, where text-only methods struggle with
image content. It employs separate generation and
correction models, trained on quadruplets (image-
instruction-question-answer) and triplets (image-
question-answer), respectively. The generation
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model produces QA pairs, and the correction model
refines answers sentence by sentence.
C3L (Ma et al., 2024a) enhances visual-textual con-
tent relevance by defining a correspondence score
based on the KL-divergence between answer to-
ken probabilities with and without the input im-
age. Initially, synthetic instruction data is pro-
vided, and high-scoring samples are selected for
fine-tuning. To mitigate exposure bias, contrastive
training treats the highest-scoring QA pair as posi-
tive and others as negative. This two-stage process
enables the model to generate instruction tuning
data with strong image-text alignment.
GENIXER (Zhao et al., 2024) generates data with-
out relying on GPT models by collecting large-
scale instruction data and designing a two-level
instruction chat template. The VLM is trained on
this data to serve as an independent data generator.
Vision-Flan (Xu et al., 2024) tackles bias and di-
versity issues in instruction tuning data by first ap-
plying instruction tuning with diverse, high-quality
expert-written data, followed by additional tuning
with a small amount of synthetic data.
STLLaVA-Med (Sun et al., 2024) tackles data
scarcity in medical question answering through a
two-step strategy: training VLMs to generate and
answer questions from input images, then using
GPT-4o to create preference data from the gener-
ated content for alignment.
BioMed-VITAL (Cui et al., 2024) addresses mis-
alignment between biomedical instruction data and
domain expertise by using expert-driven few-shot
demonstrations to generate instruction data, then
filtering misaligned data with a classifier trained on
human and model preference data.
CaReVL (Dai et al., 2025) handles non-aligned
answers by generating response candidates for an
image-question pair, evaluating them with GPT-4
and a caption-based reward model pool, and using
them for instruction tuning as high-confidence data
if agreement is sufficient, or for negative sampling
as low-confidence data otherwise.
OmniAlign-V (Zhao et al., 2025a) tackles human
preference alignment in multimodal models by us-
ing unlabeled images, discarding low-content ones,
and generating synthetic QA pairs from seed tasks
with varied prompt templates. After refinement, it
aligns preferences by generating high-temperature
responses, selecting the worst via a judge, and
pairing it with the gold answer to create negative-
positive preference data.
Unicorn (Yu et al., 2025) lowers multimodal data

costs by removing real images, generating a seed
dataset from captions, expanding it, and creating
diverse instruction data using a text-only LLM.
Modality representation transfer, based on modality
gap theory, enriches the data with corresponding
synthetic image embeddings.
EndoChat (Wang et al., 2025) improves VLMs’
surgical scene understanding by extracting scene
attributes, generating diverse conversational data
with various instruction types, and fine-tuning the
model on this data.
AnyPrefer (Zhou et al.) mitigates self-rewarding
alignment bias by generating candidate answers for
an image-question pair using the target model, rank-
ing them with a tool-assisted judge, and iteratively
updating prompts if the score gap between top and
bottom answers is below a threshold, before adding
the pair to a synthetic preference dataset.
CoSyn (Yang et al., 2025) enhances VLMs’ text-
rich image understanding by generating diverse
data content, rendering images through generated
code with tools, and prompting LLMs with the
code to produce instruction data.

3.2 Evaluation

Auto-Bench (Ji et al., 2023) evaluates the align-
ment of VLMs with human intelligence. Each im-
age in the collection is textually described using
captions, object locations, and instance relation-
ships. This information is used by an LLM to
generate QA data covering capabilities in reason-
ing, perception, values, and planning, forming a
benchmark dataset after human verification.
AutoHallusion (Wu et al., 2024b) addresses poor
generalization in handcrafted hallucination bench-
marks via a data generation pipeline. It enriches
short image descriptions with an LLM, generates
images using a diffusion model, identifies specific
objects with a VLM, manipulates images using
other models, and constructs existence and spatial
questions for VLM evaluation.
MVP-Bench (Li et al., 2024a) explores the per-
ception gap between VLMs and humans through
evaluation. It generates ideas about image aspects
(background, clothes, facial state) using chain-of-
thoughts, applies image manipulations via genera-
tive models, and constructs benchmark data with
high and low-level visual perception questions, in-
cluding cross-image and yes/no formats.
VLBiasBench (Wang et al., 2024d) addresses data
insufficiency in existing bias evaluation bench-
marks. It constructs diverse prompts for diffusion-
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based image generation using two methods: (1)
extracting keywords from a text corpus, enriching
them with related terms and applying style con-
trol, and (2) leveraging GPT for prompt creation.
Subsequently, it generates questions to describe im-
age content, embedding bias-inducing elements to
elicit biased responses from models, thereby form-
ing a benchmark for evaluation.
SMMQG (Wu et al., 2024a) addresses the scarcity
of multimodal retrieval-augmented generation eval-
uation data by sampling a seed source, extracting
a key entity, retrieving cross-modal content, and
prompting an LLM with few-shot examples to gen-
erate a QA pair and reference sources. The gener-
ated data is kept for retriever and generator evalua-
tion if it meets verification criteria such as answer
correctness and the necessity of all references.
VIVA (Hu et al., 2024b) constructs the first
benchmark to evaluate VLMs on decision-making
grounded in human values. It starts with collect-
ing seed image–description pairs, then employs an
LLM to brainstorm new situations. Correspond-
ing images are gathered, and action candidates are
generated along with their rationale and underly-
ing human values, which are then used to evaluate
VLMs via a judge model.
MLLM-as-a-Judge (Chen et al., 2024b) addresses
the divergence between human preferences and
model-based multimodal evaluation, whether via
scoring or batch ranking. It collects diverse
images and instruction templates to create im-
age–instruction pairs via random sampling. Model
responses are then gathered in scoring, pairwise
comparison, and batch ranking formats, with hu-
man annotations used as evaluation references.
Prometheus-Vision (Lee et al., 2024) trains a VLM
to act as an evaluator, taking an image, instruc-
tion, response, rubric, and reference as input, and
outputting feedback and a score. It begins by col-
lecting images and hand-crafted seed data, then
uses GPT-4V to generate new rubrics, augmented
instructions and references, as well as novel feed-
back and responses, to train an open-source VLM.
VL-RewardBench (Li et al., 2024b) conducts a
meta-evaluation of multimodal reward models us-
ing a benchmark built from instruction, hallucina-
tion, and reasoning datasets. For instruction and
hallucination data with preference annotations, it
uses a pool of small VLMs as judges and retains
samples where most judges fail, thereby expos-
ing their limitations. For reasoning data without
preferences, it generates answer candidates, evalu-

