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Abstract

Generic Object Tracking (GOT) is the problem of track-
ing target objects, specified by bounding boxes in the first
frame of a video. While the task has received much at-
tention in the last decades, researchers have almost exclu-
sively focused on the single object setting. However multi-
object GOT poses its own challenges and is more attrac-
tive in real-world applications. We attribute the lack of
research interest into this problem to the absence of suit-
able benchmarks. In this work, we introduce a new large-
scale GOT benchmark, LaGOT, containing multiple anno-
tated target objects per sequence. Our benchmark allows
users to tackle key remaining challenges in GOT, aiming to
increase robustness and reduce computation through joint
tracking of multiple objects simultaneously. In addition, we
propose a transformer-based GOT tracker baseline capable
of joint processing of multiple objects through shared com-
putation. Our approach achieves a 4× faster run-time in
case of 10 concurrent objects compared to tracking each
object independently and outperforms existing single ob-
ject trackers on our new benchmark. In addition, our ap-
proach achieves highly competitive results on single-object
GOT datasets, setting a new state of the art on Track-
ingNet with a success rate AUC of 84.4%. Our bench-
mark, code, results and trained models are available at
https://github.com/visionml/pytracking.

1. Introduction

Visual object tracking is a fundamental problem in com-
puter vision. Over the years the research effort has been
directed mainly to two different task definitions: Generic
Object Tracking (GOT) [2,4,10,21,27,29,53] and Multiple
Object Tracking (MOT) [5, 13, 19, 48, 61–63]. MOT aims
at detecting and tracking all objects from a predefined class
category list (see Fig. 1), whereas all other objects are ig-
nored. In contrast, GOT focuses on the scenario where a pri-
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Figure 1. Multiple Object trackers (MOT) track all the objects cor-
responding to classes in a predefined category list, while all other
objects are ignored. Single Object Tracking (SOT) methods focus
on tracking only a single user-specified object per video. Thus,
when encountered with multiple objects, such methods must re-
sort to independent tracking of each object. This leads to a directly
linear increase in computation. Our tracker can track multiple
generic objects jointly that are defined via user-specified bounding
boxes, leading to the opportunity of computational savings and to
exploit inter-object information for improved robustness. The box
colors correspond to track IDs.

ori information about the object’s appearance is unknown.
Thus, the target model of the object’s appearance must be
learned at test time from a single user-specified bounding
box in the initial frame, see Fig. 1.

While GOT has a long history of active research, GOT
methods and benchmarks focused so far on tracking a single
object per video such that the term Single Object Tracking
(SOT) was introduced. However, the task of GOT is not lim-
ited to tracking a single object. In fact, the ability to track
multiple generic objects is desired in many real-world ap-
plications, such as surveillance, video understanding, semi-
automatic video annotation, robotics, and industrial quality
control. A method that jointly tracks multiple objects can
achieve substantial reduction in computational cost through
shared elements, compared to running a separate instance of
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a SOT method for each object. Moreover, processing mul-
tiple targets at the same time has the potential of increasing
the robustness of the tracker by joint reasoning.

To facilitate the work on tracking multiple generic ob-
jects, we introduce the new multi-object GOT benchmark
LaGOT. It provides up to 10 user-specified generic objects
in the initial frame visible through the large part of the
video. The target objects in one video may correspond to
completely different and previously unseen classes. Our
benchmark features challenging characteristics such as fast
moving objects, frequent occlusions, presence of distrac-
tors, camera motion, and camouflage. In total LaGOT con-
tains 528k annotated objects of 102 different classes and an
average track length of 71 seconds.

Tracking multiple target objects in the same video poses
key challenges and research questions that are typically
overlooked by SOT methods. A multi-object GOT method
needs to jointly track multiple objects using the first-frame
annotations. This could allow the tracker to exploit anno-
tations of potential distractors to improve the robustness of
each target model. Furthermore, a joint localization step
opens the opportunity for global reasoning across all tracks
to reduce the risk of confusing similar objects. Finally, op-
erating on multiple local search area [7, 38, 57] is no longer
feasible for a multi-object GOT method because it is ineffi-
cient and complicates re-detecting of lost objects.

