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Abstract

We present an evaluation of recent state-of-the-art electrocardiogram denoising
methods and assess their impact on the performance of convolutional deep learning-
based classifiers, with a focus on the risk prediction of Torsade-de-Pointes arrhyth-
mia. Our findings indicate that the traditional approach of evaluating denoising
methods independently of the application is insufficient. This is particularly the
case for applications where the signals are used for phenotype prediction. We
observed that when classifiers are fed denoised data instead of raw data, their per-
formance significantly deteriorates, with a decline of up to 40 percentage points in
accuracy and up to 27 percentage points in AUROC when a misclassification detec-
tion method is further applied, underscoring a notable reduction in model reliability.
These findings highlight the importance of considering the downstream impact of
denoising on automated classification tasks and shed light on the complexities of
trustworthiness in the context of healthcare applications.

1 Introduction

An electrocardiogram (ECG) is a century-old test used to assess cardiac health. It involves plac-
ing two or more electrodes at specific locations on the chest, arms, and legs and recording the
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heart’s electrical signals through a central unit [1]. The ECG waveform (as in Figure 1) bears
important information and subtle variations can be indicative of a large spectrum of diseases.

Figure 1: Example of a (heartbeat) recorded
by an ECG along with waves annotation and
denoised outputs.

However, recording such signals can be often suscep-
tible to noise from various sources, including elec-
trode loose contact, patient movement, and muscle
contractions [2, 3]. This can alter the waveform result-
ing in challenging analyses and subsequent diagnoses.
Broadly speaking, when we refer to denoising of a
signal, we are alluding to the process of recovering
the raw signal from the noisy one. Denoising ECG
signals have been extensively studied in the literature
and numerous methods have been proposed. These
methods stemmed from different fields, including
signal processing [4] as well as more recently deep
learning [2, 5, 6, 7]. The evaluation of the proposed
methods typically treats denoising as an independent task, while comparing the dissimilarity between
the ’clean’ signal and its noisy counterpart.

In this paper, we argue that assessing the denoising performance independently of the final downstream
tasks is insufficient and can have important unforeseen consequences. Indeed, signals that may appear
visually similar to the human eye can be fundamentally distinct when viewed from a neural network’s
perspective [8]. Specifically, in this work, we connect denoising with the prediction of the risk of a
life-threatening type of arrhythmia known as Torsades-de-pointes (TdP) for which Prifti et al. [9]
previously developed a high-performing deep convolutional neural network model. This model was
trained on ECGs recorded from healthy individuals before and after the intake of Sotalol, a drug
known to increase the risk of TdP.

Starting from the intuition that an effective denoiser should retain as much valuable information as
possible while reducing noise in the data, we analyzed five recent state-of-the-art (SOTA) denoisers on
a real-life ECG dataset Generepol [10]. We show that while providing good results in the denoising
task, the application of these methods impact negatively the performance of the TdP risk classification
model. Indeed, the results reveal a significant decrease in the classifier’s accuracy when the
denoised ECG is classified as compared to the original ECG. Additionally, an examination of the
distributions of correctly and incorrectly classified samples reveals a decrease in the model’s
confidence when classifying denoised data, particularly concerning correctly classified samples.
We performed the evaluation on a variety of denoisers, which include a diffusion model [6], a deep
recurrent neural network (DRNN) [2], an autoencoder [7], and a convolutional neural network
(CNN) [5]. Additionally, we considered a signal processing technique i.e., wavelet transform [4].

2 Problem formalization

The ECG denoising problem can be seen as a specific instance of the total-variation (TV) denoising
problem [11] in the context of one-dimensional signals. In particular, we are given a noisy signal
x̃ ∈ Rd, with d > 1, defined as x̃ =∆ x + δδδ where δδδ ∈ Rd is some unknown perturbation, and
x ∈ Rd is the original signal. The goal is to recover the underlying denoised signal x̂ ∈ Rd that
best approximates the original signal x. However, finding an accurate approximation of x from x̃ is
generally ill-posed [12]. Therefore, the TV denoising problem is typically formulated as [13, 12]:
minx̂∈Rd , F (x̂, x̃)+λR(x̂), where F : Rd×Rd → R represents the data fidelity term, R : Rd → R
is the regularization term that narrows down the space of candidate solutions, and λ > 0 is the
regularization parameter controlling the trade-off between permissible noise and the regularity
imposed by R (e.g., the smoothness of the underlying distribution).