ates them using GPT-4o and the gold answer, and
retains the full sample if at least one synthetic re-
sponse is correct.
ConMe (Huang et al., 2024a) constructs a com-
positional reasoning benchmark via a multi-stage
pipeline. Starting with an image collection, both
a strong model and smaller VLMs generate image
descriptions. The strong model then formulates
challenging reasoning questions with one correct
and several adversarial answers. Two-choice QA
pairs are posed to the smaller VLMs, and those
that all smaller models answer correctly are dis-
carded to ensure the remaining samples induce
failure. The smaller VLMs subsequently provide
reasoning texts, which the strong model uses to
generate final QA pairs for evaluation.
UNO (Wu et al., 2025) adds subject-level visuals to
images based on instructions. An LLM generates
a scene description for a diffusion model, which
returns two images: the first with the main subject,
and the second combining it with an added object.
A VLM assesses the images in a chain-of-thought
format to remove inconsistencies. The final in-
puts—cropped images of the main subject and the
added object, plus the instruction—are paired with
the mixed-subject image as the training output.
LSDBench (Qu et al., 2025) introduces a bench-
mark for evaluating VLMs on long-video compre-
hension. Its data synthesis involves segment-level
video captioning, hierarchical clustering of scenes
and actions, LLM-based question generation and
refinement using cluster summaries, followed by
feeding the question, summary, and video clip to a
multimodal model for answer generation, and for-
matting the QA as multiple choice using an LLM.
SPO (Liang et al., 2025b) introduces two synthetic
benchmarks to evaluate VLMs on long-horizon
planning. In the first, GPT-4o takes an object list
to generate a task proposal and plan, which are
reviewed under specific configurations, simulated,
and the result is used by the VLM to refine the task-
plan pair. In the second, using a different simulator,
GPT-4o creates task templates from scene assets;
objects are then sampled to instantiate tasks, simu-
lated, retained only if successful, and augmented
to enrich task instruction diversity.
YesBut (Liang et al., 2025a) focuses on assessing
VLMs’ understanding of humor. It constructs a
benchmark by collecting image pairs with contra-
dictory humor and synthetically generating foun-
dational and deep image content—including de-
scriptions, contradiction explanations, and underly-
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ing symbolism—through a human-AI collaborative
process. Each generated text is used as a reference
to evaluate the image pairs using a judge model.
DrawEduMath (Baral et al., 2025) addresses the
challenge of VLM content understanding in noisy
visual contexts. It begins by collecting student
response images along with expert-authored tex-
tual descriptions. These descriptions are then de-
composed into atomic points using an LLM, from
which synthetic question–answer pairs are gener-
ated to create evaluation data for each image.
KITAB-Bench (Heakl et al., 2025) introduces a
benchmark for evaluating VLMs’ Arabic OCR per-
formance. The data synthesis process begins with
generating sample topics, each expanded into multi-
ple topic names. Raw data is then generated within
these topic scopes, followed by code generation to
render the raw data into various visual formats.

3.3 Multimodal Reasoning

ComVint (Du et al., 2023) highlights the role of vi-
sual reasoning training data for general instruction
following. Starting with an image-caption-objects
triplet, it is converted into an instruction-response
format using an LLM with caption and object infor-
mation. The datapoint is then made more complex
with LLM, and if verified by a judge model, the
instruction and response are reformulated into the
considered format.
NavGPT-2 (Zhou et al., 2024a) focuses on
instruction-following for navigational reasoning.
Training data generation is a single-step procedure
where an image and instruction are provided, and
the VLM is prompted to follow the instruction
based on observations of surrounding components
and pathways to determine the next step.
VPD (Hu et al., 2024a) addresses limitations of
visual reasoning methods based on programming
or tool use, such as cost, latency, and errors. Given
an image–question–answer triple, a tool-assisted
LLM generates candidate programs; the correct
one is selected, and its entire procedure is written
in a chain-of-thought format to fine-tune the VLM.
R-CoT (Deng et al., 2024a) addresses the lim-
ited accuracy and diversity of geometry reasoning
data generation methods. Given image-description
pairs, the method patches the description and ap-
plies single-step prompting to reason on the im-
age, continuing in a step-by-step reasoning format
called chain-of-thought fusion. Each reasoning
step is treated as an answer, and a corresponding
question is generated to form the training data.