We tackle these challenges by introducing a new multi
object GOT tracker. In order to track all desired target
objects at once it operates globally by processing the full
frame producing a shared feature representation for all tar-
gets. Furthermore, we propose a new generic multiple
object encoding that allows us to encode multiple targets
within the same training sample. We achieve this by learn-
ing a fixed size pool of different object embeddings, each
representing a different target. Thus, we query the proposed
model predictor with these object embeddings to produce
all target models. In addition, we employ a Feature Pyrami-
dal Network (FPN) to increase the overall tracking accuracy
while operating on full-frame inputs.
Contributions. (i) We propose a novel large-scale multi-
object GOT evaluation benchmark, LaGOT. It provides
multiple annotated objects per frame with an average of 2.9
tracks per sequence. We further evaluate several baselines
on LaGOT, including two MOT and six SOT methods. We
assess their quality by using GOT and MOT metrics.
(ii) We develop a new baseline, TaMOs, a GOT tracker that
tracks multiple generic objects at the same time efficiently.
To achieve this, we propose a new multi-object encoding,
introduce an FPN and apply the tracker globally on the en-
tire video frame. TaMOs demonstrates near constant run-
time when increasing the number of targets and operates at
an over 4× faster run-time compared to the SOT baselines
when tracking 10 objects.

(iii) We analyze TaMOs by assessing the impact of its differ-
ent components using multiple benchmarks. Furthermore,
TaMOs outperforms all baselines on LaGOT, while achiev-
ing excellent results on popular SOT benchmarks.

2. Related Work

Object Tracking Benchmarks. Generic object track-
ing is a well explored topic and many datasets exist.
There are specialized datasets and challenges that focus
on short-term [17, 23, 25, 27, 41, 53] or long-term track-
ing [14, 15, 25, 40, 50]. However, all of these benchmarks
and datasets share the same setup of only providing a sin-
gle user-specified bounding box such that only one target is
tracked in each video sequence. Recently, GMOT-40 [1] fo-
cused on Generic Multi Object Tracking (GMOT), where a
single bounding box is provided in the first video frame and
all objects that correspond to the same class as the annotated
object should be tracked. In contrast to GMOT, we focus on
the setting where multiple user-specified targets are given,
potentially from different classes.

MOT aims at tracking multiple objects defined by a list
of classes and mainly focuses on a single class [13, 24, 48]
(usually pedestrians) or on autonomous driving settings,
where only a handful of classes are considered [5, 19, 61].
TAO [12] contains objects of a long-tailed class distribu-
tions, but provides only sparse annotations due to the costly
annotation process. Another related task is open world
tracking [34] that aims at detecting and tracking all objects
in a video. However, compared to GOT there is no mecha-
nism to guarantee that a specific object is actually detected
and tracked. In the Video Object Segmentation (VOS) do-
main, DAVIS [45] and YouTubeVOS [54] provide multi-
object annotations. However, their videos are extremely
short (2.9 and 4.5 seconds on average), and are therefore not
suitable for tracking. Moreover, the VOS domain provides
less challenges for trackers, instead focuses on large objects
and a short-term nature, where the predominant challenge
is the prediction of accurate fine-grained masks.
Global Generic Object Tracking. Global trackers op-
erate on the whole video frame, rather than in a restricted
search area near the object location in the previous frame.
This is not only beneficial when tracking multiple objects in
the same scene but also facilitates re-detecting lost objects.
GlobalTrack [22] and Siam R-CNN [52] track the target
by using global RPNs that retrieve target-specific proposals.
Recent method for open vocabulary tracking [31] tracks ob-
jects of specified classes in MOT fashion by operating on
generic RPN proposals. Methods such as MetaUpdater [8]
and SPLT [58] operate on local search areas but use a re-
detector to re-localize the target if it disappeared from the
search area. In contrast, our tracker TaMOs always operates
on the entire frame and generates target specific correlation
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Figure 2. Examples of the annotated objects in the video sequences of our LaGOT dataset. The objects are annotated at 10 FPS. Notice the
diversity of the annotated media as well as the complexity of the scenes.

filters instead of target-specific proposals.
Unified Object Tracking. Unified methods aim at track-
ing both: objects defined by class names or objects defined
by a user-specified bounding box. UTT [37] allows to track
all pedestrians and one generic object in each video. UTT
uses a Transformer to match test frame features with refer-
ence features of the detected objects in the initial or previous
frame. Unicorn [56] allows to either perform the SOT or the
MOT task with the same model and weights solely by vary-
ing the input data type. In contrast, our method tracks mul-
tiple generic objects at the same time instead of one generic
object or multiple objects of known classes.
Transformers for Generic Object Tracking. Tracking
has seen a tremendous progress in recent years with the ad-
vent of Transformers [51]. Most such trackers share the idea
of fusing the search area and the template image features by
using a Transformer [6, 7, 38, 57, 59, 60]. MixFormer [7]
and OSTrack [59] employ a Transformer to jointly extract
and fuse the template and search area features. TransT [6],
STARK [57], SwinTrack [32] and ToMP [38] use a back-
bone to extract features and employ cross attention to fuse
the feature representations. However, none of these track-
ers can easily be extended to jointly track multiple objects,
which is addressed in this work.

