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ABSTRACT

Dataset distillation generates a small set of information-rich instances from a large
dataset, resulting in reduced storage requirements, privacy or copyright risks, and
computational costs for downstream modeling, though much of the research has
focused on the image data modality. We study tabular data distillation, which brings
in novel challenges such as the inherent feature heterogeneity and the common
use of non-differentiable learning models (such as decision tree ensembles and
nearest-neighbor predictors). To mitigate these challenges, we present TDColER,
a tabular data distillation framework via column embeddings-based representation
learning. To evaluate this framework, we also present a tabular data distillation
benchmark, TDBench. Based on an elaborate evaluation on TDBench, resulting in
226,200 distilled datasets and 541,980 models trained on them, we demonstrate
that TDColER is able to boost the distilled data quality of off-the-shelf distillation
schemes by 0.5-143% across 7 different tabular learning models.

1 INTRODUCTION

Dataset distillation or dataset condensation is the process of creating a small set of extremely infor-
mative samples (usually synthetic) from a large dataset such that a model trained on this set will have
predictive performance comparable to that of a model trained on the original large dataset (Wang et al.,
2020; Yu et al., 2023). First, data distillation reduces data storage costs and can mitigate the privacy
and copyright concerns involved in keeping around (and continuously utilizing) large amounts of raw
data. Furthermore, the reduction in the data size implies a lower computational cost of model training,
especially when multiple models need to be trained on any given dataset. The above advantages of
dataset distillation also facilitate various applications. Continual learning, where we need to learn
new tasks while avoiding forgetting older tasks sequentially, often makes use of a “replay buffer”
of old task data to be used while learning new tasks to mitigate forgetting of the older tasks (Rol-
nick et al., 2019). Dataset distillation reduces the memory overhead of this replay buffer, allowing
learning of a larger number of tasks without forgetting (Tiwari et al., 2022; Rosasco et al., 2022).
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Figure 1: Overview of TDBench. The benchmarking
suite allows for flexible choice of datasets, distillation
schemes, and downstream models that enables for mod-
ular evaluation of any new distillation method.

In federated learning, we need to train
a model using data spread across multi-
ple clients without ever moving the data
between clients and reducing the com-
munication overhead. Dataset distilla-
tion generates compact yet private syn-
thetic data from the client data that can
be safely exchanged for communication-
efficient model training (Song et al., 2023;
Goetz & Tewari, 2020; Zhou et al., 2020).

While dataset distillation has been widely
studied for image datasets (Cui et al., 2022;
Yu et al., 2023), the equally important ap-
plication to other data modalities is limited. The problem of tabular data distillation has received very
little attention, though many real-world learning problems and applications involve tabular data (Guo
et al., 2017; Clements et al.; Borisov et al., 2024). Various image data distillation schemes have been
proposed in the literature, but their application to tabular data is not straightforward. First, all image
data distillation schemes rely on the choice of a differentiable “backbone model.” While differentiable
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(a) Overview of TDColER. The top describes a vanilla distil-
lation scheme that only uses standard preprocessing techniques
before distillation. The highlighted box describes the proposed
TDColER, which uses column embeddings after such preprocess-
ing and encoder-decoder architectures to generate rich compact
representations.
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(b) Snapshot of downstream classifiers’
performance increase when trained on
data distilled k-means with and without
TDColER. Throughout our experiments,
we observe a performance increase from
0.5% to as large as 143%.

Figure 2: Proposed approach – TDColER: Tabular Distillation Via Column Embeddings based
Representation Learning

neural network-based schemes are standard for images, a wide variety of non-differentiable models
are used with tabular data, such as decision tree ensembles, nearest-neighbor models, and kernel
machines. Second, almost all data distillation methods for images generate distilled data in the
original pixel space. While pixels are homogeneous raw features of an image, the features in tabular
data can be extremely heterogeneous, creating a mismatch between what the image data distillation
methods are designed for and what we have as an inherent property of tabular data. Finally, it is
standard to use vision-specific data augmentation schemes (such as rotation, reflection, cropping,
and translation) to train the model on the distilled image data. Such standard augmentations are
not available for tabular data, thus creating another discrepancy in the expected conditions for the
problem.

Our contribution. In this paper, we study tabular dataset distillation and present a novel scheme to
enhance the distilled data quality of multiple off-the-shelf data distillation schemes across various
datasets, models, and distillation sizes. Specifically, we make the following contributions:

• We propose Tabular Distillation via Column Embeddings based Representation Learning or
TDColER that can utilize modern neural-network architectures such as Transformers and graph
neural networks to generate rich compact representations. TDColER improves the quality of
distilled data compared to existing distillation schemes. Figure 2a provides an overview of our
proposed TDColER.

• We present TDBench, a Tabular Distillation Benchmark with 23 tabular datasets, 7 model classes,
and 4 distillation schemes. We present an overview of TDBench, an extensible and modular
framework for measuring various aspects of data distillation on tabular data, in fig. 1.

• With the elaborate evaluation of our proposed TDColER on TDBench, resulting in over 226,200
distilled datasets and 541,980 model trainings, we show that, on aggregate across all datasets,
TDColER improves upon direct application of off-the-shelf distillation method on tabular data by
0.5-143% in terms of the distilled data quality across all models at the smallest distillation of 10
instances-per-class. Figure 2b presents a snapshot of our results.

• Based on our thorough evaluation, we present various insights regarding tabular dataset distillation,
such as (i) k-means clustering in the learned representations make for an extremely favorable
distillation scheme, (ii) transformer-based tabular data representations obtain the highest distilled
data quality on aggregate, while (iii) graph neural network based tabular data representations
perform slightly worse than transformers but are significantly more parameter efficient.

1.1 RELATED WORK

Dataset distillation was introduced by Wang et al. (2020) as a bilevel optimization problem (Feng
et al., 2024) and has been widely studied in the context of image data distillation. Most methods can
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be categorized into approaches that match the original data by (i) backbone model performance, (ii)
backbone model parameters, or (iii) backbone representation distributions (Yu et al., 2023). Wang
et al. (2020) minimized performance differences between the original and distilled data, while Nguyen
et al. (2021) introduced kernel-induced points (KIP) using kernel ridge regression with a neural
tangent kernel (Jacot et al., 2018). Alternatively, methods have focused on parameter or gradient
matching (Zhao et al., 2021; Lee et al., 2022; Jiang et al., 2023; Cazenavette et al., 2022). Gradient
matching (Zhao et al., 2021) aligns model gradients between original and synthetic data, while trajec-
tory matching (Cazenavette et al., 2022) minimizes discrepancies between entire training trajectories.
Other approaches include distribution matching (Zhao & Bilen, 2023), which aligns per-class means,
and cross-layer feature embedding matching (Wang et al., 2022). However, the abovementioned
methods rely on differentiable backbones, limiting cross-architecture generalization (Cui et al., 2022;
Nguyen et al., 2021). As a result, research has focused primarily on images, leaving tabular data
distillation largely unexplored (Medvedev & Dyakonov, 2021). We address this gap by proposing a
more general distillation framework.

Dataset distillation aligns with coreset selection (Feldman, 2020), which aims to reduce data size,
typically selecting real data instances (potentially risking privacy). In contrast, distillation generates
synthetic data beyond the real data manifold. Notably, coreset selection is a subset of dataset
distillation, where the synthetic data lies on the real data manifold. Generative modeling (Goodfellow
et al., 2020; Kingma & Welling, 2013) is another related area, usually focused on generating realistic
data. In dataset distillation, the goal is to generate informative rather than realistic samples. Recently,
Cazenavette et al. (2023) demonstrated how generative modeling can be used to seed the dataset
distillation process, arguing that distillation methods should be applied to a latent representation
instead of the pixel space. This is aligned with our proposal, in which we demonstrate that distillation
in the latent space is critical to obtaining meaningful distilled data quality with tabular datasets.
However, the proposed Generative Latent Distillation(GLaD) scheme is very focused on generative
vision models, requiring a careful choice of the latent representation from within the model for
trade-off in realistic distilled data or expressivity, thus limiting cross-architecture generalization.

Cui et al. (2022) benchmarked several distillation methods and found trajectory matching (Cazenavette
et al., 2022) to be most effective, followed by KIP (Nguyen et al., 2021). Coreset methods, like k-
means clustering, also outperformed many model-based distillation techniques, which we corroborate.
We focus on GM and KIP due to the high computational overhead of trajectory matching and omit
data augmentation due to its limited applicability to tabular data. As noted before, data augmentation
is not standard with tabular data, and we do not consider it in our evaluation with TDBench.

2 TABLE DISTILLATION

Data distillation has been primarily studied in the context of images where each data point is
composed of a homogeneous set of features – pixels – and the downstream models are neu-
ral networks. The two main distinctions with tabular data distillation are: (i) Feature Het-
erogeneity: Features in tabular data are usually heterogeneous and can have vastly different
meanings, making it challenging to generate appropriate feature aggregations as usually done
with neural networks. This is further exacerbated by the common presence of missing val-
ues. (ii) Model Agnosticity: For tabular data, the downstream model that will use the distilled
data can be quite varied, with decision-tree-based models often being quite successful (Grin-
sztajn et al., 2022), while linear and nearest-neighbor models are used for interpretability.

Algorithm 1: Distill original data S with N sam-
ples given a preprocessor P : Rr × Cc → RD and
a distiller F : RN×D × Y N → Rn×D × Y n.

1 S̃ ← {(P (x), y)∀(x, y) ∈ S} // Preprocess

2 R← F (S̃) // Distill
3 return R

Various increasing competitive neural-
network-based models have also been de-
veloped for tabular data (Borisov et al.,
2024; Gorishniy et al., 2021; McElfresh
et al., 2023; Grinsztajn et al., 2022). How-
ever, in the most common cases, we can-
not assume that the downstream model is
differentiable and thus will be unable to
perform a downstream model-specific dis-

tillation via the common bilevel formulation of the problem. The distillation has to be model-agnostic,
which means that we have to retain as much of the information in the original data as possible since
we do not know a priori what information the downstream model might leverage.
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We will consider a classification dataset S = {(x1, y1), . . . , (xN , yN )} with N samples, r numerical
features and c categorical features, and L labels, where each xi ∈ Rr×Cc and yi ∈ Y = {1, . . . , L}.
Following Cui et al. (2022), we only consider classification tasks in this work, but it should be noted
that regression can be easily added into our framework. Note that features may contain missing
values. After appropriate preprocessing steps to convert the categorical variables to numerical ones
and imputing the missing values, 1 we can directly apply some existing distillation schemes such as
KIP (Nguyen et al., 2021) or GM (Zhao et al., 2021). This procedure is sketched in Algorithm 1.

