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ABSTRACT

Dataset Distillation (DD) seeks to create a compact dataset from a large, real-
world dataset. While recent methods often rely on heuristic approaches to bal-
ance efficiency and quality, the fundamental relationship between original and
synthetic data remains underexplored. This paper revisits knowledge distillation-
based dataset distillation within a solid theoretical framework. We introduce the
concepts of Informativeness and Utility, capturing crucial information within a
sample and essential samples in the training set, respectively. Building on these
principles, we define optimal dataset distillation mathematically. We then present
InfoUtil, a framework that balances informativeness and utility in synthesizing the
distilled dataset. InfoUtil incorporates two key components: (1) game-theoretic
informativeness maximization using Shapley Value attribution to extract key infor-
mation from samples, and (2) principled utility maximization by selecting globally
influential samples based on Gradient Norm. These components ensure that the
distilled dataset is both informative and utility-optimized. Experiments demon-
strate that our method achieves a 6.1% performance improvement over the previ-
ous state-of-the-art approach on ImageNet-1K dataset using ResNet-18.

(b) InfoUtil 
(Ours)

Random Cropping & Loss Scoring (not interpretable or theoretically principled)

Attribution Cropping & GradNorm Scoring (both interpretable and theoretically principled)

(a) RDED

Cock Brambling Otter

Figure 1: Comparison of visualization results between previous method (a) RDED (Sun et al., 2024)
and (b) our InfoUtil. Unlike prior methods relying on random selection and intuitive scoring, In-
foUtil is both interpretable and theoretically grounded. It synthesizes images that more accurately
capture semantically meaningful regions with principled scores. Prioritizing core content over irrel-
evant details like background elements ensures a more focused and meaningful representation.

1 INTRODUCTION

Dataset distillation (DD) (Wang et al., 2018; Sachdeva & McAuley, 2023) has emerged as a promis-
ing approach for enabling vision models to achieve performance comparable to training on large
datasets, but with only a small set of synthetic samples. The core idea behind DD is to compress large
datasets by synthesizing and optimizing a smaller, representative dataset. Models trained on distilled
dataset are expected to match the performance of those trained on the original, larger dataset.

Currently, two primary lines of approaches are used to tackle DD: i.e., matching-based meth-
ods (Wang et al., 2018; Zhao & Bilen, 2022; Zhao et al., 2021; Cazenavette et al., 2022; Zhou et al.,
2022), which aim to align the performance between the distilled dataset and the original dataset by
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Step1: Maximize Informativeness (Definition 1) Step 2: Maximize Utility (Definition 3)
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Figure 2: InfoUtil’s pipeline for optimal dataset distillation involves two key steps: (i) Step 1 max-
imizes informativeness via the Shapley Value (a game-theoretic attribution method), retaining the
most informative patches to form compressed samples. (ii) Step 2 maximizes utility by scoring
these candidates with a judge model—using Gradient Norm (proven as a utility upper bound)—and
retaining top samples. The final distilled dataset contains only the most informative, high-utility
compressed samples. Image reconstruction and soft label generation phases are omitted here.

matching gradients, features, distributions, or trajectories, and knowledge distillation-based meth-
ods (Yin et al., 2023; Shao et al., 2024a), which decouple dataset distillation into two stages. In the
first stage, the real data is compressed into a teacher model. In the second stage, the teacher model
transfers knowledge to the distilled images through deep inversion-like methods (Yin et al., 2020).
Despite their success, these existing methods face two challenges:

Challenge 1: Efficiency-Performance Trade-off. Most matching-based methods require sig-
nificant GPU memory and time, making them impractical for real-world applications.

For bi-level matching-based methods, the key challenge lies in the trade-off between performance
and efficiency (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022; Wang et al., 2024a; Guo et al.,
2023; Cui et al., 2023). For example, the state-of-the-art (SOTA) trajectory matching method (Guo
et al., 2023) requires more than 4 NVIDIA A100 80GB GPUs to synthesize a 50 image-per-class
(IPC) dataset on Tiny-ImageNet. Such high resource demands severely limit scalability of these
methods, making it extremely challenging to apply to larger datasets like ImageNet-1K.

For knowledge distillation-based methods, although they often perform better, the lack of a solid
theoretical foundation impairs their interpretability (Yin et al., 2023; Shao et al., 2024a; Sun et al.,
2024) and prevents a principled solution. This limitation leaves practitioners with limited insight
into why certain samples are selected for compression or how the distillation process relates to
underlying data. Therefore, despite demonstrating impressive empirical results, they fall short in
providing the transparency required for high-stakes or regulated applications.

Challenge 2: Lack of Interpretability. Current methods are largely heuristic, lacking a prin-
cipled framework to ensure the resulting distilled datasets are interpretable.

To rethink previous methods within a principled framework, we reconsider the knowledge
distillation-based dataset distillation process by introducing Optimal Dataset Distillation (Defini-
tion 4). The concept is built on Informativeness (Definition 1) and Utility (Definition 3) for desired
distilled dataset. Intuitively, Informativeness captures essential information in each sample, while
Utility reflects the importance of each sample for model training, whether included or excluded.