3. LaGOT Benchmark
In this section we first introduce the multi-object GOT

task and discuss its differences to other object tracking
tasks. Then, we introduce our new benchmark LaGOT.

3.1. Multi-object GOT Task

Multi-object GOT is the task of tracking multiple generic
target objects in a video sequence. The target objects are de-
fined by user-specified bounding boxes in the initial frame
of the video. Thus, the target objects are generic in the sense
that their class category is unknown and there might be no
object of the same category in the training data, see Fig. 1.
Multi-object GOT vs. SOT. SOT requires to track only

a single target object defined by the user [15, 27, 53],
whereas multi-object GOT focuses on tracking multiple
user-specified generic target objects in the same video.
Multi-object GOT vs. MOT. (i) The MOT task requires
to track all objects of known classes, whereas for multi-
object GOT target objects in each video are defined by user-
specified boxes. Consequently, multi-object GOT is a one-
shot problem where the target objects are unknown at train-
ing time and are only available during inference. In contrast,
traditionally MOT methods track all objects corresponding
to the categories defined at training time. (ii) For the multi-
object GOT task an object-id switch is equivalent to a com-
plete failure since the user-specified object is no longer re-
coverable [36, 53]. Conversely, for MOT methods object-id
switches are considered less problematic and are penalized
less drastically by the MOT metrics [35].
Multi-object GOT vs. GMOT. GMOT focuses on track-
ing multiple objects of a single generic object class in each
video. The class is defined by a single user-specified bound-
ing box in the initial video frame [1, 16]. Thus, in contrast
to multi-object GOT, a GMOT method is unable to track
multiple objects of different categories in the same video.

3.2. LaGOT

Benchmark Construction. LaSOT [15] contains diverse
and relatively long videos (2430 frames or 81 seconds on
average) with challenging tracking scenarios including fast
moving objects, camera motion, various object sizes, fre-
quent object occlusions, scale changes, motion blur, cam-
ouflage and objects that go out of view or change their
appearance. LaSOT provides annotations for a single ob-
ject in each video but typically multiple objects are present
throughout the full sequence and are fairly difficult to track,
which is desirable for long-term tracking scenarios. Thus,
instead of collecting new videos, we used the popular La-
SOT evaluation set and add new annotations for multiple
objects in each sequence.

Another large-scale video dataset we considered is
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Table 1. Comparison of LaGOT with existing benchmarks that focus on related tasks to multi-object GOT.

Object Num Classes Tracking Num Num Avg Video Avg Track Avg Tracks Num Annotation
Dataset Task Definition per Video Metrics Classes Videos Length (s) Length (num anno.) per Video Annotations Frequency

TAO val [12] MOT class list ≥ 1 Track-mAP 302 988 33.5 21 5.55 115k 1 FPS

GMOT-40 [1] GMOT 1 box 1 MOTA/IDF1 30 40 10 133 50.65 486k 24-30 FPS

LaSOT val [15] SOT 1 box 1 Success AUC 70 280 81 2430 1 680k 30 FPS

LaGOT GOT n boxes ≥ 1 F1-Score 102 294 75.3 707 2.89 528k 10 FPS

TAO [12] and GMOT-40 [1]. However, compared to La-
SOT, TAO contains shorter videos with an average of 33
seconds and its outdoor and road sequences mainly focus on
pedestrians and vehicles (60% of all objects in TAO). While
the indoor sequences contain rarer object categories, they
are often static and are only visible for a short time. Fur-
thermore, TAO contains only sparse annotations (1 FPS).
For all these reasons, we used LaSOT instead of TAO to
build our benchmark. GMOT-40 [1] contains dense anno-
tations, but videos often contain many objects of a single
class. Furthermore, GMOT-40 consists of only 40 short se-
quences (avg 240 frames or 8 seconds) rendering only 10
different object classes, see Tab. 1. Thus, GMOT-40 is un-
suitable to serve as a multi-object GOT benchmark.