2.1 REPRESENTATION LEARNING VIA COLUMN EMBEDDING

A key ingredient in the development of neural networks for tabular data is the use of column
embeddings. First developed for categorical features, the idea is to learn an embedding for each
of the categories in a categorical feature (Guo & Berkhahn, 2016). This embedding would replace
the one-hot encoded numerical representation of the categories and be used in conjunction with the
(appropriately scaled and imputed) numerical features in standard and custom feed-forward networks
(FFNs) (Borisov et al., 2024). Column embeddings for numerical data were developed to use more
standard modern architectures such as graph neural networks (GNNs) and Transformers. As with
categorical data, each numerical value in a numerical feature of the table would be converted into a
learnable embedding. Thus, more precisely, a sample (row) in a table with r numerical features and c
categorical features is now represented as a set of (r + c) embeddings in Rm each of size m (where
m is a user-specified hyperparameter), thus effectively as the (m× (r + c)) matrix. 2

Encoder Architectures. Given the Rm×(r+c) representation of a row (sample) using column
embeddings, our goal is to learn a more compact yet faithful representation of a row. One simple
strategy is to concatenate all the (r + c) column embeddings into a single vector in Rm(r+c) of
size m(r + c) and input it into an FFN which projects it down to a lower dimensionality (fig. 8).
However, one of our main motivations for using column embeddings is to leverage the capabilities
of more modern architectures. For a given row, the (r + c) column embeddings can be treated as
initial token embeddings that are progressively updated through multiple Transformer blocks as
described by Gorishniy et al. (2021). Using a dummy [CLS] token, the above process can create a
m-dimensional representation of the row (fig. 11). An alternate procedure is to represent a table as
a bipartite graph between columns and rows (with column values and rows as vertices) and utilize
the column embeddings as representations for the column vertices (Wu et al., 2021). Then, the row
embeddings are obtained by filling in representations for the row vertices via multiple rounds of
message passing in a multi-layered GNN (fig. 9). For our purposes, we consider all three architectures
– FFN, Transformer and GNN – as encoders that project the Rm×(r+c) representation of row into an
embedding in Rm. While categorical column embeddings are standard, there are multiple techniques
for numerical column embeddings (Gorishniy et al., 2021; 2022). We discuss and ablate the effect
these different schemes have in appendix B.2.

Learning Objective. Our goal is to retain as much information regarding the original data in the
learned representation as possible. The need for high-fidelity learned representations is critical
because we do not assume anything regarding the downstream model, which will be trained with
the distilled data. Thus, we try to reconstruct the original data from the learned representation as
well as possible. Formally, given column embeddings C : Rr × Cc → Rm×(r+c), and an encoder
φ : Rm×(r+c) → Rm, we utilize a decoder ψ : Rm → Rr × Cc to reconstruct the original data, and
solve the following optimization problem:

min
C,φ,ψ

∑
(x,y)∈S

` (x, ψ(φ(C(x)))) , (1)

where `(·, ·) is a reconstruction error (RE). Note that the above representation learning does not
use the label information in the data S. This representation learning framework allows us to infuse
class information in the representations while ensuring no loss of original information. Thus, after

1For example, using data science tools such as preprocessing.OneHotEncoder and
impute.SimpleImputer from the scikit-learn machine learning toolkit.

2While each feature can have column embeddings of different sizes, many neural network architectures
require the column embedding size to match across all features.
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obtaining the column embeddings C, encoder φ and decoder ψ by solving eq. (1), we fine-tune the
encoder by learning a classifier f : Rm → Y on top of the learned representations while keeping the
reconstruction loss low:

min
C,φ,ψ,f

∑
(x,y)∈S

`(x, ψ(φ(C(x))) + αL(y, f(φ(C(x)))), (2)

where L(·, ·) is the downstream learning loss function, and α > 0 is a hyperparameter balancing the
classification and reconstruction quality. Appendix A.4.2 discusses this procedure in more detail.

Algorithm 2: TDColER: Distill dataset S with N
samples given distiller F : RN×m×Y N → Rn×m×
Y n, and learnable column embeddings C : Rr ×
Cc → Rm×(r+c), encoder φ : Rm(r+c) → Rm,
decoder ψ : Rm → Rr×Cc, classifier f : Rm → Y .

1 C, φ, ψ ← solve eq. (1) // minimize RE
2 C, φ, ψ, f ← solve eq. (2) // fine-tune

3 S̃ ← {(φ(C(x)), y), (x, y) ∈ S} // Encode

4 R̃← F (S̃) // Distill in latent space

5 R← {(ψ(x), y), (x, y) ∈ R̃} // Decode

6 return R, R̃, C, φ, ψ

Complete Distillation Pipeline. After
the column embeddings C, encoder φ
and decoder ψ are learned (with eq. (1))
and fine-tuned (with eq. (2)), we convert
the input features of the whole original
dataset (withN samples) into the learned
representations in Rm using C and φ
and apply the aforementioned distillation
schemes to this dataset (N samples in
Rm) to get n distilled samples in Rm. At
this point, we decode the distilled sam-
ples into the original representation using
ψ. This whole pipeline is summarized in

Algorithm 2. Note that the distillation with the learned representation in Rm, and the availability of
the decoder ψ, allows us to have two versions of the distilled data – one in the learned representation
(R̃ in Algorithm 2, Line 4), and one in the original representation (R in Algorithm 2, Line 5). We can
choose the appropriate distilled set based on the downstream application: If we require the distilled
data to be obfuscated with no explicit correspondence to the original features, we can use R̃. In this
setting, we are required to have the column embeddings C and the encoder φ during inference with
the downstream trained model to map the test points into the appropriate representation. If we require
the distilled data and the model trained on it to be interpretable in terms of the original features, we
should use the distilled set R in the original representation. In this case, we do not need the column
embeddings or the encoder during inference.
Remark 1. Our contribution is a novel representation learning and distillation pipeline for model-
agnostic tabular data distillation utilizing existing distillation schemes, column embeddings, and
network architectures such as transformers and GNNs. In our thorough empirical evaluations, we
will demonstrate the distilled data quality boost from this pipeline across multiple datasets and
downstream models.

3 EVALUATION BENCHMARK

To thoroughly evaluate the various configurations of the proposed distillation pipeline, we establish a
comprehensive benchmark suite with a varied set of datasets and downstream models, evaluating the
pipeline at various levels of distillation sizes. With 3 encoder architectures, 6 distillation schemes
(including variants), 20+ datasets, 7 downstream models, 10 distillation sizes, 5 repetitions per
distillation pipeline, and model training, we have generated over 226,200 distilled datasets and trained
over 541,980 individual downstream models 3

Datasets. We consider 23 datasets from OpenML (Vanschoren et al., 2013) with the number of
samples varying from 10,000 to over 110,000, and number of features varying from 7 to 54. Instead
of investigating a few large datasets, we choose to incorporate more datasets to generalize the findings
across a wider range of datasets. The datasets are chosen to be diverse in terms of the number of
samples, features, and the type of features (numerical, categorical, or mixed). There are 14/23 datasets

3The TDBench benchmarking suite (code provided in the supplement) can be extended to evaluate any
new distillation method, tabular representation, and downstream model and compared against our current
database of results (also provided in the supplement). The API requirements for each of these components in the
distillation pipeline are described in appendix C, and the procedure to execute the benchmark suite can be found
in appendix C.2, and the comparison using the current database of results can be found in appendix C.1.
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with only numerical features, 2/23 with only categorical features, and 7/23 with both numerical and
categorical features. All these datasets correspond to binary classification problems. Class imbalance
is a common feature of tabular datasets (Johnson & Khoshgoftaar, 2019; Thabtah et al., 2020), and
we focus on binary classification to carefully study the effect of class imbalance on the distilled data
quality. There are 9/23 almost perfectly balanced datasets and 10/23 datasets with a ratio of close to
1:2 between the smaller and larger classes, with the worst imbalance ratio smaller than 1:15. Note that
while we only consider binary classification datasets, the distillation pipelines are natively applicable
to multi-class classification problems.

Distillation Methods. Given our aforementioned desiderata for model-agnosticity, we have the
following existing distillation schemes available, which take as input the set S of N samples and
output a set R of n � N distilled samples (further details regarding implementation of each
distillation method is provided in appendix A.5.2):

• k-means Clustering (KM) finds n/L clusters for each of the L classes to produce a total of n
distilled samples using Lloyd’s k-means algorithm (Lloyd, 1982). We consider two variations here
by (i) using the Euclidean center of each cluster to generate a synthetic sample or (ii) choosing the
closest real point to the Euclidean center of each cluster. That is, R comprises n/L cluster centers
(or closest real points) for each of the L classes.

• Agglomerative Clustering (AG) (Müllner, 2011) again generates n/L clusters for each of the L
classes is similar to k-means. We use the Ward linkage scheme with the Euclidean distance metric.
Similar to k-means, we generate (i) synthetic samples by using the Euclidean center of a cluster or
(ii) real samples that are closest to the cluster centers.

• Kernel Induced Points (KIP) (Nguyen et al., 2021) uses the neural tangent kernel (NTK) (Jacot
et al., 2018) of a wide neural network and kernel ridge regression to produce a distilled set of
samples. Given the feature matrix X ∈ RN×D and the label vector y ∈ Y N , KIP learns the
distilled feature matrix X̄ ∈ Rn×D and label vector ȳ ∈ Y n by solving the following problem:

min
X̄,ȳ
L
(
y,KXX̄(KX̄X̄ + λI)−1ȳ

)
, (3)

where L is the downstream learning loss function, KXX̄ ∈ RN×n is the NTK matrix between
X and X̄ , KX̄X̄ ∈ Rn×n is the NTK matrix of X̄ with itself, and λ > 0 is a regularization
hyperparameter for the kernel ridge regression. Essentially, we are learning a set of synthetic
samples such that the predictions made on the original dataset features using the distilled dataset
via kernel ridge regression match the original labels.

• Gradient Matching (GM) (Zhao et al., 2021) produces the distilled set R for a given “backbone
model” Mθ (parameterized by θ) by directly optimizing for R to induce model parameter gradients
that are similar to the gradients obtained while training Mθ on the full dataset S. Given a distance
metric D(·, ·), and a distribution Pθ0 over the random model parameter initializations θ0, the
distillation problem tries to minimize the distance between the model gradients computed on the
full and distilled datasets over the T steps of model learning as follows:

min
R

Eθ0∼Pθ0

[
T−1∑
t=0

D (∇θL(θt;S),∇θL(θt;R))

]
, (4)

where L(θ;S) is the loss of the model Mθ on the original full dataset S, L(θ;R) is the loss of
Mθ evaluated on R, and the model parameters θt are updated at θt+1 ← θt − ηθ∇θL(θt;S) via
gradient descent with a learning rate ηθ using the full original dataset.

