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Abstract

We study the in-context learning (ICL) ability of a Linear Transformer Block (LTB)
that combines a linear attention component and a linear multi-layer perceptron
(MLP) component. For ICL of linear regression with a Gaussian prior and a
non-zero mean, we show that LTB can achieve nearly Bayes optimal ICL risk. In
contrast, using only linear attention must incur an irreducible additive approxima-
tion error. Furthermore, we establish a correspondence between LTB and one-step
gradient descent estimators with learnable initialization (GD-β), in the sense that
every GD-β estimator can be implemented by an LTB estimator and every optimal
LTB estimator that minimizes the in-class ICL risk is effectively a GD-β estimator.
Finally, we show that GD-β estimators can be efficiently optimized with gradient
flow, despite a non-convex training objective. Our results reveal that LTB achieves
ICL by implementing GD-β, and they highlight the role of MLP layers in reducing
approximation error.

1 Introduction

The recent dramatic progress in natural language processing can be attributed in large part to the
development of large language models based on Transformers [34], such as BERT [11], LLaMA
[32], PaLM [8], and the GPT series [28, 29, 6, 25]. In some pioneering pre-trained large language
models, a new learning paradigm known as in-context learning (ICL) was observed (see, for example,
[6, 7, 24, 20]). ICL refers to the capability of a pre-trained model to solve a new task based on a few
in-context demonstrations without updating the model parameters.

A recent line of work quantifies ICL in tractable statistical learning setups such as linear regression
with a Gaussian prior (see [14, 3] and references thereafter). Specifically, an ICL model takes a
sequence (x1, y1, ...,xM , yM ,xquery) as input and outputs a prediction of yquery, where (xi, yi)

M
i=1

and (xquery, yquery) are independent samples from an unknown task-specific distribution (where the
task admits a prior distribution). The ICL model is pre-trained by fitting many empirical observations
of such sequence-label pairs. Experiments show that Transformers can achieve an ICL risk close to
that achieved by Bayes optimal estimators in many statistical learning tasks [14, 3].

For ICL of linear regression with a Gaussian prior, the data is generated as

x ∼ N (0, H), y | β̃,x ∼ N
(
β̃
⊤
x, σ2

)
,

where β̃ is a task parameter that satisfies a Gaussian prior, β̃ ∼ N
(
0, ψ2I

)
. In this setup, [14,

3] showed in experiments that Transformers can achieve nearly optimal ICL by matching the
performance of the Bayes optimal estimator, that is, an optimally tuned ridge regression. Besides,
[35] showed by construction that a single linear self-attention (LSA) can implement one-step gradient
descent with zero initialization (GD-0), offering an insight into the ICL mechanism of the Transformer.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Later, theoretical works showed that optimal LSA models effectively correspond to GD-0 models
[1], trained LSA models converge to GD-0 models [38], and GD-0 models (hence LSA models) can
provably achieve nearly Bayes optimal ICL in certain regimes [37].

Our contributions. In this paper, we consider ICL in a more general setup, that is, linear regression
with a Gaussian prior and a non-zero mean (that is, E[β̃] = β∗ ̸= 0). The non-zero mean in task prior
captures a common scenario where tasks share a signal. In this setting, we show that the LSA models
considered in prior papers [1, 38, 37] incur an irreducible additive approximation error. Furthermore,
we show this approximation error is mitigated by considering a linear Transformer block (LTB) that
combines a linear multi-layer perceptron (MLP) component and an LSA component. Our results
highlight the important role of MLP layers in Transformers in reducing the approximation error, and
they suggest that theories about LSA [1, 38, 37] do not fully explain the power of Transformers.
Motivated by this understanding, we investigate LTB in depth and obtain the following additional
results:

• We show that LTB can implement one-step gradient descent with learnable initialization, referred
to by us as GD-β. Additionally, we show that every optimal LTB estimator that minimizes the
in-class ICL risk is effectively a GD-β estimator.

• Moreover, we show that the optimal GD-β, hence also the optimal LTB, nearly matches the
performance of the Bayes optimal estimator for linear regression with a Gaussian prior and a
non-zero mean, provided that the signal-to-noise ratio is upper bounded. These two results together
suggest that LTB performs nearly optimal ICL by implementing GD-β.

• Finally, we show that the GD-β estimator can be efficiently optimized by gradient descent with
an infinitesimal stepsize (that is, gradient flow) under the population ICL risk, despite the non-
convexity of the objective.

Paper organization. The remaining paper is organized as follows. We conclude this section by
introducing a set of notations. We then discuss related papers in Section 2. In Section 3, we set
up our ICL problems and define LTB and LSA models mathematically. In Section 4, we show a
positive approximation error gap between LSA and LTB, which highlights the importance of the
MLP component and motivates our subsequent efforts to study LTB. In Section 5, we connect LSA
estimators to GD-β estimators that are more interpretable for ICL of linear regression. In Section 6,
we study the in-context learning and training of GD-β estimators. We conclude our paper and discuss
future directions in Section 7.

Notations. We use lowercase bold letters to denote vectors and uppercase bold letters to denote
matrices and tensors. For a vector x and a positive semi-definite (PSD) matrix A, we write ∥x∥A :=√
x⊤Ax. We write ⟨·, ·⟩ for the inner product, which is defined as ⟨x,y⟩ := x⊤y for vectors and

⟨A,B⟩ := tr(AB⊤) for matrices. We write A[i] as the i-th row of the matrix A, Am,n as the
(m,n)-th entry, and A−1,−1 as the right-bottom entry. We write 0n,0m×n, In for the zero vector,
zero matrix and identity matrix, respectively. We denote the Kronecker product as ⊗. For two
matrices A and B,A⊗B is a linear mapping which operates as (A⊗B) ◦C = BCA⊤. For a
positive semi-definite matrix A, we write A

1
2 as its principle square root, which is the unique positive

semi-definite matrix B such that BB = BB⊤ = A. We also write A− 1
2 = (A

1
2 )+, where (·)+

denotes the Moore Penrose pseudo-inverse. For two sets A,B we write A+B for the Minkowski
sum, which is defined as {a+ b : a ∈ A, b ∈ B} . We also write a+B = {a}+B for an element a
and a set B. We write null (·) for the null set of a matrix or a tensor.

2 Related Works

Empirical results for ICL in controlled settings. The work by [14] first considered ICL in
controlled statistical learning setups. For noiseless linear regression, [14] showed in experiments
that Transformers match the performance of the optimal estimator (that is, Ordinary Least Square).
Subsequent works by [3, 18] extended their result to noisy linear regression with a Gaussian prior and
showed that Transformers can match the performance of the Bayesian optimal estimator (that is, an
optimally tuned ridge regression). Besides, [30] showed that the above holds even when Transformers
are pretrained on a limited number of linear regression tasks. These papers only considered a Gaussian
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prior with a zero mean. In contrast, we consider a Gaussian prior with a non-zero mean. Our setup
better captures the common scenarios where the tasks share a signal.

The empirical investigation of ICL in tractable statistical learning setups goes beyond linear regression
settings. For more examples, researchers empirically studied the ICL ability of Transformers for
decision trees (see [14], they also considered two-layer networks), algorithm selection [4], linear
mixture models [26], learning Fourier series [2], discrete boolean functions [5], representation
learning [13, 16], and reinforcement learning [17, 19]. Among all these settings, Transformers can
either compete with the Bayes optimal estimators or expert-designed strong benchmarks. These
works are not directly comparable with our paper.

Transformer implements gradient descent. A line of work interpreted the ICL of Transformers by
their abilities to implement gradient descent (GD) [35, 3, 10, 1, 38, 4, 37]. In experiments, [35, 10]
showed that (multi-layer) Transformer outputs are close to (multi-step) GD outputs. When specialized
to linear regression tasks, [35] constructed a single linear self-attention (LSA) that implements one-
step gradient descent with zero initialization (GD-0). Subsequently, [1] showed that optimal LSA
models effectively correspond to GD-0 models, [38] proved that trained LSA models converge to
GD-0 models, [37] showed that GD-0 models (hence LSA models) can provably achieve nearly Bayes
optimal ICL in certain regimes and provided a sharp task complexity analysis of the pre-training.
These papers focused on LSA models. Instead, we consider a linear Transformer block that also
utilizes the MLP layer.

From an approximation theory perspective, [3, 4] showed that Transformers can implement multi-step
GD under general losses. In comparison, we consider a limited setting of linear regression and show
the LSA models can implement one-step GD with learnable initialization (GD-β), moreover, every
optimal LTB model is effectively an GD-β model. Both of our constructions utilize MLP layers
in Transformers, highlighting its importance in reducing approximation error. Different from their
results, we also show a negative approximation result that reveals the limitation of LSA models.

3 Preliminaries

Model input. We use x ∈ Rd and y ∈ R to denote a feature vector and its label, respectively.
Throughout the paper, we assume a fixed number of context examples, denoted byM > 0. We denote
the context examples by (X,y) ∈ RM×d × RM , where each row represents a context example,
denoted by (x⊤

i , yi), i = 1, . . . ,M . To formalize an ICL problem, the input of a model is a token
matrix given by [1, 38]

E :=

(
X⊤ x
y⊤ 0

)
∈ R(d+1)×(M+1). (3.1)

The output of a model corresponds to a prediction of y.

A Transformer block. Modern large language models are often made by stacking basic Transformer
blocks (see, for example, [34]). A basic Transformer block consists of a self-attention layer and a
multi-layer perceptron (MLP) layer [34], E 7→ MLP [ATTN (E)] . Here, the MLP layer is defined as
MLP (E) := W⊤

2 ReLU (W1E) , where ReLU(·) refers to the entrywise rectified linear unit (ReLU)
activation function, and W1, W2 ∈ Rdf×(d+1) are two weight matrices. The self-attention layer
(we focus on the single-head version in this paper) is defined as ATTN(E) := E+W⊤

PWV EM ·
sfmx

(
(WKE)⊤WQE

)
, where sfmx(·) refers to the row-wise softmax operator, WK , WQ ∈

Rdk×(d+1) are the key and query matrices, respectively, WP , WV ∈ Rdv×(d+1) are the projection
and value matrices, respectively, and M is a fixed masking matrix given by

M :=

(
IM 0
0 0

)
∈ R(M+1)×(M+1). (3.2)

This mask matrix is included to reflect the asymmetric structure of a prompt since the label of query
input x is not included in the token matrix [1, 21]. In the above formulation, dk, dv, df are three
hyperparameters controlling the key size, value size, and width of the MLP layer, respectively. In the
single-head case, it is common to set dk = dv = d+ 1 and df = 4(d+ 1), where d+ 1 corresponds
to the embedding size (see, for example, [34]). Our formulation of a basic transformer block ignores
all bias parameters and some popular techniques (such as layer normalization and dropout) to focus
solely on the benefits brought by the model structure.
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A linear Transformer block. To facilitate theoretical analysis, we ignore the non-linearities in the
Transformer block (specifically, sfmx and ReLU) and work with a linear Transformer block (LTB)
defined as

fLTB : R(d+1)×(M+1) → R, E 7→
[
W⊤

2 W1

(
E+W⊤

PWV EM
E⊤W⊤

KWQE

M

)]
−1,−1

,

(3.3)
where E is the token matrix given by (3.1), [ · ]−1,−1 refers to the bottom right entry of a
matrix, M is the fixed masking matrix given by (3.2). Here, the trainable parameters are
WP ,WV ∈ Rdv×(d+1), WK ,WQ ∈ Rdk×(d+1), and W1,W2 ∈ Rdf×(d+1). We use the
bottom right entry of the transformed token matrix as the model output to form a prediction of
the label y. The 1/M factor is a normalization factor in linear attention and can be absorbed
into trainable parameters. Finally, we denote the hypothesis class formed by LTB models as
FLTB := {fLTB : WK ,WQ,WV ,WP ,W1,W2, dk ≥ d, dv ≥ d + 1, df ≥ 1}, where fLTB is
defined in (3.3).

A linear self-attention. We will also consider a linear self-attention (LSA) defined as

fLSA : R(d+1)×(M+1) → R, E 7→
[
E+W⊤

PWV EM
E⊤W⊤

KWQE

M

]
−1,−1

, (3.4)

where WK ,WQ,WP ,WV are trainable parameters. An LSA model can be viewed as an LTB
model without the MLP layer (setting df = d + 1 and W1 = W2 = I). We remark that, unlike
LTB, the residual connection in LSA plays no role because the bottom right entry of the prompt E is
zero (see (3.1)). A variant of the LSA model has been studied by [1, 38, 37], where W⊤

KWQ and
W⊤

PWV are respectively merged into one matrix parameter. Similarly, we denote the hypothesis
class formed by LSA models as FLSA := {fLSA : WK ,WQ,WV ,WP , dk ≥ d, dv ≥ 1}, where
fLSA is defined in (3.4).

Linear regression tasks with a shared signal. Assume that data and context examples are generated
as follows.
Assumption 3.1 (Distributional conditions). Assume that (X,y,x, y) are generated by:

• First, a task parameter is independently generated by β̃ ∼ N (β∗,Ψ) .

• The feature vectors are independently generated by x,x1, . . .xM
i.i.d.∼ N (0,H).

• Then, the labels are generated by y = ⟨β̃,x⟩+ ε, yi = ⟨β̃,xi⟩+ εi, i = 1, . . . ,M, where ε and
εi’s are independently generated by ε, ε1, . . . , εM

i.i.d.∼ N
(
0, σ2

)
.

Here, σ2 ≥ 0, H ⪰ 0, Ψ ⪰ 0, and β∗ ∈ Rd are fixed but unknown quantities that govern the data
distribution. We denote ε = (ε1, ..., εM )

⊤.

We emphasize the importance of the mean of the task parameter β∗ in Assumption 3.1. A non-zero
β∗ represents a shared signal across tasks, which is arguably common in practice. This assumption
is implicitly used in [12] where they assumed task parameters are close to a meta parameter. In
comparison, the prior works for ICL of linear regression [1, 38, 37] only considered a special case
where β∗ = 0. In this special case, they showed that a single LSA layer can achieve nearly optimal
ICL by approximating one-step gradient descent from zero initialization (GD-0). In more general
cases where β∗ is non-zero, we will show in Section 4 that LSA is insufficient to learn the shared
signal and must incur an irreducible approximation error compared to LTB models. This sets our
results apart from the prior papers.

ICL risk. We measure the ICL risk of a model f by the mean squared error,
R(f) := E(f(E)− y)2, (3.5)

where E is defined in (3.1) and the expectation is over E (equivalent to over X, y, and x) and y.

4 Benefits of the MLP Component

Our first main result separates the approximation abilities of the LTB and LSA models for ICL. Recall
that an LSA model can be viewed as a special case of the LTB model with W2 = W1 = I. So the
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best ICL risk achieved by LTB models is no larger than the best ICL risk achieved by LSA models.
However, our next theorem shows a strictly positive gap between the best ICL risks achieved by those
two model classes. This result highlights the benefits of the MLP layer for reducing approximation
error in Transformer.
Theorem 4.1 (Approximation gap). Consider the ICL risk defined by (3.5) and the two hypothesis
classes FLTB and FLSA. Suppose that Assumption 3.1 holds. Then we have

• inff∈FLTB
R (f) is independent of β∗.

• inff∈FLSA
R (f) is a function of β∗. Moreover,

inf
f∈FLSA

R (f)− inf
f∈FLTB

R (f) ≥ max

{
2

3 (M + 1)
,

(
tr (HΨ) + σ2

)2
(M + 1)

2
tr ((HΨ)2)

}
∥β∗∥2H .

The proof of Theorem 4.1 is deferred to Appendix B. Theorem 4.1 reveals a gap in terms of
the approximation abilities between the hypothesis set of LTB models and that of LSA models.
Specifically, the best ICL performance achieved by LTB models is independent of β∗, while the
best ICL performance achieved by LSA models is sensitive to the norm of β∗. In particular, when
∥β∗∥2H = Ω(M), the best ICL risk of the former is smaller than that of the latter by at least a constant
additive term. So when β∗ is large, the hypothesis class formed by LSA models is restricted in its
ability to perform effective ICL. We will show in Section 5 that the hypothesis class formed by LTB
models can achieve nearly optimal ICL in this case.

We also remark that the Θ(1/M) factor in the lower bound in Theorem 4.1 is not improvable. This is
because LSA models can implement a one-step GD algorithm that is consistent for linear regression
tasks (that is, the risk converges to the Bayes risk as the number of context examples goes to infinity),
with an excess risk bound of Θ(1/M) [38, 37]. So the approximation error gap is at most Θ(1/M).
Nonetheless, the Ω(∥β∗∥2H/M) approximation gap between LSA models and LTB models shown by
Theorem 4.1 suggests that β∗ is not learnable by LSA models during pre-training. In contrast, we
will show in Section 6 that LTB models can learn β∗ during pre-training.