Annotation Protocol. First, we inspect all 280 sequences
in LaSOT and identify in each video challenging target ob-
jects that play an active role and meet the previously spec-
ified criteria. Next, we entrust professional annotators to
annotate the selected objects in all sequences on every third
frame, leading to an annotation frequency of 10 FPS. They
use an interactive annotation tool which incorporates an ob-
ject tracker to speed up the annotation process [28]. A group
of researchers verifies the newly obtained annotations and
sends low-quality annotations back for correction until all
annotations meet our high quality standards. Finally, we
post-process the annotations to construct the final tracks.
First, we remove all tracks shorter than 4 seconds. Sec-
ond, we define the starting frame by manually selecting the
earliest frame where as many annotated objects as possible
are clearly visible. Third, it is not always possible to un-
ambiguously associate all object identities over time due to
occlusions and out-of-view events — hence, we either re-
move ambiguous annotations or cut these videos into multi-
ple sub-sequences, where the object association is clear. We
follow this protocol to guarantee a high annotation quality,
see Fig. 2 for annotated example frames.

Statistics. Our benchmark LaGOT has 294 videos with
850 tracks leading to over 528k annotated objects. Thus,
we almost triple the number of tracks compared to the orig-
inal LaSOT validation set (and the corresponding evaluation
time from 378 to 1006 min). Furthermore, we add 31 ad-
ditional generic object classes, e.g. propeller, tires or fabric
bag. We compare the proposed benchmark with the most
closely related benchmarks in Tab. 1 (and with many more
Tab. 2 in suppl. material). Overall our benchmark con-

tains 10× more class categories than GMOT-40. The av-
erage track length of LaGOT is 2121 frames (707 annotated
frames), which is 3× longer than in TAO, and almost 10×
longer than in GMOT-40.
Annotation Frequency. According to Valmadre et al. [50]
it is more effective to spend a fixed annotation budget on
many videos with sparse box annotations than on fewer
videos with dense labels. Thus, we annotate every third
frame to reduce the overall annotation cost. To analyze the
difference between 10 and 30 FPS annotations, we evalu-
ate five recent trackers on the tracks borrowed from LaSOT,
where 30 FPS annotations are available. The mean relative
error of the success rate AUC is only 0.237%. This shows
that 10 FPS is sufficient on large-scale datasets such as La-
SOT and LaGOT, leading to only minor score deviations.

4. Method
In this section we present our tracker TaMOs, which em-

ploys a Transformer to jointly model and track a set of arbi-
trary objects defined in the initial frame of a video. We start
from ToMP [38], a recent Transformer-based generic sin-
gle object tracker that operates on local search area cropped
from the full frame, as almost all SOT trackers. ToMP
employs a transformer to predict a correlation filter (target
model) from the target appearance in the initial frame con-
ditioned on the new frame; the predicted target models is
later used to localize the target in the subsequent frames.
In Sec. 4.1 we introduce the proposed Transformer-based
multi-object tracking architecture and in Sec. 4.2 we dis-
cuss the used training protocol.

4.1. Generic Multi-Object Tracker - Overview

An overview of the proposed generic multi-object
tracker TaMOs is presented in Fig. 3. First, unlike original
ToMP, our tracker operates on the full train and test images
instead of crops. The target object encoder uses a pool of
learnable object embeddings to encode the location and ex-
tent of each target object within a single shared feature map
(Sec. 4.1.1). The randomly sampled object embedding then
represents a particular target in the entire video sequence:
we use the object embedding to condition the model pre-
dictor to produce the target model that localizes the target
object in the test frame (Sec. 4.1.2). Since operating on
the entire video frame increases the computational cost of
the Transformer operations, we are limited to a certain fea-
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Figure 3. Overview of our tracker TaMOs for joint tracking of multiple targets. First, we extract features from training and test frames. All
objects in the training frame are encoded jointly with a multi-object encoding and passed to the model predictor together with the training
frame features. The model predictor produces target models θ̂i together with enhanced test features. We apply an FPN on the enhanced
output features to generate higher resolution test features. Finally, we predict the bounding box of each target by applying the target model
θ̂i for each target.

ture resolution. To track small objects we propose an FPN-
based feature fusion of the test frame features produced by
the Transformer with the higher resolution backbone fea-
tures. We adopt the correlation filter based target localiza-
tion and bounding box regression mechanism of ToMP but
apply both on the higher resolution FPN features instead of
the output features of the Transformer (Sec. 4.1.3).

4.1.1 Generic Multiple Object Encoding

To track several target objects efficiently, we propose a
novel object encoding to embed multiple objects in a shared
feature map without requiring multiple templates.