We consider KIP and GM as representatives from previous data distillation literature that are model-
agnostic and model-centric, respectively. Appendix A.5.1 further discusses our choice of distillation
methods considered in this work. All the above distillation schemes require the data to be preprocessed
into a numerical form, and can be used in Algorithm 1 to distill tables. But, as we will see, this
is not a very useful scheme. Our evaluation of TDColER on TDBench will demonstrate how the
performance of these distillation schemes are boosted via representation learning.

To study the ability of the distillation pipeline to generate really small but useful distilled datasets,
we consider extremely small distilled datasets with 10-100 instances per class (IPC), corresponding
to a distillation fraction of the order of 0.1-1.0% on the smallest datasets, and 0.01-0.1% for the
largest datasets. This is comparable to the compression ratio of 0.02-1% used in Cui et al. (2022)
and Cazenavette et al. (2023).
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Figure 3: Change in relative regret of downstream classifiers when trained on distilled data over
IPC ∈ [10, 100], aggregated over datasets and encoder architectures. Lower is better. Each column
corresponds to a downstream classifier, and each row represents a representation scheme – original,
encoded (Enc.), and reconstructed (Rec.). Data distilled by clustering methods (AG, KM) in the
encoded space show the best performance for all classifiers. In many cases, using the encoded
representation as the final output yields a performance comparable to using the original representation.
Figure 12 shows a more detailed version of this plot that includes FTTransformer and ResNet.

Downstream models. We consider 7 downstream models to evaluate the distilled data quality. We
consider the Nearest-Neighbor Classifier (KNeighbors), Logistic Regression (LR), Gaussian Naive
Bayes (GNB), and the Multi-Layered Perceptron (MLP) from the scikit-learn library (Pe-
dregosa et al., 2011). We also consider the popular XGBoost ensemble of gradient-boosted decision
trees (XGB) (Chen & Guestrin, 2016). We include two recent neural network models for tabular
data, the ResNet and the FTTransformer models (Gorishniy et al., 2021). Since our distillation
pipeline is deliberately model-agnostic, we train these models on the distilled data using the default
hyperparameters of the corresponding libraries. We also consider a hyperparameter optimization
(HPO) use case using the distilled datasets in our evaluations, which can be found in section 4.

Evaluation metric. To have a standardized way to quantify the quality of the distilled data across
different models and datasets, we use the notion of relative regret which compares the model’s
balanced accuracy score when trained on the full, distilled and randomly sampled data points.
Precisely, the relative regret is defined as (AF−A)/(AF−AR10

), where AF is the balanced accuracy of
the model trained on the full training set, AR10

is the balanced accuracy on the same test set when
trained on 10 random samples per class averaged over 5 random repetitions, and A is the balanced
accuracy of the model when trained on the distilled dataset over random 5 repetitions. A relative
regret of 1 matches the performance of random sampling at IPC=10, and a relative regret of 0 matches
the performance of the model trained on the full dataset (which is usually the gold standard) – lower
relative regret implies higher distilled data quality 4.

4 RESULTS ANALYSIS

In this section, we present the analysis of the results obtained from our benchmarking experiments.
For the sake of brevity, we will use the following acronyms – Instances Per Class: IPC, k-means:
KM, agglomerative: AG, gradient matching: GM, kernel inducing points: KIP, feed-forward neural
network: FFN, graph neural network: GNN, transformer: TF. Additionally, the supervised-fine-tuned
variant of the autoencoder will be marked with a *. For example, the results of Algorithm 2 with a

4For all the downstream models, the aggregate (median across all datasets) relative regret of random samples
at IPC=10 (smallest distillation size) is 1.0 by definition, while the aggregate relative regret of random samples
at IPC=100 (largest distillation size) is around 0.5, indicating that the benchmark is challenging enough with
significant room for improvement.
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transformer architecture for φ as TF*, whereas TF denotes the version that skips line 2 of Algorithm 2
to highlight the importance of the supervised fine-tuning.

Table 1: Average rank and median rel-
ative regret of distillation pipelines that
use the latent space of different en-
coder architectures evaluated at IPC=10,
grouped over all datasets and classifiers.

Encoder Mean Rank Median R.R.

TF 4.1176 0.9439
FFN 4.3407 0.9746
GNN 4.2243 0.9695
TF* 2.3591 0.6149
FFN* 3.3652 0.8082
GNN* 2.5931 0.7135

How beneficial are the learned representations for dis-
tillation? As the first step of our analysis, we examine
the performance difference between pipelines that use
encoder’s latent space and those that do not. To fully un-
derstand the effect of our latent space projection step, we
analyze our results from two angles: 1) Is it better to distill
in the latent or original space? 2) If latent space is better,
is it better to decode the data back to the original space or
stay in the latent space?

Figure 3 shows the relative regret score of distillation
methods under different data representation schemes. We
start by examining the downstream performance differ-
ence between pipelines that use the latent space to dis-
till in vs. ones that do not (Algorithm 2 vs. Algorithm 1). The results show that using
the latent space is highly beneficial in most cases with lower IPC values. This trend is most
apparent in classifiers such as KNN (44.96-108.79% improvement at IPC=10), Logistic Re-
gression (22.14-62.64% improvement) or MLP (32.73-68.72% improvement), while XGBoost
shows the least improvement from any of the distillation methods (15.82-36.00% improvement).
k-means and agglomerative clustering also show a more apparent decrease in regret, while KIP
and GM show noticeable improvements only when both the distillation and the final dataset are in
the latent space. With this in mind, we examine the performance difference when training on the
distilled data in the latent space or decoding to the original space before training the downstream
classifier (using R̃ or R from Algorithm 2). Figure 3 shows that training on the dataset in the
latent space improves the downstream performance for all distillation pipelines – in fact, it is the
best performer for almost every instance over classifiers and distillation methods. The change in
performance is more apparent in KNN (40.92-65.40%), Logistic Regression (33.75-67.29%) and
MLP (33.93-96.38%), while XGBoost shows a more subtle change (7.28-19.20%). This leads us to
conclude that distillation methods benefit the most when both distilling and downstream training
in on the latent representations. It is also worth noting that decoding the distilled data from the
latent space (Rec.) is also beneficial compared to random sampling in many cases.

0.6 0.7 0.8 0.9 1.0 1.1
Relative Regret

0

1

2

# 
Pa

ra
m

s

1e5

FFN
GNN

TF

Figure 4: Scatterplot of encoder parame-
ter size and downstream classifier regret at
IPC=10 aggregated over datasets and classi-
fiers. The dots represent the median values,
and the error bars span the 25% and 75% per-
centile, respectively. Note that the encoder
sizes for both SFT and base versions are the
same for each dataset.

How do different encoders compare? Having ob-
served that using the latent space is beneficial, we
now seek to identify which encoder architecture leads
to the best performance. Table 1 shows the aver-
age rank of distillation pipelines that use the latent
space of different encoder architectures. Among the
tested architectures and training objectives, the trans-
former architecture with supervised fine-tuning
leads to the best downstream performance. We find
that adding supervised fine-tuning improves the
downstream performance of all encoders in gen-
eral.

Another important aspect of data distillation is to
improve downstream classifier efficiency providing
a lightweight proxy. Thus, it is important to exam-
ine the resources required in the distillation pipeline.
Specifically, one aspect of our distillation pipelines
that can add an additional cost is the encoder. In

settings that require the data to be projected into latent space at inference time, the encoder can
be considered part of the distilled data. Figure 4 shows the parameter size of the different encoder
architectures vs. the downstream classifier regret scores. As noted before, the transformer architecture
leads to the best downstream performance. However, it is worth noting that GNN architecture has the
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(a) IPC=10
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(c) IPC=100
Figure 5: Critical difference plot comparing ranks of distillation methods across datasets, encoders,
and classifiers per IPC value. The x-axis denotes the average rank, and a black horizontal line
connects groups of methods that are not significantly different in the rank distribution. k-means and
agglomerative are indistinguishable from each other in IPC ∈ {10, 50}, but k-means gains an edge in
IPC=100.

Table 3: Relative regret of pipelines that use different combinations of distill methods and encoders
at IPC=10, aggregated over classifiers. The best value for each column is marked with bold, and
the second best is marked with underline. The best in each distillation method group is marked with
italics. On average, k-means with SFT transformer shows the best performance, but agglomerative
clustering also shows comparable performance.

Distill Method Encoder Regret
Min Q1 Mean Median Q3 Max

KM
TF* -14.4491 0.0733 -0.0464 0.4056 0.7379 1.1773
FFN* -11.9912 0.2039 0.1382 0.6035 0.8389 1.5368
GNN* -12.1045 0.0973 0.1054 0.5047 0.7887 1.0494

AG
TF* -15.3965 0.0810 0.0187 0.4135 0.6507 1.4982
FFN* -10.1288 0.2483 0.3695 0.6230 0.8823 4.1191
GNN* -13.1881 0.1397 0.2245 0.4793 0.7595 4.4801

KIP
TF* -4.1619 0.5226 1.1124 0.9415 1.2966 11.1034
FFN* -5.3973 0.8053 1.6363 1.2502 1.6434 16.4137
GNN* -1.4649 0.7403 1.1957 1.0136 1.3329 10.5175

GM
TF* -3.8002 0.4105 0.7273 0.7952 1.0564 4.9450
FFN* -4.3269 0.5975 1.2660 0.9938 1.3827 16.5044
GNN* -1.4776 0.4626 0.8073 0.8457 0.9779 8.4566

smallest overall parameter size while providing the second-best performance. Further discussion on
the parameter size analysis of each encoder architecture can be found in appendix A.3.

Table 2: The best performers of each
dataset are classifiers ranked by their ap-
pearance count at the top 3 of each com-
parison at IPC=10. k-means stands out
as the strongest performer in combina-
tion with a supervised-fine-tuned trans-
former encoder.