We emphasize that the ability of LTB to learn non-zero mean is a joint effect of an MLP component
and a skip connection. Note that LSA also has a skip connection, but its skip connection is inactive.
In comparison, the MLP component in LTB activates the skip connection. Therefore, we attribute the
ability to learn non-zero mean to the MLP component, which is the only difference between LTB
and LSA. Nonetheless, one can attribute the ability to learn non-zero mean to the skip connection:
without a skip connection, LTB reduces to LSA with a potential rank constraint on the parameter,
which cannot learn non-zero mean as we have proved. The above two explanations take different
perspectives to interpret the same phenomenon. Finally, we remark that Theorem 4.1 holds even
when H and Ψ in Assumption 3.1 are not full rank.

Does scratchpad help? We have demonstrated that employing a single-layer LSA introduces an
additional approximation error in the in-context learning problem for the linear regression task
defined in Assumption 3.1. Nonetheless, are there alternative structures, apart from MLPs, that could
potentially reduce this approximation error? One plausible strategy is to include a “scratchpad” in the
input token. Specifically, we construct the token matrix as follows:

E :=

X⊤ x
1⊤
M 1
y⊤ 0

 ∈ R(d+2)×(M+1) (4.1)

which we then input into the LSA layer. We discuss the limitation of this scheme in Appendix J.
Notably, this method does not successfully recover the GD-β estimator defined in Section 5. We
leave it as future work to see whether the token matrix with scratchpad could implement other types
of estimators that more effectively address the linear regression tasks defined in Assumption 3.1, as
well as whether additional structures could help alleviate this approximation error.

Experiments on GPT2. Theorem 4.1 shows the importance of the MLP component in LSA models
for reducing approximation error. We also empirically validate this result by training a more complex
GPT2 model [14] for the ICL tasks specified by Assumption 3.1. In the experiments, we use a
GPT2-small model (with or without the MLP component) with 6 layers and 4 heads in each layer.
The experiments follow the setting in [14], except that we train the model using a token matrix defined
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Figure 1: The test loss along the training process for LTB and LSA layer.

in (3.1). We considere two ICL settings, which instantiates Assumption 3.1 with β∗ = (0, 0, ..., 0)⊤

and β∗ = (10, 10, ..., 10)⊤, respectively. We set d = 20,M = 40, σ = 0,Ψ = H = Id in both
settings. More experimental details are in Appendix I. In each setting, we train and test the model
using the same data distribution. The experimental results are presented in Table 1. From Table 1, we
observe that both models (with or without the MLP component) achieve a nearly zero loss when the
task mean is zero. However, when the task mean is set away from zero, the GPT2 model with MLP
component still performs relatively well while the GPT2 model without MLP component incurs a
significantly larger loss. These empirical observations are consistent with our Theorem 4.1, indicating
the benefits of MLP layers in reducing approximation error for ICL of linear regression with a shared
signal.

Table 1: Losses of GPT2 with or without
MLP component for linear regression with a
shared signal.

Model GPT2 GPT2-noMLP
β∗ = 0× 1 0.003 0.024
β∗ = 10× 1 0.013 8.871

Experiments on LSA and LTB. We trained both
the LSA and LTB layers for β∗ = (1, 1, ..., 1)⊤, and
found that the trained LTB layer consistently achieved
a significantly lower ICL risk than the LSA layer (see
Figure 1). In these experiments, we adhered strictly
to the previously defined LSA and LTB structures,
setting the parameters as follows: d = 5, M = 5,
σ = 0, and Ψ = H = Id. At each training step, we
sampled B = 128 new linear regression tasks.

In this part, we have shown that LSA models, the primary focus in previous ICL theory literature (see,
e.g., [1, 38, 37] and references therein), are not sufficiently expressive for ICL of linear regression
with a shared signal. In what follows, we will show LTB models are sufficient for this ICL problem.

5 LTB Implements One-Step GD with Learnable Initialization

To understand the expressive power of the LTB models, we build a connection between FLTB and
its subset of models which we call one-step GD with learnable initialization (GD-β). We will
first introduce GD-β models and then show that the best LTB models that minimize the ICL risk
effectively belong to GD-β models.

The GD-β models. A GD-β model is defined as

fGD-β : R(d+1)×(M+1) → R, E 7→
〈
β − Γ · 1

M
X⊤ (Xβ − y) ,x

〉
, (5.1)

where E is the token matrix given by (3.1), Γ ∈ Rd×d and β ∈ Rd are trainable parameters. Similarly,
we define the function class formed by GD-β models as FGD-β := {fGD-β : β ∈ Rd, Γ ∈ Rd×d}.
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A GD-β model computes a parameter that fits the context examples (X,y) and uses that parameter
to make a linear prediction of label y on feature x. More specifically, the first step is by using one
gradient descent step with a matrix stepsize Γ and an initialization β on the least square objective
formed by context examples (X,y).

LTB implements GD-β. A GD-β model (5.1) is a special case of an LTB model (3.3) by setting

W⊤
2 W1 =

(
∗ ∗
β⊤ 1

)
, W⊤

PWV =

(
−Id 0d

0⊤
d 1

)
, W⊤

KWQ =

(
Γ ∗
0⊤
d ∗

)
,

where ∗ denotes the entries that do not affect the model output (hence can be set to anything). Note
that Γ and β are free provided that dv ≥ d+ 1, dk ≥ d and df ≥ 1 (as required in FLTB). In sum,
we have proved the following lemma showing that the set of GD-β models belongs to the set of LTB
models.

Lemma 5.1. We have FGD-β ⊆ FLTB. Therefore, inff∈FGD-β R(f) ≥ inff∈FLTB
R(f).

Optimal GD-β models for ICL. We now consider FGD-β and its optimal ICL risk. We have the
following theorem that computes the globally minimal ICL risk over FGD-β and specifies the sufficient
and necessary conditions for a global minimizer. The proof is deferred to Appendix C.

Theorem 5.2 (Optimal GD-β models). Consider the ICL risk defined by (3.5). Suppose that
Assumption 3.1 holds. Then we have

• The minimal ICL risk of FGD-β is

inf
f∈FGD-β

R(f) = σ2 + tr
(
H

1
2ΨH

1
2

(
I−H

1
2ΨH

1
2Ω−1

))
, (5.2)

where Ω := [(M + 1)H
1
2ΨH

1
2 + (tr (HΨ) + σ2)Id]/M.

• The global optimal parameters for fGD-β that attain the minimum (5.2) take the following form:

β = β∗ + null (H) , Γ = Γ∗ + null
(
H⊗2

)
, where Γ∗ := ΨH

1
2Ω−1H− 1

2 (5.3)

and β∗ is the mean of the task parameter in Assumption 3.1 Here, null (H) :=
{
z ∈ Rd : Hz = 0

}
is the null space of H, and null

(
H⊗2

)
=
{
Z ∈ Rd×d : HZH = 0

}
is the null space of H⊗2. In

particular, when H is positive definite, the global optimal parameter is unique, (β,Γ) = (β∗,Γ∗).

• Under Assumption 3.1, the global optimal fGD-β that attains the minimum (5.2) is unique as a
function of E (given by (3.1)) and takes the following form:

f∗(E) =

〈
β∗ − 1

M
Γ∗X⊤ (Xβ∗ − y) ,x

〉
. (5.4)

Theorem 5.2 characterizes the optimal GD-β models for ICL. In the above theorem, Γ∗ → H−1 as
the context length M goes to infinity (assuming that H is positive definite). In this case, the optimal
GD-β function (5.2) implements one Newton step from initialization β∗. With a finite context length
M , (5.2) implements one regularized Newton step from initialization β∗.

Optimal LTB models for ICL. Lemma 5.1 shows that the best ICL risk achieved by an GD-β model
is no smaller than the best ICL risk achieved by an LTB model. Surprisingly, our next theorem shows
that the best ICL risk achieved by a GD-β is equal to that achieved by an LTB model. Therefore, the
hypothesis set FGD-β is diverse enough to match the approximation ability of the larger hypothesis
set FLTB for ICL.

Theorem 5.3 (Optimal LTB models). Consider the ICL risk defined by (3.5). Suppose that Assumption
3.1 holds and that rank

(
H

1
2Ψ

1
2

)
≥ 2. Then we have

• The minimal ICL risk of FLTB and of FGD-β are equal,

inf
f∈FLTB

R(f) = inf
f∈FGD-β

R(f) = RHS of (5.2)
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• Rewrite an LTB model as fLTB in (3.3) with parameters (∗ denotes parameters that do not affect
the output)

W⊤
2 W1 =

(
∗ ∗
γ⊤ ∗

)
, W⊤

KWQ =

(
V11 ∗
v⊤
12 ∗

)
, W⊤

2 W1W
⊤
PWV =

(
∗ ∗
v⊤
21 v−1

)
.

Then the sufficient and necessary conditions for fLTB ∈ argminf∈FLTB
R(f) are

v−1 ̸= 0, v−1v12 ∈ null (H) , v21 ∈ −v−1β
∗ + null (H) , γ ∈ β∗ + null (H) ,

v−1V11 ∈ Γ∗⊤ − v−1β
∗v⊤

12 + null
(
H⊗2

)
,

where β∗ is defined in Assumption 3.1 and Γ∗ is defined in (5.3). In particular, when H is positive
definite, the globally optimal parameter represented by (V11,v12,v21, v−1,γ) is unique up to a
rescaling of v−1.

• Under Assumption 3.1, the globally optimal LTB model (that is, a function in argminf∈FLTB
) is

unique as a function of E (given by (3.1)) and takes the form of (5.4) almost surely.

Lemma 5.1 and Theorem 5.3 together show that FGD-β is a representative subset of FLTB that does
not incur additional approximation error. In addition, every optimal LTB model is effectively an
optimal GD-β model when restricted to all possible token matrices. Note that the optimal model
parameters for LTB or GD-β are not unique because of redundant parameterization. But the optimal
LTB and GD-β models are unique as a function of all possible token matrices. The above holds even
when H and Ψ are potentially rank deficient.

Comparison with prior works. A line of papers considers LSA models for ICL under Assumption 3.1
with β∗ = 0 [35, 1, 38, 37]. They show that LSA models can (effectively) implement all possible
GD-0 models that specialize GD-β models by fixing β = 0. In addition, they show that every
optimal LSA model is (effectively) a GD-0 model for ICL under Assumption 3.1 with β∗ = 0 (see,
for example, Theorem 1 in [1]). In comparison, we consider a harder ICL problem that allows a
large shared signal in tasks (that is, a large β∗ in Assumption 3.1). In this setting, our Theorem 4.1
shows that FLSA (hence its subset formed by GD-0 models), as a subet of FLTB, incurs an additional
approximation error propotional to ∥β∗∥2H compared with FLTB. In contrast, FGD-β, as a subset of
FLTB, does not incur additional approximation error according to our Theorem 5.3. Thus the LSA
and GD-0 models considered by [35, 1, 38, 37] are not capable of learning the shared signal β∗,
while an LTB model can learn β∗ through implementing GD-β and encoding β∗ in the initialization
parameter.

6 Training and In-Context Learning of GD-beta

We have shown that FGD-β is a representative subset of FLTB that effectively contains every optimal
LTB model. We now examine the ICL and training of GD-β models.

Nearly optimal ICL with GD-β. We will compare the best ICL risk achieved by GD-β with the
best ICL risk achieved by any estimator. The following lemma is an extension of Proposition 5.1 and
Corollary 5.2 in [37] (which is based on [33]) that characterizes the Bayes optimal ICL risk among
all estimators.
Lemma 6.1 (Bayes optimal ICL). Given a task-specific dataset (X,y,x, y) sampled according
to Assumption 3.1, let g (X,y,x) be an arbitrary estimator for y and measure the average linear
regression risk by L (g;X) := E[(g(X,y,x)− y)2 | X]. It is clear that EL (g;X) = R(g). Then,

• The optimal estimator that minimizes the average linear regression risk L(·;X) is g∗(X,y,x) =
x⊤β∗ + x⊤Ψ

1
2

(
Ψ

1
2X⊤XΨ

1
2 + σ2Id

)−1
Ψ

1
2X⊤ (y −Xβ∗) .

• Assume the signal-to-noise ratio is upper bounded, that is, tr (HΨ) ≲ σ2, then with proba-
bility at least 1 − exp (−Ω (M)) over the randomness of X, it holds that L (g∗;X) − σ2 ≃∑d

i=1 min{ϕ̄, ϕi}, where ϕ̄ ≂ σ2

M , and (ϕi)i≥1 are the eigenvalues of Ψ
1
2HΨ

1
2 .

The proof is deferred to Appendix F. Lemma 6.1 shows that the Bayes optimal estimator is a ridge
regression estimator centered at β∗. This is consistent with [37] where the Bayes optimal estimator
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is a ridge regression estimator as they assumed β∗ = 0. The following corollary of Theorem 5.2
computes the rate of the ICL risk achieved by the optimal GD-β model.
Corollary 6.2. Under the setup of Theorem 5.2, additionaly assume the signal-to-noise ratio is upper
bounded, that is, tr (ΨH) ≲ σ2. Then we have inff∈FGD-β R(f)− σ2 ≃

∑d
i=1 min

{
ϕ̄, ϕi

}
, where

(ϕi)i≥0 are the eigenvalues of Ψ
1
2HΨ

1
2 and ϕ̄ := [tr(Ψ

1
2HΨ

1
2 ) + σ2]/M ≃ σ2/M.

The optimal (expected) ICL risk achieved by FGD-β in Corollary 6.2 matches the (high probability)
Bayes optimal ICL risk in Lemma 6.1 ignoring constant factors, provided that the signal-to-noise
ratio is upper bounded. Therefore FGD-β achieves nearly Bayes optimal ICL risk. As a consequence,
the larger hypothesis set FLTB also achieves nearly Bayes optimal ICL of linear regression under
Assumption 3.1.

For the simplicity of discussion, we assume a fixed context length during pretraining and inference.
Our discussions can be extended to allow a different context length during pretraining and inference
using techniques in [37]. However, this is not the main focus of this work.

Optimization of GD-β with infinite tasks. We have shown that FGD-β is a representative subset
of FLTB that covers the optimal LTB models and achieves nearly optimal ICL risk. We now consider
the optimization in the parameter space specified by FGD-β. For simplicity, we follow [38] and
consider gradient descent with an infinitesimal stepsize on the ICL objective with an infinite number
of tasks. That is, we consider the optimization of gradient flow on the population ICL risk under the
parameterization of GD-β,

dβ(t)

dt
= − ∂

∂β
R(fGD-β),

dΓ(t)

dt
= − ∂

∂Γ
R(fGD-β), (6.1)

where R is defined by (3.5) and fGD-β is defined by (5.1).

The following theorem guarantees the global convergence of gradient flow. We introduce some
notation to accommodate cases when H is rank deficient. Let PS be the orthogonal projection
operator onto a subspace S. Let H = Im (H) be the image space of matrix H (viewing H as a
linear map) and H⊥ := null (H) be its orthogonal complement. Similarly, let Z := Im

(
H⊗2

)
=

{HZH,Z ∈ Rd×d} be the image space of the operator H⊗2 and Z⊥ be its orthogonal complement.
Then we have the following theorem.
Theorem 6.3. Consider the gradient flow defined by (6.1) with initialization β(0),Γ(0). We have,

PH (β(t)) → PH (β∗) , PH⊥ (β(t)) = PH⊥ (β(0)) ,

PZ (Γ(t)) → PZ (Γ∗) , PZ⊥ (Γ(t)) = PZ⊥ (Γ(0))

as t→ ∞. In particular, if H is positive definite, the gradient flow converges to the unique global
minimizer of ICL risk over GD-β class, that is, β(t) → β∗ and Γ(t) → Γ∗ as t→ ∞.

The proof, as well as the convergence rate, is deferred to Appendix G. We remark that (6.1) is a
complex dynamical system on a non-convex potential function of β and Γ. We briefly discuss our
proof techniques assuming that H is full rank. The rank-deficient cases can be handled in the same
way by applying appropriate project operators. To conquer the non-convex optimization issue, we
observe that for every fixed Γ, the potential as a function of β is smooth and strongly convex with a
uniformly bounded condition number. This observation allows us to establish a uniform convergence
for β. When β is sufficiently close to β∗, the potential as a function of Γ is approximately convex,
allowing us to track the convergence of Γ.

Theorem 6.3 shows that optimization of GD-β can be done efficiently by gradient flow without
suffering from non-convexity. However, as we have shown in previous sections, LTB utilizes a more
complex parameterization than GD-β. So Theorem 6.3 does not imply optimization of LTB is easy.
We leave it as future work to study the optimization and statistical complexity for directly learning
LTB models.

7 Concluding Remarks

In this paper, we study the in-context learning of linear regression with a shared signal represented
by a Gaussian prior with a non-zero mean. We show that although the linear self-attention layer
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discussed in prior works is consistent for this more complex task, its risk has an inevitable gap
compared to that of the linear Transformer block (LTB), which is a linear self-attention layer followed
by a linear multi-layer perception (MLP) layer. Next, we show that the effectiveness of the LTB arises
because it can implement the one-step gradient descent estimator with learnable initialization (GD-β).
Moreover, all global minimizers in the LTB class are equivalent to the unique global minimizer in the
GD-β class, which can achieve nearly Bayes optimal in-context learning risk. Finally, we consider
training on in-context examples and prove global convergence over the GD-β class of gradient flow
on the population loss. Several future directions are worth discussing.