In particular, we extend the single object encoding for-
mulation of ToMP to be applicable for multiple objects. The
idea is to replace the foreground embedding with multiple
object embeddings, each representing a different target ob-
ject. Thus, we create a pool E ∈ Rm×c of m object embed-
dings ei ∈ R1×c. Then, we sample for each target object
a random object embedding from the pool E without re-
placement. Next, we combine the object embeddings with
the Gaussian score map yi ∈ Rh×w×1 that represents the
center location of the target object i and the LTRB [49, 55]
bounding box encoding bltrbi ∈ Rh×w×4. The final encod-
ing is thus:

f enctrain = ftrain +

n∑
i=0

ei · yi +
n∑

i=0

ei · ϕ
(
bltrbi

)
, (1)

where ftrain ∈ Rh×w×c are visual features extracted from
the full training frame, ϕ is a Multi-Layer Perceptron (MLP)
and n ≤ m is the number of tracked objects. Note, that in
contrast to the object encoding in ToMP, we not only use

the object embedding to encode the Gaussian score map
but also the bounding box representation. The object em-
beddings ei are learned during training such that the model
is able to disentangle the shared feature representation and
can identify each object in the training and test features.
Note, that the products in Eq. (1) employ multiplications
with broadcasting across every dimension whereas the latter
uses channel-wise multiplication with broadcasting across
the spatial dimensions.

4.1.2 Joint Model Prediction

Now that the target object locations and extents are embed-
ded in the training features, we require a model predictor
to produce a target model for each encoded object. The
target models are then used to localize the targets in the
test frame and to regress their bounding boxes. In order to
easily associate the different targets over time, we require
a model predictor that can be conditioned on the targets
encoded through object embeddings ei. Furthermore, the
model needs to be able to produce all target models jointly
to increase the efficiency.

We extend the single target model predictor of ToMP by
keeping the Transformer encoder unchanged but by modi-
fying the Transformer decoder. In particular, we query the
Transformer decoder with multiple object embeddings ei at
the same time instead of a single foreground embedding,

[θ̂1, . . . θ̂n] = Tdec([htrain, htest], [e1, . . . en]) . (2)

Here, θ̂i ∈ Rc is the target model, n is the number of target
objects encoded in the training frame and htrain, htest are
the refined output features of the Transformer encoder for
the train and test frame.
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4.1.3 Target Localization and Box Regression

We use the generated target models to localize the targets
and to regress their bounding boxes. We produce a cor-
relation filter for target classification and adopt the bound-
ing box regression branch of ToMP [38]. But instead of
applying the target classifier and box regressor on the low-
resolution test features htest of the Transformer encoder, we
use high resolution features generated with an FPN ψ(·) and
obtain the high-resolution multi-channel score map:

ŷhighi = wcls
i (θ̂i) ∗ ψ(htest, fhightest ), 0 ≤ i < n, (3)

where fhightest ∈ R2h×2w×c are the high-resolution test fea-
tures extracted at an earlier stage of the backbone, wcls

i (θ̂i)
refers to the discriminative correlation filter for the target
object i obtained from the predicted target model θ̂i. Simi-
larly we obtain the high-resolution multi-channel bounding
box regression maps b̂highi .

4.2. Training

During training we employ a classification and a bound-
ing box regression loss. We compute both losses for the
predictions obtained by processing each FPN feature map
(low-res and high-res) as well as the output test features
htest of the Transformer encoder. The classification loss
is

Lcls =

n∑
i=0

Lfocal(ŷi, y) +

m∑
j=n

Lfocal(ŷj , 0), (4)

Here we assume that the first n object embeddings ei were
used to encode the n objects marked in the training frame
whereas the remaining m − n object embeddings were not
used to encode any objects. Thus, we require that the re-
sulting score maps ŷj that correspond to an unused object
embedding ej produce low scores everywhere (second sum
in Eq. (4)). This step tightly couples the object encoding
and decoding. Omitting this term not only decreases the
overall performance but slows down the training progress.

In contrast to classification, we enforce the generalized
IoU-Loss [46] for bounding box regression only for the pre-
dictions that actually correspond to an encoded object and
ignore those corresponding to unused object embeddings.
Training Details. We randomly sample an image pair
consisting of one training and one test frame from a train-
ing video. The frames are re-scaled and padded to a res-
olution of 384 × 576. We train our tracker on the train-
ing splits of LaSOT [15], GOT10k [23], TrackingNet [41],
MS-COCO [33], ImageNet-Vid [47], TAO [12], and
YoutubeVOS [54]. Note, that we remove all videos from the
TAO training set that overlap with the evaluation set of La-
SOT. We randomly sample for each epoch 40k image pairs
with equal probability from all datasets. In order to leverage
SOT datasets and training all object embeddings ei equally,

we assign random object ids to all objects in the sampled
training pair. Note, that both SOT and MOT datasets are
crucial to train the proposed tracker. Without MOT datasets
the tracker is unable to learn multiple target models at the
same time and avoiding SOT datasets leads to inferior track-
ing quality. We train the tracker for 300 epochs on 4 Nvidia
A100 GPUs. Our method is implemented using PyTrack-
ing [9] (see suppl. material for further details).