Count Encoder D.M. Output

67 TF* KM Enc.
63 GNN* KM Enc.
61 GNN* AG Enc.
61 TF* AG Enc.
42 FFN* KM Enc.

Which distillation method leads to the best downstream
performance? We now compare the most critical piece
of the distillation pipeline – the distillation method.We
wish to understand which method leads to the best down-
stream performance across datasets, encoders, and classi-
fier configurations. To evaluate, we perform a Wilcoxon
signed-rank test to identify groups that stand out from the
rest, as shown in fig. 5. The results show that clustering-
based methods (k-means, agglomerative) show the
strongest performance across datasets and encoder
configurations, consistently placing in the top two ranks.
While both methods show similar performance, we find
that k-means starts to outperform agglomerative as the
IPC increases.

Which combination leads to best performance? Our previous analysis has revealed that trans-
former encoders with SFT and clustering-based distillation methods perform best in their respective
comparisons. Now, we aim to identify which combination of encoder and distillation method leads to
the best downstream performance. We approach this question by examining the detailed statistics
behind the combinations’ performance and the top performers of each dataset, classifier, and n com-
binations. Table 3 shows detailed statistics about each distill method and encoder combination, while
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(b) XGBoost
Figure 6: Comparison of HPO validation performance vs. runtime when using full and distilled data.
To better visualize the performance difference, we truncate the plot for the full data run at twice the
runtime of the entire distilled run.

table 2 shows the count of the top 5 distillation pipelines that placed in the top 10 by performance in
each comparison group. In line with our previous findings, the results show that k-means clustering
with supervised-fine-tuned transformer encoder leads to the best overall performance. All of the
top performers are clustering-based methods, and all of them use the latent space, again confirming
that using the latent representation from the encoder greatly benefits distillation methods. In
addition, the GNN encoder shows a comparative performance to that of the transformer encoder. This
is especially noteworthy, considering that GNN has the smallest parameter size among the encoder
architectures.
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Figure 7: Average median relative re-
gret of distillation methods aggregated
over downstream classifiers and en-
coders at IPC=10 with a least-squares
linear regression. Compared to KIP and
GM, k-means and agglomerative show
much stronger performance in imbal-
anced data.

As mentioned in section 3, we additionally run a smaller-
scale HPO experiment to consider a use case for distilled
data, as seen in fig. 6. Specifically, we consider a case
where the validation and testing data is sampled from the
original data, and the classifier is trained on the full or
distilled data. In general, we note that training on the
distilled data gives comparable performance to training
on the full data in a fraction of the time, consuming on
average 21.84% of the runtime and reaching 98.37% of
the performance.

How does class imbalance affect performance? Fi-
nally, we examine the downstream performance of clas-
sifiers with respect to the label balance, or the imbalance,
of the original dataset, shown fig. 7. Compared to other
methods, including random sampling, clustering-based
methods show impressive strength when distilling datasets
with high label imbalance, highlighting their robustness
under challenging data distributions. One possible expla-
nation behind this phenomenon is that while NN-based

distillation methods may prioritize the majority class due to the imbalance, the clustering methods
are forced to place equal emphasis on all classes, preventing an overfitting on the majority class.

5 DISCUSSION

This work introduced a tabular data distillation pipeline and evaluated it extensively leveraging various
distillation methods, with a focus on supporting both non-NN and NN ML classifiers. We introduce
a novel framework, TDColER, that leverages latent representation of tabular data in distillation,
and evaluate it thoroughly in our benchmark, TDBench, which included 23 datasets, 4 distillation
algorithms, 3 autoencoder architectures, and 7 downstream classifiers, resulting in over 226,200
distilled datasets and 541,980 downstream classifier instances. Our results show that TDColER
can induce superior performance in distillation methods on tabular data, improving the quality by
0.5-143%. We also show that k-means clustering and transformer autoencoder are a particularly
strong combination for tabular data distillation. We hope that this work will serve as a starting point
for future research in tabular data distillation and plan to extend this benchmark further to incorporate
new distillation pipelines.
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Table 4: Dataset name and OpenML Vanschoren et al. (2013) url

Dataset Name Dataset URL

adult https://api.openml.org/d/1590
Amazon_employee_access https://api.openml.org/d/4135
Bank_marketing_data_set_UCI https://api.openml.org/d/44234
credit https://api.openml.org/d/45027
default-of-credit-card-clients https://api.openml.org/d/45020
Diabetes130US https://api.openml.org/d/45022
electrcity https://api.openml.org/d/151
elevators https://api.openml.org/d/846
higgs https://api.openml.org/d/23512
hcdr https://api.openml.org/d/45071
house_16H https://api.openml.org/d/821
jannis https://api.openml.org/d/45021
law-school-admission-bianry https://api.openml.org/d/43890
MagicTelescope https://api.openml.org/d/1120
Medical-Appointment-No-Shows https://api.openml.org/d/43439
MiniBooNE https://api.openml.org/d/44088
numerai28.6 https://api.openml.org/d/23517
nursery https://api.openml.org/d/959
PhishingWebsites https://api.openml.org/d/4534
pol https://api.openml.org/d/722
road-safety https://api.openml.org/d/44161
Click_prediction_small https://api.openml.org/d/1220
2dplanes https://api.openml.org/d/727

Table 5: Metadata of each dataset seen in table 4

Dataset # Instances # Features # Cont. # Cat. # Class 0 # Class 1

2dplanes 40,768 10 10 0 20,420 20,348
Amazon_employee_access 32,769 9 8 1 1,897 30,872
Bank_marketing_data_set_UCI 45,211 16 7 9 39,922 5,289
Click_prediction_small 39,948 11 11 0 33,220 6,728
Diabetes130US 71,090 7 7 0 35,545 35,545
MagicTelescope 19,020 11 11 0 12,332 6,688
Medical-Appointment-No-Shows 110,527 13 10 3 88,208 22,319
MiniBooNE 72,998 50 50 0 36,499 36,499
PhishingWebsites 11,055 30 0 30 4,898 6,157
adult 48,842 14 6 8 37,155 11,687
credit 16,714 10 10 0 8,357 8,357
default-of-credit-card-clients 13,272 20 20 0 6,636 6,636
electrcity 45,312 8 7 1 26,075 19,237
elevators 16,599 18 18 0 5,130 11,469
hcdr 10,000 22 22 0 5,000 5,000
higgs 98,050 28 28 0 46,223 51,827
house_16H 22,784 16 16 0 6,744 16,040
jannis 57,580 54 54 0 28,790 28,790
law-school-admission-bianry 20,800 11 6 5 6,694 14,106
numerai28.6 96,320 21 21 0 47,662 48,658
nursery 12,960 8 0 8 8,640 4,320
pol 15,000 48 48 0 5,041 9,959
road-safety 111,762 32 29 3 55,881 55,881

A APPENDIX

A.1 DATASETS

Tables 4 and 5 show the information about datasets used in our experiments along with their
OpenML Vanschoren et al. (2013) URLs.
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Table 6: Hyperparameters tested for FFN encoder.

Hyperparameter Values

d_hidden (100, 200)
n_hidden [1, 4]
dropout (0, 0.2, 0.4)
d_embedding (10, 20, 50, 100, 200)
use_embedding (True,False)
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)

Table 7: Hyperparameters tested for GNN encoder.

Hyperparameter Values

graph_layer (graphsage, gcn, gat)
graph_aggr (mean, softmax)
n_graph [1, 15]
edge_direction (bidirectional, multipass)
edge_dropout (0, 0.2, 0.4)

learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)

A.2 HYPERPARAMETER OPTIMIZATION FOR ENCODERS

Tables 6 to 10 show the hyperparameters considered for different modules of the autoencoders.
We use {x, y, z} to denote a set of variables and [a, b] to denote an inclusive range of values. We
conduct HPO for each autoencoder + dataset pair using an implementation of hyperopt Bergstra
et al. (2015) from Ray Tune Liaw et al. (2018) with a maximum of 500 samples for each HPO run.
As noted in section 2.1, we first train the vanilla autoencoders for each dataset using the encoder
hyperparameters seen in tables 6 to 8 and decoder parameters seen in table 9. Once the vanilla
autoencoders are trained, we then conduct an additional fine-tuning with a classifier head with
hyperperameters seen in table 10 where α is used to balance the objective functions of the decoder
and classifier heads.

Table 8: Hyperparameters tested for TF autoencoder.

Hyperparameter Values

n_blocks [1, 10]

n_attention_heads 2[1,4]

d_qkv 2[0,7]

layer_norm_eps 10[−5,−1]

d_mlp 2[7,11]

d_mlp_hidden (100, 200)
n_mlp_hidden [1, 4]
dropout [0, 0.4]

learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)
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Table 9: Hyperparameters tested for decoders. The decoder architecture is kept the same for all
encoders and optimized individually.

Hyperparameter Values

d_hidden (100, 200)
n_hidden [1, 4]

learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)

A.3 DISCUSSION ON PARAMETER SIZE OF AUTOENCODERS

Here we expand on our parameter size of the encoder architectures of the autoencoders. This is worth
noting because if the distilled data is in the latent space, the encoder module is required to project any
new data to the same space. Thus, the encoder is considered to be a part of the distilled output.

We can characterize the parameter size of each encoder architecture given a D-dimensional binarized
dataset with c categorical features and r continuous features that is projected to a d-dimensional
latent space.

FFN. We used an FFN architecture with an M -dimensional embedding layer followed by H hidden
layers that receive and output W -dimensional vectors. The parameter size of such an FFN is as
follows:

O(DM + (c+ r)MW +HW 2 +Wd) (5)
The column embeddings are of size O(DM), the input layer maps the concatenated (c + r)M -
dimensional vector to hidden layer dimension W with (c+ r)MW size. The hidden layers are of
sizes O(W 2) each for H hidden layers. The output layer maps the W -dimensional hidden layer
output to the desired d-dimensions.

GNN. We use a GNN encoder with H consecutive layers. The dimension of the vectors passed
between the graph layers are fixed to d, meaning that M = d. Thus, each graph layer maintains a d
by d matrix to handle a d-dimensional input vector and output a d-dimensional vector.

O(Dd+Hd2) (6)

The column embeddings are of size O(Dd) since M = d. Each of the H GNN layers is of size
O(d2).

Transformer. We consider an implementation of a transformer autoencoder inspired by the archi-
tecture of FT-Transformer Gorishniy et al. (2021). The encoder has an M -dimensional embedding
layer followed H transformer blocks. Each transformer block takes in a sequence of M -dimensional
embeddings and oututs a single d-dimensional vector. The block is composed of a multihead-attention
module with m heads and a FFN module to project the attention scores back to the input space. We
modify the architecture seen in (Gorishniy et al., 2021) by allowing the dimension of the attention
head to be configurable – i.e. instead of using M/m as the dimension of a single attention head,
we allow the module to compute the attention in dqkv. This choice is motivated by the fact that our
encoders were trained with a latent size of 16, which may not be wide enough for the TF encoder.
We then project the resulting embedding in dqkvm-dimension back to M -dimensionals with Wo.