Built on the theoretical framework, we propose InfoUtil, Informativeness and Utility-enhanced
Dataset Distillation (InfoUtil), a method that balances both aspects. As illustrated in Figure 2,
Step 1 focuses on extracting key information from each sample, compressing it into a representation
that captures its most informative components. This is achieved by maximizing the game-theoretic
informativeness of each sample, which we measure using the Shapley Value (Shapley et al., 1953),
a principled attribution method first introduced in game theory. In Step 2, we maximize the utility
of each sample, which is critical for model training. This is done by measuring the gradient norm
of each sample and selecting those with the highest values, ensuring that only the most valuable
samples are retained. The main contributions of this work are summarized as follows:

1. We propose Optimal Dataset Distillation (Definition 4), which builds on the concepts of patch-
wise Informativeness and sample-wise Utility for distilled datasets. This approach addresses the
lack of interpretability in existing methods by providing a solid theoretical framework.

2. We introduce InfoUtil, a novel method balancing informativeness and utility in distilled dataset
synthesis. It employs game-theoretic informativeness maximization via the Shapley Value and
utility maximization to retain the most informative and valuable samples using the Gradient Norm.
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3. InfoUtil demonstrates outstanding performance across various models and datasets. For instance,
our method yields a 16% improvement in performance over the previous state-of-the-art
approach on the ImageNet-100, and a 6.1% improvement on ImageNet-1K.

2 PRELIMINARIES

Given dataset D = {(xi, yi)}ni=1, dataset distillation (DD) aims to synthesize a smaller dataset
D̃ = {(xj , yj)}mj=1 with m ≪ n. The desired D̃ should enable a model to achieve comparable, even
lossless, performance to one trained on D, evaluated on a held-out test dataset Dtest. Specifically,
for a model f parameterized by θ trained with cross-entropy loss ℓ, the condition is:

min
D̃

∑
(x,y)∈Dtest

|ℓ(fθD (x), y)− ℓ(fθD̃ (x), y)|, (1)

where θD denotes the fixed parameters trained on D. Crucially, θD̃ represents the parameters trained
on the synthetic dataset D̃. Consequently, the term ℓ(fθD̃ (x), y) depends on D̃ through the optimiza-
tion trajectory of θ.

This paper focuses on knowledge distillation-based DD methods, which recently showed superior
performance (Yin et al., 2023; Sun et al., 2024; Shao et al., 2024a). Here, D’s information is first
learned by a teacher model fθD , which then synthesizes D̃. A notable work, RDED (Sun et al.,
2024), uses random cropping to generate candidate patches, pruned via cross-entropy scoring. The
final image contains multiple compressed images, each cropped and retained in prior steps. While
RDED achieves high performance efficiently, it lacks principled guarantees. As Figure 1 shows,
RDED’s randomly selected patches often miss key ground truth category information.

3 METHOD

3.1 OPTIMAL DATASET DISTILLATION

To theoretically analyze the above problems, we first propose the following properties before for-
mally defining the optimal dataset distillation mathematically.

Definition 1 (Informativeness) Given an arbitrary sample x ∈ D and the compressed size d′ ≪ d,
the informativeness of x ∈ Rd for the model fθ is defined as:

I(x; fθ) := −
∥∥fθ(s ◦ x)− fθ(x)

∥∥, (2)

where s ∈ {0, 1}d and |s| = d′ is a d-dimensional binary mask to be optimized, ◦ is the
Hadamard/element-wise product, and s ◦ x denotes the input x with a mask s.

The informativeness captures the key information for a given sample. Intuitively, maximizing the
informativeness of a sample x of a given compression size d′ can be regarded as learning the best
informative mask vector s that maximize the similarity of the performance between the original
sample x and the masked sample s ◦ x.

Next, we introduce Gradient Flow, a key concept we use to define the Utility function.

Definition 2 (Gradient Flow) Let ℓt be the cross-entropy loss for the model θ(t) at iteration t. We
define the gradient flow computed on a mini-batch B as:

ℓ̇t(fθ(t)(x), y;B) :=
∂ℓt(fθ(t)(x), y)

∂t
. (3)

The gradient flow ℓ̇t(fθ(t)(x), y;B) represents the instantaneous rate of change of the loss for a spe-
cific example (x, y) during training, providing a continuous-time approximation of training dynam-
ics. Unlike discrete SGD updates, which introduce noise, gradient flow offers a smooth, analytical
framework for quantifying data importance. By leveraging this, we assess the impact of removing a
single data point (xi, yi) and define a utility function below as a dataset pruning metric.

3
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Definition 3 (Utility) Let the gradient flow ℓ̇t be defined as in Definition 2. For a data point (xi, yi)
in dataset D, let B ⊆ D be the mini-batch at iteration t; define B¬i := B \ {(xi, yi)}. We measure
the importance of (xi, yi) by how much its removal changes the gradient flow over all relevant pairs:

U(xi, yi; fθ(t)) := max
(xj ,yj)∈D

∣∣∣ℓ̇t(fθ(t)(xj), yj ;B)− ℓ̇t(fθ(t)(xj), yj ;B¬i)
∣∣∣ .

This utility definition captures the worst-case impact of removing a data point on gradient flow,
ensuring it reflects data importance. By maximizing the change in ℓ̇t(fθ(t)(xj), yj ;B) over all
(xj , yj) ∈ D, it identifies points that most influence training dynamics. This aligns with dataset
pruning by preserving critical samples while discarding those with minimal effect.