Math-LLaVA (Shi et al., 2024) addresses the low
amount of question-answer pairs for each image
in instruction data. It first collects image-question-
answer triplets and uses a multimodal model to
select high-quality, complex examples. Then, syn-
thetic question-answer pairs are generated for each
image using zero- or few-shot prompting to ensure
the dataset fully captures each image’s content.
ShareGPT-4o-Reasoning (Zhang et al., 2024a)
tackles the limited effectiveness of minimal ratio-
nales in training data by first applying chain-of-
thought data distillation to fine-tune the VLM, then
using high-temperature sampling to generate di-
verse answers and form positive-negative answer
pairs for further alignment.
Least-to-Most (Cheng et al., 2024) addresses the
shortage of training datasets with multi-step vi-
sion and language processing and the limitations
of proprietary models for reasoning data genera-
tion. It proposes a bottom-up pipeline for data
synthesis, creating reasoning paths by relating ad-
jacent objects in an image, forming sub-questions
answerable via tool use, and progressively generat-
ing higher-level sub-questions that combine earlier
ones until reaching the main question-answer.
URSA (Luo et al., 2025) addresses the scarcity of
chain-of-thought data for multimodal mathematical
reasoning. After pretraining on math contexts for
improved vision-language understanding, it gener-
ates training data by converting other data types
(e.g., answer-only) into CoT using a multimodal
model, beyond existing chain-of-thought datasets.
MM-Verify (Sun et al., 2025) introduces a strong
verification mechanism for multimodal reasoning.
It collects a large question pool, uses a simulation-
based algorithm with a binary tree for chain-of-
thought candidate solutions, and applies a strong
model to generate synthetic verifications for each
tree path. After extracting answers and verifying
solutions, the data is cleaned and used for training.
SMIR (Li et al., 2025a) emphasizes multi-image
reasoning data for training or evaluation. It com-
putes multimodal embeddings as a weighted sum of
textual and visual embeddings from a large image-
caption dataset, then gathers related images via ran-
dom sampling to ensure coherence and diversity.
Finally, multi-turn conversation data is syntheti-
cally generated by creating question-answer pairs.
TACO (Ma et al.) tackles multimodal com-
plex question answering with multistep reason-
ing. Its data generation process involves an image-
question-answer triplet, producing a multistep an-
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swer through a chain-of-thought and action. The
data is added to the dataset after successful verifi-
cation and parsing.
Text-Only Training (Hu et al., 2025) explores im-
proving VLMs in human-centered reasoning by
enhancing their LLM component with synthetic
data. For each image, a situation description is
generated, and manually crafted seed questions are
used as in-context demonstrations to prompt an
LLM to create a decision-making question, includ-
ing a rationale. The generated dataset is then used
to train the model as a reasoning data generator.
SCRAMBLe (Mishra et al., 2025) addresses the
weakness of VLMs to differentiate similar com-
positions. Given image-caption pairs, it prompts
an LLM with few-shot examples and step-by-step
chain-of-thought guidance to generate new mean-
ingful captions by rearranging word order. It then
forms positive-negative preference pairs to improve
VLM compositional ability through alignment.
MindGYM (Xu et al., 2025) focuses on synthetic
self-questioning to enhance reasoning. For data
generation, given an image-question pair, it cre-
ates several single-hop questions from defined per-
spectives, then combines them to form challenging
multi-hop questions, aiming to improve thinking
breadth and depth. This strategy is applied across
datasets to fine-tune the model using circilium fine-
tuning, which regularly varies the input-output for-
mats of the question-thought-answer triplet to en-
sure a guided learning pathway.
MMR (Jang et al., 2025) is motivated by the short-
age of broad object-level reasoning in existing
datasets. For data synthesis, it annotates an image
collection with object- and part-level information,
sets a system message to customize GPT’s role,
and prompts it with the image to generate a global
caption and QA pairs under specific conditions.

3.4 Retrieval-Augmented Tasks

VCoT (Rose et al., 2023) bridges multimodal gaps
for data synthesis by replacing images with cap-
tions, generating intermediate texts via an LLM,
retrieving the best using CLIP embeddings based
on initial inputs, and generating image candidates
via a diffusion model, again using CLIP to select
the best image to form the intermediate pair.
MegaPairs (Zhou et al., 2024b) tackles the shortage
of multimodal retrieval training data by synthesiz-
ing source–instruction–target triplets, where the
source and target are relevant images. It employs
multiple similarity models to retrieve related image

pairs, uses a VLM to describe their relationships,
and then leverages an LLM to generate instructions
from these descriptions to form the triplets.
VisRAG (Yu et al., 2024) enhances multimodal
retrieval-augmented generation using VLMs with
separate retriever and generator modules: the re-
triever selects top relevant documents per query,
and the generator uses them to produce an-
swers. Training is augmented with synthetic
query–document pairs, created by prompting a
VLM to extract answers from grounded document
images and generate corresponding queries.
InstructCIR (Zhong et al., 2024) addresses
compositional image retrieval to better follow
modification-based instructions. A strong model is
prompted with the image caption, a guided prompt,
and few-shot demonstrations to brainstorm novel
modifications in a chain-of-thought format, result-
ing in a modified caption. The VLM is then trained
using triplet data containing the source caption, in-
struction, and target caption.
VISA (Ma et al., 2024b) addresses visual source
attribution in retrieval-augmented generation. Af-
ter retrieving relevant documents, the generator
outputs both an answer and a bounding box, ensur-
ing the answer is grounded in the specified region.
Using a dataset with annotated bounding boxes,
a VLM is prompted to generate question-answer
pairs from defined regions. The resulting training
data uses questions and pure images as inputs, and
answers with bounding boxes as outputs.
SK-VQA (Su et al., 2024) explores synthetic train-
ing data for multimodal context-augmented genera-
tion using a single-step pipeline. A VLM, given an
image and guiding points, first generates contextual
knowledge, then QA pairs based on the context and
image. Samples overly reliant on the image for
context or QA are filtered out before training use.
NegBench (Alhamoud et al., 2025) targets the com-
prehension of negated captions by extracting ob-
jects from image captions as positive concepts, then
prompting an LLM to generate related negative con-
cepts. It constructs multiple-choice questions by
pairing concepts that may or may not be present
in the image, and these choices are subsequently
paraphrased by the LLM into refined captions.
ImageRef-VL (Yi et al., 2025) addresses contex-
tual image referencing in query answering by gen-
erating responses that follow prompts while citing
input images by ID. For data construction, an LLM
creates an initial textual response, and a VLM gen-
erates descriptions for all input images. These are
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used to produce image captions, which, along with
the initial response, guide the VLM to generate an
interleaved output with contextual citations. This
output, combined with the prompt and images, is
used to fine-tune the VLM.
good4cir (Kolouju et al., 2025) improves com-
posed image retrieval by leveraging synthetic data
to enrich instructions, replacing short texts. Given
source–instruction–target triplets, it uses a VLM to
describe objects and attributes in the source image,
generate object descriptions for the target, and en-
rich the instruction by generating the differences
between the two sets of descriptions.