5. Experiments
To illustrate the challenges of our proposed GOT bench-

mark, we evaluate several recent trackers along with our
proposed tracker TaMOs on LaGOT (Sec. 5.1). In ad-
dition, we compare TaMOs to recent trackers on several
SOT benchmarks (Sec. 5.2) and present an ablation study
(Sec. 5.3), evaluating the impact of different components of
our tracker.

5.1. State-of-the-Art Evaluation on LaGOT

We evaluate our tracker with a ResNet-50 and a Swin-
Base backbone as well as six single object trackers (Su-
perDiMP [9], KeepTrack [39], TransT [6], STARK [57],
ToMP [38], and MixFormer [7]) and two multi object track-
ers (QDTrack [43] and OVTrack [31]) on LaGOT.
Metrics. We measure the performance of a tracker in the
One Pass Evaluation (OPE) setting. The standard GOT Suc-
cess rate Area Under the Curve (AUC) metric [14, 15, 17,
40–42, 53] does not account for false positive predictions
when a target gets occluded or is out of view. While this is
not a big issue in standard SOT datasets, where the target
object is present in the vast majority of frames, it becomes
vital in long-term tracking. In LaGOT objects are more
frequently invisible due to occlusions or moving out-of-
view. To capture this aspect, we employ the VOTLT [26,36]
metric that penalizes false positives. It computes the IoU-
weighted precision-recall curve and ranks the trackers ac-
cording to their F1-score.

5.1.1 Comparison to SOT Methods

SOT trackers are limited to track only a single target at
once. Thus, multiple instances of the same tracker need to
be run in parallel to track multiple objects in the same se-
quence leading to a linearly increasing run-time, see Fig. 1.
Results. Fig. 4a shows the success rate of all trackers
on LaGOT. We observe that SOT trackers perform well on
LaGOT. However, our multi-object tracker TaMOs achieves
the best AUC, even outperforming the state-of-the-art SOT
tracker MixFormerLarge-22k [7]. We further observe that
TaMOs is as robust as KeepTrack [39] (T < 0.4), where the
gap to the remaining trackers is particularly prominent. This
demonstrates the potential of a global multiple object GOT
method. Fig. 4b shows the tracking Precision-Recall curve

6831



0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0

10

20

30

40

50

60

70

80

90

Ov
er

la
p 

Pr
ec

isi
on

 [%
]

Success plot

TaMOs SwinBase [63.1]
MixFormerLarge-22k [62.4]
MixFormer-22k [61.7]
ToMP-101 [61.6]
ToMP-50 [61.5]
TaMOs 50 [61.3]
KeepTrack [61.3]
Stark-101 [60.3]
TransT [59.5]
SuperDiMP [58.1]

(a) Success Plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision Recall plot

TaMOs SwinBase [0.643]
TaMOs 50 [0.628]
KeepTrack [0.626]
MixFormerLarge-22k [0.619]
ToMP-101 [0.617]

ToMP-50 [0.616]
MixFormer-22k [0.614]
TransT [0.605]
Stark-101 [0.603]
SuperDiMP [0.575]

(b) Precision-Recall Plot
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on LaGOT. Both versions of TaMOs outperform all other
SOT trackers. The highly robust object presence scores pre-
dicted by our tracker lead to a superior precision at all recall
rates> 0.2. Moreover, our approach achieves the best max-
imal recall and outperforms all previous methods in VOTLT
by 1.7 points. This demonstrates that joint tracking of mul-
tiple objects and global search benefit the object localization
and identification capabilities of the tracker. For further in-
sights we show MOT metrics on LaGOT in Tab. 3. Our
tracker achieves the best results for every MOT metric and
outperforms MixFormerLarge-22k by 5.9 points in MOTA.
Run-Time Analysis. We evaluate the run-time on a sin-
gle A100 GPU. Tab. 2 reports a run-time analysis of our
tracker TaMOs compared to ToMP, with both employing a
ResNet-50 backbone. While TaMOs is slower than ToMP
for a single object, due to the higher resolution required for
full-frame tracking, our approach already reaches an advan-
tage for 2 concurrent objects. As ToMP needs to run a sep-
arate independent tracker for each new object, our approach
achieves a 4× speedup for 10 concurrent objects. Further-
more, the analysis demonstrates that TaMOs achieves al-
most a constant run-time even when increasing the number
of targets. TaMOs-SwinBase achieves 13.1 FPS for a single
object and 9.3 FPS when jointly tracking 10 objects.