Based on Definition 1 and Definition 3, we propose the optimal dataset distillation in Definition 4:

Definition 4 (Optimal Dataset Distillation) Let fθ be the classifier model with parameter θ and D
the original training dataset. Let Dtest be the test dataset. Define D′ ⊆ D as a compressed subset,
and D̃ ⊆ D′ as the final distilled dataset. Let U(x, y; f ′

θ) measure the utility of f ′
θ on a test example

(x, y) defined in Definition 3. Let I(x; fθ) measure the informativeness of original samples defined
in Definition 1 and s be the informative mask with compressed size d′. The goal is to find the optimal
pruned dataset D̃ that maximizes both informativeness and utility on Dtest:

argmax
D̃⊆D′

|D̃|=m

∑
(x,y)∈Dtest

U(x, y; f ′
θ), s.t. D′ =

{
xi ◦ si

∣∣∣∣∣ argmax
si∈{0,1}d

|si|=d′

I(xi; fθ)

}n

i=1

.

This formulation establishes the dataset distillation problem. The key challenge is then to define a
rigorous utility function that effectively quantifies (i) the importance of each component within a
sample for model prediction and also (ii) the importance of each sample for model training.

3.2 INFOUTIL

In this subsection, we introduce InfoUtil, built upon the optimal dataset distillation formulation in
Definition 4. The pipeline has two main steps: (i) game-theoretic informativeness maximization and
(ii) principled utility maximization. Detailed algorithm pseudocode is in Appendix B.

3.2.1 GAME-THEORETIC INFORMATIVENESS MAXIMIZATION

As in Definition 1, InfoUtil is to maximize the informativeness of each sample x to obtain a com-
pressed sample s ◦ x, represented by a mask s. This task can be framed as a feature attribution
problem (Zhou et al., 2016; Selvaraju et al., 2020; Binder et al., 2016; Shapley et al., 1953; Qin
et al., 2023), where the model attributes decisions to input variables based on their importance.

Among attribution methods, the Shapley Value (Shapley et al., 1953) is regarded as a robust ap-
proach grounded in game theory. Specifically, given an input x with d input variables x =
[x(1), x(2), . . . , x(d)]⊤, we can view a deep neural network as a game with d players [d] :=
{1, 2, . . . , d}. Each player i corresponds to an input variable x(i). Thus, the task of fairly assigning
the reward in the game translates to fairly estimating attributions of input variables in the deep neural
network f . Formally, the Shapley value ϕ can be defined as:

ϕf (x
(i)) =

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f(x ◦ (s+ ei))− f(x ◦ s)) , (4)

where ei ∈ Rd denotes the vector with a one in the i-th position but zeros in the rest positions.
Notably, the Shapley Value is renowned for satisfying four key axioms (Young, 1985):

For detailed technical derivations, including the complete proof, please refer to Appendix C.

Axiom 1 (Linearity. Proof in Appendix C.1) If two games can be merged into a new game, then
the Shapley Values in the two original games can also be merged. Formally, if fmerged = f1 + f2,
then ϕfmerged

(x(i)) = ϕf1(x
(i)) + ϕf2(x

(i)),∀i ∈ [d].

4
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Axiom 2 (Dummy. Proof in Appendix C.2) A dummy player i is a player that has no interactions
with other players in the game f . Formally, if ∀s : si = 0, f(x ◦ (s+ ei)) = f(x ◦ s) + f(x ◦ ei).
Then, the dummy player’s Shapley Value is computed as f(x ◦ ei).

Axiom 3 (Symmetry. Proof in Appendix C.3) If two players contribute equally in every case, then
their Shapley values in the game f will be equal. Formally, if ∀s : si = sj = 0, f(x ◦ (s + ei)) =

f(x ◦ (s+ ej)), then ϕf (x
(i)) = ϕf (x

(j)).

Axiom 4 (Efficiency. Proof in Appendix C.4) The total reward of the game f is equal to the sum
of the Shapley values of all players. Formally, f(x)− f(0) =

∑
i∈[d] ϕf (x

(i)).

The Shapley value is the unique attribution method that satisfies the four key axioms (Young, 1985).
However, directly computing the Shapley value is computationally expensive in practice. For in-
stance, calculating the Shapley value for an image with 4 × 4 patches requires 216 inferences, as-
suming each patch is a player. To address this issue, prior works (Charnes et al., 1988; Lundberg &
Lee, 2017) have proposed using kernel-based estimation of the Shapley value, as follows:

ϕ = argmin
ϕ

Es∼q(s)

[(
f(x ◦ s)− f(0)− s⊤ϕ

)2]
, s.t. 1⊤ϕ = f(x)− f(0), (5)

where q(s) = (d − 1)/
((

d
1⊤s

)
(1⊤s)(d− 1⊤s)

)
,∀1 < 1⊤s < d denotes the Shapley Kernel. We

follow KernelShap (Lundberg & Lee, 2017) to achieve fast estimation of the Shapley value based
on Eq. (5), making it possible to be adept in practice.