3.5 Hallucination

CIEM (Hu et al., 2023) uses synthetic data to eval-
uate and mitigate hallucination. Given an image-
caption pair, an LLM generates factual and con-
trastive QA pairs—answered with yes and no, re-
spectively—for evaluation. For instruction tuning,
the answers are enriched with chain-of-thought rea-
soning, forming the final QA data.
HallE-Control (Zhai et al., 2023) presents a con-
trol layer to regulate hallucination in visual detail
comprehension during captioning. It employs a
synthetic data pipeline using image-object pairs,
where an object categorization model distinguishes
grounded and omitted object categories. Two cap-
tions are generated by an LLM: one with grounded
objects (contextual knowledge, control = -1) and an-
other including omitted objects in brackets (contex-
tual plus parametric knowledge, control = 1). Train-
ing a VLM integrated with their control layer en-
ables inference-time hallucination control between
-1 and 1. Controllability is evaluated by extracting
captioned objects via an LLM and matching them
with gold objects to measure hallucination.
OpenCHAIR (Ben-Kish et al., 2023) tackles open-
vocabulary hallucination evaluation in image cap-
tioning. It uses a caption collection and prompts
an LLM with few-shot examples to generate stylis-
tically similar yet diverse captions. A diffusion
model then generates corresponding images for
these captions, forming benchmark image-caption
pairs. For evaluation, objects are extracted from the
evaluatee-generated caption and passed, along with
the gold caption, to the LLM to identify hallucina-
tions—bypassing closed-vocabulary limitations.
LRV (Liu et al., 2023a) targets both hallucination
mitigation and instruction following in VLMs by
using LLM-generated negative and positive sam-
ples, respectively. Positive data is built from vari-

ous tasks using images with bounding boxes and
dense captions to form concise question-answer
pairs in both declarative and interrogative formats.
Negative data is generated by manipulating ques-
tions—adding nonexistent objects, modifying at-
tributes of existing objects, or altering known facts.
VGA (Ziyang et al., 2024) mitigates hallucination
in GUI comprehension caused by over-reliance
on textual knowledge by generating two synthetic
training datasets: one uses an LLM prompted with
the preprocessed Android view textual hierarchy
and a guided prompt to create QA data, and the
other prompts a VLM with interface images and a
guided prompt for the same purpose.
V-DPO (Xie et al., 2024) addresses VLM halluci-
nation in weird image comprehension by aligning
on synthetic preference data. This data is created
by prompting a VLM with an image to generate de-
tailed captions and object positions, then using an
LLM to suggest visual element replacements. After
applying these via inpainting, preference pairs are
constructed for alignment.
TLDR (Fu et al., 2024) proposes an interpretable re-
ward model for multimodal hallucination detection
across token-, sentence-, and response-level gran-
ularities. It gathers batched visual QA pairs and
uses an LLM to generate detailed captions. These
captions, along with primitive ones, are perturbed
by the LLM using taxonomy-guided edits to create
hard negative examples, with binary token-level
labels indicating the perturbations. Finally, the
image-caption pairs and the corresponding binary
token labels are used for training.
LongHalQA (Qiu et al., 2024) introduces an au-
tomated pipeline for generating synthetic halluci-
nation data in long-context settings. It starts by
collecting rich-content images, then employs GPT-
4V to produce long, grounded positive responses.
Hallucinations are identified using object detection
and model interpretation. If the initial response is
positive or negative, GPT-4V is used to generate its
complementary version, forming final QA pairs.

3.6 Planning & Manipulation

TaPA (Wu et al., 2023) presents a data generation
pipeline to enhance VLMs’ indoor planning capa-
bilities. Starting from a collection of indoor scenes
with multiple objects, the pipeline uses object po-
sitions and a carefully crafted prompt with few-
shot examples to query an LLM for generating an
instruction-plan pair. Each instruction describes
a specific event, and each plan is a sequence of
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executable actions. The resulting dataset covers
complex tasks with diverse and feasible plans.
ECoT (Zawalski et al., 2024) introduces a
reasoning-before-acting method for robotics plan-
ning. It generates synthetic plans by extracting
scene descriptions from images, performing object
detection and motion analysis, and prompting a
multimodal model with this data and the task de-
scription to reason step-by-step and produce plans,
subtasks, and movements.
ReLEP (Liu et al., 2024e) uses GPT-4V to generate
synthetic data for long-horizon embodied planning,
enabling fine-tuning of other VLMs. It collects
indoor scene images and prompts the multimodal
model to create a robot task, which is refined and
used—along with modules of skill library, robot
setup, and memory—to produce an execution plan.
Manipulate-Anything (Duan et al., 2024) ad-
dresses automatic generation of robot manipula-
tion data using GPT-4V. It first decomposes the
main task into subtasks, each processed by an ac-
tion generation and a subtask verification module.
The verification module checks subtask comple-
tion based on the temporary goal state, while the
action generation module classifies the subtask as
object-centric or agent-centric and generates either
a task-specific grasp pose or executable action code.
This modular design allows flexible handling of di-
verse manipulation scenarios by tailoring actions
to each subtask, forming the demonstrations.
CogCoM (Qi et al., 2024a) trains a VLM to answer
questions through an intrinsic chain of manipula-
tions by imagining a robot within the image sce-
nario. Its training data is generated via a pipeline
that begins with an image-question pair. An LLM
produces a step-by-step path, where each step in-
cludes a new question, image view, and manipu-
lation chain. This chain is executed using various
tools to obtain intra-chain answers, followed by
processing the steps to reach the final answer.
MM-Traj (Gao et al., 2024) constructs a dataset of
query-trajectory pairs to train VLMs for tool use.
GPT-4o-mini is first prompted with task seeds and
a tool list to generate queries. It then receives each
query and outputs commands for file generation:
images are retrieved from a database, while docu-
ments are created via code generation. The model
checks if the query is answerable using the avail-
able tools and files. If so, a strong agent generates
the trajectory—comprising thoughts, code, and ob-
servations—in a zero-shot manner, which is added
to the training set after passing the checking filter.