Optimization and statistical complexity. This paper provides an approximation theory of LTB and
an optimization theory of GD-β. However, the statistical complexity of learning LTB or GD-β is
not considered. The work by [37] provided techniques for analyzing the statistical task complexity
for pre-training GD-0. An interesting direction is to extend their method to study the statistical
complexity of learning GD-β. However, their method crucially relies on the convexity of the risk
induced GD-0, while we have shown that the risk induced by GD-β is non-convex. New ideas for
dealing with non-convexity are needed here.

From LTB to Transformer block. We focus on LTB in this work, which simplifies a vanilla
Transformer block by removing the non-linearities from the softmax self-attention and the ReLU
activation in the MLP layers. This simplification allows us to obtain precise theoretical results for
LTB (such as its connection to GD-β). On the other hand, non-linearities are arguably necessary for
Transformers to work well in practice. An important next step is to further consider the theoretical
benefits of non-linearities based on our current results.

Roles of MLP layers. The work by [15] (and references thereafter) empirically found that MLP
layers operate as key-value memories that store human-interpretable patterns in some pre-trained
Transformers. Their work motivated a method for locating and editing information stored in language
models by modifying their MLP layers (see, e.g., [9, 23]). Our work proves that the MLP component
enables LTB to learn the shared signal in linear regression tasks, which cannot be done by a single
LSA component. We leave it as future work to theoretically clarify the information stored in the MLP
component.
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A Notation and Variable Transformation

In order to simplify the proof, let’s first describe a variable transformation scheme for our model and
data coming from Assumption 3.1.
Definition A.1 (Variable Transformation). We fix M as the length of the contexts. Recall that X,x
are, respectively, the features in the context and the query input, while β̃ and β∗ are the true task
parameter for the inference prompt and its expectation, respectively. Following the Assumption 3.1,
we have β̃ ∼ N (β∗,Ψ) . From the definition for multivariate Gaussian distribution, we know there
exists a random vector θ̃ such that

β̃ = β∗ +Ψ
1
2 θ̃, (A.1)

where
θ̃ ∼ N (0, Id) . (A.2)

Recall the noise vector is defined as ε = y −Xβ and is generated from ε ∼ N
(
0, σ2 · IM

)
.

Rank deficient case Note that, even when Ψ is rank-deficient, the variable transformation in (A.1)
and (A.2) still hold. This can be seen from the definition of the multivariate Gaussian distribution
(Def 20.11 and the discussion below in [31]): A vector β̃ ∈ Rd with mean β∗ and covariance matrix
Ψ has a multivariate normal distribution, if it has the same distribution as Aθ̃ + β∗ where A is
any d×m matrix satisfying AA⊤ = Ψ and θ̃ ∼ N (0m, Im) . Here, we can recover the variable
transformation above if we take m = d and A = Ψ

1
2 .

Notation Before we delve into the detailed proof, let’s repeat the notation part with some additional
notations. We use lowercase bold letters to note vectors and uppercase bold letters to denote
matrices and tensors. For a vector x and a positive semi-definite (PSD) matrix A, we denote
∥x∥A :=

√
x⊤Ax. We denote ⟨·, ·⟩ as the inner product, which is defined as ⟨x,y⟩ := x⊤y for

vectors and ⟨A,B⟩ := tr
(
AB⊤

)
for matrices. For a matrix A, we denote ∥A∥op , ∥A∥F as the

operator norm and the Frobenius norm, respectively. We denote A[i] as the i-th row of the matrix A,
Am,n as the (m,n)-th entry, and A−1,−1 as the right-botom entry. We denote 0n,0m×n, In as the
zero vector, zero matrix and identity matrix, respectively.

For a positive semi-definite matrix A, we denote A
1
2 for the principle square root of A, which is

defined as the unique real matrix B such that B is positive semi-definite and BB = BB⊤ = A.
For positive definite A, its principle square root is also positive definite. We denote A+ as the

Moore-Penrose pseudo-inverse for any matrix A. We also denote A− 1
2 =

(
A

1
2

)+
. We denote

⊗ as the Kronecker product. For compatible matrices of proper size A,B,C, B⊤ ⊗ A is a
linear mapping which is defined by

(
B⊤ ⊗A

)
◦ C = ACB. We denote Λ := Ψ

1
2HΨ

1
2 and

ϕ1 ≥ ϕ2 ≥ ... ≥ ϕd ≥ 0 are its ordered eigenvalues. We also denote λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0 as
the ordered eigenvalues of H, and λ−1 > 0 as its minimal positive eigenvalue. Finally, we denote
another important matrix

Ω :=
M + 1

M
H

1
2ΨH

1
2 +

tr (HΨ) + σ2

M
· Id. (A.3)

Note that, under this definition and our assumption on H and Ψ, we have Ω is invertible.
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B Proof of Theorem 4.1

Proof. The fact that inff∈FLTB
R(f) does not depend on the vector β∗ is subsumed in the Theorem

5.3, so we do not prove it here. We are going to prove the inequality in the theorem. First, from
Theorem 5.3 we know that,

inf
f∈FLTB

R(f) = σ2 + tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
, (B.1)

where Ω is defined in (A.3). Then, it suffices to lower bound inff∈FLSA
R(f). So let’s take an arbitrary

f ∈ FLSA, which is denoted as

f(E) =

[
E+W⊤

PWV EM
E⊤W⊤

KWQE

M

]
−1,−1

,

where E is the token matrix defined in (3.1). Since the prediction is the right-bottom entry of the
output matrix, we know only the last row of the product W⊤

P WV attends the prediction. Similarly,
only the last column of the E on the far right in the above equation atttends the prediction. Since the
last column of E is

(
x⊤ 0

)⊤
, we know that only the first d rows of the product W⊤

KWQ enter the
calculation (since other parts are multipled by zero). Therefore, we denote

W⊤
P WV =

(
∗ ∗
u⊤
21 u−1

)
, W⊤

K WQ =

(
U11 ∗
u⊤
12 ∗

)
,

where U11 ∈ Rd×d,u12,u21 ∈ Rd×1, u−1 ∈ R, and ∗ denotes entries that do not enter the final
prediction. The model prediction can be written as

f(E) =
(
u⊤
21 u−1

)
· EMME⊤

M
·

(
U11

u⊤
12

)
· x

=

[
u⊤
21 ·

1

M
X⊤X ·U11 + u⊤

21 ·
1

M
X⊤y · u⊤

12 + u−1 ·
1

M
y⊤X ·U11 + u−1 ·

1

M
y⊤y · u⊤

12

]
· x.

Step 1: simplify the risk function. We use β̃ to denote the task parameter. From the Assumption
3.1 and Definition A.1, we have

y = Xβ̃ + ε, y =
〈
β̃,x

〉
+ ε, β̃ ∼ N (β∗,Ψ) , β̃ = β∗ +Ψ

1
2 θ̃;

and
X[i],x

i.i.d.∼ N (0,H) , ε[i], ε
i.i.d.∼ N

(
0, σ2

)
, θ̃ ∼ N (0, Id) .

Then the model output can be written as

f(E) =

[
u⊤
21 ·

1

M
X⊤X ·U11 + u⊤

21 ·
1

M
X⊤y · u⊤

12 + u−1 ·
1

M
y⊤X ·U11 + u−1 ·

1

M
y⊤y · u⊤

12

]
· x

=

[(
u21 + u−1β̃

)⊤
· 1

M
X⊤X ·

(
U11 + β̃u⊤

12

)]
· x

+

[
u⊤
21 ·

1

M
X⊤ε · u⊤

12 + u−1 ·
1

M
ε⊤X ·U11 + u−1 ·

2

M
ε⊤Xβ̃u⊤

12 +
1

M
ε⊤ε · u−1u

⊤
12

]
· x.

To simplify the presentation, we denote

z⊤
1 =

(
u21 + u−1β̃

)⊤
· 1

M
X⊤X ·

(
U11 + β̃u⊤

12

)
,

z⊤
2 = u⊤

21 ·
1

M
X⊤ε · u⊤

12 + u−1 ·
1

M
ε⊤X ·U11 + u−1 ·

2

M
ε⊤Xβ̃u⊤

12

z⊤
3 =

1

M
ε⊤ε · u−1u

⊤
12.
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Since x,X, ε, β̃ are independent, we have

R (f) = E
(
f(E)−

〈
β̃,x

〉
− ε
)2

= σ2 + E
(
f(E)−

〈
β̃,x

〉)2
(ε is independent from other variables and zero-mean)

= E
[〈

z1 + z2 + z3 − β̃,x
〉2]

+ σ2

=

〈
H,E

(
z1 + z2 + z3 − β̃

)(
z1 + z2 + z3 − β̃

)⊤〉
+ σ2.

Note that z1 does not contain ε, z2 is a linear form of ε, and z3 is a quadratic form of ε. Using
ε ∼ N (0, σ2Id), we have E[(z1 − β̃) · z⊤

2 ] = 0 and E[z2z
⊤
3 ] = 0. Therefore, we have

R (f)− σ2 =

〈
H,E

(
z1 − β̃

)(
z1 − β̃

)⊤〉
︸ ︷︷ ︸

S1

+
〈
H,Ez2z

⊤
2

〉︸ ︷︷ ︸
S2

+
〈
H,Ez3z

⊤
3

〉︸ ︷︷ ︸
S3

+ 2
〈
H,E

(
z1 − β̃

)
z⊤
3

〉
︸ ︷︷ ︸

S4

. (B.2)

Step 2: compute S1. By Lemma H.4 and that X is independent of all other random variables, we
have〈

H,Ez1z
⊤
1

〉
=Etr

[(
U11 + β̃u⊤

12

)⊤
· 1

M
X⊤X ·

(
u21 + u−1β̃

)(
u21 + u−1β̃

)⊤
· 1

M
X⊤X ·

(
U11 + β̃u⊤

12

)
H

]
=
M + 1

M
Eβ̃tr

[(
U11 + β̃u⊤

12

)⊤
·H ·

(
u21 + u−1β̃

)(
u21 + u−1β̃

)⊤
·H ·

(
U11 + β̃u⊤

12

)
H

]
+

1

M
Eβ̃tr

[
tr

((
u21 + u−1β̃

)(
u21 + u−1β̃

)⊤
H

)(
U11 + β̃u⊤

12

)⊤
H
(
U11 + β̃u⊤

12

)
H

]
.

We denote
b := u21 + u−1β

∗ ∈ Rd, A := U11 + β∗u⊤
12 ∈ Rd×d, (B.3)

then applying β̃ = β∗ +Ψ
1
2 θ̃, we get〈

H,Ez1z
⊤
1

〉
=
M + 1

M
Eθ̃∼N (0,Id)

tr

[(
A+Ψ

1
2 θ̃u⊤

12

)⊤
·H ·

(
b+ u−1Ψ

1
2 θ̃
)(

b+ u−1Ψ
1
2 θ̃
)⊤

·H ·
(
A+Ψ

1
2 θ̃u⊤

12

)
H

]
+

1

M
Eθ̃∼N (0,Id)

tr

((
b+ u−1Ψ

1
2 θ̃
)(

b+ u−1Ψ
1
2 θ̃
)⊤

H

)
tr

[(
A+Ψ

1
2 θ̃u⊤

12

)⊤
H
(
A+Ψ

1
2 θ̃u⊤

12

)
H

]
.

Note that the first and third moments of θ̃ are zero. So the above equation only involves the zeroth,
second, and fourth moments of θ̃. Therefore we have〈

H,Ez1z
⊤
1

〉
=
M + 1

M
tr
(
A⊤Hbb⊤HAH

)
+

1

M
tr
(
bb⊤H

)
tr
(
A⊤HAH

)
︸ ︷︷ ︸

The leading term

+T2 + T4,

(B.4)

where T2 and T4 are the second order and the fourth order term, respectively. More concretely, the
second order term is

T2 =
M + 1

M
Etr
{
u−1A

⊤Hbθ̃
⊤
Ψ

1
2HΨ

1
2 θ̃u⊤

12H+ u−1u12θ̃
⊤
Ψ

1
2HΨ

1
2 θ̃b⊤HAH
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+ u−1u12θ̃
⊤
Ψ

1
2Hbθ̃

⊤
Ψ

1
2HAH+ u−1A

⊤HΨ
1
2 θ̃b⊤HΨ

1
2 θ̃u⊤

12H

+ u12θ̃
⊤
Ψ

1
2Hbb⊤HΨ

1
2 θ̃u⊤

12H+ u2−1A
⊤HΨ

1
2 θ̃θ̃

⊤
Ψ

1
2HAH

}
+

1

M
E
{
u2−1θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃ · tr

(
A⊤HAH

)
+ b⊤Hb · tr

(
u12θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃u⊤

12H
)

+ 2u−1b
⊤HΨ

1
2 θ̃ · tr

(
u12θ̃

⊤
Ψ

1
2HAH

)
+ 2u−1b

⊤HΨ
1
2 θ̃ · tr

(
A⊤HΨ

1
2 θ̃u⊤

12H
)}

=
M + 1

M

{
2u−1tr(Ψ

1
2HΨ

1
2 ) · u⊤

12HA⊤Hb+ 2u−1b
⊤HΨHAHu12 + b⊤HΨHb · u⊤

12Hu12

+ u2−1tr
(
A⊤HΨHAH

)}
+

1

M

{
u2−1tr

(
Ψ

1
2HΨ

1
2

)
· tr
(
A⊤HAH

)
+ tr

(
Ψ

1
2HΨ

1
2

)
· b⊤Hb · u⊤

12Hu12 + 4u−1 · b⊤HΨ
1
2HAHu12

}

=
2(M + 1)

M
u−1b

⊤ [tr(HΨ)H+HΨH]AHu12 + b⊤
(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
b · u⊤

12Hu12

+ u2−1tr

(
A⊤

(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
AH

)
+

4

M
u−1 · b⊤HΨHAHu12. (B.5)

The fourth order term is

T4 =
M + 1

M
Etr
{
u2−1u12θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃u⊤

12H

}
+

1

M
Etr
{
u2−1θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃ · tr

(
u12θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃u⊤

12H
)}

=
M + 2

M
u2−1u

⊤
12Hu12 · E

(
θ̃
⊤
Ψ

1
2HΨ

1
2 θ̃
)2

=
M + 2

M
u2−1 ·

(
2tr (HΨHΨ) + tr (HΨ)

2
)
· u⊤

12Hu12. (B.6)

For the cross term in S1, we have〈
H,Ez1β̃

⊤〉
=E
{(

u21 + u−1β̃
)⊤

· 1

M
X⊤X ·

(
U11 + β̃u⊤

12

)
Hβ̃

}
(B.7)

=E
{(

u21 + u−1β̃
)⊤

H
(
U11 + β̃u⊤

12

)
Hβ̃

}
(From the distribution of X)

=E
{(

b+ u−1Ψ
1
2 θ̃
)⊤

H
(
A+Ψ

1
2 θ̃u⊤

12

)
H
(
β∗ +Ψ

1
2 θ̃
)}

(By (B.3))

=b⊤HAHβ∗ + E
{
u−1θ̃

⊤
Ψ

1
2HΨ

1
2 θ̃u⊤

12Hβ∗ + u−1θ̃
⊤
Ψ

1
2HAHΨ

1
2 θ̃ + b⊤HΨ

1
2 θ̃u⊤

12HΨ
1
2 θ̃

}
=b⊤HAHβ∗ + u−1tr (HΨ) · u⊤

12Hβ∗ + u−1tr (HAHΨ) + u⊤
12HΨHb, (B.8)

where the last row comes from the fact that θ̃ ∼ N (0, Id) . Moreover, we have〈
H,Eβ̃β̃

⊤〉
= β∗⊤Hβ∗ + tr (HΨ) . (B.9)

Combining (B.4), (B.5), (B.6), (B.8), (B.9), we have

S1 =
M + 1

M
tr
(
A⊤Hbb⊤HAH

)
+

1

M
tr
(
bb⊤H

)
tr
(
A⊤HAH

)
+
M + 2

M
u2−1 ·

(
2tr (HΨHΨ) + tr (HΨ)

2
)
· u⊤

12Hu12
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+
2(M + 1)

M
u−1b

⊤ [tr(HΨ)H+HΨH]AHu12

+ u2−1tr

(
A⊤

(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
AH

)
+

4

M
u−1 · b⊤HΨHAHu12

− 2

[
b⊤HAHβ∗ + u−1tr (HΨ) · u⊤

12Hβ∗ + u−1tr (HAHΨ)

+ u⊤
12HΨHb

]
+ β∗⊤Hβ∗ + tr (HΨ) + b⊤

(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
b · u⊤

12Hu12.