After obtaining the Shapley value ϕf (x
(i)) of each sample x(i), we apply average pooling of the

Shapley value map ϕf (x) = [ϕf (x
(1)), ϕf (x

(2)), . . . , ϕf (x
(d))] to obtain the most informative re-

gion inside a image. This step would generate a d′ < d size compressed image (e.g., d′ = d/4) with
the maximized informativeness, resulting a compressed dataset with n compressed samples D′.

Diversity control. The Shapley value attribution typically identifies only the most informative patch.
To introduce diversity in the patch selection process, we incorporate random noise ε ∼ (0, σ2),
where σ is the standard deviation fixed. Specifically, the random noise is employed on the average
pooled attribution heatmap, resulting in diverse informative patches considered in the next phase.

3.2.2 PRINCIPLED UTILITY MAXIMIZATION

After obtaining the compressed dataset, the next step is selecting samples to maximize dataset utility.
Computing utility (Definition 3) is challenging, as it requires training models with and without each
sample x to assess its utility. We show the utility function can be upper-bounded by the gradient
norm (Theorem 1), simplifying computation. We now define the gradient norm.

Definition 5 (Gradient Norm) The gradient norm of a training example (x, y) for model f param-
eterized by θ(t) at time t is denoted as

∥∇θ(t)ℓt(fθ(t)(x), y)∥.

Given the definition of Gradient Norm, we then show that Utility can be upper bounded by the
gradient norm through detailed analysis here.

Theorem 1 (Utility is bounded by Gradient Norm. Proof in Appendix D) Let the utility func-
tion U be defined as in Definition 3. Then there exists a constant c > 0 such that

U(xi, yi; fθ(t)) ≤ c∥∇θ(t)ℓt(fθ(t)(xi), yi)∥.

Proof of Theorem 1.For detailed technical derivations, including the complete proof of Theorem 1
and auxiliary lemmas, please refer to the supplementary materials. The full proof includes step-by-
step expansions of gradient flow decompositions, rigorous bounds under SGD updates, and verifica-
tion of assumptions underlying the utility-gradient norm relationship.

5
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Table 1: Performance comparison between InfoUtil and SOTA methods on seven datasets. We
evaluate dataset distillation using ResNet-18, ResNet-101, and ConvNet, reporting top-1 accuracy
(%).Datasets were distilled with ResNet-18 and ConvNet, then evaluated on matching architectures.
Additionally, datasets distilled by ResNet-18 were also evaluated with ResNet-101.

Dataset IPC
ResNet-18 ResNet-101 ConvNet

SRe2L RDED InfoUtil SRe2L RDED InfoUtil MTT IDM TESLA DATM RDED InfoUtil

CIFAR-10
1 16.6±0.9 22.9±0.4 25.3±0.4 13.7±0.2 18.7±0.1 19.6±0.6 46.3±0.8 45.6±0.7 48.5±0.8 46.9±0.5 23.5±0.3 28.5±1.4

10 29.3±0.5 37.1±0.3 53.8±0.1 24.3±0.6 33.7±0.3 38.4±1.0 65.3±0.7 58.6±0.1 66.4±0.8 66.8±0.2 50.2±0.3 54.1±0.5

50 45.0±0.7 62.1±0.1 71.0±0.8 34.9±0.1 51.6±0.4 67.1±0.5 71.6±0.2 67.5±0.1 72.6±0.7 76.1±0.3 68.4±0.1 69.8±0.1

CIFAR-100
1 6.6±0.2 11.0±0.3 22.9±0.4 6.2±0.0 10.8±0.1 16.5±0.5 24.3±0.3 20.1±0.3 24.8±0.5 27.9±0.2 19.6±0.3 33.1±0.3

10 27.0±0.4 42.6±0.2 47.5±0.7 30.7±0.3 41.1±0.2 41.9±0.6 40.1±0.4 45.1±0.1 41.7±0.3 47.2±0.4 48.1±0.3 50.5±0.3

50 50.2±0.4 62.6±0.1 64.7±0.2 56.9±0.1 63.4±0.3 66.0±0.2 47.7±0.2 50.0±0.2 47.9±0.3 55.0±0.2 57.0±0.1 57.8±0.2

ImageNette
1 19.1±1.1 35.8±1.0 43.8±0.7 15.8±0.6 25.1±2.7 28.2±0.5 47.7±0.9 - - - 33.8±0.8 42.3±0.7

10 29.4±3.0 61.4±0.4 68.6±0.6 23.4±0.8 54.0±0.4 59.8±1.1 63.0±1.3 - - - 63.2±0.7 66.6±0.4

50 40.9±0.3 80.4±0.4 86.2±0.6 36.5±0.7 75.0±1.2 82.4±0.3 - - - - 83.8±0.2 84.4±0.6

ImageWoof
1 13.3±0.5 20.8±1.2 25.0±0.8 13.4±0.1 19.6±1.8 20.2±0.4 28.6±0.8 - - - 18.5±0.9 22.8±0.4

10 20.2±0.2 38.5±2.1 51.4±2.5 17.7±0.9 31.3±1.3 42.6±1.2 35.8±1.8 - - - 40.6±2.0 43.8±1.3

50 23.3±0.3 68.5±0.7 69.6±0.8 21.2±0.2 59.1±0.7 67.2±0.8 - - - - 61.5±0.3 62.6±0.4