HybridGen (Wang and Tan, 2025) leverages
VLM-guided hybrid planning in a two-stage
workflow—first decomposing human demonstra-
tions into precision-critical segments such as
object-centric pose transforms and automatable
segments such as VLM-informed path planning,
then amplifying them through format-agnostic,
pose-only adaptations to yield vast, diverse,
high-fidelity imitation learning datasets.

3.7 Regional Awareness & Visual Relations

RegionGPT (Guo et al., 2024) improves regional
visual comprehension in VLMs by an automated
region caption generation pipeline. It first uses a
VLM to produce a global image caption, then man-
ually crops a region of interest and combines it with
a crafted prompt—including the global caption and
the region’s class name—to request a region-level
caption from the VLM. The resulting data can be
used to fine-tune VLMs for region-specific caption-
ing on input images with predefined regions.
RelationVLM (Huang et al., 2024b) improves
VLMs’ visual relation comprehension by training
on synthetically constructed data. It first collects
image pairs with visual relations such as semantic,
temporal association, or geometric transformation,
using their attribute labels. Each image annota-
tion is then fed to an LLM to generate the relation
description, which the LLM subsequently uses to
produce dialog-style question-answer pairs.
VisMin (Awal et al., 2024) develops a synthetic data
generation pipeline to train or evaluate VLMs on
fine-grained visual understanding by applying min-
imal changes to image-caption pairs. In the first
approach, an LLM edits object or attribute men-
tions in captions, while a segmentation model and
an inpainting model apply corresponding changes
to the image. In the second, the LLM generates
prompts with layout information for a diffusion
model, which then produces images; the layout
is modified by changing object quantity or loca-
tion before re-generation. A filtering step ensures
image-caption consistency, followed by human ver-
ification for final data selection.
RightThisWay (Liu et al., 2024c) enhances VLMs’
ability to detect insufficient information by fine-
tuning on synthetic image-caption pairs. Starting
with an image-caption pair, it perturbs the image
by shifting the bounding box and queries the VLM.
If the VLM can still answer correctly, the perturbed
pair is used for training; otherwise, the caption is
marked as unanswerable before the data is added.
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COCONut-PanCap (Deng et al., 2025) constructs
a dataset with detailed scene descriptions for the
tasks of fine-grained captioning, segmentation-
grounded captioning, and image generation. Its
annotation pipeline begins with an image, applies
segmentation masks, assigns a label to each mask,
and prompts a VLM to draft a detailed caption,
which is then human-edited and summarized by
the VLM to produce the final image-caption pair.
PRIST (Cai et al., 2025) presents a data generation
pipeline using GPT-4o for pixel-level reasoning in
multi-turn conversations, applicable to both train-
ing and evaluation. The task involves a multimodal
model receiving an image with multi-turn ques-
tions, answering each, and finally segmenting the
target in the image. The generation pipeline begins
with an image, described by a VLM in terms of
its visual elements. Each description is converted
into a complex question, followed by the formation
of a reasoning tree: the question is the root, single
elements are the leaves, and sub-questions serve
as intermediate, multi-level branches. This tree is
used to create multi-turn QA data that progressively
refines pixel-level target localization.
SPARCL (Li and Li, 2025) improves VLMs’ com-
positional understanding by training on synthetic
data containing subtle pair-level differences. Given
image-caption pairs, an LLM generates a positive
caption—faithful yet explicitly artificial—and a
negative caption with slight deviations. A text-to-
image model, augmented with injected features,
then produces the corresponding positive and nega-
tive images. The resulting dataset is used to train
CLIP with contrastive learning via an adaptive mar-
gin loss, encouraging robust separation between
positives, easy negatives, and hard negatives.

3.8 Video-Centric Tasks

Inst-IT (Peng et al., 2024a) addresses instance-
level comprehension in models. Given a video col-
lection, it provides frames with visual prompts to
highlight instances, feeds consecutive frame pairs
to a model to generate captions for individual in-
stances, entire images, and temporal changes, and
uses these to produce a video-level summary and
construct QA pairs for training or evaluation.
Video-XL (Shu et al., 2024) addresses visual loss
in long video comprehension. For each QA sample
linked to a short video, it splits the video into clips,
feeds them to a strong model to extract temporally
ordered event clues, and generates QA data to train
models for improved long video understanding.