Table 10: Hyperparameters tested for classifier head in SFT.

Hyperparameter Values

d_hidden {100, 200}
n_hidden [1, 3]
dropout {0, 0.2, 0.4}
alpha {0.3, 0.5, 0.7}
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)
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Figure 8: FFN encoder.

Feature Embeddings

Row Embeddings

Feature 1

Feature 2

Row 1

Row 2

Row 3

Figure 9: GNN encoder.
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Figure 10: Modified MHA component.
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Figure 11: TF encoder block.

Thus, each of Wq , Wk, Wv and Wo has dqkvmM parameters. The MHA module is then followed by
an FFN module which takes a M -dimensional vector and projects it back to M -dimensions with a
W -dimensional hidden layer.

O(H(4dqkvMm+ 2MW )) (7)

A.4 AUTOENCODER IMPLEMENTATION DETAILS

A.4.1 OPTIMIZATION FUNCTION

For the decoder ψ : Rd → RD, we consider a multi-layered fully-connected feed-forward network.
Given the encoder φ and the decoder ψ, we use a group-wise softmax operator σ to map the output
of the decoder to a per-input-feature probability simplex: given an initial binary vector b ∈ {0, 1}D
constituting per-input-feature one-hot encodings bi (that is b = [b1 ⊕ . . . ⊕ bc+r]), and a decoder
output B ∈ RD with per-input-feature constituents Bi (that is B = [B1 ⊕ . . .⊕Bc+r], we apply the
softmax operation to each per-input-feature constituent to get b̂ = [b̂1 ⊕ . . .⊕ b̂c+r] ∈ [0, 1]D, where
b̂i = softmax(Bi). We utilize the following per-sample reconstruction loss:

`(b, b̂) = 1
c+r

∑c+r
i=1

1
log2 |bi|CE(bi, b̂i), (8)

where CE is the standard cross-entropy loss between a one-hot vector and a softmax output, and
|bi| is the length of the i-th constituent one-hot encoding in b, corresponding to the number of
categories (or bins) in the i-th categorical (or numerical) feature. This loss is a weighted average
of the per-input-feature cross-entropy loss, with weights (1/log2 |bi|) to normalize the loss across all
features with varying number of categories or bins.

The encoder and decoder are then learned by optimizing the following unsupervised loss:

LR(φ, ψ) = 1
N

∑
(x,y)∈S ` (P (x), σ(ψ(φ(P (x))))) , (9)
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where P is the data homogenizer, and σ is the aforementioned group-wise softmax operator. Learning
the latent representation in such an unsupervised manner makes this distillation pipeline agnostic
to the choice of downstream model. Another advantage of this choice is that the decoder allows
us to map the distilled artificial samples in the latent space to the original features, which might be
necessary in some applications (for interpretability reasons).

A.4.2 SUPERVISED LATENT SPACE FINE-TUNING

Given the already learned encoder and decoder, we consider a supervised fine-tuning (FT) step where
we utilize a classifier f : Rd → Y that utilizes the latent representation. The classifier is learned, and
the encoder and decoder are fine-tuned by minimizing the following loss to ensure that the latent
space is quite predictive while the reconstruction loss stays low:

LR(φ, ψ) + α
N

∑
(x,y)∈S CE(y, f(φ(P (x)))), (10)

where α > 0 is penalty parameter to balance the two losses, and CE is the cross-entropy loss. We
consider multi-layer FFN architecture as the classifier f .

A.4.3 ENCODER ARCHITECTURES

Fully-connected feed-forward network (FFN). This encoder first selects the column embeddings
corresponding to nonzero entries in the binary representation b, concatenates them to get a (c+ r)M -
dimensional dense vectors (recall that b will only have c + r nonzeros out of the D dimensions),
and inputs them to a fully-connected feed-forward network µ : R(c+r)M → Rd. The encoder
φ : {0, 1}D → Rd can be written as:

z = φ(b) = µ(⊕([wi, i ∈ {1, . . . , D} : b[i] = 1])), (11)

where b[i] is the i-th entry of the D-dimensional vector, and ⊕ is the concatenation operator. The
FFN µ and the column embeddings {wi, i ∈ {1, . . . , D}} constitute the parameters of the encoder φ.
For a FFN with H hidden layers, each of width W , the total number of parameters in this encoder is
O(DM +(c+ r)MW +HW 2+Wd). Figure 8 shows a simplified architecture of the FFN encoder.

Graph neural network (GNN) encoder. We also consider a more recent encoder for tabular data pro-
posed in Wu et al. (2021). A bipartite graph is constructed between the column embeddings {wi, i ∈
{1, . . . , D}} and the (zero-initialized) row (sample) embeddings {zj ∈ Rd, j ∈ {1, . . . , N}}, with a
bidirectional edge between wi and zj if the bj [i] = 1, where bj ∈ {0, 1}D is the binary representation
of the j-th sample. Given the (learned) column embeddings, the row embeddings are obtained via
multiple rounds of message passing through multiple GNN layers. This can be written as:

zhj = µh(z
h−1
j ,Agg(wh−1

i , i ∈ Nj)),

whi = µh(w
h−1
i ,Agg(zhj , j ∈ Ni)),

(12)

where µh is the h-th GNN layer, Agg is an aggregation, Ni (or Nj) is the neighbor set of the
i-th column embedding (or j-th row embedding). We set the initial z0j = 0 (zero-initialized row
embeddings), w0

i = wi, and utilize zHj as the latent representation for distillation after H GNN
layers. While Wu et al. (2021) only considered Graph Convolutional Networks Kipf & Welling
(2016) as GNN modules, we extend it to GraphSage Hamilton et al. (2017) and Graph Attention
Networks Veličković et al. (2018). An important aspect of the GNN encoder is that the desired row
embedding size d must match the column embedding size M , thus d = M . With H GNN layers,
the total number of parameters in this encoder is usually O(Dd+Hd2), which can be significantly
smaller than the FFN encoder with moderately sized FFN (large enough M , W ). Figure 9 shows the
graph formulation (left) and the GNN encoder architeture (right).

Transformer encoder. Finally, we consider a transformer-based autoencoder inspired by the architec-
ture of FT-Transformer Gorishniy et al. (2021). This encoder uses the same embedding layer as the
FFN encoder, which is then followed by transformer blocks. We learn an additional cls embedding,
which is placed before all other tokens in every sequence. Each block takes in a sequence (one row) of
d embeddings, and is composed of a multihead-attention (MHA) module and a feed-forward network
(FFN) module.

For a MHA module with m attention heads, we modify the architecture seen in (Gorishniy et al.,
2021) by allowing the dimension of the attention head to be separately configurable – i.e. instead of
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Table 11: Parameters of distillation methods.

Method Hyperparameter Value Description

Common

distill space - Whether to use the encoder latent space or the raw binary
representation.

use_closest* - Whether to use median points instead of the euclidean center.
Only applicable to clustering methods.

output_space† - Whether to keep the encoder latent/ decode or use the raw
binary space. The binary space is only applicable to clustering
methods when use_closest is set to True.

random_seed‡ - Random seed for distillation algorithm. Not applicable to
agglomerative.

KIP n_epochs 1000 Number of epochs to train the distilled data.
mlp_dim 1024 Width of the neural network to compute the NTK of.

GM

n_epochs 500 Number of epochs to train the distilled data.
mlp_dim 1024 Size of the hidden layer of the target model.
n_layers 2 Number of hidden layers in the target model.
lr_mlp 0.01 Learning rate for the target model.
lr_data 0.1 Learning rate for the distilled data.
mom_data 0.5 Momentum for distilled data.

using d/m as the dimension of a single attention head, we allow the module to compute the attention
in dqkv. This choice is motivated by the fact that our encoders were trained with a latent size of
16, which may not be wide enough for the TF encoder. We then project the resulting embedding in
dqkvm-dimension back to d-dimension with Wo. For an input wi at the ith transformer block, the
computation for the MHA module is as follows:

ai =W i
o(softmax(

W i
q(wi)W

i
k(wi)√

dqkv
)W i

v(wi)) (13)

The resulting attention score ai is then added with the original embedding and passed through an
FFN module. Similarly to Gorishniy et al. (2021), the [cls] embedding is used as the final output
of the encoder. Figure 10 shows our modified MHA component, and fig. 11 shows the TF encoder
block.

A.5 DISTILL METHODS

A.5.1 CHOICE OF DISTILL METHODS (KIP, GM)

The clustering-based distillation schemes and KIP are not explicitly tied to a specific model and thus
satisfy our desiderata of model-agnosticity. In contrast, the Gradient Matching or GM distillation
scheme heavily relies on the choice of the backbone model Mθ (as well as the learning algorithm
parameters such as the learning rate), and there is no guarantee that the distilled samples R would
be useful for any other model. Thus, this scheme is not model-agnostic. However, we consider GM
to be representative of the model-specific distillation schemes for the sake of completeness of our
evaluations. For our table distillation, we choose Mθ to be a multi-layered perceptron with a single
hidden layer. This will pose a mismatch when we evaluate the quality of the distilled data R on
standard tabular models such as decision tree ensembles and nearest-neighbor models, highlighting
the need for model-agnosticity in tabular data distillation.

A.5.2 DISTILL METHOD IMPLEMENTAION

k-means We use the sklearn.cluster.KMeans from Pedregosa et al. (2011) with the
n_init set to "auto".

Agglomerative We use sklearn.cluster.AgglomerativeClustering from Pe-
dregosa et al. (2011) with the linkage set to "ward". Because agglomerative clustering
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Table 12: Hyperparameters of downstream classifiers.

Classifier Hyperparameter Value

FT-Transformer

d_token 128
n_blocks 2
attention_n_heads 8
attention_dropout 0.15
ffn_d_hidden_multiplier 1.25
ffn_dropout 0.05
residual_dropout 0
learning_rate 10−4

weight_decay 10−5

early_stopping True

Naive Bayes var_smoothing 10−9

K-Nearest-Neighbors
n_neighbors 5
leaf_size 30
p 2

Logistic Regression

penalty l2
tol 10−4

C 1
solver lbfgs

MLP

d_hidden 100
n_hidden 1
learning_rate 10−4

early_stopping True

ResNet

n_blocks 4
d_block 128
d_hidden_multiplier 1.25
dropout 0.2
learning_rate 0.0001
weight_decay 0.00001
early_stopping True
patience 16

does not have a “centroid”, we manually calculate a euclidean centroid for each cluster by us-
ing sklearn.neighbors.NearestCentroid to compute the centroid or the closest real
point.