Tiny-ImageNet
1 2.6±0.1 9.7±0.4 17.0±1.3 1.9±0.1 3.8±0.1 11.9±0.6 8.8±0.3 10.1±0.2 - 17.1±0.3 12.0±0.1 19.6±0.5

10 16.1±0.2 41.9±0.2 45.6±0.3 14.6±1.1 22.9±3.3 34.4±0.2 23.2±0.2 21.9±0.3 - 31.1±0.3 39.6±0.1 40.2±0.3

50 41.1±0.4 58.2±0.1 58.5±0.3 42.5±0.2 41.2±0.4 54.7±0.3 28.0±0.3 27.7±0.3 - 39.7±0.3 47.6±0.2 48.0±0.5

ImageNet-100
1 3.0±0.3 8.1±0.3 15.7±0.2 2.1±0.1 6.1±0.8 11.4±0.2 - 11.2±0.5 - - 7.1±0.2 15.0±0.8

10 9.5±0.4 36.0±0.3 50.5±0.4 6.4±0.1 33.9±0.1 49.9±0.4 - 17.1±0.6 - - 29.6±0.1 42.2±0.7

50 27.0±0.4 61.6±0.1 68.3±0.4 25.7±0.3 66.0±0.6 69.7±0.4 - 26.3±0.4 - - 50.2±0.2 60.8±0.9

ImageNet-1K
1 0.1±0.1 6.6±0.2 12.8±0.7 0.6±0.1 5.9±0.4 6.8±0.7 - - 7.7±0.2 - 6.4±0.1 6.6±0.3

10 21.3±0.6 42.0±0.1 44.2±0.4 30.9±0.1 48.3±1.0 51.4±0.3 - - 17.8±1.3 - 20.4±0.1 21.5±0.3

50 46.8±0.2 56.5±0.1 58.0±0.3 60.8±0.5 61.2±0.4 63.8±0.6 - - 27.9±1.2 - 38.4±0.2 40.2±0.4

Given Theorem 1, we can efficiently calculate the utility of each sample using the upper bound of
the gradient norm. Then, we can directly select the most influential samples with the highest gra-
dient norms to maximize utility. Specifically, we employ gradient norm scoring for all compressed
samples in D′ with size n, and selected samples with top norm scores, resulting D̃ with size m ≪ n.

Image Reconstruction. Following prior works (Yin et al., 2023; Sun et al., 2024; Shao et al.,
2024a), we reconstruct normal-sized images by combining compressed samples. Low-resolution
datasets use a single image per category, while high-resolution datasets merge four 1/4-resolution
images from the same category into one full-size image. For soft label generation, patch-specific
logits are assigned by resizing the compressed samples. Inspired by (Qin et al., 2024; Wang et al.,
2024b), intermediate checkpoints of a pretrained model are used to balance discriminativity and
diversity, improving performance. Further details are in Section 5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and network architectures. We evaluated our approach using widely recognized datasets.
For lower-resolution datasets, we employed CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009)
(32 × 32) and Tiny-ImageNet (Deng et al., 2009) (64 × 64). For higher-resolution experiments,
we used ImageNet-1K (Deng et al., 2009) (224 × 224) along with three commonly used ImageNet
subsets: ImageNette, ImageWoof, and ImageNet-100 (all at 224×224). In line with previous works
on dataset distillation, we adept the following backbone architectures: ConvNet (Liu et al., 2022),
ResNet-18, 50, 101 (He et al., 2016), MobileNet-V2 (Howard et al., 2019), VGG-11 (Simonyan &
Zisserman, 2014), and Swin-V2-Tiny (Liu et al., 2021). Specifically, dataset distillation is performed
using a 3-layer ConvNet for CIFAR-10/100, a 4-layer ConvNet for Tiny-ImageNet and ImageNet-
1K, a 5-layer ConvNet for ImageWoof and ImageNette, and a 6-layer ConvNet for ImageNet-100.

Baseline methods. Following previous studies, we assessed the quality of the condensed datasets by
training neural networks from scratch using them. We reported the resulting test accuracies on the
actual validation sets. Baseline include trajectory-matching approaches such as MTT (Cazenavette
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Figure 3: Performance comparison on ResNet-18 and MobileNet. (a) Time cost in seconds (lower
is better): “TB” denotes training-based methods (TESLA and SRe2L fall into this category); “TF”
denotes training-free methods (others belong to this type). (b) Peak memory in GB (lower is better):
InfoUtil performs competitively with far lower costs than training-based methods. “Info” denotes
Informativeness only, while “Util” denotes Utility only.

et al., 2022), TESLA (Cui et al., 2023), and DATM (Guo et al., 2023), and distribution-matching
methods like IDM (Zhao et al., 2023). For our primary comparison, we also include SOTA knowl-
edge distillation-based methods, SRe2L (Yin et al., 2023) and RDED (Sun et al., 2024).