CogVLM2 (Hong et al., 2024) proposes a video
temporal QA generation pipeline for VLM post-
training. For each video, frames are extracted and
captioned using a VLM. Only frames with signif-
icant scene changes—determined by comparing
captions via an LLM—are kept. An LLM is then
prompted with few-shot examples to generate time-
related QA pairs based on these captions.
LLaVA-Video (Zhang et al., 2024c) focuses on data
synthesis for key tasks in video instruction tuning.
It adopts a bottom-up approach to generate detailed
video descriptions, first processing short intervals
and then generalizing to longer segments. An LLM,
provided with the task, video descriptions, and few-
shot examples, is then used to generate QA pairs.
CogVideoX (Yang et al., 2024) proposes a diffu-
sion model for text-to-video generation, maintain-
ing text-video alignment for long videos. It uses a
VLM and an LLM for caption generation: a VLM
is prompted with short captions and frame images
to generate diverse captions, which are then summa-
rized by an LLM to produce a long video caption.
VITED (Lu et al., 2025) tackles evidence localiza-
tion and multi-step reasoning in video QA by using
a VLM to extract segment-level question-relevant
evidence, followed by an LLM with beam search
to construct stepwise evidence chains. If the ques-
tion is answerable using the constructed chain, the
datapoint is used in the training stages of event
distillation and answer generation.

3.9 User Interface & Web Design

DreamStruct (Peng et al., 2024b) builds training
data to improve VLMs in image-to-code conversion
without initial annotations. It defines a set of prin-
ciples and seed interface descriptions to prompt a
VLM for diverse descriptions, which are then used
with the principles to prompt an LLM for HTML
code. After minor edits and the creation of internal
images, the final output is prepared for production.
Ferret-UI 2 (Li et al., 2024f) introduces a multi-
modal model trained on synthetic data for advanced
tasks in universal UI comprehension. It first col-
lects raw screenshots depicting diverse usage sce-
narios with available bounding boxes. After filter-
ing, a tool extracts bounding box data, which, along
with the screenshots and task prompt, is passed to
a strong VLM to generate QA data for tasks in-
cluding functionality description of entire or partial
image areas, perception of elements and layouts,
and responses to user-interaction scenarios.
ScreenAI (Baechler et al., 2024) employs synthetic
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data for a novel VLM architecture with core compo-
nents comprising a vision encoder and an encoder-
decoder language model. To enhance pretraining
data diversity, it uses LLMs to generate varied tasks.
Initially, it applies layout extractors, OCR, caption-
ers, and icon classifiers to obtain a comprehensive
screen schema description. This data is then input
to the LLM to return general an screen navigation
QA pairs, and screen summarization formats.
WebSight (Laurençon et al., 2024) addresses the
challenge of converting web screenshots to HTML
using VLMs. To build a large-scale image-to-code
dataset, it first employs a small LLM to generate di-
verse content for the desired website design. Then,
a strong LLM with robust coding skills produces
complete HTML and TailwindCSS code for each
concept. A screenshot of the rendered full page is
finally captured to fine-tune a VLM on this data.
ILuvUI (Jiang et al., 2025) follows a LLaVA-style
data synthesis approach to fine-tune a conversa-
tional VLM for user interface QA. Given a UI
screenshot, it extracts the bounding boxes of vi-
sual elements and passes them to GPT to generate
a caption. These are then used to prompt an LLM
to produce QA data in single-step conversation and
detailed description formats. Unlike LLaVA, it
replaces reasoning with five specific tasks: identi-
fying UI element types, listing potential actions on
a UI, predicting the outcomes of actions, selecting
elements for a goal, and goal-based planning.
Flame (Ge et al., 2025) advances VLMs for fron-
tend development by training on synthetic data.
After collecting code components and modifying
them to create snippets, these are expanded into
complete frontend designs through: (1) Evolu-
tional—an LLM enriches code via random in-depth
or in-breadth growth; (2) Waterfall—an LLM de-
fines tasks and generates code sequentially in a
structured manner; and (3) Additive—an LLM
enriches human-written code while preserving its
core idea. Finally, after the LLM adds necessary
configurations, checks the code, and generates its
description, the code and description, along with
the rendered image, are used for training.

3.10 Grounding & Personalization

TWIST & SCOUT (Bhowmik et al., 2024) en-
hance VLMs’ spatial visual grounding while re-
taining prior knowledge by: (1) introducing a twin
expert module—frozen for image understanding
and learnable for grounding—trained stepwise per
question for incremental reasoning; and (2) gen-

erating synthetic training data by prompting an
LLM with image-caption pairs to create "what"
and "where" questions, which are then used with
images to prompt a VLM for grounding data gen-
eration. Negative samples are also crafted from
invalid queries to prevent hallucinations.
SynGround (He et al., 2024) explores synthetic
data to improve VLM outputs by grounding them
to image regions. It proposes a simple pipeline:
starting with an unlabeled image, a VLM generates
a detailed description, which is sent to an LLM
(to extract object names) and a diffusion model (to
generate an accurate image). The resulting text and
image are input into an object detector to obtain
bounding boxes, forming image-text-box triplets
for visual grounding tuning.
PLVM (Pham et al., 2024) tackles the less-explored
task of personalization in VLMs by introducing a
data synthesis pipeline to compensate for limited
datasets. The model is trained to answer a query
given a reference image, a query image, and a ques-
tion, enabling intuitive user-VLM interaction. Data
is generated by prompting an LLM with templates
for description generation, each of which is then
used by a diffusion model to generate images con-
ditioned on a face; outputs with low similarity to
the descriptions or reference faces are filtered out.
A VLM then answers predefined open- or close-
ended questions based on the image and prompt.
TRIG (Li et al., 2025b) tackles visual text ground-
ing in text-rich images by proposing a synthetic
data pipeline for training and evaluation. It first
extracts OCR data, then uses an LLM—prompted
with a question, answer, and box-text pairs—to
identify the answer-containing box. If the answer
is verifiable from that box, the data is used in two
modes: OCR-free, with the input consisting of the
question and instruction; and OCR-based, with the
box-text pairs added to the prior, both considering
the answer and the supporting box as output.
CaT (An et al., 2025) personalizes VLMs using
diverse positive and negative synthetic data. Pos-
itives are generated by a diffusion model trained
on reference data. Negatives use the same model
and a GPT-4o-built three-level tree per reference
image: root (main object), dimensions (concept
variations), and attributes (dimension states). GPT-
4o forms image generation prompts via tree opera-
tions—altering the root for easy negative samples
and modifying dimensions for hard ones.
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3.11 Long-Context & Dialogue Handling