KIP We use the implementation provided by Nguyen et al. (2021) available at https://github.
com/google-research/google-research/tree/master/kip.

GM We use the implementation provided by Zhao et al. (2021) available at https://github.
com/VICO-UoE/DatasetCondensation.

Table 11 shows the parameters available for each distillation methods. The common parameters are
used for every algorithm, with the exceptions marked on the right-most column. The method-specific
parameters for KIP and GM are for the original algorithms as proposed in Nguyen et al. (2021); Zhao
et al. (2021).

A.6 DOWNSTREAM CLASSIFIER HYPERPARAMETERS

Table 12 shows the hyperparameters used for each downstream classifier. We use scikit-learn Pe-
dregosa et al. (2011)’s implementation of Naive Bayes, K-Nearest-Neighbors, Logistic Regression,
and MLP, and Gorishniy et al. (2021)’s implementation of FT-Transformer and ResNet.
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Table 13: Average train/test times and test performance comparison for all downstream classifiers.

Classifier Train Time Test Time Test Perf.

FTTransformer 281.3431 0.17934 0.7879
NB 0.0030 0.00232 0.6624
KNN 0.0007 0.54309 0.7474
LR 0.4901 0.00646 0.7709
MLP 2.4444 0.00554 0.7826
ResNet 154.9824 0.08508 0.7833
XGB 11.4055 0.01439 0.8180

A.7 RESNET AND FT-TRANSFORMER PERFORMANCE

We test ResNet and FT-Transformer for 5 datasets. We found that even with early stopping, the two
classifiers take significantly longer to train given the same computing resources. On average, we find
that ResNet takes around 10 times longer to finish training, while FT-Transformer takes around 28
times when compared to XGBoost. We also find that the performance of resnet and FT-Transformer
does not stand out – in fact, the average test performance when trained on the full dataset shows
that both ResNet and FTTransformer show a similar performance to MLP, and are outperformed by
XGBoost.

A.8 DETERMINING THE BEST OVERALL PERFORMANCE

We describe the best overall pipeline in section 4 and table 2. Here, we provide a more detailed
explanation of how we determined the best overall pipeline. The runs are grouped by their classifier,
dataset and distill size n. Similar to other parts of analysis, the grouping is done in order to ensure
that the comparisons are fair. In this instance, we are interested in only the pipeline components that
lead to the best classifier performance, regardless of the exact classifier kind. Thus, we group every
run by their non-pipeline-specific parameters, which are the classifier, dataset and distill size n. In
each group, we then count the instances the pipeline places on the top 3 in terms of the regret score
and sum up the counts for each pipeline.

Following the previous findings, table 2 shows that k-means based methods have the best performance,
placing in the top 3 with all SFT encoder variants. Surprisingly, we also find pipelines that use KIP and
GM as the 4th and 5th best performers. While we were not able to determine any specific conditions
that cause KIP and GM to place on top, this result shows that there are exist some conditions which
leads the pipelines using gradient-based methods (KIP, GM) to be the top performer. On the other
hand, the consistent rank placement of pipelines that use the autoencoder latent space shows that
fine-tuned autoencoders can indeed boost the performance of distillation methods significantly.

B ADDITIONAL ANALYSIS

B.1 FULL RESULTS OF DISTILLATION METHODS BY DOWNSTREAM CLASSIFIERS

B.2 EFFECT OF COLUMN EMBEDDING SCHEME ON DOWNSTREAM PERFORMANCE

While column embeddings are standard for categorical columns – each category is represented with
a vector, there are various ways of embedding numerical columns: (i) A numerical feature can be
binned, and each bin treated as a category with an embedding w ∈ Rm corresponding to each bin.
(ii) With linearly scaled column embeddings, a single column embedding w ∈ Rm is used for each
numerical column, and the column embedding for a particular numerical value v ∈ R is obtained
by scaling w to v ·w. (iii) Piecewise linear encoding or PLE (Gorishniy et al., 2022) also bin the
numerical feature but use a more sophisticated way of generating the column embeddings for a
given numerical value. We considered binned numerical features in the main paper for a couple of
reasons: (a) Binned numerical features naturally handle missing values (quite prevalent in tabular
data) by maintaining a “missing” bin instead of relying on a heuristic intermediate imputation step;
sometimes, the fact that a value is missing is in itself a signal, and heuristic imputation schemes often
lose this information. (b) The binned features can be used for all architectures we consider here –
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Figure 12: Full results of distillation methods by downstream classifiers.

Table 14: A comparison of relative regret scores of distillation pipelines that use the encoded space
of autoencoders trained with different column embeddings, tested on 5 datasets (Adult, Amazon
Employee Access, Credit, House, Phishing Websites). The center value shows the median relative
regret, and smaller values on each side refers to the first and third quantile, respectively. In general,
PLE embeddings show the strongest performance. However, it is worth noting that PLE embeddings
are not applicable to GNN encoders, and that binary embeddings also show superior performance to
scaled embeddings.

Col. Emb. KM AG GM KIP

Binary 0.1082 0.5645 0.7886 0.0976 0.4633 0.7181 0.5504 0.9038 1.0063 0.6551 0.9254 1.1918

Scaled 0.7214 0.8613 1.0671 0.4908 0.6939 1.0249 1.0092 1.4412 1.8658 1.3304 1.6137 2.2985

PLE −0.2428 0.1976 0.9305 −0.2698 0.2173 0.6752 −0.0865 0.2747 1.0524 −0.0263 0.7398 1.3923

FFN, Transformer, and GNN – and using a common embedding scheme allows us to ablate the effect
of the different architectures. The other numerical embedding schemes do not apply to GNNs.

To understand the effect of different kinds of column embeddings schemes, we conduct a smaller
scale experiment on 5 datasets. Specifically, we compare scaled embeddings as seen in Gorishniy
et al. (2021), piecewise linear encoding (PLE) as seen in Gorishniy et al. (2022), against using binary
column embeddings where continuous features are binarized by binning, and examine the downstream
performance of distillation pipelines that use the latent space of the autoencoders trained with the
corresponding column embedding scheme. Table 14 shows that using the both binary column
embeddings and PLE consistently leads to lower regret scores compared to scaled column
embeddings. While PLE embeddings show the strongest performance, they are not applicable to
the GNN autoencoder architecture. Thus, we conduct most of our experiments using binary column
embeddings for a fair comparison across different autoencoder architectures for a fair comparison.
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Figure 13: PCA visualization of Phishing Websites dataset.
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Figure 14: PCA visualization of the Adult dataset.

B.3 EFFECT OF SUPERVISED FINE-TUNING.

Figures 13 and 14 show the PCA visualizations the adult and tencent CTR datasets in the original,
FFN-encoded, FFN-SFT encoded representations. Both figures show that while the distribution inside
the vanilla FFN’s latent space does not look significantly different from the original space, adding
supervised fine-tuning leads to a clearer separation between different classes.
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Figure 15: Pairwise comparision of distillation methods. The relative performances of distillation
methods under otherwise equal sttings. Rows denote win ratio, columns denote loss ratio.
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B.4 PAIRWISE COMPARISION OF DISTILLATION METHODS.

In addition, we compare the downstream classifier performance with every pair of pipelines that use
different distillation methods under otherwise equal settings. The left table of fig. 15 reveals that KIP
had the highest tendency to underperform other distillation methods, while k-means had the highest
tendency to outperform other distillation methods. This is consistent with our previous findings,
where k-means outranked other distillation methods most frequently. In order to gain further insights
behind the performance lag of graident-based distillation methods, we conduct a pairwise comparison
of the distillation methods for different classifiers as well. The center and right tables of fig. 15
shows the pairwise comparison of distillation methods for XGBoost and MLP as downstream models.
This suggests that gradient-based methods’ underperformance is not solely due to its kernel, but that
tabular data itself may pose a unique challenge in distillation that is not seen in image data. It is also
worth noting that while the clustering-based approaches had the best overall rank, random sampling
proved to be a strong baseline with a near 50% win ratio against them.

C DOCUMENTATION OF TDBENCH

The information in this section is also available in a markdown format in the README.md file of the
supplementary material.

C.1 REPRODUCING RESULTS

Every plot and table in the main paper can be reconstructed using the following scripts:

• Q0_experiment_scale.py
• Q1_1_col_embeds.py
• Q1_encoding.py
• Q2_distill_methods.py
• Q3_autoencoders.py
• Q4_1_runtime.py
• Q4_2_get_hpo_dirs.py
• Q4_2_hpo.py
• Q4_combinations.py
• Q5_class_imbal.py

The scripts are organized in order of the question addressed in section 4 and will be populated in
iclr-figures directory. These can be simply ran by calling python SCRIPT_NAME.

The following files are included in the supplementary material and contain all the necessary informa-
tion for the scripts:

• dataset_stats.csv
• enc_stats.csv
• *data_mode_switch_results.csv
• hpo-measure/
• *mixed_tf_results.csv
• *ple_tf_results.csv

The files marked with an asterisk (*) are not included in the repository, but can
be downloaded from this url: https://drive.google.com/drive/folders/
1tJ5e1iCvaz-UbxEgpmuCPj-58crgYRJW?usp=share_link

C.2 DESCRIPTION OF THE WORKFLOW

The ## Running the Code section of README.md file discusses the actual commands and
available options for running each stage in detail.

The procedure is as follows:

• Train the autoencoder with the desired configuration.
• (Optional) Fine-tune the autoencoder with a classifier head.
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• Run distillation methods against specified downstream classifiers.

C.3 CONSTRUCTING A NEW PIPELINE

Changing default parameters The configurations for this project are managed by hydra and can
be modified by adding new files/directories under the ‘config‘ directory.

Adding new datasets Adding new datasets is as simple as adding a new
config/data/datasets/DATASET_NAME.yaml file. Currently, only openml datasets are
supported.

Field Type

dataset_name string
download_url string
label string
n_classes int
source_type string

Table 15: Configuration details for datasets

The following flags must be specified for the dataset to be correctly loaded as seen in table 15.

Field Type

parse_mode string
scale_mode string
bin_strat string
n_bins int

Table 16: Configuration details for data preprocessing

Adding new preprocessing methods The preprocessing is handled by the
TabularDataModule object that lives in tabdd/data/tabulardatamodule.py.
The preprocessing strategies are identified by a string, and can be configured under
config/data/mode. The fields seen in table 16 must be specified for the preprocessing
to work correctly. One can additionally define any type of scale_mode or bin_strat, which
will be consumed by the TabularDataModule.