5.1.2 Comparison to MOT Methods

MOT methods are designed to track multiple objects in a
video sequence and are thus used as baselines for LaGOT.
However, in MOT the targets are defined via a list of classes
whereas in multi-object GOT targets are defined by user-
specified bounding boxes in the initial frame. Hence, to
be able to track generic objects MOT methods need to be
trained on large vocabulary datasets — then we can greed-
ily match the detected tracks with the bounding boxes on the
initial frame to track user-specified objects. Alternatively,
the recent open-vocabulary MOT method OVTrack [31] al-
lows to track objects of any class. We employ QDTrack [43]

Table 2. Run-time analysis (in FPS) between our baseline model
ToMP and our tracker TaMOs.

1 Object 2 Objects 5 Objects 10 Objects

ToMP-50 34.7 17.4 7.0 3.4
TaMOs-50 19.2 17.9 16.3 13.9

Table 3. Comparison of GOT and MOT metrics on LaGOT.

F1-Score Success HOTA MOTA IDF1 OWTA

GOT TaMOs-SwinBase 0.643 63.1 62.1 58.2 74.7 68.9
TaMOs-50 0.628 61.3 60.0 52.9 72.0 67.1

SOT

MixFormerLarge-22k 0.619 62.4 61.5 52.3 74.3 69.0
ToMP-101 0.617 61.6 60.1 51.9 73.8 67.5
STARK-101 0.603 60.3 59.4 49.0 72.5 67.0
TransT 0.605 59.5 57.7 46.6 70.7 65.6
KeepTrack 0.626 61.3 59.1 51.3 73.8 66.2
SuperDiMP 0.575 58.1 56.1 43.2 69.7 63.8

MOT QDTrack 0.187 19.2 22.2 -115.8 16.3 36.3
OVTrack 0.128 13.4 24.4 13.9 23.5 25.9

and open-vocabulary OVTrack [31] as MOT baselines. QD-
Track is trained on LVIS [20] and TAO. We provide OV-
Track in each video with the class name of the target.
Results. QDTrack and OVTrack achieve a VOTLT F1-
Score of 0.187 and 0.128 respectively, performing inferior
to all other trackers. Neither of the MOT trackers is ro-
bust enough and both fail to track rare or unknown generic
objects. To further explore the limitations of MOT meth-
ods in our setting, we evaluate ‘Oracle’ versions, where we
select the track ID that maximizes the scores on LaGOT.
Even with such oracle information, the performance of QD-
Track and OVtrack is by far inferior to any evaluated SOT
baseline (VOTLT 33.1 and 23.0 respectively). In addition
we evaluate both trackers using all its predicted tracks with
MOT metrics, see Tab. 3. QDTrack tracks multiple back-
ground objects that are not annotated in LaGOT leading to
many False Positives (FPs), and OVTrack tracks unanno-
tated objects as well since the videos are not annotated ex-
haustively on class levels. Thus, traditional MOT tracking
metrics such as MOTA, HOTA and IDF1 are unsuitable to
evaluate MOT trackers on LaGOT. Instead, we concentrate
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on the OWTA metric [34] that focuses on Detection Recall
and Association Accuracy and thus ignores FPs. QDTrack
achieves 36.3 and OVTrack 25.9, which are still the lowest
OWTA scores compared to SOT and GOT trackers.

5.2. State-of-the-Art Comparison on SOT Datasets

While TaMOs is built to track multiple objects in a video
it can as well track only a single generic object. Thus, we
evaluate TaMOs on popular large-scale SOT benchmarks.
We deploy the very same tracker in these settings, without
altering its weights or any hyper-parameters.
LaSOT [15]. This large-scale dataset consists of 280 test
sequences with 2500 frames on average. Tab. 4 shows a
comparison to recent SOT trackers. While primarily de-
signed to cope with multiple objects, our tracker achieves
the highest precision and the third highest success rate
AUC. Note, that neither MixFormer, SwinTrack nor OS-
Track operate on the entire video frame, but rely on a local
search area to produce such high tracking accuracy.
TrackingNet [41]. This dataset consists of 511 test se-
quences and predictions are evaluated on a server. Tab. 4
shows that our tracker with SwinBase sets the new state of
the art on TrackingNet in terms of success rate and preci-
sion AUC. Similarly, our tracker with ResNet-50 achieves
the best results among all trackers using that backbone.

The results on both benchmarks show the great potential
of applying trackers globally without motion priors, such as
search area selection [3,7,59] or spatial windowing [29,30].