GoingBeyondImagination (Zhan et al., 2024) en-
hances dialogue agents using visual descriptions in
text format. The real dataset contains dialogues in
an A-image-B format, where A and B are speak-
ers and the image belongs to A. To enrich dialog
acts and visual cues, synthetic data is generated
by prompting an LLM with few-shot examples to
produce visual descriptions as image alternatives.
The VLM is then trained on entire triplets.
FIRE (Li et al., 2024d) uses dialogue simulation for
synthetic data generation in two steps. First, GPT-
4V is prompted with an image-question-answer
trio to simulate a teacher-student dialogue, where
the student reasons over the image to answer, and
the teacher provides grounded feedback. Second,
two models fine-tuned on this data act as student
and teacher, continuing the same setup to generate
large-scale synthetic dialogues.
StableLLaVA (Li et al., 2024e) enhances instruc-
tion tuning via synthetic image-dialogue data.
The pipeline begins with text-only instructions.
First, using few-shot demonstrations and a guided
prompt, an LLM generates image generation
prompts, which are used with a diffusion model
to create custom images. Then, the LLM is
prompted—again with instructions, the generated
image prompt, and few-shot examples—to gener-
ate dialogues. The corresponding image-dialogue
pairs are mapped and used for instruction tuning.
Insight-V (Dong et al., 2024b) focuses on gener-
ating long-chain reasoning data. Given an image-
question pair, a reasoner model produces step-by-
step reasoning followed by a final summary. Sum-
maries are retained after filtering, while reasoning
paths are evaluated by a judge model—only those
with high scores are kept. The final reasoning and
summary data are then used for VLM training.
LongWriter-V (Tu et al., 2025) tackles the lack of
long output training data causing VLMs to gener-
ate incoherent long answers by synthesizing data
in two folds for training. The first uses image-
instruction pairs, filters those suitable for long out-
puts, and applies two-step prompting: generating a
writing plan and completing its subtasks to produce
long text. The second follows the same process but
with multiple relevant images as input.

3.12 Chart Understanding

ChartLlama (Han et al., 2023) points to the lack of
high-quality instruction data for chart QA. Its data

generation pipeline begins by prompting an LLM
with desired concepts to generate tabular raw data
and corresponding descriptions. Then, using the
raw data and few-shot examples, the LLM produces
chart code and descriptions, with the code rendered
into chart images. Finally, the LLM uses the chart
descriptions and raw data to generate instruction-
tuning data, forming chart-question-answer triplets.
EvoChart (Huang et al., 2025) addresses the lack
of high-quality data for VLM chart comprehension.
Its data synthesis starts with seed chart code gen-
erated by an LLM, followed by rendering chart
images using a composable chart generator with
varied configurations. The generated charts are
then assessed, modified if needed, and used to cre-
ate question-answer training pairs.
RefChartQA (Vogel et al., 2025) addresses
challenges in understanding interleaved visual-
numerical relations in charts. For synthetic data,
each image-question pair is processed either by a
fine-tuned VLM for program-of-thought generation
and step-by-step answering using chart metadata,
or by passing the question and metadata to an LLM
for direct answering; data from both paths is used
if the generated answer matches the annotation.
ChartCoder (Zhao et al., 2025b) addresses informa-
tion loss in interpreting charts with textual descrip-
tions. Its chart-to-code pipeline has two steps: first,
given input instructions, an LLM generates related
keywords and data, then uses them with few-shot
examples for chart code generation, retaining only
those with correct results; second, a subset of these
is sampled, each code is decomposed and enriched
by an LLM into a complete step-by-step program
with textual guidance, and then concatenated.
CoF (Li et al., 2025c) proposes a pipeline for fine-
grained chart-based reasoning for both training and
evaluation. Given JSON files with chart informa-
tion, an LLM first enriches their content for accu-
racy and diversity. The enriched charts are rendered
as images, and function-based programs are cre-
ated from the enriched JSON. Using data segments
as objects and fundamental operations, function
chains are built as input-function-output triplets.
These chains are used by an LLM to generate ra-
tionales, followed by the generation of chain-of-
thought question-answer data.

3.13 3D Scene Comprehension

ChatGarment (Bian et al., 2024) highlights the dif-
ficulty of editing and generating 3D garments using
VLMs. It fine-tunes a VLM with instruction-image
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inputs and JSON outputs, which are rendered into
simulated garments reflecting the applied instruc-
tions. For training data, a strong VLM generates
JSON garment configurations—both part-level and
whole-level—based on the provided image.
MORE3D (Jiang et al., 2024) targets 3D design
reasoning by constructing a simple pipeline that
prompts GPT-4o with specific requirements, along
with two images—one showing the current 3D
scene and the other the ground truth—to gener-
ate question-answer pairs, where the answer is a
rationale aimed at achieving the instruction goal.
SpatialVLM (Chen et al., 2024a) enhances 3D spa-
tial reasoning in VLMs. It begins with unlabeled
images, applies semantic filtering to keep scene-
level ones, and extracts 2D information such as
region captions and object-level physical data. Cap-
tions are used to generate unambiguous questions,
with answers derived from 3D bounding boxes ob-
tained from the object-level information, forming
synthetic image-question-answer training data.
PiSA (Guo et al., 2025) tackles the low quality of
3D datasets through a data generation engine. It
first enriches answers for image-question-answer
triplets using a 3D multimodal model, then refines
them with 2D VLMs by removing incorrect content
based on similar provided 2D images. Finally, an
iterative bootstrapping process injects more precise
3D knowledge for the given 3D input and question.
3UR-LLM (Xiong et al., 2025) proposes a data gen-
eration pipeline for 3D scene understanding. It first
prompts for descriptions of individual room parts
based on images, then uses an LLM to generate a
summary of the entire scene by concatenating these
descriptions. Finally, it constructs and refines QA
pairs for training purposes.