This object is configured with DatasetConfig and DataModeConfig. The
DatasetConfig is the configuration for the dataset, and the DataModeConfig is the
configuration for the preprocessing method.

It’s TabularDataModule.prepare_data is the method that will parse the data accordingly
and save to cache. One can add arbitrary preprocessing methods in this file by adding new flags to
DataModeConfig and handling it inside the prepare_data method.

Field Type

is_random string
is_cluster string
can_use_encoder string
args int

Table 17: Configuration details for distillation methods

Adding new distillation methods The distillation methods are identified by a string, which
should have a configuration with the same name under config/distill/methods. Once can
characterize the method the following fields seen in table 17.
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• is_random: Whether there is randomness in the method. If true, the pipeline will be ran multiple
times.

• is_cluster: Whether the method is a clustering method. If true, an option that uses the
nearest-to-center method will be included.

• can_use_encoder: Whether the method can be applied in the latent space.
• args: any additional arguments to the actual function.

Once the configuration is created, it will be consumed by load_distilled_data method of
tabdd/distill/load_distilled_data.py. This method can then be modified to include
the new distillation method.

Adding new encoders All encoders used in the benchmark are subclasses BaseEncoder from
tabdd/models/encoder/base_encoder.py. A simple example of how to implement can
be seen in tabdd/models/encoder/mlp_autoencoder.py. The module needs to encoder
the following methods: __init__(), encode, decode and forward.

The autoencoders are specified by the configuration files in config/encoder/models/. The
class of the encoder is specified by cls, and the hyperparameters are specified by tune_params.
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Figure 16: Critical difference plot comparing ranks of distillation methods across datasets per IPC
value when applied with TF-SFT encoder for XGBoost classifier with additional baselines The
x-axis denotes the average rank, and a black horizontal line connects groups of methods that are not
significantly different in the rank distribution. k-means and agglomerative are indistinguishable from
each other in IPC ∈ {10, 50}, but k-means gains an edge in IPC=100. (FG: Forgetting, GN: GraNd,
GL: Glister, GC: Graph Cut)

Table 18: Relative regret of pipelines that use different combinations of distill methods and encoders
at IPC=10, aggregated over classifiers. The best value for each column is marked with bold, and the
second best is marked with underline. (FG: Forgetting, GN: GraNd, GL: Glister, GC: Graph Cut)

Distill Method Regret
Min Q1 Mean Median Q3 Max

Random Sample 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KM 0.0597 0.5256 0.6682 0.6654 0.8186 1.1094
AG 0.0000 0.5177 0.6301 0.6036 0.8914 0.9965
KIP 0.6728 0.8483 1.1109 1.0544 1.2523 2.2713
GM 0.4175 0.7707 0.9858 0.9377 1.1461 1.7292
FG 0.8705 1.1400 2.3837 1.4465 1.8731 16.0146
GN 0.7748 1.1498 2.0530 1.3704 2.2624 10.6670
GL 0.8376 1.1000 2.0907 1.3146 1.6823 14.1625
GC 0.6361 0.9077 1.5084 1.1031 1.5998 6.8392
MTT 0.4175 0.7707 1.0340 0.9699 1.2176 2.3026
DATM 0.4175 0.7707 1.0340 0.9699 1.2176 2.3026

D ADDITIONAL ANALYSIS

D.1 ADDITIONAL DISTILLATION METHODS

We conduct a further comparison of more recent distillation methods against the methods compared
in section 4 to verify whether these methods will show superior performance. Specifically, we
incorporate four representative NN-based coreset selection methods examined in Deepcore (Guo
et al., 2022) – Forgetting (Toneva et al., 2018), GraNd (Paul et al., 2021), Glister (Killamsetty et al.,
2021), Graph Cut (Iyer & Bilmes, 2013)) and MTT (Cazenavette et al., 2022) and DATM (Guo et al.,
2023). The results are presented in Table 18 and Figure 16. Consistent to our findings in section 4,
we find that more recent distillation methods that rely on NNs do not fair well on non-differentiable
downstream classifier (XGBoost), and that clustering methods still show dominance. It is also
interesting to note that GM shows superior performance to MTT and DATM, suggesting that the
latter two methods may actually be overfitting to the teacher network’s architecture.

D.2 DATASET FEATURE CORRELATION

We further investigate the presevation of feature correlation in the distilled data. Figure 17 shows
the change in feature correlation in the original, randomly sampled and distilled with k-means in the
latent space of TF-SFT in 3 datasets – Credit, Magic Telescope and Tencent CTR.

D.3 RELATION TO PREVIOUS WORK

Kang et al. (2024) presented a preliminary abstract on work that explores data distillation for tabular
data. The authors utilize an MLP and GNN based autoencoder networks to transform the data
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Figure 17: A side-by-side comparison of correlation of numerical features in the training data before
distillation, after random sampling@IPC=100, and after distillation@ICP=100. While some weaker
correlations are not entirely accurately portrayed, the distilled data preserves the stronger correlations
remarkably well.
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to before distilling and show that simple clusetering-based methods can outperform competetive
distillation algorithms proposed in computer vision (KIP (Nguyen et al., 2021))

Building upon this work, our work provides a comprehensive analysis of distillation methods on
tabular data, and provides a detailed comparison of distillation methods across a wide range of
datasets and classifiers. We also provide a detailed analysis of the effect of IPC on the performance
of distillation methods, and provide insights into the effect of distillation on the feature correlation of
the data.

Below, we provide a detailed comparison of our work with the preliminary abstract presented by Kang
et al. (2024):

• We conduct a comprehensive comparison of different binning methods and their effect on down-
stream performance.

• We test with a transformer-based autoencoder, and show that it outperforms MLP and GNN based
autoencoders.

• We additionally consider gradient matching Zhao et al. (2021) as an additional baseline to represent
the gradient-based family of distillation methods Cazenavette et al. (2022); Zhao & Bilen (2023);
Guo et al. (2023)

• We provide a complete python package, TDBench, that can be used and extended by anyone in the
community.

• We explore a realistic use case for data distillation in the context of HPO and show the trade-offs in
utility and cost saving.

• We introduce a relative regret metric to compare the performance of different distillation methods
across datasets and classifiers.

D.4 RAW BALANCED ACCURACY SCORE

Below is a comparison of the raw balanced accuracy of each distillation pipelines averaged over
random iterations. Table 19 shows a comparison of all 10 distillation methods that were ran with
TF-SFT encoder and tested on XGB downstream classifier, and table 20 shows the performance of the
baseline methods when applied without the encoders. Tables 21 and 22 show the same comparison
that with and without TF-SFT encoder for the 4 baselines methods (k-means, aggloermative, KIP,
GM) on KNN classifier, and tables 23 and 24 show the same for MLP classifier.

The last two rows of the tables each denote the number of instances that the pipeline ranked at the top,
and the number of times it outperformed random sampling. The results show that random sampling
is not a trivial baseline for many methods, and that both clustering methods, AG and KM, show the
strongest performance. We also see that adding the encoder to the pipeline significantly increases the
downstream performer of all 3 representative models.
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Dataset AG GM KIP KM

AD 0.6078±0.0354 0.7175±0.0423 0.5353±0.0562 0.5949±0.0644
AE 0.5252±0.0195 0.5304±0.0167 0.5060±0.0066 0.5007±0.0126
BM 0.5599±0.0525 0.5816±0.0448 0.5114±0.0179 0.5842±0.0914
CR 0.5667±0.0491 0.5394±0.0334 0.5106±0.0383 0.5612±0.0578
CD 0.5887±0.0310 0.5607±0.0448 0.5309±0.0466 0.5526±0.0382
DB 0.5133±0.0157 0.5053±0.0265 0.5008±0.0140 0.5146±0.0137
EL 0.5929±0.0782 0.5617±0.0545 0.5093±0.0290 0.5866±0.0741
EV 0.6120±0.0658 0.5968±0.0567 0.5730±0.0590 0.6009±0.0754
HG 0.5159±0.0107 0.5130±0.0143 0.5028±0.0094 0.5141±0.0196
HE 0.5909±0.0372 0.5918±0.0378 0.5112±0.0396 0.5790±0.0608
HS 0.6770±0.0526 0.6257±0.0567 0.5288±0.0671 0.6484±0.0956
JN 0.6076±0.0176 0.6111±0.0262 0.5759±0.0654 0.5755±0.0511
LA 0.8079±0.1752 0.8006±0.1236 0.7352±0.1598 0.8101±0.1533
MT 0.8217±0.1813 0.9581±0.0285 0.8029±0.1473 0.8082±0.1785
MA 0.5146±0.0185 0.5585±0.0324 0.4991±0.0108 0.5112±0.0222
MB 0.6715±0.0942 0.6480±0.0710 0.5559±0.0732 0.6476±0.1124
NU 0.5047±0.0079 0.5005±0.0060 0.5004±0.0041 0.5022±0.0050
NS 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
PW 0.7665±0.1429 0.8466±0.0613 0.6758±0.1216 0.7918±0.1242
PL 0.5966±0.0441 0.6813±0.0515 0.6045±0.1043 0.6834±0.0898
RS 0.6469±0.0546 0.5810±0.0373 0.5200±0.0350 0.6469±0.0541
TC 0.5343±0.0295 0.5118±0.0357 0.5031±0.0228 0.5301±0.0245
TD 0.8162±0.0100 0.7790±0.0270 0.6355±0.0884 0.7736±0.0584

# Best 12/23 8/23 1/23 5/23
vs RND 15/23 16/23 3/23 15/23

Table 20: Comparison of raw balanced accuracy scores of distillation methods applied in the original
space (no encoder) on XGB classifier. Last two rows of the tables each denote the number of instances
that the pipeline ranked at the top, and the number of times it outperformed random sampling. Best
performance at for each dataset is marked in bold, and second-best performance is marked with
underline.
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Dataset AG GM KIP KM