5.3. Ablation Study

The ablation experiments shown in Tabs. 5 and 6 are per-
formed before the final annotation verification step such that
the results compared to the numbers above slightly differ.
Generic Multiple Object Encoding. Tab. 5 shows the ef-
fect of the Gaussian score map encoding, the LTRB bound-
ing box encoding and the total number of object embed-
dings m stored in the pool E. The first two rows in Tab. 5
show that the LTRB encoding is more important than the
Gaussian encoding (as removing LTRB decreases all results
more significantly). Another key factor is the number of
different object embeddings, that sets an upper limit on the
number of objects that can be tracked. LaGOT requires at
least 10 embeddings and our tracker achieves the best re-
sults when using a pool size of 10. Increasing the number
of embeddings decreases the overall tracking performance.
Architecture. Tab. 6 shows that using SwinBase increases
the tracking performance on LaSOT and LaGOT. Similarly,
adding an FPN improves the results.
Inference. During inference we update the memory
by adding a second dynamic training frame similar to
ToMP [38]. Since the ground truth bounding boxes are not
available, we use the predicted boxes as annotations. We re-
place the dynamic training frame (update the memory) if the

Table 4. State-of-the-art comparison on SOT datasets.

LaSOT [15] TrackingNet [41]
Method Venue Prec N-Prec Succ Prec N-Prec Succ

TaMOs-SwinBase WACV’24 77.8 79.3 70.2 84.2 88.7 84.4
TaMOs-50 WACV’24 75.0 77.2 67.9 82.0 87.2 82.7

SwinTrack [32] NIPS’22 76.5 — 71.3 82.0 — 84.0
Unicorn [56] ECCV’22 74.1 76.6 68.5 82.2 86.4 83.0
AiATrack [18] ECCV’22 73.8 79.4 69.0 80.4 87.8 82.7
OSTrack [59] ECCV’22 77.6 81.1 71.1 83.2 88.5 83.9
RTS [44] ECCV’22 73.7 76.2 69.7 79.4 86.0 81.6
MixFormer [7] CVPR’22 76.3 79.9 70.1 83.1 88.9 83.9
ToMP [38] CVPR’22 73.5 79.2 68.5 78.9 86.4 81.5
UTT [37] CVPR’22 67.2 — 64.6 77.0 — 79.7
KeepTrack [39] ICCV’21 70.2 77.2 67.1 73.8 83.5 78.1
STARK [57] ICCV’21 72.2 77.0 67.1 — 86.9 82.0
TransT [6] CVPR’21 69.0 73.8 64.9 80.3 86.7 81.4
SuperDiMP [11] CVPR’20 65.3 72.2 63.1 73.3 83.5 78.1

Table 5. Analysis of different object encoding settings. All tested
configurations are not employing the FPN.

Gaussian LTRB Object Embedding LaSOT LaGOT
Encoding Encoding Pool size m AUC AUC F1

✓ ✗ 10 58.3 54.0 0.552
✗ ✓ 10 66.3 60.2 0.620
✓ ✓ 10 67.2 61.6 0.633
✓ ✓ 15 65.7 60.0 0.617
✓ ✓ 20 65.7 58.9 0.603
✓ ✓ 50 63.1 57.4 0.587

Table 6. Architecture and memory update analysis.

Memory LaSOT LaGOT
Backbone FPN Update AUC AUC F1

Resnet-50 ✗ ✓ 67.2 60.4 0.621
Resnet-50 ✓ ✗ 66.0 60.2 0.620
Resnet-50 ✓ ✓ 67.9 61.6 0.633

SwinBase ✗ ✓ 69.5 62.4 0.643
SwinBase ✓ ✗ 67.9 62.1 0.636
SwinBase ✓ ✓ 70.2 63.5 0.649

maximal value in each target score map is above the thresh-
old of τ = 0.85. The results in Tab. 6 show that adding a
second training frame improves the results on both datasets.

6. Conclusion
We propose a novel multiple object GOT tracking bench-

mark, LaGOT, that allows to evaluate GOT methods that
can jointly track multiple targets in the same sequence. We
demonstrate that the proposed task and benchmark are chal-
lenging for existing SOT and MOT trackers. We further
propose a Transformer-based tracker capable of processing
multiple targets at the same time, with a novel generic multi
object encoding and an FPN in order to achieve full frame
tracking. Our method outperforms recent trackers on the
LaGOT benchmark, while operating 4× faster than the SOT
baseline when tracking 10 objects. Lastly, our approach
also achieves excellent results on popular SOT benchmarks.
Funding: This work was done at Google Research.
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