Implementation details of InfoUtil. Our setup follows RDED, using pretrained networks for
dataset synthesis. For small IPC, we adopt the approach in (Qin et al., 2024), extracting training-
stage soft labels to capture rich semantics. For larger IPC, fully converged networks from RDED
are used. Details are in Appendix B. For low-resolution datasets, one synthetic image per class
is used, while high-resolution datasets use four per class. The 300-image subset matches RDED’s
configuration. As in Table 1, AutoAug (Cubuk et al., 2018) is applied to enhance synthetic dataset
performance. All experiments ran on a single NVIDIA A100 GPU.

4.2 MAIN RESULTS

We verified InfoUtil’s effectiveness on benchmark datasets across image-per-class (IPC) settings.

Higher-resolution datasets. We benchmarked InfoUtil against state-of-the-art methods on higher-
resolution datasets like ImageNet-1K and its subsets. As Table 1 shows, InfoUtil achieves superior
or comparable performance across IPC settings. Notably, on ImageNet-100 (ResNet-101, IPC=10),
it outperforms RDED (Sun et al., 2024) by 16% in accuracy; on ImageWoof (ResNet-18, IPC=10),
it gains 12.9% over RDED. Moreover, on ImageNet-1K (ResNet-18, IPC=1), InfoUtil surpasses
RDED by 6.1%, highlighting its effectiveness in small IPC scenarios.

CIFAR-10/100 and Tiny-ImageNet. We evaluated InfoUtil on lower-resolution datasets with addi-
tional experiments on CIFAR-10/100 and Tiny-ImageNet. Our method continues to show superior
performance across most scenarios, highlighting robustness and generalizability of InfoUtil. Specif-
ically, as in Table 1, on Tiny-ImageNet, using ResNet-101 at IPC = 50 yields a 13.5% improvement;
on CIFAR-10, ResNet-18 at IPC = 10 obtains a 16.7% improvement.

Cross-architecture generalization. We evaluated InfoUtil’s cross-architecture generalization
across ResNet-18/50 (He et al., 2016), VGG-11 (Simonyan & Zisserman, 2014), MobileNet-
V2 (Howard et al., 2019), and Swin-V2-Tiny (Liu et al., 2021). Table 2 shows InfoUtil outperforms
SOTA (SRe2L, RDED) by 10% in the VGG-11 (teacher) vs. Swin-V2-Tiny (student) setting, con-
firming versatility. Further validation with baselines SCDD, G-VBSM (structural regularization) and
D3S (data efficiency) on ImageNet-1K across ResNet-18/101 (Table 3) shows InfoUtil consistently
outperforms SRe2L/RDED and these baselines across all IPC settings.

Efficiency Analysis. We carefully measured InfoUtil’s runtime and GPU usage on a single NVIDIA
A100. (i) It is highly efficient: time is 50× lower and memory 100× smaller than TESLA across
all distillation stages (Figure 3). (ii) For large-scale datasets like ImageNet-21K, distillation com-
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Table 2: Cross-architecture performance (%)
on ImageNet-1K (IPC=10). Using ResNet-
18/50, VGG-11, MobileNet-V2, and Swin-V2-
Tiny as teachers; ResNet-18, MobileNet-V2,
and Swin-V2-Tiny as students.

Squeezed\Evaluation ResNet-18 MobileNet-V2 Swin-V2-Tiny

ResNet-18
SRe2L 21.7±0.6 15.4±0.2 -
RDED 42.3±0.6 40.4±0.1 17.2±0.2

InfoUtil 44.8±0.4 37.1±0.5 19.8±0.4

ResNet-50
SRe2L - - -
RDED 33.9±0.5 26.0±0.3 17.3±0.2

InfoUtil 34.7±1.4 28.1±0.6 15.6±0.4

MobileNet-V2
SRe2L 19.7±0.1 10.2±2.6 -
RDED 34.4±0.2 33.8±0.8 11.8±0.3

InfoUtil 39.2±0.3 35.5±0.5 20.6±0.2

VGG-11
SRe2L 16.5±0.1 10.6±0.1 -
RDED 22.7±0.1 21.6±0.2 7.8±0.1

InfoUtil 35.1±0.3 31.6±0.1 17.8±0.4

Swin-V2-Tiny
SRe2L 9.6±0.3 7.4±0.1 -
RDED 17.8±0.1 18.1±0.2 12.1±0.2

InfoUtil 18.4±0.4 19.7±0.4 16.4±0.3

Table 3: Cross-architecture comparison of InfoUtil
with additional baselines on ImageNet-1K. Results
are shown across ResNet-18 and ResNet-101 archi-
tectures under varied IPC settings.

Model ResNet-18 ResNet-101

IPC 1 10 50 1 10 50

SRe2L 0.1±0.1 21.3±0.6 46.8±0.2 0.6±0.1 30.9±0.1 60.8±0.5
SCDD - 32.1±0.2 53.1±0.1 - 39.6±0.4 61.0±0.3

G-VBSM - 31.4±0.5 51.8±0.4 - 38.2±0.4 61.0±0.4
D3S 5.3±0.1 37.2±0.3 50.3±0.3 3.2±0.8 42.3±1.7 60.6±0.2

RDED 6.6±0.2 42.0±0.1 56.5±0.1 5.9±0.4 48.3±1.0 61.2±0.4
InfoUtil 12.7±0.7 44.2±0.4 58.0±0.3 6.8±0.7 51.4±0.3 63.7±0.6

Table 4: Comparison of downstream tasks for dis-
tilled samples in 5-step continual learning. Higher
values indicate better performance.
Method Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
RDED 0.5153 0.2918 0.201 0.1967 0.2191

InfoUtil 0.6560 0.5659 0.4927 0.4617 0.4739

Table 5: Comparison with baseline methods under large IPC settings. We used ResNet-18 for dataset
synthesis on Tiny-ImageNet and ImageNet-1K, and evaluated on ResNet-18 and ResNet-50 models.
Note that TESLA (Cui et al., 2023) used the downsampled ImageNet-1K dataset.