(B.10)

Step 3: other terms. Let us compute S2, S3 and S4. Using definitions, we rewrite z2 as

z⊤
2 = u⊤

21 ·
1

M
X⊤ε · u⊤

12 + u−1 ·
1

M
ε⊤X ·U11 + u−1 ·

2

M
ε⊤Xβ̃u⊤

12

= b⊤ · 1

M
X⊤ε · u⊤

12 + u−1 ·
1

M
ε⊤X ·A+ u−1 ·

2

M
ε⊤XΨ

1
2 θ̃u⊤

12. (B.11)

Since ε ∼ N
(
0, σ2IM

)
, θ̃ ∼ N (0, Id) and they are independent, all terms in S2 vanish except if

the term contains even orders of θ̃ or ε. So we have

S2 =
〈
H,Ez2z

⊤
2

〉
=

1

M2
E
{
b⊤X⊤ε · u⊤

12Hu12 · ε⊤X · b+ u2−1ε
⊤XAHA⊤X⊤ε

+ 2u−1 · ε⊤XAHu12 · ε⊤Xb+ 4u2−1 · ε⊤XΨ
1
2 θ̃ · u⊤

12Hu12 · θ̃
⊤
Ψ

1
2X⊤ε

}
=
σ2

M

{
b⊤Hb · u⊤

12Hu12 + u2−1tr
(
HAHA⊤

)
+ 2u−1u

⊤
12HA⊤Hb+ 4u2−1tr (HΨ)u⊤

12Hu12

}
(B.12)

For the other two terms, we have

S3 =
1

M2
u2−1E

{
ε⊤εu⊤

12Hu12ε
⊤ε
}
=
σ4(M + 2)

M
u2−1u

⊤
12Hu12 (B.13)

and

S4 = 2
〈
H,E

(
z1 − β̃

)
z⊤
3

〉
= 2E

{[(
u21 + u−1β̃

)⊤
· 1

M
X⊤X ·

(
U11 + β̃u⊤

12

)
− β̃

⊤
]
H · 1

M
ε⊤ε · u−1u

⊤
12

}
= 2σ2u−1E

{[(
b+ u−1Ψ

1
2 θ̃
)⊤

·H ·
(
A+Ψ

1
2 θ̃u⊤

12

)
− β̃

∗⊤
− θ̃

⊤
Ψ

1
2

]
Hu12

}
= 2σ2u−1

[
b⊤HA− β̃

∗⊤]
Hu12 + 2σ2u2−1tr (HΨ) · u⊤

12Hu12. (B.14)

Step 4: combine all parts. Combining the four parts (B.10), (B.12), (B.13) and (B.14), we have

R (f)− σ2 = S1 + S2 + S3 + S4

We remark that in the (B.10), (B.12), (B.13) and (B.14), the parameters are A, b, u−1 and u12, instead
of the original parameter U11,u12,u21, u−1. From the definitions of A and b, we know there is a
bijective map between (U11,u12,u21, u−1) and (A, b,u12, u−1) , so these two parameterizations
are equivalent when computing the minimal risk achieved by a model in a hypothesis class. From the
expression of S1, S2, s3, S4, we can rewrite the risk as

R (f)− σ2
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= b⊤
(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
b · u⊤

12Hu12 +
σ2

M
· b⊤Hb · u⊤

12Hu12

+ u2−1tr

(
A⊤

(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
AH

)
+
σ2

M
· tr
(
HAHA⊤

)
+2u−1b

⊤
[
1

M
tr(HΨ)H+

M + 1

M
HΨH+

σ2

M
·H
]
AHu12 − 2u−1tr (HAHΨ)− 2u⊤

12HΨHb︸ ︷︷ ︸
I

+
1

M

[
b⊤Hb · tr

(
A⊤HAH

)
+ 4u−1 · b⊤HΨHAHu12 + 4u2−1 · tr (HΨHΨ) · u⊤

12Hu12

]
︸ ︷︷ ︸

II

+ b⊤
(
M + 1

M
HAHA⊤H

)
b− 2b⊤HAHβ∗ + 2u−1tr(HΨ) · b⊤HAHu12 + 2σ2b⊤HAH (u−1u12)︸ ︷︷ ︸

III

+ β∗⊤Hβ∗ − 2
(
tr (HΨ) + σ2

)
· β∗⊤H (u−1u12) + tr (HΨ)

+u2−1 ·
[(

2tr (HΨHΨ) +
M + 2

M
tr (HΨ)

2

)
· u⊤

12Hu12 +

(
2 +

4

M

)
σ2tr (HΨ) +

M + 2

M
σ4

]
· u⊤

12Hu12︸ ︷︷ ︸
IV

= I + II + III + IV, (B.15)

where I, II, III, IV are defined as above.

Step 5: lower bound the risk function. Let’s first define a new matrix, which by definition is
invertible:

Ω :=
M + 1

M
H

1
2ΨH

1
2 +

tr (HΨ) + σ2

M
Id. (B.16)

So we can write I as

I = b⊤H
1
2ΩH

1
2 b · u⊤

12Hu12 + u2−1tr
(
A⊤H

1
2ΩH

1
2AH

)
+ 2u−1b

⊤H
1
2ΩH

1
2AHu12

− 2u−1tr (HAHΨ)− 2u⊤
12HΨHb

= tr

[(
H

1
2u12b

⊤H
1
2 + u−1H

1
2A⊤H

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

·
(
H

1
2u12b

⊤H
1
2 + u−1H

1
2A⊤H

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]
− tr

(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
≥ −tr

(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
(B.17)

= −tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
,

where the last line comes from the fact that Ω and H
1
2ΨH

1
2 commute.

Next, we claim II ≥ 0. To see this, it suffices to notice that

4u−1 · b⊤HΨHAHu12 ≥ −4
∥∥∥b⊤H 1

2

∥∥∥
F
·
∥∥∥u−1H

1
2ΨH

1
2

∥∥∥
F
·
∥∥∥H 1

2AH
1
2

∥∥∥
F
·
∥∥∥H 1

2u12

∥∥∥
F

≥ −
∥∥∥b⊤H 1

2

∥∥∥2
F

∥∥∥H 1
2AH

1
2

∥∥∥2
F
− 4

∥∥∥u−1H
1
2ΨH

1
2

∥∥∥2
F

∥∥∥H 1
2u12

∥∥∥2
F

≥ −b⊤Hb · tr
(
A⊤HAH

)
− 4u2−1 · tr (HΨHΨ) · u⊤

12Hu12, (B.18)

where the last line comes from the fact that ∥A∥2F = tr
(
AA⊤

)
for any matrix A.
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Then, let’s consider III. Notice that actually, III can be viewed as a quadratic function of A⊤Hb,
which can be easily minimized. More concretely, we have

III +
M

M + 1

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)⊤

H

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)
=

[
A⊤Hb− M

M + 1

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)]⊤(
M + 1

M
H

)
·
[
A⊤Hb− M

M + 1

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)]
≥ 0. (B.19)

Therefore, one has

III ≥ − M

M + 1

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)⊤

H

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)
.

Combining the three parts above, one has

R (f)− σ2

≥ IV − tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
− M

M + 1

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)⊤

H

(
β∗ −

(
tr (HΨ) + σ2

)
u−1u12

)
= tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
︸ ︷︷ ︸

inff∈FLTB
R(f)−σ2

+
1

M + 1
β∗⊤Hβ∗ −

2
(
tr (HΨ) + σ2

)
M + 1

β∗⊤H (u−1u12)

+

[
2tr (HΨHΨ) +

3M + 2

M(M + 1)

(
tr (HΨ) + σ2

)2]
(u−1u12)

⊤
H (u−1u12) .

Therefore, one has

R (f)− inf
f∈FLTB

R(f) ≥ 1

M + 1
β∗⊤Hβ∗ −

2
(
tr (HΨ) + σ2

)
M + 1

β∗⊤H (u−1u12)

+

[
2tr (HΨHΨ) +

3M + 2

M(M + 1)

(
tr (HΨ) + σ2

)2]
(u−1u12)

⊤
H (u−1u12) .

The right hand side in the above inequality is a quadratic function of u−1u12, so we can take its
global minimizer:

u−1u12 =

(tr(HΨ)+σ2)
M+1

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2β
∗

to lower bound the risk gap as

R (f)− inf
f∈FLTB

R(f) ≥

 1

M + 1
−

(tr(HΨ)+σ2)
2

(M+1)2

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2

 ∥β∗∥2H .

Finally, to simplify the results, we notice that on the one hand,

(tr(HΨ)+σ2)
2

(M+1)2

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2 ≤
(
tr (HΨ) + σ2

)2
2(M + 1)2tr (HΨHΨ)

.
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On the other hand, one has

(tr(HΨ)+σ2)
2

(M+1)2

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2 ≤ M

(M + 1)(3M + 2)
≤ 1

3(M + 1)
.

Therefore, we have

R (f)− inf
f∈FLTB

R(f) ≥ max

{
2

3(M + 1)
,

1

M + 1
−

(
tr (HΨ) + σ2

)2
2(M + 1)2tr (HΨHΨ)

}
· ∥β∗∥2H .

When 1
M+1 − (tr(HΨ)+σ2)

2

2(M+1)2tr(HΨHΨ) ≥
2

3(M+1) , we have 1
M+1 ≥ 3(tr(HΨ)+σ2)

2

2(M+1)2tr(HΨHΨ) , which implies

R (f)− inf
f∈FLTB

R(f) ≥

[
1

M + 1
−

(
tr (HΨ) + σ2

)2
2(M + 1)2tr (HΨHΨ)

]
· ∥β∗∥2H ≥

(
tr (HΨ) + σ2

)2
(M + 1)2tr (HΨHΨ)

· ∥β∗∥2H .

Therefore, we finally have

R (f)− inf
f∈FLTB

R(f) ≥ max

{
2

3(M + 1)
,

(
tr (HΨ) + σ2

)2
(M + 1)2tr (HΨHΨ)

}
· ∥β∗∥2H .

Note that this holds for an arbitrary f ∈ FLSA, so the proof finishes by taking infimum on the left
hand side.
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C Proof of Theorem 5.2

Proof. Recall that from Assumption 3.1,

x ∼ N (0,H), y = x⊤β̃ + ε, X[i] ∼ N (0,H), y = Xβ̃ + ε,

where
β̃ ∼ N (β∗,Ψ) , ε ∼ N

(
0, σ2

)
, ε ∼ N

(
0, σ2 · IM

)
.

Step 1: compute the risk function. From the independence of ε, ε with other random variables,
we have

RM (β,Γ) = E
(
x⊤
(
β̃ − β

)
+ ε+ x⊤Γ · X

⊤X

M

(
β − β̃

)
− x⊤Γ · X

⊤ε

M

)2

= E
(
x⊤
(
Id − Γ · X

⊤X

M

)
·
(
β̃ − β

))2

+
1

M2
E
(
x⊤ΓX⊤ε

)2
+ σ2

=

〈
H,E

(
Id − Γ · X

⊤X

M

)⊗2

◦ E
(
β̃ − β

)⊗2
〉

+
1

M2
E
(
x⊤ΓX⊤ε

)2
+ σ2,

(C.1)

where the last line comes from the independence between β̃ and X,x, as well as the fact that
x ∼ N (0,H) and the property of tensor product ◦. Note that, β ad Γ are learnable parameters
here, and we should set them apart from the task vector β̃ or the prior mean vector β̃

∗
. Recall that

β̃ ∼ N (β∗,Ψ) , we have E
(
β̃ − β

)⊗2

= (β − β∗)
⊗2

+Ψ. Moreover, using the following

x ∼ N (0,H) , X[i] ∼ N (0,H) , ε ∼ N
(
0, σ2 · IM

)
,

we have that

E
(
x⊤ΓX⊤ε

)2
= σ2Etr

(
XΓ⊤xx⊤ΓX⊤

)
=Mσ2 ·

〈
HΓH,Γ⊤

〉
.

Bridging the two terms above into (C.1), we get

RM (β,Γ) =

〈
H,E

(
Id − Γ · X

⊤X

M

)⊗2

◦ (β − β∗)
⊗2

〉

+

〈
H,E

(
Id − Γ · X

⊤X

M

)⊗2

◦Ψ+
σ2

M
ΓHΓ⊤

〉
+ σ2

=

〈
E
(
Id − Γ · X

⊤X

M

)⊗2

◦H, (β − β∗)
⊗2

〉
︸ ︷︷ ︸

V1

+

〈
H,E

((
Id − Γ · X

⊤X

M

)⊤)⊗2

◦Ψ+
σ2

M
ΓHΓ⊤

〉
︸ ︷︷ ︸

V2

+σ2 (C.2)

First, let’s compute V1. From the definition above, we have

V1 = (β − β∗)
⊤
HΓ (β − β∗) ,

where

HΓ : = E

((
Id − Γ · X

⊤X

M

)⊤)⊗2

◦H (C.3)
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= E
(
Id − Γ · X

⊤X

M

)⊤

H

(
Id − Γ · X

⊤X

M

)
(the definition of the tensor product)

= H−H
(
Γ+ Γ⊤

)
H+

tr
(
HΓ⊤HΓ

)
M

H+
M + 1

M
HΓ⊤HΓH

(X[i] ∼ N (0,H) and Lemma H.4)

= (Id − ΓH)
⊤
H (Id − ΓH) +

tr
(
HΓ⊤HΓ

)
M

H+
1

M
HΓ⊤HΓH ⪰ 0. (C.4)

Then, let’s compute V2. We have

E
(
Id − Γ · X

⊤X

M

)⊗2

◦Ψ+
σ2

M
ΓHΓ⊤ = E

(
Id − Γ · X

⊤X

M

)
Ψ

(
Id − Γ · X

⊤X

M

)⊤

+
σ2

M
ΓHΓ⊤

= Ψ− ΓHΨ−ΨHΓ⊤ + Γ

(
tr (HΨ) + σ2

M
·H+

M + 1

M
HΨH

)
Γ⊤.

(X[i]
i.i.d.∼ N (0,H) and the Lemma H.4)

From the definition of Ω in (A.3), we know that it is invertible. Moreover, it holds that

E
(
Id − Γ · X

⊤X

M

)⊗2

◦Ψ+
σ2

M
ΓHΓ⊤ = Ψ− ΓHΨ−ΨHΓ⊤ + ΓH

1
2ΩH

1
2Γ⊤

=

(
ΓH

1
2 −ΨH

1
2Ω−1

)
Ω

(
ΓH

1
2 −ΨH

1
2Ω−1

)⊤

+Ψ−ΨH
1
2Ω−1H

1
2Ψ.

Therefore, we have

V2 = tr

[(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]

+ tr (HΨ)− tr
(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)

Step 2: solve the global minimum. Now we have

R (β,Γ)− σ2

= (β − β∗)
⊤

(Id − ΓH)
⊤
H (Id − ΓH) +

tr
(
HΓ⊤HΓ

)
M

H+
1

M
HΓ⊤HΓH

 (β − β∗)

+ tr

[(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]

+ tr (HΨ)− tr
(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
(C.5)

≥ tr (HΨ)− tr
(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
= tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
,

where the last line comes from the fact that Ω and H
1
2ΨH

1
2 commute. Taking infimum over all β,Γ

in the left hand side, we have

inf
f∈FGD-β

R(f)− σ2 = inf
β,Γ

R (β,Γ)− σ2 ≥ tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
.

22



On the other hand, we take

β = β∗, Γ = Γ∗ := ΨH
1
2Ω−1H− 1

2 , (C.6)

where H
1
2 is the principle square root of H and H− 1

2 is its Moore-Penrose pseudo inverse (see
notation part in Section A). Then, we have

R (β∗,Γ∗)− σ2

= tr

[(
H

1
2Γ∗H

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2Γ∗H

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]

+ tr (HΨ)− tr
(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
.

Since

H
1
2Γ∗H

1
2 −H

1
2 −H

1
2ΨH

1
2Ω−1 = H

1
2ΨH

1
2Ω−1H− 1

2H
1
2 −H

1
2ΨH

1
2Ω−1

= Ω−1H
1
2ΨH

1
2 −Ω−1H

1
2ΨH

1
2H− 1

2H
1
2

(Ω and H
1
2ΨH

1
2 commute)

= Ω−1H
1
2ΨH

1
2 −Ω−1H

1
2ΨH

1
2 = 0d×d..

(H
1
2H− 1

2H
1
2 = H

1
2 )

Therefore, we have

R (β∗,Γ∗)−σ2 = tr (HΨ)−tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
≥ inf

f∈FGD-β

R(f)−σ2 = inf
β,Γ

R (β,Γ)−σ2.

Combining both directions, we conclude that

inf
f∈FGD-β

R(f)− σ2 = inf
β,Γ

R (β,Γ)− σ2 = tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
. (C.7)

Step 3: identify all global minimizers Above we show that R (β∗,Γ∗) achieves the global
minimum of the ICL risk over GD-β class. Now we will figure out the sufficient and necessary
condition to achieve the global minimal risk. From the proof above, we know that for any β ∈
Rd,Γ ∈ Rd×d, it holds that

R (β,Γ) = inf
f∈FGD-β

R(f) ⇐⇒


V1 = (β − β∗)

⊤
HΓ (β − β∗) = 0

tr

[(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]
= 0

Since Ω is invertible, the second equation is equivalent to

H
1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1 = 0d×d,

which is a linear system of Γ. Since Γ∗ is proved to be one solution, all solutions of this equation is

Γ = Γ∗ +
{
Z ∈ Rd×d : H

1
2ZH

1
2 = 0d×d

}
= Γ∗ + Im

(
H⊗2

)
,

where the last equation comes from Lemma H.6. Here, + denotes Minkowski sum. This is defined as
A+ B = {a+ b, a ∈ A, b ∈ B} for two sets A,B and a+ B = {a}+ B for an entry a and a set
B. Under this condition, we know that

HΓ = H−H
(
Γ∗ + Γ∗⊤

M

)
H+

tr
(
HΓ∗⊤

M HΓ∗
)

M
H+

M + 1

M
HΓ∗⊤

M HΓ∗H.