AD 0.7904±0.0171 0.7609±0.0170 0.6645±0.0662 0.7940±0.0078
AE 0.5371±0.0022 0.5246±0.0244 0.5129±0.0130 0.5365±0.0192
BM 0.7898±0.0052 0.7546±0.0317 0.6997±0.0556 0.7897±0.0083
CR 0.5437±0.0127 0.5337±0.0260 0.5500±0.0170 0.5219±0.0199
CD 0.6490±0.0302 0.6449±0.0471 0.5819±0.0483 0.6674±0.0112
DB 0.5607±0.0019 0.5054±0.0474 0.5408±0.0335 0.5565±0.0064
EL 0.6163±0.0173 0.5758±0.0423 0.5655±0.0241 0.6276±0.0126
EV 0.7152±0.0017 0.6621±0.0319 0.6205±0.0448 0.7130±0.0193
HG 0.5796±0.0338 0.5239±0.0128 0.5205±0.0106 0.5792±0.0130
HE 0.6870±0.0061 0.6588±0.0174 0.6325±0.0600 0.6786±0.0103
HS 0.7759±0.0119 0.7211±0.0279 0.6575±0.0831 0.7721±0.0128
JN 0.7383±0.0050 0.6972±0.0111 0.6795±0.0142 0.7308±0.0035
LA 0.9979±0.0000 0.9654±0.0255 0.9395±0.0760 0.9935±0.0055
MT 0.9717±0.0002 0.9674±0.0040 0.9714±0.0065 0.9715±0.0026
MA 0.5570±0.0096 0.5587±0.0252 0.5063±0.0160 0.5683±0.0083
MB 0.6478±0.0156 0.6871±0.0152 0.6307±0.0494 0.6939±0.0241
NU 0.4971±0.0083 0.4994±0.0060 0.4967±0.0058 0.5075±0.0020
NS 0.9944±0.0063 0.9573±0.0063 0.9716±0.0095 0.9941±0.0056
PW 0.8964±0.0158 0.8620±0.0170 0.6696±0.0283 0.9016±0.0158
PL 0.7829±0.0206 0.7505±0.0500 0.6717±0.0584 0.8277±0.0313
RS 0.7154±0.0216 0.6357±0.0386 0.6679±0.0459 0.7208±0.0134
TC 0.5530±0.0256 0.5261±0.0222 0.5173±0.0106 0.5609±0.0138
TD 0.9230±0.0012 0.9117±0.0167 0.8204±0.0502 0.9242±0.0052

# Best 11/23 0/23 1/23 11/23
vs RND 22/23 21/23 15/23 22/23

Table 21: Comparison of raw balanced accuracy scores of distillation methods with TF-SFT and
KNN downstream classifier. Best performance at for each dataset is marked in bold, and second-best
performance is marked with underline.

Dataset AG GM KIP KM

AD 0.7352±0.0212 0.7292±0.0136 0.5600±0.0599 0.7246±0.0309
AE 0.5309±0.0252 0.5204±0.0109 0.5131±0.0235 0.5143±0.0162
BM 0.7111±0.0136 0.6352±0.0335 0.5374±0.0504 0.7210±0.0277
CR 0.5364±0.0178 0.5393±0.0256 0.5161±0.0210 0.5508±0.0180
CD 0.6082±0.0252 0.6005±0.0292 0.5525±0.0275 0.6005±0.0312
DB 0.5154±0.0162 0.5139±0.0261 0.5049±0.0213 0.5288±0.0178
EL 0.6300±0.0314 0.5630±0.0346 0.5273±0.0463 0.6210±0.0331
EV 0.6840±0.0477 0.6380±0.0361 0.5907±0.0423 0.6949±0.0317
HG 0.5397±0.0181 0.5121±0.0124 0.5118±0.0064 0.5281±0.0128
HE 0.6442±0.0253 0.5837±0.0354 0.5194±0.0449 0.6546±0.0183
HS 0.6954±0.0497 0.6340±0.0532 0.5274±0.0498 0.7115±0.0275
JN 0.6555±0.0197 0.6320±0.0185 0.5891±0.0515 0.6597±0.0211
LA 0.8267±0.0424 0.7451±0.0585 0.8233±0.0684 0.8039±0.0672
MT 0.8070±0.0590 0.7332±0.0815 0.7098±0.0900 0.8236±0.0855
MA 0.5756±0.0098 0.5632±0.0237 0.5111±0.0340 0.5676±0.0186
MB 0.6712±0.0703 0.6122±0.0577 0.5565±0.0573 0.6731±0.0627
NU 0.5065±0.0033 0.5019±0.0050 0.5005±0.0054 0.5035±0.0049
NS 0.9278±0.0753 0.8064±0.0162 0.9775±0.0140 0.8876±0.0842
PW 0.8700±0.0175 0.8128±0.0311 0.6291±0.0598 0.8678±0.0240
PL 0.6327±0.0557 0.5675±0.0262 0.5634±0.0362 0.6554±0.0705
RS 0.6350±0.0324 0.5440±0.0214 0.5213±0.0200 0.6261±0.0304
TC 0.5129±0.0285 0.5152±0.0240 0.4953±0.0155 0.5205±0.0195
TD 0.7632±0.0386 0.7125±0.0293 0.6139±0.0481 0.7814±0.0377

# Best 10/23 0/23 1/23 12/23
vs RND 22/23 18/23 3/23 22/23

Table 22: Comparison of raw balanced accuracy scores of distillation methods in the original space
(no encoder) KNN downstream classifier. Best performance at for each dataset is marked in bold, and
second-best performance is marked with underline.
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Dataset AG GM KIP KM

AD 0.7627±0.0039 0.7406±0.0168 0.7318±0.0212 0.7628±0.0210
AE 0.5467±0.0250 0.5324±0.0090 0.5189±0.0063 0.5630±0.0212
BM 0.7894±0.0319 0.7685±0.0210 0.7632±0.0312 0.7887±0.0142
CR 0.5299±0.0242 0.5443±0.0228 0.5525±0.0185 0.5349±0.0134
CD 0.6323±0.0845 0.6358±0.0411 0.6138±0.0261 0.6542±0.0414
DB 0.5364±0.0051 0.5211±0.0278 0.5348±0.0349 0.5405±0.0139
EL 0.6432±0.0317 0.5690±0.0326 0.6131±0.0309 0.6543±0.0187
EV 0.7310±0.0019 0.6792±0.0421 0.6742±0.0347 0.7202±0.0350
HG 0.6058±0.0126 0.5302±0.0068 0.5477±0.0254 0.5997±0.0152
HE 0.6540±0.0057 0.6364±0.0225 0.6256±0.0370 0.6580±0.0157
HS 0.7801±0.0029 0.7257±0.0336 0.7478±0.0149 0.7768±0.0141
JN 0.7192±0.0036 0.6911±0.0130 0.6952±0.0315 0.7153±0.0102
LA 0.9983±0.0010 0.9893±0.0192 0.9883±0.0238 0.9980±0.0017
MT 0.9698±0.0055 0.9627±0.0056 0.9697±0.0050 0.9733±0.0032
MA 0.5694±0.0127 0.5571±0.0283 0.5160±0.0107 0.5878±0.0149
MB 0.6818±0.0092 0.6555±0.0568 0.6697±0.0217 0.6707±0.0169
NU 0.4958±0.0047 0.5012±0.0057 0.4987±0.0060 0.5071±0.0045
NS 0.9749±0.0153 0.9731±0.0179 0.9838±0.0139 0.9842±0.0129
PW 0.8804±0.0107 0.8466±0.0383 0.7921±0.0523 0.9046±0.0108
PL 0.9010±0.0198 0.8502±0.0175 0.8198±0.0426 0.9000±0.0059
RS 0.6842±0.0019 0.6210±0.0500 0.6627±0.0714 0.6877±0.0205
TC 0.5785±0.0231 0.5150±0.0307 0.5366±0.0251 0.5734±0.0197
TD 0.9191±0.0104 0.9010±0.0260 0.8999±0.0213 0.9200±0.0037

# Best 9/23 0/23 1/23 13/23
vs RND 21/23 19/23 18/23 23/23

Table 23: Comparison of raw balanced accuracy scores of distillation methods with TF-SFT and
MLP downstream classifier. Best performance at for each dataset is marked in bold, and second-best
performance is marked with underline.

Dataset AG GM KIP KM

AD 0.7183±0.0392 0.7576±0.0148 0.6756±0.0604 0.7385±0.0276
AE 0.5743±0.0265 0.5444±0.0153 0.5267±0.0241 0.5618±0.0410
BM 0.7406±0.0224 0.6573±0.0312 0.5776±0.0569 0.7351±0.0311
CR 0.5607±0.0216 0.5388±0.0272 0.5037±0.0440 0.5618±0.0277
CD 0.6146±0.0276 0.5920±0.0524 0.5706±0.0564 0.6040±0.0332
DB 0.5168±0.0171 0.5203±0.0207 0.5052±0.0281 0.5329±0.0203
EL 0.6713±0.0315 0.5904±0.0363 0.5568±0.0787 0.6573±0.0347
EV 0.6828±0.0270 0.6570±0.0289 0.6380±0.0651 0.6900±0.0255
HG 0.5463±0.0218 0.5184±0.0120 0.5190±0.0163 0.5423±0.0221
HE 0.6221±0.0210 0.6213±0.0397 0.5369±0.0574 0.6309±0.0227
HS 0.7514±0.0159 0.6746±0.0321 0.5970±0.0850 0.7397±0.0396
JN 0.6352±0.0188 0.6328±0.0214 0.6209±0.0370 0.6339±0.0137
LA 0.8530±0.0389 0.7621±0.0419 0.8924±0.1000 0.7970±0.0443
MT 0.9008±0.0332 0.8068±0.0741 0.8904±0.0269 0.8839±0.0584
MA 0.5710±0.0124 0.5591±0.0198 0.5294±0.0387 0.5640±0.0151
MB 0.7411±0.0577 0.6768±0.0636 0.5995±0.0945 0.7248±0.0656
NU 0.5076±0.0025 0.5009±0.0057 0.5004±0.0028 0.5063±0.0059
NS 0.9799±0.0208 0.8159±0.0102 0.9967±0.0038 0.9006±0.0746
PW 0.9018±0.0178 0.8248±0.0253 0.8084±0.0546 0.8775±0.0323
PL 0.7934±0.0946 0.6883±0.0491 0.7319±0.0239 0.7961±0.0719
RS 0.6304±0.0134 0.5567±0.0191 0.5386±0.0350 0.6305±0.0228
TC 0.5404±0.0253 0.5177±0.0141 0.5016±0.0358 0.5154±0.0328
TD 0.7924±0.0154 0.7164±0.0507 0.6930±0.0413 0.7751±0.0265

# Best 14/23 1/23 2/23 6/23
vs RND 22/23 19/23 6/23 21/23

Table 24: Comparison of raw balanced accuracy scores of distillation methods with in the original
space (no encoder) MLP downstream classifier. Best performance at for each dataset is marked in
bold, and second-best performance is marked with underline.
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