Dataset IPC TESLA (R18) SRe2L (R18) RDED (R18) InfoUtil (R18) SRe2L (R50) InfoUtil (R50)

Tiny-ImageNet
50 - 41.1±0.4 58.2±0.1 58.5±0.3 42.2±0.5 48.3±0.4
100 - 49.7±0.3 59.9±0.4 60.6±0.5 51.2±0.4 53.7±0.4
200 - 51.2±0.6 61.5±0.3 62.0±0.3 - 58.0±0.3

ImageNet-1K

10 17.8±1.3 21.3±0.6 42.0±0.1 43.5±0.4 28.4±0.1 48.0±0.5
50 27.9±1.2 46.8±0.2 56.5±0.1 57.6±0.3 55.6±0.3 63.1±0.4
100 - 52.8±0.3 58.2±0.6 58.8±0.4 61.0±0.4 65.5±0.5
200 - 57.0±0.4 62.5±0.8 63.4±0.3 64.6±0.3 68.0±0.4

pletes in just 5.83 hours. This combination of remarkable efficiency and strong performance makes
InfoUtil a practical, scalable solution for modern dataset distillation.

Performance on large IPC settings. We tested Tiny-ImageNet and ImageNet-1K under large IPC
scenarios, comparing with bi-level Tesla (Cui et al., 2023) and uni-level SRe2L (Yin et al., 2023),
RDED (Sun et al., 2024). Table 5 shows our method significantly outperforms existing SOTA
in large IPC cases, demonstrating strong scalability and superior performance. For IPC=200 on
ImageNet-1K, we used full images (not 2×2 cropped patches as prior work) to mitigate imbalance
(following (Sun et al., 2024)); image count before scoring was 600 instead of 300.

Downstream tasks of distilled samples. We explored the effectiveness of distilled samples in
downstream tasks via experiments on ImageNette (50 IPC) with 5-step continual learning, where
new classes are incrementally introduced at each stage. To ensure the robustness of results, experi-
ments were repeated 5 times with varied class orders. As shown in Table 4, our method (InfoUtil)
consistently surpasses the SOTA method RDED across all stages.

Visualization. InfoUtil shows significant improvements in visual quality over existing methods.
First, vs. optimization-based methods like SRe2L (Yin et al., 2023), it produces more realistic
representations by preserving intricate details and maintaining natural color fidelity. Second, vs.
optimization-free methods like RDED (Sun et al., 2024), InfoUtil is more interpretable and princi-
pled, effectively capturing key informative semantic content while minimizing focus on irrelevant
regions. Due to space constraints, visualization images are provided in Appendix F.

4.3 ABLATION STUDIES

To analyze the individual contributions of InfoUtil’s components, we conducted comprehensive ab-
lation studies comparing three configurations: (1) the baseline RDED method (Rand. Crop + Loss
Scoring), (2) Utility Maximization alone (GradN Scoring), and (3) the complete InfoUtil (GradN
Scoring + Attri. Cropping). Results across multiple datasets (ImageWoof, ImageNette, ImageNet-
1K) with varying IPC values are presented in Table 6.
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Methods ImageWoof ImageNette ImageNet-1K

GradNorm Scoring Attribution Cropping IPC=1 IPC=50 IPC=50 IPC=10

✗ ✓ 38.5 68.5 80.4 42.0
✓ ✗ 43.6 68.8 85.0 43.5
✓ ✓ 45.2 69.6 86.2 44.2

Table 6: Ablation study of
InfoUtil components’ impact
on image classification. Top-
1 accuracy (%) on ResNet-18
across datasets are reported.

E
p

o
ch

Accuracy  (%)
(a) IPC = 1 (b) IPC = 10

Figure 4: Analysis of teacher networks for soft label gen-
eration. ConvNet performance on ImageWoof using labels
from five training stages (IPC=1/10). “Full” denotes pre-
trained teacher. (a) IPC=1: Early high-entropy labels beat
full model, aiding low-data scenarios. (b) IPC=10: Full
model’s low-entropy labels excel in data-rich conditions.

• Effect of Utility Maximization. Replacing Loss Scoring with GradN Scoring while maintaining
random cropping brings significant performance improvements. As shown in Table 6, Utility Maxi-
mization alone achieves a 4.6% performance boost on ImageNette (IPC=50, from 80.4% to 85.0%)
and a 1.5% improvement on ImageNet-1K (IPC=10, from 42.0% to 43.5%). These results demon-
strate that gradient norm-based scoring plays a crucial role in selecting more informative samples.