Consider the following inequality:

Id −H
1
2

(
Γ∗ + Γ∗⊤

)
H

1
2 +

tr
(
HΓ∗⊤

M HΓ∗
)

M
Id +

M + 1

M
H

1
2Γ∗⊤

M HΓ∗H
1
2
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⪰ Id −H
1
2

(
Γ∗ + Γ∗⊤

)
H

1
2 +

M + 1

M
H

1
2Γ∗⊤

M HΓ∗H
1
2

=

(√
M

M + 1
Id −

√
M + 1

M
H

1
2Γ∗H

1
2

)
·

(√
M

M + 1
Id −

√
M + 1

M
H

1
2Γ∗H

1
2

)⊤

+
M

M + 1
Id

≻ 0d×d.

Therefore, we have

(β − β∗)
⊤
HΓ (β − β∗) = 0

⇐⇒
[
(β − β∗)

⊤
H

1
2

](
Id −H

1
2

(
Γ∗ + Γ∗⊤

)
H

1
2 +

tr
(
HΓ∗⊤

M HΓ∗
)

M
Id

+
M + 1

M
H

1
2Γ∗⊤

M HΓ∗H
1
2

)[
H

1
2 (β − β∗)

]
= 0

⇐⇒ H
1
2 (β − β∗) = 0d ⇐⇒ β = β∗ + null

(
H

1
2

)
⇐⇒ β = β∗ + null (H) ,

where null (·) denotes the null space of a matrix and + denotes the Minkowski sum. The last
equivalence comes from Lemma H.6. Therefore, we conclude that the fβ,Γ achieves the minimal
ICL risk in GD-β class if and only if

β = β∗ + null (H) , Γ = Γ∗ + Im
(
H⊗2

)
.

Specially, if H is positive definite, there is unique global minimizer in GD-β class with parameters

β = β∗, Γ = Γ∗.

Step 4: equivalence in the hypothesis class Finally, we show when H is rank-deficient, any global
minimizer actually corresponds to one single function in FGD-β almost surely. For an arbitrary global
minimizer, we assume β = β∗ + h,Γ = Γ∗ +Z, where h ∈ null (H) ,Z ∈ Im

(
H⊗2

)
. Suppose

we have a prompt X,y,x, y which follows the Assumption 3.1 and the token matrix is formed by
(3.1), we have

fβ,Γ (E) =

〈
β − Γ

M
X⊤ (Xβ − y) ,x

〉
=

〈
β∗ − Γ∗

M
X⊤ (Xβ∗ − y) ,x

〉
+ h⊤x− 1

M
x⊤ZX⊤Xβ∗ − 1

M
x⊤ZX⊤Xh− 1

M
x⊤Γ∗X⊤Xh+ x⊤ZX⊤y.

Notice that X[i],x
i.i.d.∼ N (0d,H) , we have

E
(
h⊤x

)2
= h⊤Hh = 0

since h ∈ null (H) . Therefore, we know h⊤x = 0 almost surely, and similarly, Xh = 0d almost
surely. Finally, we have

E

[(
1

M
x⊤ZX⊤

)
·
(

1

M
x⊤ZX⊤

)⊤
]
=

1

M
Etr [HZH] = 0,

which imples x⊤ZX⊤ = 0d almost surely. Therefore, we conclude

fβ,Γ (E) = fβ∗,Γ∗ (E) almost surely.
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D Proof of Theorem 5.3

Proof. Recall the definition of Linear Transformer Block class:

fLTB : R(d+1)×(M+1) → R

E 7→
[
W⊤

2 W1

(
E+W⊤

P WV EM
E⊤W⊤

K WQE

M

)]
−1,−1

,

where E is the token matrix defined by (3.1). Let’s take an arbitrary function f in the LTB class with
trainable matrices

WK , WQ ∈ Rdk×(d+1), WP , WV ∈ Rdv×(d+1), W1,W2 ∈ Rdf×(d+1).

Similar to the proof of the Theorem 4.1, we know that only the last row of W⊤
2 W1 and the first

d-columns of W⊤
KWQ attend the prediction. Therefore, we denote

W⊤
2 W1 =

(
∗ ∗
γ⊤ ∗

)
, W⊤

2 W1 W
⊤
PWV =

(
∗ ∗
v⊤
21 v−1

)
, W⊤

KWQ =

(
V11 ∗
v⊤
12 ∗

)
,

(D.1)
where γ,v12,v21,∈ Rd, v−1 ∈ R,V11 ∈ Rd×d, and ∗ denotes entries that do not enter the prediction.
Then, the prediction of LTB function can be written as

f(E) = γ⊤x+
(
v⊤
21 v−1

)
· EMME⊤

M
·

(
V11

v⊤
12

)
· x

=

[
γ⊤ + v⊤

21 ·
1

M
X⊤X ·V11 + v⊤

21 ·
1

M
X⊤y · v⊤

12 + v−1 ·
1

M
y⊤X ·V11 + v−1 ·

1

M
y⊤y · v⊤

12

]
· x.

Step 1: simplify the risk function. We use β̃ to denote the task parameter. From the Assumption
3.1 and Definition A.1, we have

y = Xβ̃ + ε, y =
〈
β̃,x

〉
+ ε, β̃ ∼ N (β∗,Ψ) , β̃ = β∗ +Ψ

1
2 θ̃;

and
X[i],x

i.i.d.∼ N (0,H) , ε[i], ε
i.i.d.∼ N

(
0, σ2

)
, θ̃ ∼ N (0, Id) .

Then the model output can be written as

f(E) =

[
γ⊤ + v⊤

21 ·
1

M
X⊤X ·V11 + v⊤

21 ·
1

M
X⊤y · v⊤

12 + v−1 ·
1

M
y⊤X ·V11 + v−1 ·

1

M
y⊤y · v⊤

12

]
· x

=

[
γ⊤ +

(
v21 + v−1β̃

)⊤
· 1

M
X⊤X ·

(
V11 + β̃v⊤

12

)]
· x

+

[
v⊤
21 ·

1

M
X⊤ε · v⊤

12 + v−1 ·
1

M
ε⊤X ·V11 + v−1 ·

2

M
ε⊤Xβ̃v⊤

12 +
1

M
ε⊤ε · v−1v

⊤
12

]
· x.

To simplify the presentation, we denote

z⊤
1 =

(
v21 + v−1β̃

)⊤
· 1

M
X⊤X ·

(
V11 + β̃v⊤

12

)
,

z⊤
2 = v⊤

21 ·
1

M
X⊤ε · v⊤

12 + v−1 ·
1

M
ε⊤X ·V11 + v−1 ·

2

M
ε⊤Xβ̃v⊤

12

z⊤
3 =

1

M
ε⊤ε · v−1v

⊤
12.

Since x,X, ε, β̃ are independent, we have

R (f) = E
(
f(E)−

〈
β̃,x

〉
− ε
)2
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= σ2 + E
(
f(E)−

〈
β̃,x

〉)2
(ε is independent from other variables and zero-mean)

= E
[〈

z1 + z2 + z3 + γ − β̃,x
〉2]

+ σ2

=

〈
H,E

(
z1 + z2 + z3 + γ − β̃

)(
z1 + z2 + z3 + γ − β̃

)⊤〉
+ σ2.

Note that z1 does not contain ε, z2 is a linear form of ε, and z3 is a quadratic form of ε. Using
ε ∼ N (0, σ2Id), we have E[(z1 + γ − β̃) · z⊤

2 ] = 0 and E[z2z
⊤
3 ] = 0. Therefore, we have

R (f)− σ2 =

〈
H,E

(
z1 + γ − β̃

)(
z1 + γ − β̃

)⊤〉
︸ ︷︷ ︸

S′
1

+
〈
H,Ez2z

⊤
2

〉︸ ︷︷ ︸
S′
2

+
〈
H,Ez3z

⊤
3

〉︸ ︷︷ ︸
S′
3

+ 2
〈
H,E

(
z1 + γ − β̃

)
z⊤
3

〉
︸ ︷︷ ︸

S′
4

. (D.2)

Step 2: compute the risk function. Let’s compute the risk function. Note that, the risk function is
in the same form as the risk function of LSA layer, which is in the proof of Theorem 4.1 (see Section
B and equation (B.2)). There are two differences: one is we replace U11,u12,u21, u−1 here with
V11,v12,v21, v−1. The second difference is that we replace β̃ in (B.2) with β̃−γ. This is equivalent
to replacing β∗ with β∗ − γ, since β̃ − γ ∼ N (β∗ − γ,Ψ) . Therefore, similar to (B.15), the risk
function in (D.2) can be written as

R (f)− σ2

= b⊤
(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
b · v⊤

12Hv12 +
σ2

M
· b⊤Hb · v⊤

12Hv12

+ v2−1tr

(
A⊤

(
M + 1

M
HΨH+

1

M
tr(HΨ)H

)
AH

)
+
σ2

M
· tr
(
HAHA⊤

)
+2v−1b

⊤
[
1

M
tr(HΨ)H+

M + 1

M
HΨH+

σ2

M
·H
]
AHv12 − 2v−1tr (HAHΨ)− 2v⊤

12HΨHb︸ ︷︷ ︸
V

+
1

M

[
b⊤Hb · tr

(
A⊤HAH

)
+ 4v−1 · b⊤HΨHAHv12 + 4v2−1 · tr (HΨHΨ) · v⊤

12Hv12

]
︸ ︷︷ ︸

VI

+ b⊤
(
M + 1

M
HAHA⊤H

)
b− 2b⊤HAH (β∗ − γ) + 2v−1tr(HΨ) · b⊤HAHv12 + 2σ2b⊤HAH (v−1v12)︸ ︷︷ ︸

VII

+ (β∗ − γ)
⊤
H (β∗ − γ)− 2

(
tr (HΨ) + σ2

)
· (β∗ − γ)

⊤
H (v−1v12) + tr (HΨ)

+v2−1 ·
[(

2tr (HΨHΨ) +
M + 2

M
tr (HΨ)

2

)
· v⊤

12Hv12 +

(
2 +

4

M

)
σ2tr (HΨ) +

M + 2

M
σ4

]
· v⊤

12Hv12︸ ︷︷ ︸
VIII

= V + VI + VII + VIII, (D.3)

where V, VI, VII, VIII are defined as above and Ω = M+1
M H

1
2ΨH

1
2 + tr(HΨ)+σ2

M · Id, and b :=

v21 + v−1β
∗ ∈ Rd,A := V11 + β∗v⊤

12 ∈ Rd×d,
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Step 3: solve the global minimum of the risk function. This is very similar to step 5 in Appendix
B. The V term in (D.3) is actually equal to the I term in (B.15), so we have

V = tr

[(
H

1
2v12b

⊤H
1
2 + v−1H

1
2A⊤H

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2v12b

⊤H
1
2 + v−1H

1
2A⊤H

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]

− tr
(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
≥ −tr

(
H

1
2ΨH

1
2Ω−1H

1
2ΨH

1
2

)
= −tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
,

where the last line comes from the fact that Ω and H
1
2ΨH

1
2 commute. For the same reason, we

know that the V I term above is equal to the II term in (B.15), which implies VI ≥ 0, since

4v−1 · b⊤HΨHAHv12 ≥ −4
∥∥∥b⊤H 1

2

∥∥∥
F
·
∥∥∥v−1H

1
2ΨH

1
2

∥∥∥
F
·
∥∥∥H 1

2AH
1
2

∥∥∥
F
·
∥∥∥H 1

2v12

∥∥∥
F

≥ −
∥∥∥b⊤H 1

2

∥∥∥2
F

∥∥∥H 1
2AH

1
2

∥∥∥2
F
− 4

∥∥∥v−1H
1
2ΨH

1
2

∥∥∥2
F

∥∥∥H 1
2v12

∥∥∥2
F

= −b⊤Hb · tr
(
A⊤HAH

)
− 4v2−1 · tr (HΨHΨ) · v⊤

12Hv12, (D.4)

where the last line comes from the fact that ∥A∥2F = tr
(
AA⊤

)
for any matrix A. The term VII

above is equal to III term in (B.15), except that we replace β∗ with β∗ − γ. Therefore, we have

VII +
M

M + 1

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)⊤

H

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)
=

[
A⊤Hb− M

M + 1

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)]⊤(
M + 1

M
H

)
·
[
A⊤Hb− M

M + 1

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)]
≥ 0, (D.5)

which implies

VII ≥ − M

M + 1

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)⊤

H

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)
.

Combining the three parts above, one has

R (f)− σ2

≥ VIII − tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
− M

M + 1

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)⊤

H

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)
= tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
︸ ︷︷ ︸

inff∈FGD-β R(f)−σ2

+
1

M + 1
(β∗ − γ)

⊤
H (β∗ − γ)

−
2
(
tr (HΨ) + σ2

)
M + 1

(β∗ − γ)
⊤
H (v−1v12)

+

[
2tr (HΨHΨ) +

3M + 2

M(M + 1)

(
tr (HΨ) + σ2

)2]
(v−1v12)

⊤
H (v−1v12) .
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Here, the global minimum of GD-β class is taken from Theorem 5.2, whose proof does not reply on
the proof here. Therefore, one has

R (f)− inf
f∈FGD-β

R(f) ≥ 1

M + 1
(β∗ − γ)

⊤
H (β∗ − γ)−

2
(
tr (HΨ) + σ2

)
M + 1

(β∗ − γ)
⊤
H (v−1v12)

+

[
2tr (HΨHΨ) +

3M + 2

M(M + 1)

(
tr (HΨ) + σ2

)2]
(v−1v12)

⊤
H (v−1v12) .

The right hand side in the above inequality is a quadratic function of v−1v12, so we can take its
global minimizer:

v−1v12 =

(tr(HΨ)+σ2)
M+1

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2 (β∗ − γ)

to lower bound the risk gap as

R (f)− inf
f∈FGD-β

R(f) ≥

 1

M + 1
−

(tr(HΨ)+σ2)
2

(M+1)2

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2

 ∥β∗ − γ∥2H ≥ 0.

Note that, taking infimum on the left hand side, we get

inf
f∈FLTB

R (f)− inf
f∈FGD-β

R(f) ≥ 0.

On the other hand, in the main text we have showed that FGD-β ⊂ FLTB, which implies

inf
f∈FLTB

R (f)− inf
f∈FGD-β

R(f) ≤ 0.

Therefore, we conclude

inf
f∈FLTB

R (f) = inf
f∈FGD-β

R(f) = tr (HΨ)− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
,

where the last equation is from Theorem 5.2.

Step 4: sufficient and necessary conditions for global minimizers. Let’s now verify the conditions
for the global minimizers. For a function in LTB class, the sufficient and necessary condition for it to
be a global minimizer is that inequalities in the above step all hold, which are

H
1
2v12b

⊤H
1
2 + v−1H

1
2A⊤H

1
2 = H

1
2ΨH

1
2Ω−1, (D.6)∥∥∥b⊤H 1

2

∥∥∥2
F

∥∥∥H 1
2AH

1
2

∥∥∥2
F
= 4

∥∥∥v−1H
1
2ΨH

1
2

∥∥∥2
F

∥∥∥H 1
2v12

∥∥∥2
F
, (D.7)

v−1 · b⊤HΨHAHv12 =
∥∥∥b⊤H 1

2

∥∥∥
F
·
∥∥∥v−1H

1
2ΨH

1
2

∥∥∥
F
·
∥∥∥H 1

2AH
1
2

∥∥∥
F
·
∥∥∥H 1

2v12

∥∥∥
F
, (D.8)

H
1
2

[
A⊤Hb− M

M + 1

(
β∗ − γ −

(
tr (HΨ) + σ2

)
v−1v12

)]
= 0d×d, (D.9)

v−1v12 =

(tr(HΨ)+σ2)
M+1

2tr (HΨHΨ) + 3M+2
M(M+1) (tr (HΨ) + σ2)

2 (β∗ − γ) (D.10)

∥β∗ − γ∥H = 0. (D.11)

Let’s first verify the necessary conditions of the system defined above. From (D.11) and Lemma
H.5, we know γ ∈ β∗ + null

(
H

1
2

)
= β∗ + null (H) . Then, we have v−1v12 ∈ null (H) . Then, in

(D.7), we know∥∥∥b⊤H 1
2

∥∥∥2
F

∥∥∥H 1
2AH

1
2

∥∥∥2
F
= 4

∥∥∥v−1H
1
2ΨH

1
2

∥∥∥2
F

∥∥∥H 1
2v12

∥∥∥2
F
= 4

∥∥∥H 1
2ΨH

1
2

∥∥∥2
F

∥∥∥v−1H
1
2v12

∥∥∥2
F
= 0,
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which implies either H
1
2 b = 0d or H

1
2AH

1
2 = 0d×d. If we assume H

1
2AH

1
2 = 0d×d, then (D.6)

implies H
1
2v12b

⊤H
1
2 = H

1
2ΨH

1
2Ω−1. From our assumption, we know rank(H

1
2Ψ

1
2 ) ≥ 2, which

implies rank(H
1
2ΨH

1
2 ) ≥ 2, since for any matrix Z, it holds that rank(Z) = rank(ZZ⊤). Since

multiplication by an invertible matrix does not change the rank, we know rank
(
H

1
2ΨH

1
2Ω−1

)
≥ 2,

while H
1
2v12b

⊤H
1
2 is a matrix of rank at most one, which contradicts with (D.6). Therefore, we

have

H
1
2 b = 0, (D.12)

v−1H
1
2A⊤H

1
2 = H

1
2ΨH

1
2Ω−1. (D.13)

Recall in Theorem 5.2, we have defined

Γ∗ := ΨH
1
2Ω−1H− 1

2 .