A denoiser is expected to solve the minimization by learning X̂ ∼ qψ(X̂|X̃) where ψ are the
parameters to learn. In the following paper, we will investigate how SOTA denoisers behave when
denoised signals are given as input for a predefined classification task. Therefore, throughout the
paper, we refer to the target classifier as pθ(Ŷ |X) where Ŷ is the random variable representing
the classifier’s inference and θ are the learned parameters. Its induced hard decision is defined as
fθ : X → Y s.t. fθ(x) =

∆ argmaxy∈Y pθ(y|x), where X ⊂ Rd is the feature space corresponding
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Table 1: The ‘Noised signal’ column presents the results for the signal following perturbation and
prior to any denoising. The results are expressed in terms of mean±std across all heartbeats.

Noised signal

SSD 7.62±9.45
MAD 0.23±0.12
PRDN 84.41±52.82
SNR 7.98±6.45
CosS 0.93±0.06

DeScoD [6]

2.35±4.39
0.13±0.07

46.89±26.14
12.31±4.06
0.96±0.04

DRNN [2]

4.00±4.25
0.23±0.08

66.69±20.05
8.56±3.14
0.93±0.04

DeepFilter [5]

1.45±2.95
0.12±0.05

37.09±18.25
14.10±3.41
0.98±0.02

to the set of original ECGs that have not been subjected to any perturbations and Y = {1, . . . , C}
represent the concept of the label space related to some task of interest, such as the detection of
the risk for developing some form of arrhythmia. Formally, given x ∈ X we will be interested in
studying whether fθ(x) = fθ(x̂) ≡ fθ(gψ(x̃)) where gψ(x̃) is the sampling of qψ(x̂|x̃).

3 Evaluation framework and results

3.1 Evaluation metrics for the standalone denoising task

We consider the distortion metrics used in the most recent literature [5, 6] to assess the capabilities of
the SOTA methods for signal denoising. These metrics come from the ECG compression field [14, 15]
to measure the reconstruction error between the original signal and the one obtained after compression
and then decompression (encoding, decoding).

We employ the sum of square distances (the lower the better)

SSD(x, x̂) =∆
d∑

i=1

(x(i)− x̂(i))
2
; (1)

the absolute maximum distance (the lower the better)

MAD(x, x̂) =∆ max
i∈{0,...,d}

|x(i)− x̂(i) |; (2)

a normalized version of the percentage root-mean-square difference (the lower the better)

PRDN(x, x̂) =∆
√

SSD(x, x̂)
∑d
i=1 (x(i)− µ)

2
· 100, (3)

where µ is the mean of the clean signal, i.e., µ = 1
d

∑d
i=1 x(i). Notice that the signal-to-noise

ratio can be easily calculated from the percentage root-mean-square difference (PRD) without
normalization [15] – that corresponds to eq. (3) with µ = 0 – as follows

SNR(x, x̂) =∆ 10 · log10

(∑d
i=1 (x(i))

2

SSD(x, x̂)

)
= 40− 20 · log10(PRD ∗ 0.01). (4)

Finally, we check the similarity between the two signals with cosine similarity (closer to 1 the better)

CosS(x, x̂) =∆
x · x̂

||x|| · ||x̂|| =
∑d
i=1 |x(i) · x̂(i) |∑d

i=1 |x(i)| ·
∑d
i=1 |x̂(i)|

. (5)

3.2 Considered dataset, TdP risk prediction, and review of the related methods

Generepol dataset [10] and Torsades-de-Pointes (TdP) risk prediction [9]. We use the
Generepol [10] dataset consisting of 10-seconds 8-lead ECGs sampled at 500Hz. For the experi-
ments, we focus on lead II, commonly used to record the rhythm strip [16]. Since all the SOTA are
tuned to work on heartbeats, i.e., on one single pulsation of the heart at a time, we segmented the
original signals into chunks of 1s (500-points), centered around the R peaks. Finally, the training

3



x

Denoiser x̂ Classifier
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=
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(a) ‘Original setting’: Evaluation of the denoiser
and classifier pre-trained on original ECGs.

x

Denoiser x̂ Classifier

Classifier fθ(x)

fϕ(x̂)

=

Dn

Denoiser

(b) ‘Denoised setting’: Evaluation of the denoiser
and classifier trained on denoised ECGs.