3.14 Image Captioning

BLIP3-KALE (Awadalla et al., 2024) bridges syn-
thetic captions and factual web alt-text. It starts
with image-text pairs using the web alt-text, gener-
ates a synthetic caption via a VLM, and then refines
it into a knowledge-augmented caption using an
LLM fed with both the caption and the alt-text. To
scale, a small VLM is trained on image-text inputs
and their corresponding knowledge-augmented cap-
tions as outputs, and is then used to produce such
captions for additional image-text pairs.
VILA2 (Fang et al., 2024) introduces a method by
which an open-source VLM can improve itself via
synthetic data enhancement without relying on pro-
prietary models. First, it uses a self-augmenting

loop for pretraining, which trains the VLM with
initial short image captions, then asks the trained
model to generate a longer caption for each, and
augments the text with real data to form new image-
caption pairs, continuing this cycle. Secondly, it
applies specialist augmenting by fine-tuning the
model on small datasets for tasks such as spatial
reasoning, grounding, and OCR. These special-
ists generate task-specific QA pairs, which are ap-
pended to the original data to form an enriched
dataset for retraining the generalist VLM.
CAPTURE (Dong et al., 2024a) proposes an im-
age captioning evaluation metric and employs it to
enhance caption quality for VLM training via a five-
stage process using only open-source vision and
language tools. A VLM first produces an overall
caption as a skeleton. Next, it refines candidate re-
gions to extract salient visual elements, followed by
generating local captions to enrich the main caption
and reduce hallucinations. A hallucination filter-
ing step removes unreliable content, and finally, an
LLM integrates the validated local captions into a
high-quality, hallucination-suppressed description.
SynthVLM (Liu et al., 2024f) builds a large image-
caption dataset for VLM training. From the initial
pairs, it filters low-quality captions and selects cor-
related pairs using a CLIP-based score. A diffusion
model generates a high-quality image for each cap-
tion to replace the original. Final filtering combines
the CLIP score (on resized images) with another
metric assessing quality preservation after resizing.

3.15 Multiculturalism & Multilingualism

X-LLaVA (Shin et al., 2024) builds a multilingual,
multimodal instruction-tuning dataset. It first col-
lects images with a specific number of main sub-
jects, then uses GPT-4V to generate QA pairs in
English, Korean, and Chinese. The question types
include object-centric (focusing on main object de-
tails), location-centric (based on object positions
via scene graphs), atmosphere-centric (capturing
the holistic interplay of objects), and conversational
(providing a deeper, image-level understanding).
CultureVLM (Liu et al., 2025) enhances VLMs’
cultural understanding by fine-tuning the model on
a dataset created using the help of GPT-4o, for tasks
like extracting cultural elements from Wikipedia,
judging their relevance to specific classes and coun-
tries, generating detailed cultural concept intro-
ductions, and—most importantly—creating diverse
question types and reasoning responses.
MixCube (Kim et al., 2025) introduces a cross-
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cultural evaluation benchmark. It gathers culturally
identifiable web images and uses a diffusion model
to inpaint them by altering the depicted ethnicities,
retaining those with high CLIP similarity to the
originals. The goal is to identify both the revealed
culture and the cultural entity from an image. This
dataset evaluates VLMs’ cultural abilities by test-
ing their resilience to injected cultural biases.

4 Future Directions

While extensive efforts have been made to bridge
the contents of VLMs and synthetic data, several
unexplored paths still offer great promise, and we
outline a few ones that could spark future research.

Customized Data Synthesis Data for or
by VLMs is often generated with fixed goals and
limited customization. Training an open-source
model for multimodal data or task generation with
customizable properties—similar to (Nayak et al.,
2024) for LLMs—would be highly valuable.

In-Context Learning As a training-free ap-
proach, it offers a valuable way to capture patterns
via in-context demonstrations. Future work may
focus on generating data as effective in-context
examples and refining task prompts to ensure the
examples instill better task understanding.

Autonomous Driving These systems need
real-time understanding of dynamic environments,
making them well-suited for robust VLMs. Due
to the difficulty of collecting quality data, future
research may focus on generating synthetic
scenarios or using them to tune or evaluate VLMs.

Video-Level Analytics Many applications
require reporting specific actions in videos. These
can be addressed by methods that track various
visual elements across frames to analyze their
behavior and actions throughout the video.

Dynamic Evaluation Similar to approaches for
LLMs (Kim et al., 2024), a multi-turn dynamic
evaluation setup for VLMs can help avoid issues
like contamination while simultaneously improv-
ing the model through synthetic data generated
within the evaluation process.

Low-Resource Settings VLMs mainly ad-
vance in high-resource domains, while many

regions lack labeled multimodal data. Synthetic
pipelines can bridge this gap by generating data
in underrepresented languages, cultures, and
applications for further processing.

Data Efficiency With growing model sizes,
maximizing data efficiency is crucial. While
synthetic data is often generated at scale, applying
quality and diversity measures can reduce data
volume for better cost and resource use.

5 Conclusion

Vision-language models (VLMs) and synthetic data
are becoming increasingly interdependent, driving
significant advancements in multimodal AI. This
paper presents the first comprehensive survey bridg-
ing VLMs and synthetic data. We explore how data
generated using generative AI models can bene-
fit VLMs, as well as how VLMs are involved in
the synthetic data generation process. Through
an extensive review of prior work, we survey the
proposed methodologies and suggest potential di-
rections for future research. Our survey establishes
a structured foundation for bridging the concepts
of VLMs and synthetic data, enabling customized
solutions tailored to specific needs and objectives.
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