Simple calculation shows

H
1
2Γ∗H

1
2 = H

1
2ΨH

1
2Ω−1H− 1

2H
1
2 = Ω−1H

1
2ΨH

1
2H− 1

2H
1
2 = Ω−1H

1
2ΨH

1
2 = H

1
2ΨH

1
2Ω−1,

where the second and the last equalities come from the fact that Ω and H
1
2ΨH

1
2 commute, and the

third equality comes from the property of Moor Penrose pseudo-inverse. Therefore, one solution of
(D.13) is v−1A = Γ∗⊤. Since (D.13) is a linear equation to v−1A, we know its full solution is

v−1A ∈ Γ∗⊤ +
{
Z : H

1
2ZH

1
2 = 0d×d

}
= Γ∗⊤ + Im

(
H⊗2

)
.

The solution to (D.12) is

v21 = −v−1β
∗ + null

(
H

1
2

)
= −v−1β

∗ + null (H) .

Therefore, we know the necessary conditions for (D.6) to (D.11) are

v−1 ̸= 0,

v−1v12 ∈ null (H) ,

v21 = −v−1β
∗ + null (H) ,

v−1V11 ∈ Γ∗⊤ − v−1β
∗v⊤

12 + Im
(
H⊗2

)
,

γ = β∗ + null (H)

(D.14)

It is easy to verify these equations above are also sufficient conditions of (D.6) to (D.11) by directly
replacing each variable with its value and validating equaions from (D.6) to (D.11).

Specially, if H is positive definite and hence, invertible, the global minimizer is unique up to a scaling
to v−1 :

v−1 ̸= 0, v12 = 0d, v21 = −v−1β
∗, V11 =

1

v−1
· Γ∗⊤, γ = β∗. (D.15)

Step 5: equivalence in the hypothesis class. Finally, we will prove that any global minimizer of
FLTB is actually equivalent to one single function in FLTB almost surely. More concretely, let’s take
a function f ∈ FLTB with parameters WK , WQ, WP , WV ,W1, W2 and recall the parameter
transformation in (D.1). We assume equations in (D.14) and Assumption 3.1 hold. Then, for any
vector a ∈ null (H) , one has x⊤a = x⊤

i a = 0 since x,xi
i.i.d.∼ N (0d,H) . We denote

v21 = −v−1β
∗ + a1, v−1V11 = Γ∗⊤ − v−1β

∗v⊤
12 +Z, γ = β∗ + a2,

where a1,a2 ∈ H,H
1
2ZH

1
2 = 0d×d. Then, we have

f(E) =

[
W⊤

2 W1

(
E+W⊤

P WV EM
E⊤W⊤

K WQE

M

)]
−1,−1
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= (β∗ + a2)
⊤
x+

(
−v−1β

∗⊤ + a⊤1 v−1

)
· 1

M

(
X⊤X X⊤y

y⊤X y⊤y

)
·

(
V11

v⊤
12

)
· x

= β∗⊤x+
(
−β∗⊤ 1

)
· 1

M

(
X⊤X X⊤y

y⊤X y⊤y

)
·

(
v−1V11x

v−1v
⊤
12x

)
(Xa1 = 0,a⊤2 x = 0)

= β∗⊤x+
(
−β∗⊤ 1

)
· 1

M

(
X⊤X X⊤y

y⊤X y⊤y

)
·

(
Γ∗⊤x

0⊤
d

)
(v⊤

12x = 0,XV11x = 0)

=

〈
β∗ − Γ∗

M
X⊤ (Xβ − y) ,x

〉
= fβ∗,Γ∗ (E) ,

where fβ∗,Γ∗ (·) is the GD-β function defined in (5.1).
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E Proof of Corollary 6.2

Proof. We denote ϕ1 ≥ ϕ2 ≥ ... ≥ ϕd ≥ 0 are ordered eigenvalues of Ψ
1
2HΨ

1
2 . From Theorem

5.2, we have

inf
f∈FGD-β

R(f)− σ2 = tr
(
H

1
2ΨH

1
2

)
− tr

((
H

1
2ΨH

1
2

)2
Ω−1

)
,

where

Ω :=
M + 1

M
H

1
2ΨH

1
2 +

tr (HΨ) + σ2

M
· Id.

Therefore, we have

inf
f∈FGD-β

R(f)− σ2 = tr
(
H

1
2ΨH

1
2 ·
(
Ω−H

1
2ΨH

1
2

)
Ω−1

)
=

1

M
tr
(
Ω−1H

1
2ΨH

1
2 ·
(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
· Id
))

.

Since(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
·Id ⪯ H

1
2ΨH

1
2+
(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
·Id ⪯ 2

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
·Id,

we have

inf
f∈FGD-β

R(f)− σ2 ≃
tr
(
H

1
2ΨH

1
2

)
+ σ2

M
tr
(
Ω−1H

1
2ΨH

1
2

)
= ϕ̄ ·

d∑
i=1

ϕi
M+1
M ϕi + ϕ̄

≃
d∑

i=1

min
{
ϕi, ϕ̄

}
.

Therefore, we conclude.
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F Proof of Theorem 6.1

F.1 Proof of first equation

Proof. From the classical bias-variance decomposition, we know

L (g;X) := E
[
(g(X,y,x)− y)

2 | X
]

= E
[
(g(X,y,x)− E [y | X,y,x])2 | X

]
+ E

[
(E [y | X,y,x]− y)

2 | X
]

since the cross term vanishes. The second term does not depend on g and hence, the Bayesian optimal
estimator is given by the posterior mean, i.e.,

ŷBayes = E [y | X,y,x] =
〈
E
[
β̃ | X,y,x

]
,x
〉
.

Since β̃ ∼ N (β∗,Ψ) , we have there exists a random vector θ̃ ∼ N (0d, Id) such that β̃ =

β∗ +Ψ
1
2 θ̃ almost surely. Therefore, one has

ŷBayes = ⟨β∗,x⟩+
〈
E
[
θ̃ | X,y,x

]
,Ψ

1
2x
〉
.

To compute E
[
θ̃ | X,y,x

]
, it suffices to solve the posterior distribution of β given X,y. From

θ̃ ∼ N (0d, Id), we have

P
(
θ̃ | X,y,x

)
∝ P

(
θ̃
)
P
(
y | X, θ̃

)
∝ exp

−

∥∥∥y −X
(
β∗ +Ψ

1
2 θ̃
)∥∥∥2

2

2σ2
− 1

2
θ̃
⊤
· θ̃


∝ exp

(
− 1

2σ2

[
θ̃
⊤ (

Ψ
1
2X⊤XΨ

1
2 + σ2Id

)
θ̃ − 2 (y −Xβ∗)

⊤
XΨ

1
2 θ̃
])

.

Note that, the function above matches the probability density function of a multivariate Gaussian
distrbution. Therefore, the posterior mean is given by

E [θ | X,y,x] =
(
Ψ

1
2X⊤XΨ

1
2 + σ2Id

)−1

Ψ
1
2X⊤ (y −Xβ∗) .

Therefore, we conclude

ŷBayes = x⊤Ψ
1
2

(
Ψ

1
2X⊤XΨ

1
2 + σ2Id

)−1

Ψ
1
2X⊤ (y −Xβ∗) + x⊤β∗. (F.1)

F.2 Proof of second equation

Proof. Let’s first do a variable transformation. We denote

X̃ = XΨ
1
2 , x̃ = Ψ

1
2x, ỹ = y −Xβ∗, Λ = Ψ

1
2HΨ

1
2 . (F.2)

Then, we know X̃[i], x̃
i.i.d.∼ N (0d,Λ) . We can write the Bayesian optimal estimator in (F.1) as

ŷBayes = x̃⊤
(
X̃⊤X̃+ σ2Id

)−1

X̃ỹ + x⊤β∗.

The true label is
y = x⊤β̃ + ε = x⊤

(
β∗ +Ψ

1
2 θ̃
)
.

Therefore, we have

L (ŷBayes;X)− σ2 = E
(
x̃⊤
(
X̃⊤X̃+ σ2Id

)−1

X̃ỹ + x⊤β∗ − x⊤
(
β∗ +Ψ

1
2 θ̃
))2
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= E
(
x̃⊤
[(

X̃⊤X̃+ σ2Id

)−1

X̃ỹ − θ̃

])2

= E
∥∥∥θ̂ − θ̃

∥∥∥2
Λ
,

where
θ̂ :=

(
X̃⊤X̃+ σ2Id

)−1

X̃ỹ.

Note that, this is equivalent to the risk of estimating the ground true linear weight θ̃ using θ̂ under
the Gaussian prior θ̃ ∼ N (0, Id) . The estimator θ̂ is a function of transformed input-output pairs
in the context

(
X̃, ỹ

)
and the transformed query input x, and takes the form of standard ridge

estimator with regularization coefficient being σ2. We then revoke the standard results for the risk of
a ridge estimator. Applying the Theorem 1 and 2 in [33], we know for a fixed weight vector θ̃, with
probability at least 1− exp (−Ω(M)) we have∥∥∥θ̂ − θ̃

∥∥∥2
H

≃
(
σ2 +

∑
i>k∗ ϕi

M

)2 ∥∥∥θ̃∥∥∥2
H−1

0:k∗
+
∥∥∥θ̃∥∥∥2

Hk∗:∞
+ σ2

(
k∗

M
+

M
∑

i>k∗ ϕ2i
σ2 +

∑
i>k∗ ϕi

)
,

where ϕ1 ≥ ϕ2 ≥ ... ≥ ϕd ≥ 0 are ordered eigenvalues of Λ.

k∗ := min

{
k : ϕk ≥ c ·

σ2 +
∑

i>k∗ ϕi

M

}
and c > 1 is an absolute constant. Here, H0:k∗ is SVD approximation with respect to the largest k∗
singular values and Hk∗:∞ is the SVD approximation in the remaining singular values. Namely, if
we have the eigen-decomposition of H = Q · diag (ϕ1, ϕ2, ..., ϕd) ·Q⊤, where Q is an orthogonal
matrix, then H0:k∗ and Hk∗:∞ are given by

H0:k∗ = Q · diag (ϕ1, ϕ2, ..., ϕk∗ , 0, 0, ..., 0) ·Q⊤, Hk∗:∞ = H−H0:k∗ .

Taking expectation over θ̃ ∼ N (0, Id) , we have

L (ŷBayes;X)− σ2 = Eθ̃∼N (0,Id)

∥∥∥θ̂Bayes − θ̃
∥∥∥2
H

=

(
σ2 +

∑
i>k∗ ϕi

M

)2

·
∑
i≤k∗

1

ϕi
+
∑
i>k∗

ϕi + σ2

(
k∗

M
+

M
∑

i>k∗ ϕ2i
σ2 +

∑
i>k∗ ϕi

)
Now we simplify this expression. First, we define

ϕ̄ := c ·
σ2 +

∑
i>k∗ ϕi

M
.

From the definition, we see ϕ̄ ≥ cσ2

M . On the other hand, from the assumption that tr (H) =

tr
(
Ψ

1
2HΨ

1
2

)
=
∑d

i=1 ϕi ≲ σ2, we know that ϕ̄ ≲ cσ2

M . Combining two parts, we get

ϕ̄ ≃ σ2

M
. (F.3)

Therefore, we have

L (ŷBayes;X)− σ2 ≃ ϕ̄2 ·
∑
i≤k∗

1

ϕi
+
∑
i>k∗

ϕi +
σ2

M
·
(
k∗ +

∑
i>k∗ ϕ2i
ϕ̄2

)

≃
∑
i

min

{
ϕ̄2

ϕi
, ϕi

}
+ ϕ̄ ·

∑
i

min

{
1,
ϕ2i
ϕ̄2

}
(from (F.3))

≃
∑
i

(
min

{
ϕ̄2

ϕi
, ϕi

}
+min

{
ϕ̄,
ϕ2i
ϕ̄

})
≃
∑
i

min
{
ϕi, ϕ̄

}
.

This finishes the proof.
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G Proof of Theorem 6.3

G.1 Training dynamics

Now we consider doing gradient flow on the risk function, or equivalently, on the excess risk function
which differs by only a constant:

dβ

dt
= −1

2

∂

∂β
[R(β,Γ)−minR(·, ·)] ; (G.1)

dΓ

dt
= −1

2

∂

∂Γ
[R(β,Γ)−minR(·, ·)] . (G.2)

First, we have the following corollary of Theorem 5.2, which computes the excess risk R(β,Γ)−
minR(·, ·).
Corollary G.1 (Excess Risk). We fix M as the context length. Consider the ICL risk in (3.5), assume
the data is generated following Assumption 3.1. Then, we have

R(β,Γ)−minR(·, ·)

= (β − β∗)
⊤

(Id − ΓH)
⊤
H (Id − ΓH) +

tr
(
HΓ⊤HΓ

)
M

H+
1

M
HΓ⊤HΓH

 (β − β∗)

+ tr

[(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]
. (G.3)

Proof. This is obtained directly from equation (C.5) and (C.7).

Now, we write out the differential equations explicitly in the following lemma.
Lemma G.2 (Dynamical system). The dynamical system of gradient flow described in (G.1) and
(G.2) is

dβ

dt
= −

(Id − ΓH)
⊤
H (Id − ΓH) +

tr
(
HΓ⊤HΓ

)
M

H+
1

M
HΓ⊤HΓH

 (β − β∗) (G.4)

dΓ

dt
= −

(
HΓH

1
2ΩH

1
2 −HΨH

)
− M + 1

M
HΓH (β − β∗) (β − β∗)

⊤
H

− 1

M
(β − β∗)

⊤
H (β − β∗) ·HΓH+H (β − β∗) (β − β∗)

⊤
H. (G.5)

Proof. This can be obtained by directly calculating the derivatives over the excess risk (G.3). To
write out the dynamics of β, it suffices to notice that β only attends the first term of the RHS of (G.3),
which is a standard quadratic function. For the derivatives of Γ, we first have

1

2

∂

∂Γ
tr

[(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)⊤
]

= H
1
2

(
H

1
2ΓH

1
2 −H

1
2ΨH

1
2Ω−1

)
Ω

1
2 ·Ω

1
2H

1
2 (the sixth equation in Lemma H.3)

= HΓH
1
2ΩH

1
2 −HΨH.

Now it suffices to compute

∂

∂Γ

1

2
(β − β∗)

⊤

(Id − ΓH)
⊤
H (Id − ΓH) +

tr
(
HΓ⊤HΓ

)
M

H+
1

M
HΓ⊤HΓH

 (β − β∗) .
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Let’s compute the partial derivativess separately. From Lemma H.3, we have

∂

∂Γ

1

2
(β − β∗)

⊤
(
−HΓ⊤H

)
(β − β∗) =

∂

∂Γ

1

2
(β − β∗)

⊤
(−HΓH) (β − β∗)

= −1

2
H (β − β∗) (β − β∗)

⊤
H;

∂

∂Γ

1

2

(
M + 1

M
(β − β∗)

⊤
HΓ⊤HΓH (β − β∗)

)
=
M + 1

M
HΓ ·H (β − β∗) (β − β∗)

⊤
H;

∂

∂Γ

1

2

 tr
{
HΓ⊤HΓ

}
M

· (β − β∗)
⊤
H (β − β∗)

 =
1

M
(β − β∗)

⊤
H (β − β∗) ·HΓH.

Summing over the three equations above and applying the definition of gradient flow, we conclude
the dynamics of Γ in (G.5).

G.2 Proof of the global convergence

Let’s now prove Theorem 6.3. Since the first part of Theorem 6.3 is directly implied by the second
part, we only deal with the case with general H. In this section, we denote λ−1 > 0 as the minimal
non-zero eigenvalue of H. As in the main text, we define

H := Im (H)

and H⊥ as its orthogonal complement. First, let’s prove the convergence of β.
Lemma G.3 (Convergence of β). Under the dynamical system (G.4) and (G.5), one has

∥PH (β(t))− PH (β∗)∥22 ≤ exp

(
−2λ−1t

M + 1

)
∥PH (β(0))− PH (β∗)∥22 , (G.6)

which implies ∥∥∥H 1
2 (β(t)− β∗)

∥∥∥2
2
≤ λ1 exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 , (G.7)

and
PH (β(t)) → PH (β∗)

when t→ ∞, from arbitrary initialization β(0) and Γ(0). Moreover, one has for any t > 0, it holds
that

PH⊥ (β(t)) = PH⊥ (β(0)) (G.8)

Proof. We first consider the orthogonal projection operator P. From Lemma H.5 and equation (G.4),
we know

dPH(β(t)− β∗)

dt
= −HH+HΓ (β − β∗) ,

where

HΓ := (Id − ΓH)
⊤
H (Id − ΓH) +

tr
(
HΓ⊤HΓ

)
M

H+
1

M
HΓ⊤HΓH.