Figure 2: In Figure 2a, the classifier fθ is trained on the original training set Dn = {(xi, yi)}ni=1 for
TdP risk prediction. On the other hand, in fig. 2b, the classifier fϕ, where ϕ are the learned parameters,
is trained with the original training dataset but denoised using the method under consideration. In
both cases, x and the obtained denoised version x̂ represent a sample from the testing set.

set consisted of 30009 Sot+ and 32448 Sot- ECGs heartbeats, the validation set has 3659 Sot+ and
4188 Sot- ECG heartbeats, and the testing set comprised 7221 Sot+ and 7543 Sot- ECG heartbeats.
Specifically, we use Sot- and Sot+ to refer to ECGs recorded in healthy individuals respectively
before and after the intake of 80mg Sotalol, a drug known to strongly increase the risk of developing
Torsade-de-Pointes events. We consider the CNN model originally developed by Prifti et al. [9] for
TdP risk prediction and we retrained it to work on single heartbeats. This DenseNet model with
six blocks (each having eight dense convolutional layers) was trained for 100 epochs using Adam
optimizer, learning rate of 0.001, dropout rate of 0.2.

DeepFilter [5]. The model consists of six Multi-Kernel Linear And Non-Linear (MKLANL) filter
modules. Each module contains two groups of four convolutional layers, where each layer is followed
by a linear activation function or by a rectified linear unit (ReLU) depending on the group’s type. The
training loss is a combination of the sum of the squared distance and the maximum absolute distance
between the clean ECG and the denoised one (cf. section 3.1). The idea is therefore to learn ”smart”
filters in order to discriminate between the desired ECG signal and the undesired noise.

DeScoD-ECG [6] is a novel approach that utilizes a conditional-score diffusion model. The generative
model begins with Gaussian white noise and proceeds to iteratively reconstruct the signal through
a fixed Markov Chain. Each step of the reconstruction involves Gaussian translation, which is
conditioned on the previous step’s reconstructions and the noisy ECG observations.

DRNN [2]. A DRNN was proposed here as a denoiser. Initially, the signal undergoes processing
through a recurrent layer comprising Long Short-Term Memory (LSTM) [17] units. Then, the signal
is further processed through a specified number of dense layers with ReLU activation. The final layer
is linear and responsible for aggregating the outputs from the preceding layer by summation.

3.3 Results

Figure 3: The vertical dashed line is at
50% accuracy.

Due to space constraints, the results on FCN+DAE [7] and
Wavelet transform [4] are presented in Appendices A.1
and A.2.1. We refer to Appendix A.2.2 for the results
conducted on an additional publicly available dataset
(PTB-XL [18]). We relegate to Appendix A.1, a deeper
exploration of TdP risk classification.

Evaluation of the denoising task standalone. We con-
ducted simulations of real-life noise (different levels of)
baseline wander [4] inspired by original data obtained
from the Physionet MIT-BIH NSTDB dataset [19, 20].
We used this data to assess the robustness of the evaluated
methods when denoising the Generepol dataset. While the comprehensive discussion is relegated
in Appendix A.2.1, we provide in Table 1 the summary of the results.
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Effect of the denoising on TdP risk prediction. Given the TdP model trained on data without prior
denoising, our objective was to assess the model’s performance when the testing data is denoised using
one of the SOTA denoisers. To achieve this, we begin with the original testing set from Generepol,
which had not been subjected to any additional noise. Subsequently, we applied these denoisers to
clean the signals before feeding them to the TdP risk classifier (see Figure 2a). It is important to
note that an effective denoiser should be capable of removing noise while preserving essential
signal information and relevant features. We provide in Figure 3 the accuracies of the model
w.r.t. the different denoisers. The label ’Original’ refers to the performance on the testing data,
without any denoising applied to it. Interestingly, we observe a decrease in performance across
all cases. This suggests that, despite the favorable results shown by the denoisers in Table 1, they
are, in fact, removing valuable information from the signal, essential for the classification task.

Figure 4: We split samples according to their true labels
in blue and red. We examine the predicted class proba-
bility for each sample.

We further explored the effect of denois-
ing on the classification task by apply-
ing prior denoising to all partitions within
Generepol. Consequently, we trained
a new model for each denoiser (see Fig-
ure 2b). The updated accuracies are in Fig-
ure 3. Although the new models did not
replicate the original performance, we ob-
served a slight improvement compared to
the previous setting. We finally analyzed
the distribution of correctly and wrongly
classified samples in Figure 4. Notably,
neural networks are recognized for being
overly confident in their predictions [21]
(we call confidence the probability associ-
ated with the model’s predicted class for a
given sample). However, regardless of the
denoisers used, the models tend to be less
confident with the denoised data. This can
pose risks, as model confidence is com-
monly used for subsequent tasks related
to model reliability, such as misclassifica-
tion detection [21, 22]. One technique used
in computer vision for this task involves estimating the probability of classification error starting from
the softmax outputted by the classifier [21]. Given an input sample, if this score exceeds a predefined
threshold, the prediction is considered wrong, otherwise correct. The results, in Appendix A.1, show
that alterations in the posterior distribution of the classifier have a detrimental effect on the method’s
ability to distinguish correctly and incorrectly classified samples with 40 percentage-point increase in
False positive rate at 95% True positive rate (FPR, shortly) and 27-point reduction in AUROC.

4 Conclusions

We examined ECG denoising methods and their effect on the automated classification of arrhythmia
risk prediction. Our findings reveal that assessing denoising methods without considering downstream
classification tasks yields overly optimistic results. We observed a reduction in classifier accuracy
(up to 40 percentage points) when provided with denoised data compared to the original data. Further
experiments have shown how alterations in the posterior distributions of the classifier on denoised data
can have a detrimental impact on the misclassification detection task. These results stress the serious
implications of denoising signals for the reliability of automated tasks, most notably within essential
sectors such as healthcare, where even minor inaccuracies can have life-threatening outcomes.
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Table 2: The ‘Noised signal’ column presents the results for the signal prior to any denoising and
following perturbation. The results are expressed in terms of mean±std across all heartbeats.

Noised signal

SSD 7.62±9.45
MAD 0.23±0.12

PRDN 84.41±52.82
SNR 7.98±6.45

CosS 0.93±0.06

FCN+DAE [7]

27.78±16.89
0.54±0.08

184.48±65.63
-0.08±3.55
0.86±0.07

DeepFilter [5]

1.45±2.95
0.12±0.05

37.09±18.25
14.10±3.41
0.98±0.02

Wavelet [4]

7.23±9.39
0.21±0.12

81.81±52.51
8.26±6.22
0.93±0.07

A Appendix

A.1 Supplementary results of section 3.2

FCN+DAE [7]. The authors introduce a novel denoising algorithm utilizing a 13-layer Fully
Convolutional Network (FCN) based Denoiser Autoencoder (DAE), where the decoder’s objective is
to reconstruct a signal based on the low-dimensional features generated by the encoder.

Wavelet transforms [4]. Wavelet transforms is a well-known technique used in signal processing for
analyzing signals by cutting them up into different frequency components [23]. Because of the nature
of the ECG signals, we look at the Daubechies wavelets family as they are similar in shape to the
QRS complex, and their energy spectrum is concentrated around low frequencies [24]. The wavelet
transforms approach leverages the signal’s energy at different scales to effectively separate the noise
from the ECG signals [6]. Nonetheless, it is worth noting, as highlighted in the literature [6, 5], that
this method tends to be effective primarily in cases where the ECG signal is not severely corrupted,
often struggling when confronted with high-amplitude noise.

Torsades-de-Pointes (TdP) risk prediction [9]. Torsades-de-pointes (TdP) is a life-threatening
arrhythmia, which can be congenital or drug-induced, and it is associated with long QT intervals.
Given the potential for sudden death associated with this condition [25], its study has garnered
significant interest within the scientific community. Notably, in the study conducted using the
Generepol dataset, the subjects were recorded ECGs both before and 1, 2, 3, and 4 hours after
receiving an oral dose of 80mg of Sotalol, an anti-arrhythmic drug known to be associated with
TdP [26].

A.2 Supplementary results of section 3.3

Publicly available code at https://git.ummisco.fr/open/2023-denoising_
impact.

A.2.1 Evaluation of the standalone denoising task

x

Denoiser x̂

d(x, x̂) < γx̃

Noise

Figure 5: We denote with d any of the metric pre-
sented in section 3.1 and with γ ∈ R the corre-
sponding threshold parameter.

We analyze how the methods described in sec-
tion 3.2 perform when it comes to denoising on
the Generepol dataset. In Figure 5 we show
the evaluation pipeline. All the denoisers requir-
ing a training phase have been trained as in [5].
In particular, the noise we consider throughout
this paper is basal wander (or basal drift) with
variable intensities, i.e., the effect where the base
axis (x-axis) of a signal appears to ‘wander’ or
move up and down rather than be straight [4].