From the property of pseudo-inverse, we know

dPH(β(t)− β∗)

dt
= −HΓ (β − β∗) = −HΓH

+H (β − β∗) = −HΓPH (β − β∗) .

Therefore, we have

d

dt

[
1

2
∥PH(β(t)− β∗)∥22

]
= −PH (β − β∗)

⊤ ·HΓ · PH (β − β∗) .

Notice that

HΓ ⪰

(√
M

M + 1
I−

√
M + 1

M
ΓH

)⊤

H

(√
M

M + 1
I−

√
M + 1

M
ΓH

)
+

1

M + 1
H ⪰ 1

M + 1
H.
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This implies

d

dt

[
1

2
∥PH(β(t)− β∗)∥22

]
≤ − 1

M + 1
PH (β − β∗)

⊤ ·H · PH (β − β∗)

≤ − λ−1

M + 1
∥PH (β − β∗)∥22 ,

where the last line comes from Lemma H.5 and λ−1 is the minimal non-zero eigenvalue of H. Via
standard integration method in ODE, we know this suggests

∥PH (β(t)− β∗)∥22 ≤ exp

(
−2λ−1t

M + 1

)
∥PH (β(0)− β∗)∥22 → 0 when t→ ∞.

This indicates that PH (β(t)) → PH (β∗) when t→ ∞. Finally, we have

dPH⊥(β(t)− β∗)

dt
= −

(
Id −HH+

)
HΓ (β − β∗) = 0d,

which implies PH⊥(β(t)− β∗) = PH⊥(β(0)− β∗) and hence, PH⊥(β(t)) = PH⊥(β(0)) for any
t > 0.

Next, let’s consider the convergence of Γ. As defined in the main text, we have

Z := Im (H⊗H)

and Z⊥ is its orthogonal complement. We have the following lemma.
Lemma G.4. Under the dynamical system (G.4) and (G.5), one has

d

dt
PZ⊥ (Γ− Γ∗) = 0d×d, (G.9)

d

dt
PZ (Γ− Γ∗) = −H · PZ (Γ− Γ∗) ·H 1

2ΩH
1
2 − M + 1

M
H · PZ (Γ− Γ∗) ·H (β − β∗) (β − β∗)

⊤
H

− 1

M
(β − β∗)

⊤
H (β − β∗) ·H · PZ (Γ− Γ∗) ·H

− 1

M
(β − β∗)

⊤
H (β − β∗) ·HΓ∗H− 1

M
HΓ∗H (β − β∗) (β − β∗)

⊤
H

+
1

M
H

1
2Ω−1

(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)
H

1
2 (β − β∗) (β − β∗)

⊤
H.

(G.10)

Proof. The first ODE is trivial since the RHS of (G.5) always lies in Z := Im (H⊗H) , so its
projection on Z⊥ always vanishes. To prove the second equation, we can rewrite (G.5) as

dΓ

dt
= −

(
H (Γ− Γ∗)H

1
2ΩH

1
2 −HΨH+HΓ∗H

1
2ΩH

1
2︸ ︷︷ ︸

A

)
− M + 1

M
H (Γ− Γ∗)H (β − β∗) (β − β∗)

⊤
H

− 1

M
(β − β∗)

⊤
H (β − β∗) ·H (Γ− Γ∗)H+H (β − β∗) (β − β∗)

⊤
H︸ ︷︷ ︸

B

− 1

M
(β − β∗)

⊤
H (β − β∗) ·HΓ∗H−M + 1

M
HΓ∗H (β − β∗) (β − β∗)

⊤
H︸ ︷︷ ︸

C

.

For term A, recalling Γ∗ = ΨH
1
2Ω−1H− 1

2 , we have

HΓ∗H
1
2ΩH

1
2 = HΨH

1
2Ω−1H− 1

2H
1
2ΩH

1
2

= H
1
2Ω−1H

1
2ΨH

1
2H− 1

2H
1
2ΩH

1
2 (Ω and H

1
2ΨH

1
2 commute.)
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= H
1
2Ω−1H

1
2ΨH

1
2ΩH

1
2 (H

1
2H− 1

2H
1
2 = H

1
2 )

= HΨH
1
2Ω−1ΩH

1
2 (Ω and H

1
2ΨH

1
2 commute.)

= HΨH.

This suggests A = 0. For B + C, we have

B + C = − 1

M
HΓ∗H (β − β∗) (β − β∗)

⊤
H+ (Id −HΓ∗)H (β − β∗) (β − β∗)

⊤
H.

We can compute (Id −HΓ∗)H as

(Id −HΓ∗)H = H
1
2

(
H

1
2 −H

1
2ΨH

1
2Ω−1H− 1

2H
)

= H
1
2

(
H

1
2 −Ω−1H

1
2ΨH

1
2H− 1

2H
)

(Ω and H
1
2ΨH

1
2 commute.)

= H
1
2

(
H

1
2 −Ω−1H

1
2ΨH

)
(H

1
2H− 1

2H
1
2 = H

1
2 )

= H
1
2

(
Ω−1ΩH

1
2 −Ω−1H

1
2ΨH

)
=

1

M
H

1
2Ω−1

(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)
H

1
2 .

Therefore,

B + C = − 1

M
HΓ∗H (β − β∗) (β − β∗)

⊤
H

+
1

M
H

1
2Ω−1

(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)
H

1
2 (β − β∗) (β − β∗)

⊤
H.

Bridging A = 0 and the result of B + C into the ODE, we have

d (Γ− Γ∗)

dt

= −H (Γ− Γ∗)H
1
2ΩH

1
2 − M + 1

M
H (Γ− Γ∗)H (β − β∗) (β − β∗)

⊤
H

− 1

M
(β − β∗)

⊤
H (β − β∗) ·H (Γ− Γ∗)H

− 1

M
(β − β∗)

⊤
H (β − β∗) ·HΓ∗H− 1

M
HΓ∗H (β − β∗) (β − β∗)

⊤
H

+
1

M
H

1
2Ω−1

(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)
H

1
2 (β − β∗) (β − β∗)

⊤
H. (G.11)

Note that, all terms in the RHS above lie in Z = Im
(
H⊗2

)
, so this summation also equals

d
dtPZ (Γ− Γ∗) . Moreover, since

H
1
2 (Γ− Γ∗)H

1
2 = H

1
2

[
P
Im

(
H

1
2 ⊗H

1
2

) (Γ− Γ∗) + P
null

(
H

1
2 ⊗H

1
2

) (Γ− Γ∗)

]
H

1
2

= H
1
2 · P

Im
(
H

1
2 ⊗H

1
2

) (Γ− Γ∗)H
1
2 . (G.12)

Bridging (G.12) into (G.11), we conclude.

Then, let’s upper bound the dynamics of ∥PZ (Γ− Γ∗)∥2F in the following lemma.

Lemma G.5 (Dynamics of Frobenius norm). Under the dynamical system (G.4) and (G.5), one has

d

dt

[
1

2
∥PZ (Γ− Γ∗)∥2F

]
≤ −A1 ∥PZ (Γ− Γ∗)∥2F +A2 exp

(
−2λ−1t

M + 1

)
∥PZ (Γ− Γ∗)∥F ,

(G.13)
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where
A1 = λ2−1λmin (Ω) ,

A2 =

(
2 +

2

M

)
λ21 ∥β(0)− β∗∥22 .

(G.14)

are two positive constant. Here, λ−1 > 0 is the minimal positive eigenvalue of H, λ1 is the maximal
eigenvalue of H, λmin (Ω) is the minimal eigenvalue of Ω (defined in (A.3)) and is strictly positive.

Proof. From the dynamics of PZΓ in (G.10), we know

d

dt

[
1

2
∥PZ (Γ− Γ∗)∥2F

]
= tr

(
d

dt
PZ (Γ− Γ∗) · PZ (Γ− Γ∗)

⊤
)

= G1 +G2 +G3, (G.15)

where

G1 = −tr
[
H · PZ (Γ− Γ∗) ·H 1

2ΩH
1
2 · PZ (Γ− Γ∗)

⊤
]
,

G2 = −tr

[
M + 1

M
H · PZ (Γ− Γ∗) ·H (β − β∗) (β − β∗)

⊤
H · PZ (Γ− Γ∗)

⊤
]

− tr

[
1

M
(β − β∗)

⊤
H (β − β∗) ·H · PZ (Γ− Γ∗) ·H · PZ (Γ− Γ∗)

⊤
]
,

G3 = −tr

[
1

M
(β − β∗)

⊤
H (β − β∗) ·HΓ∗H · PZ (Γ− Γ∗)

⊤
]

+
1

M
tr
[
HΓ∗H (β − β∗) (β − β∗)

⊤
H · PZ (Γ− Γ∗)

⊤
]

+ tr

[
1

M
H

1
2Ω−1

(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)
H

1
2 (β − β∗) (β − β∗)

⊤
H · PZ (Γ− Γ∗)

⊤
]
.

(G.16)

From Lemma H.2, we know that G2 ≤ 0. Then, we consider G1 and G3. For G1, we have

G1 = −tr
[(

H
1
2PZ (Γ− Γ∗)

⊤
H

1
2

)
·
(
H

1
2PZ (Γ− Γ∗)H

1
2

)
·Ω
]

≤ −λ2−1tr
[
PZ (Γ− Γ∗)

⊤ · PZ (Γ− Γ∗) ·Ω
]

((3) in Lemma H.6 and (2) in Lemma H.2)

≤ −λ2−1λmin (Ω) ∥PZ (Γ− Γ∗)∥2F ,

where λmin(·) denote the minimal eigenvalue. Since Ω is positive definite, we know λmin (Ω) > 0.

Finally, let’s upper bound G3. First, we have

− tr

[
1

M
(β − β∗)

⊤
H (β − β∗) ·HΓ∗H · PZ (Γ− Γ∗)

⊤
]

≤
√
d

M
(β − β∗)

⊤
H (β − β∗) ·

∥∥∥H 1
2Γ∗H

1
2

∥∥∥
2

∥∥∥H 1
2 · PZ (Γ− Γ∗)

⊤
H

1
2

∥∥∥
F

(Lemma H.1)

≤
√
dλ1
M

exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 λmax

(
H

1
2Γ∗H

1
2

)
· ∥H∥F ∥PZ (Γ− Γ∗)∥F

(from equation (G.7))

≤
√
dλ21
M

exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 λmax

(
H

1
2Γ∗H

1
2

)
· ∥PZ (Γ− Γ∗)∥F .

For λmax

(
H

1
2Γ∗H

1
2

)
, we recall Γ∗ = ΨH

1
2Ω−1H− 1

2 and obtain

H
1
2Γ∗H

1
2 = H

1
2ΨH

1
2Ω−1H− 1

2H
1
2 = Ω−1H

1
2ΨH

1
2H− 1

2H
1
2 (Ω and H

1
2ΨH

1
2 commute)

= Ω−1H
1
2ΨH

1
2 . (H

1
2H− 1

2H
1
2 = H

1
2 )
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Since Ω−1 and H
1
2H− 1

2H
1
2 commute, they are simultaneously diagonalizable. The eigenvalues of

Ω−1H
1
2ΨH

1
2 are

ϕi
M+1
M ϕi +

∑
i ϕi+σ2

M

, i = 1, 2, ..., d.

Note that, every eigenvalue is upper bounded by 1, so we simply get

λmax

(
H

1
2Γ∗H

1
2

)
≤ 1. (G.17)

Therefore, we have

− tr

[
1

M
(β − β∗)

⊤
H (β − β∗) ·HΓ∗H · PZ (Γ− Γ∗)

⊤
]

≤
√
dλ21
M

exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 · ∥PZ (Γ− Γ∗)∥F . (G.18)

Similarly, we have

− tr

[
1

M
HΓ∗H (β − β∗) (β − β∗)

⊤
H · PZ (Γ− Γ∗)

⊤
]

≤
√
d

M

∥∥∥PZ (Γ− Γ∗)
⊤
∥∥∥
F

∥∥∥H 1
2 (β − β∗) (β − β∗)

⊤
H

1
2

∥∥∥
F
∥H∥F

∥∥∥H 1
2Γ∗H

1
2

∥∥∥
2

(Lemma H.1)

≤
√
dλ21
M

exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 · ∥PZ (Γ− Γ∗)∥F , (G.19)

and

tr

[
1

M
H

1
2Ω−1

(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)
H

1
2 (β − β∗) (β − β∗)

⊤
H · PZ (Γ− Γ∗)

⊤
]

≤
√
d

M

∥∥∥Ω−1
(
H

1
2ΨH

1
2 +

(
tr
(
H

1
2ΨH

1
2

)
+ σ2

)
Id

)∥∥∥
2

∥∥∥H 1
2 (β − β∗) (β − β∗)

⊤
H · PZ (Γ− Γ∗)

⊤
H

1
2

∥∥∥
F

(Lemma H.1)

≤
√
d

M
·M ·

∥∥∥H 1
2 (β − β∗) (β − β∗)

⊤
H

1
2

∥∥∥
F
· ∥H∥F · ∥PZ (Γ− Γ∗)∥F

≤
√
dλ21 exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 · ∥PZ (Γ− Γ∗)∥F (G.20)

Bridging (G.18), (G.19) and (G.20) into (G.16), we get

G3 ≤
(
2 +

2

M

)
λ21 exp

(
−2λ−1t

M + 1

)
∥β(0)− β∗∥22 · ∥PZ (Γ− Γ∗)∥F (G.21)

Finally, we finish this section by proving the convergence of Γ.
Lemma G.6 (Convergence of Γ). Under the dynamical system (G.4) and (G.5), one has

PZ (Γ(t)) → PZ (Γ∗) , PZ⊥ (Γ(t)) = PZ⊥ (Γ(0))

when t→ ∞, from arbitrary initialization β(0) and Γ(0).

Proof. We observe that

d

dt

[
1

2
∥PZ (Γ− Γ∗)∥2F

]
= ∥PZ (Γ− Γ∗)∥F · d

dt
∥PZ (Γ− Γ∗)∥F .

Combining it with Lemma G.5, we have

d

dt
∥PZ (Γ− Γ∗)∥F ≤ −A1 ∥PZ (Γ− Γ∗)∥F +A2 exp

(
−2λ−1t

M + 1

)
,
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where A1 > 0, A2 > 0 are defined in (G.14). Simple calculation shows that

d

dt
[exp (A1t) ∥PZ (Γ− Γ∗)∥F ] ≤ A2 exp

[(
A1 −

2λ−1

M + 1

)
t

]
. (G.22)

When A1 ̸= 2λ−1

M+1 , we integrate both sides from t = 0 to t = T , then divide them by exp (A1T ).
This gives

∥PZ (Γ(T )− Γ∗)∥F ≤
∥PZ (Γ(0)− Γ∗)∥F

exp (A1T )
+

A2

A1 − 2λ−1

M+1

·
exp

[(
A1 − 2λ−1

M+1

)
T
]
− 1

exp (A1T )

=
∥PZ (Γ(0)− Γ∗)∥F

exp (A1T )
+

A2

A1 − 2λ−1

M+1

·
[
exp

(
−2λ−1T

M + 1

)
− exp (−A1T )

]
→ 0

when T → ∞. Otherwise, if A1 = 2λ−1

M+1 , the right hand side of (G.22) reduces to a con-
stant, which implies exp (A1t) ∥PZ (Γ(t)− Γ∗)∥F grows at most at a linear rate, which implies
∥PZ (Γ(t)− Γ∗)∥F → 0 when t → ∞. Together, in all cases, we have ∥PZ (Γ(t)− Γ∗)∥F → 0.
From (G.9), we soon get PZ (Γ(t)) = PZ (Γ(0)) foo all t > 0. Therefore, we conclude.

The Theorem 6.3 is proved by simplly combining Lemma G.3 and Lemma G.6.
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H Technical lemmas

Lemma H.1 (Von-Neumann’s Trace Inequality). Let U, V ∈ Rd×n with d ≤ n. We have

tr
(
U⊤V

)
≤

d∑
i=1

σi(U)σi(V ) ≤ ∥U∥op ×
d∑

i=1

σi(V ) ≤
√
d · ∥U∥op∥V ∥F

where σ1(X) ≥ σ2(X) ≥ · · · ≥ σd(X) are the ordered singular values of X ∈ Rd×n.

Lemma H.2 ([22]). For any two positive semi-definite matrices A,B ∈ Rd×d, we have

• tr[AB] ≥ 0.

• AB ⪰ 0 if and only if A and B commute.
Lemma H.3 (Derivatives, [27]). We denote A,B,C,D,X as matrices and a,b,x as vectors. Then,
we have

• ∂
∂X tr

[
X⊤BXC

]
= BXC+B⊤XC⊤.

• ∂x⊤Bx
∂x =

(
B+B⊤)x.

• ∂a⊤Xb
∂X = ab⊤.

• ∂a⊤X⊤b
∂X = ba⊤.

• ∂b⊤X⊤DXc
∂X = D⊤Xbc⊤ +DXcb⊤.

• ∂
∂X tr

[
(AXB+C)(AXB+C)⊤

]
= 2A⊤(AXB+C)B⊤

Lemma H.4 (Lemma D.2 in [38], Lemma 4.2 in [37]). If x is Gaussian random vector of d dimension,
mean zero and covariance matrix H, and A ∈ Rd×d is a fixed matrix. Then

E
[
xx⊤Axx⊤] = H

(
A+A⊤

)
H+ tr(AH)H.

If A is symmetric and the rows in X ∈ RM×d are generated independently from

X[i] ∼ N (0,H), i = 1, . . . ,M.

Then, it holds that

E
[
X⊤XAX⊤X

]
=M · tr (HA) ·H+M(M + 1) ·HAH.

Lemma H.5 (Linear Algebra). Suppose H is a (non-zero) positive semi-definite matrix in Rd×d and
H

1
2 is its principle square root. We denote λ−1 as the minimal non-zero eigenvector of H. Then, we

have

• 1. null (H) = null
(
H

1
2

)
, Im (H) = Im

(
H

1
2

)
.

• 2. HH+ = H+H, where (·)+ denotes the Moore-Penrose pseudo-inverse.

• 3. For any vector α ∈ Rd, the orthogonal projection operator on Im (H) and null (H) are
respectively

PIm(H) (α) = HH+α = H+Hα, Pnull(H) (α) =
(
Id −HH+

)
α =

(
Id −H+H

)
α.

• 4. For any vector α ∈ Rd, we have

PIm(H) (α)
⊤
HPIm(H) (α) ≥ λ−1

∥∥PIm(H) (α)
∥∥2
2
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Proof. We consider the eigen-decomposition of matrix H, which is

H = QDQ⊤, (H.1)

where D = diag (λ1, λ2, ..., λd) is a diagonal matrix with diagonal entries being the eigenvalues of
H, and Q is an orthogonal matrix. Then, from the definition of principle square root, we know

H
1
2 = QD

1
2Q⊤, (H.2)

where D
1
2 = diag

(√
λ1,

√
λ2, ...,

√
λd
)
. We denote columns of Q as q1, ...qd. We know they are

the eigenvectors of H. From the eigen-decomposition of H and H
1
2 , we know they share the same

set of eigenvectors. Without loss of generality, we assume rank(H) = r and λ1 ≥ λ2 ≥ ... ≥ λr >
0, λi = 0, i = r + 1, ..., d. Then, we denote H as the linear vector space spanned by q1, ...,qr and
H⊥ as its orthogonal complement (which is the subspace spanned by qr+1, ...,qd). For any vector
α ∈ Rd, we can write its orthogonal decomposition as α =

∑d
i=1 aiqi, so we have

Hα =

d∑
i=1

aiHqi =

r∑
i=1

aiλiqi ∈ H,

which implies Im (H) ⊂ H. On the other hand, we know for any α ∈ H, we can write it as
α =

∑r
i=1 aiqi for some a1, ..., ar, then we have

α =

r∑
i=1

ai
λi

· λiqi = H

(
r∑

i=1

ai
λi

qi

)
∈ Im (H) ,

which implies H ⊂ Im (H) . This shows

Im (H) = H = span {q1, ...qr} ,

and
null (H) = H = span {qr+1, ...qd} ,

since null (H) is the orthogonal complement of Im (H) . Then, (1) is proved by noticing that H and
H

1
2 share the same set of eigenvectors. To prove (2), it suffices to notice that

HH+ = Q · diag(1, 1, ..., 1︸ ︷︷ ︸
r

, 0, 0, .., 0) ·Q⊤ = H+H.

To prove (3), it suffices to notice that actually HH+α ∈ Im (H) and〈
HH+α,

(
Id −HH+

)
α
〉
=
〈
H+Hα,

(
Id −HH+

)
α
〉
= α⊤ (HH+ −HH+HH+

)
α = 0.

Finally, to prove (4), we can write α =
∑d

i=1 aiqi for some a1, ..., ad. Then, by orthogonality we
have

PIm(H) (α)
⊤
HPIm(H) (α) =

(
d∑

i=1

aiqi

)⊤

H

(
d∑

i=1

aiqi

)
=

r∑
i=1

a2iλiq
⊤
i qi ≥ λ−1 ·

r∑
i=1

a2iq
⊤
i qi

= λ−1

∥∥PIm(H) (α)
∥∥2
2
.

Therefore, we conclude.

Lemma H.6 (Tensor product). Suppose H is a (non-zero) positive semi-definite matrix in Rd×d and
H

1
2 is its principle square root. We denote ⊗ as Kronecker product, which is defined as

(A⊗B) ◦C = BCA⊤.

We define

Im (H⊗H) :=
{
(H⊗H) ◦Z : Z ∈ Rd×d

}
, null (H⊗H) :=

{
Z ∈ Rd×d : (H⊗H) ◦Z = 0

}
,

and define Im
(
H

1
2 ⊗H

1
2

)
and null

(
H

1
2 ⊗H

1
2

)
similarly. Then, we have
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• 1. Im
(
H

1
2 ⊗H

1
2

)
= Im (H⊗H) , null

(
H

1
2 ⊗H

1
2

)
= null (H⊗H) .

• 2. We denote Z = Im
(
H

1
2 ⊗H

1
2

)
= Im (H⊗H) and Z⊥ = null

(
H

1
2 ⊗H

1
2

)
=

null (H⊗H) . For any matrix Z ∈ Rd×d, we have

PZ (Z) =
(
HH+

)⊗2 ◦Z = HH+ZH+H = H
1
2H− 1

2ZH− 1
2H

1
2 (H.3)

PZ⊥ (Z) =
[
I⊗2
d −

(
HH+

)⊗2
]
◦Z = Z −HH+ZH+H = Z −H

1
2H− 1

2ZH− 1
2H

1
2 .

(H.4)

• 3. For any matrix Z ∈ Rd×d, it holds that((
H

1
2 ⊗H

1
2

)
◦ PZ (Z)

)
·
((

H
1
2 ⊗H

1
2

)
◦ PZ (Z)

)⊤
⪰ λ2−1PZ (Z) · PZ (Z)

⊤
,

(H.5)
where λ−1 is the minimal positive eigenvector of H.

Proof. Let’s first prove the second part. From the definition of tensor product and the fact that
HH+ = H+H (see Lemma H.5), we know the second equation in H.3 holds. To prove the first
equation, it suffices to notice that for any matrix Z ∈ Rd×d, the matrix HH+ZH+H is in Im

(
H⊗2

)
,

together with the fact that〈
HH+ZH+H,Z −HH+ZH+H

〉
= tr

(
HH+ZH+HZ⊤

)
− tr

(
HH+ZH+HHH+Z⊤H+H

)
= tr

(
HH+ZH+HZ⊤

)
− tr

(
HH+HH+ZH+HH+HZ⊤

)
(HH+ = H+H)

= 0.

The proof of (H.4) is similar. Then, from Lemma H.5, we know Im (H) = Im
(
H

1
2

)
, which

implies the projection operator onto those two subspace are identical, indicating HH+ = H
1
2H− 1

2 .
Therefore, we have

PIm(H⊗H) (Z) =
(
HH+

)⊗2 ◦Z = HH+ZH+H = H
1
2H− 1

2ZH− 1
2H

1
2 = P

Im
(
H

1
2 ⊗H

1
2

) (Z) .

Since this holds for any matrix Z ∈ Rd×d, this suggests Im
(
H

1
2 ⊗H

1
2

)
= Im (H⊗H) . Sim-

ilarly, we also have null
(
H

1
2 ⊗H

1
2

)
= null (H⊗H) . Finally, to prove (3), we use the eigen-

decomposition of H and H
1
2 :

H = QDQ⊤, H
1
2 = QD

1
2Q⊤,

where Q = (q1 q2 ... qd) is an orthogonal matrix and D = diag (λ1, ...., λd) , where λ1 ≥
λ2 ≥ ....λd ≥ 0 are ordered eigenvalues. We assume rank(H) = r and λr > 0 = λr+1.

Then, from the property of Kronecker product (eg. see [27]), the eigenvalues of H
1
2 ⊗ H

1
2 are{√

λiλj : 1 ≤ i, j ≤ d
}

. The eigenvectors are {qi ⊗ qj : 1 ≤ i, j ≤ d} , which forms an orthogo-
nal unit basis of Rd×d. We define

S := span {qi ⊗ qj : 1 ≤ i, j ≤ r}

as the eigenspace spanned by all eigenvectors corresponding to positive eigenvalues. For any matrix
Z, we can decompose it as

Z =
∑
i,j

ai,j · qi ⊗ qj ,

so

(H⊗H) ◦Z =

d∑
i,j=1

ai,j (H⊗H) ◦ (qi ⊗ qj) =
∑
i,j

(Hqi)⊗ (Hqj)
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=

d∑
i,j=1

ai,jλiλjqi ⊗ qj =

r∑
i,j=1

ai,jλiλjqi ⊗ qj ∈ S,

which implies Z ⊂ S.On the other hand, for any Z ∈ S,we can write it as Z =
∑r

i,j=1 bi,j ·qi⊗qj ,
so we have

Z =

r∑
i,j=1

bi,j
λiλj

·(λiqi)⊗(λjqj) =

r∑
i,j=1

bi,j
λiλj

·(Hqi)⊗(Hqj) = (H⊗H)◦

 r∑
i,j=1

bi,j
λiλj

(qi ⊗ qj)

 ∈ Z,

which implies S ⊂ Z. Combining two directions, we have S = Z. Therefore, for any matrix
Z ∈ Rd×d, we can write it as Z =

∑d
i,j=1 ci,j · qi ⊗ qj for some ci,j . Then, we have(

H
1
2 ⊗H

1
2

)
◦ PZ (Z) =

(
H

1
2 ⊗H

1
2

)
◦ PS (Z) =

(
H

1
2 ⊗H

1
2

)
◦

r∑
i,j=1

ci,j · qi ⊗ qj

=

r∑
i,j=1

ci,j

(
H

1
2qi

)
⊗
(
H

1
2qj

)
=

r∑
i,j=1

ci,j
√
λiλj · qi ⊗ qj .

Therefore, we have((
H

1
2 ⊗H

1
2

)
◦ PZ (Z)

)((
H

1
2 ⊗H

1
2

)
◦ PZ (Z)

)⊤
=

 r∑
i,j=1

ci,j
√
λiλj · qi ⊗ qj

 r∑
k,l=1

ck,l
√
λkλl · qk ⊗ ql

⊤

=

r∑
i,j=1

c2i,jλiλj (qi ⊗ qj) (qi ⊗ qj)
⊤ (By orthogonality)

⪰ λ2−1

r∑
i,j=1

c2i,j (qi ⊗ qj) (qi ⊗ qj)
⊤

= λ2−1PZ (Z) · PZ (Z)
⊤
.

Therefore, we conclude.

I Experiment Details

Our experiments on GPT2 mostly follow the setting in [14], except that we use the token matrix
defined in (3.1). In our experiments, we use d = 20,M = 40,Ψ = H = Id and σ = 0. We train the
GPT2 with and without MLP layers on two settings: β∗ = (0, 0, ..., 0)⊤ and β∗ = (10, 10, ..., 10)⊤.
For GPT2 with and without MLP layers, we initialize the WV and W2 by normal distribution with
standard deviation 0.02/

√
number of residual connections,where the number of residual connections

equals the number of layers for GPT2 without MLP layers. For GPT2 with MLP layers, this is 2
times the number of layers. Initialization for other matrices follow the default setting in [36]. We use
Adam with learning rate 0.0001. We train the model for 200000 steps and we sample a batch of 256
new tasks for each step.

J Does scratchpad help?

In this section, we show the limitations of adding a scratchpad to the token matrix. We will show
that by using a single LSA layer and the token matrix with scratchpad, one cannot recover the
GD-β estimator defined in Section 5. We leave it as future work to see whether the token matrix
with scratchpad could implement other types of estimators that more effectively address the linear
regression tasks defined in Assumption 3.1, as well as whether additional structures could help
alleviate this approximation error. We follow the notations in previous sections. The token matrix
with scratchpad is defined as
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E :=


X⊤ x

1⊤
M 1

y⊤ 0

 ∈ R(d+2)×(M+1). (J.1)

where 1M ∈ RM refers to the vector filled with ones.

A LSA model f, is defined by

f(E) :=

[
E+W⊤

PWV EM
E⊤W⊤

KWQE

M

]
−1,−1

=

[
W⊤

PWV EM
E⊤W⊤

KWQE

M

]
−1,−1

,

where the second equality is because the bottom right entry of E is zero (see (3.1)). Note that the
prediction is the bottom right entry of the output matrix. So only the last row of W⊤

P WV and the
last column of E attend the prediction. Denote

W⊤
P WV =

(
∗ ∗ ∗

w⊤ a1 a2

)
, W⊤

K WQ =


Q b ∗
q⊤
1 b1 ∗

q⊤
2 b2 ∗

 ,

where
w ∈ Rd, a1,a2 ∈ R, Q ∈ Rd×d, b, q1, q2 ∈ Rd, b1, b2 ∈ R,

and ∗ denotes entries that do not enter the final prediction. Then we have

f(E) =
(
w⊤ a1 a2

) EMME⊤

M


Q b ∗
q⊤
1 b1 ∗

q⊤
2 b2 ∗


(
x
1
0

)

=
(
w⊤ a1 a2

) EMME⊤

M


Q b

q⊤
1 b1

q⊤
2 b2

(x1
)

=
(
w⊤ a1 a2

) 1

M


X⊤X X⊤1M X⊤y

1⊤
MX M 1⊤

My

y⊤X y⊤1M y⊤y




Q b

q⊤
1 b1

q⊤
2 b2

(x1
)
.

Following the Assumption 3.1, we use β̃ to refer to the task parameter, then

β̃ := β∗ +Ψ
1
2 θ̃, where θ̃ ∼ N (0d, Id) .

We then decompose f(E) as

f(E) =
(
w⊤ a1 a2

) 1

M


X⊤X X⊤1M X⊤y

1⊤
MX M 1⊤

My

y⊤X y⊤1M y⊤y




Q

q⊤
1

q⊤
2


︸ ︷︷ ︸

I

·x+ II,

where terms I and II are independent of x. Therefore, we have

R (f) := E (f(E)− y)
2

= E
(
f(E)− ⟨β̃,x⟩

)2
+ σ2 since y|β̃,x ∼ N (0, σ2)

= E
(

I · x+ II − ⟨β̃,x⟩
)2

+ σ2 since f(E) = I · x+ II

= E∥I⊤ − β̃∥2H + EII2 + σ2 since x ∼ N (0,H)
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≥ E∥I⊤ − β̃∥2H + σ2.

Note that the above equation holds if II = 0, which can be easily achieved by setting b = 0d, b1 =
b2 = 0. Therefore, without loss of generality, we can consider the LSA function which takes the
following form:

f(E) = I · x =
(
w⊤ a1 a2

) 1

M


X⊤X X⊤1M X⊤y

1⊤
MX M 1⊤

My

y⊤X y⊤1M y⊤y




Q

q⊤
1

q⊤
2

 · x. (J.2)

Let’s then try to determine whether such a function can effectively represent a GD-β function, which
takes the form of

fGD-β(E) = ⟨β∗,x⟩ −
〈
Γ∗X⊤ (Xβ∗ − y)

M
,x

〉
, (J.3)

where β∗ is the prior mean in Assumption 3.1 in our submission, and Γ∗ = ΨH
1
2Ω−1H

1
2 and

Ω = M+1
M H

1
2ΨH

1
2 + σ2+tr(HΨ)

M Id is defined in (5.3) in our submission. In order to achieve this,
one simple way is to let

w = −β∗, a1 = a2 = 1, Q = (Γ∗)⊤, q1 = β∗, q2 = 0d. (J.4)

However, this will incur some additive terms and will potentially enlarge the ICL risk. Inserting the
parameters above, we have

f(E) = fGD-β(E) +
1⊤
M

M

(
X(Γ∗)⊤ − xβ∗(β∗)⊤ + y(β∗)⊤

)
· x

This shows that the extended token with a single LSA cannot easily implement the GD-β function
class and may incur an additive ICL risk depending on β∗ (as shown in Theorem 4.1).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe our introduction and abstract are factually accurate in describing
the contributions of the paper and of its result.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Section 4 and the future work section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the assumption in Assumption 3.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all detailed experiment setup in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The data we use are simulated. We plan to release our code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include all details and hyperparameters in our experiments in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The cost for producing the experiments precludes us from reporting error bars.
Moreover, the experiment section is not the main contribution of this paper.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: There is no strict requirement for the computer resources for our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: None to report.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on the theory of in-context learning so it is not expected to
have a direct societal impact.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The data used in this paper are fully simulated, so there is no data or model
that have a high risk.
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• The answer NA means that the paper poses no such risks.
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necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not relase any asset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not relase any asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve humans in our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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