To maintain consistency with other SOTA meth-
ods, we used the noise obtained from the Phys-
ionet MIT-BIH Noise Stress Test Database (MIT-
BIH NSTDB) [19][20]. The dataset contains
three types of noise including baseline wander,

noise signals are recorded alongside clean ECGs. We superimposed the Generepol signals to
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calibrate the amount of noise signals using the nst tool provided by Physionet. The amount of noise
added is estimated in decibels dB. We added noise signals at 18dB and 24dB.

Figure 6: We remind that for SSD eq. (1),
MAD eq. (2), and PRDN eq. (3) the lower the better;
for SNR eq. (4) the higher the better; CosS eq. (5)
closer to 1 the better.

As we can see from Figure 6, even when
evaluated solely for the denoising task on
Generepol, the denoisers exhibit results
consistent with those reported in their original
papers. The poor performance of FCN+DAE
may be attributed to a possible shift in signal
reconstruction. It is worth noting that the model
generates heartbeats with 512 points, even
when provided with input heartbeats of only
500 points. To mitigate this discrepancy, we
performed additional signal down-sampling.
Finally, Wavelet transform yielded results
closely resembling the original signal with
noise Table 2. While this demonstrates its
effectiveness when the signal has minimal noise,
it offers limited denoising capabilities when
confronted with higher levels of noise. Due to
the unstable performances of the FCN+DAE
and Wavelet, we have excluded these methods
from the subsequent analysis with the TdP
classifier.

A.2.2 Effect of the denoising on TdP risk prediction

We extend our analysis to a publicly available dataset PTB-XL [18] containing 10-second 12-
lead ECGs sampled at 500Hz labeled as normal, myocardial infarction, ST/T change, conduction
disturbance and hypertrophy. A binary classification task was created by putting all samples labeled
as not normal in a single category. The final dataset consists of 96533 normal, class 0, and 82747
abnormal, class 1. Therefore we trained the same DenseNet architecture as for the TdP risk prediction
in Generepol. We show in fig. 7a the results in terms of accuracy, and in fig. 7b the distribution of
the predicted class for correctly and incorrectly classified samples.

(a) Accuracy
(b) Distributions of correctly and wrongly classi-
fied samples.

Figure 7: PTB-XL results. We remind that with ‘Original’ we indicate the setting in Figure 2a; with
‘Denoised’ we indicate the setting in Figure 2b.

9



A.2.3 Implication on misclassification detection

Table 3: Training TdP on original data.
Generepol AUROC↑ FPR↓95%

Original 84.68 53.21
DRNN 68.92 80.48

DeepFilter 64.81 82.03
DeScoD 58.04 92.55

PTB-XL AUROC↑ FPR↓95%
Original 73.77 74.17

DRNN 69.76 80.29
DeepFilter 70.26 78.66

DeScoD 55.84 82.43

Table 4: Training TdP on denoised data.
Generepol AUROC↑ FPR↓95%

Original 84.68 53.21
DRNN 79.91 62.23

DeepFilter 72.09 74.69
DeScoD 71.66 74.52

PTB-XL AUROC↑ FPR↓95%
Original 73.77 74.17

DRNN 71.67 75.32
DeepFilter 70.51 75.46

DeScoD 67.53 82.41

Misclassification detection is a hot topic in Machine Learning (ML) safety, focusing on identifying
instances with potentially incorrect model predictions [21, 27, 28]. DOCTOR [21] is a simple method
that aims to identify whether the prediction of a classifier should (or should not) be trusted so that,
consequently, it would be possible to accept it or reject it. We conducted simulations using DOCTOR
on the TdP risk classifiers in order to study the effect of denoising when the misclassification task is
involved. In particular, we chose such a method to be applied to any pre-trained model, and it did not
require prior information about the underlying dataset. The detector was defined as

Dα(x, γ) =

{
1, if Gini(x) ≥ γ′ · (1− Gini(x))
0, otherwise.

(6)

where Gini(x) def
=
∑
y∈Y

pθ(y|x)(1− pθ(y|x)) is the probability of incorrectly classifying the feature x

if it was randomly labeled according to the model distribution. Therefore, the higher Gini(x), the
higher the probability of fθ(x) is of being wrong. The performances of the detector are evaluated in
terms of False positive rate at 95% of True positive rate (FPR↓95%), the lower the better, and AUROC
(AUROC↑), the higher the better. We refer to [21] for a complete discussion.

In Table 4 and ?? we provide the summary of the results. Interestingly, even when the TdP models are
trained on denoised data DOCTOR is not able anymore to distinguish the correctly classified samples
from the incorrect ones due to the alteration in the posterior distribution of the models.
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