• Effect of Combined Components. The integration of both Utility Maximization and Informa-
tiveness Maximization through Attri. Cropping yields the best performance. InfoUtil achieves addi-
tional gains of 1.2% on ImageNette (reaching 86.2%) and 0.7% on ImageNet-1K (reaching 44.2%)
compared to using Utility Maximization alone. This synergistic combination demonstrates that
attribute-guided cropping effectively captures the most discriminative regions while gradient-based
scoring ensures the selection of pedagogically valuable samples, together producing high-quality
synthetic data that consistently outperforms the baseline across all experimental settings.

5 DISCUSSION

Soft labels encode richer probabilistic supervision in dataset distillation. Prior works (Guo et al.,
2023; Yin et al., 2023; Wang et al., 2024b; Qin et al., 2024; Sun et al., 2024) show they capture
inter-class relationships. (Qin et al., 2024) finds early high-entropy labels help low-data regimes,
while late low-entropy labels suit data-rich settings. (Wang et al., 2024b) notes effective labels
balance diversity and discriminability. However, these focus on matching-based distillation, leaving
knowledge-distillation-based DD with soft labels unexplored.

To investigate this further, we explored the effectiveness of teacher model for soft label generation
using ConvNet on ImageWoof. For small IPC settings, we extracted soft labels from models at an
intermediate training stage (10-th epoch), leveraging the high-entropy, diverse information charac-
teristic of early epochs. In contrast, for large IPC settings, we used fully pretrained networks from
RDED, leveraging the low-entropy, precise labels typical of later training phases.

Our findings, as it shown in Figure 4, clearly highlight the effectiveness of this strategy. In small
IPC scenarios (e.g., IPC = 1), synthetic images with soft labels generated with models at 10-th epoch
outperformed those from pretrained networks, emphasizing the importance of rich label information
when limited data are provided. Conversely, in larger IPC scenarios (e.g., IPC = 10 or IPC = 50),
labels from fully pretrained networks yielded superior results.

6 CONCLUSION

In this paper, we present a principled approach to dataset distillation, grounded in a rigorous theo-
retical framework for modeling optimal distillation. We introduce Informativeness and Utility, cap-
turing, the critical information within a sample and essential samples for effective training. Building
on these, we propose InfoUtil, a framework that synergistically combines game-theoretic informa-
tiveness maximization with principled utility maximization. Specifically, InfoUtil leverages Shapley
value attribution to extract informative features and employs gradient norm-based optimization to
select samples optimized for utility. InfoUtil demonstrates superior performance in dataset distilla-
tion and cross-architecture generalization. Future work includes extending InfoUtil to more complex
and diverse datasets, focusing on scalability and robustness in real-world applications.
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ETHICS STATEMENT

This work focuses on developing machine learning methods for general research purposes. The
datasets employed in our experiments are publicly available and do not contain personally identi-
fiable or sensitive information. We carefully considered potential risks of bias and unfairness, and
we report evaluations in a transparent manner. Although our method could, in principle, be misused
in applications beyond the intended scope, we believe that responsible usage guided by community
standards will mitigate such risks. Overall, we believe our contributions are aligned with the ethical
principles of the research community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring reproducibility of our results. All code, configuration files, and scripts
necessary to reproduce our experiments will be released upon publication. We provide detailed de-
scriptions of datasets, preprocessing steps, hyperparameters, and model architectures in the main
text and appendix. All experiments were conducted with fixed random seeds and we report averages
over multiple runs where applicable. Further implementation details and instructions for reproduc-
tion are included in the supplementary material.
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A REALTED WORK

As contextualized in the main text, our work builds on two key research strands: dataset distilla-
tion and explainable AI attribution methods. Below, we expand on these areas, detailing existing
limitations and the specific research gap our method addresses.

A.1 DATASET DISTILLATION

Dataset Distillation, or Dataset Condensation, aims to reduce a large dataset into a smaller one.
Current methods can be categorized into two main approaches: i.e., matching-based methods (Zhao
et al., 2021; Lee et al., 2022; Zhao & Bilen, 2021; Wang et al., 2024a; Cazenavette et al., 2022;
Cui et al., 2023; Guo et al., 2023; Zhao & Bilen, 2022; Kim et al., 2022; Du et al., 2023; Zhou
et al., 2022), and knowledge-distillation-based methods (Yin et al., 2023; Shao et al., 2024a; Sun
et al., 2024). Matching-based methods are typically formulated as bi-level optimization problems
but struggle with the trade-off between efficiency and the quality of the distilled dataset. In contrast,
knowledge-distillation-based methods decouple the problem into a two-step process but often lack
theoretical guarantees and interpretability. Therefore, a deeper investigation is needed to formalize
knowledge-distillation-based methods in a principled manner to ensure their reliability in practical
scenarios with theoretical support, which we address in this paper.

A.2 ATTRIBUTION METHODS IN EXPLAINABLE AI

Attribution methods are essential for post-hoc explanations of black-box models, revealing each
input variable’s contribution to the final prediction. Among them, the Shapley Value is considered a
principled tool due to its key axioms: i.e., linearity, dummy, symmetry, and efficiency (Shapley et al.,
1953; Young, 1985). To reduce the computational burden, KernelShap (Lundberg & Lee, 2017) was
introduced to efficiently approximate the Shapley Value using Linear LIME (Ribeiro et al., 2016).
However, since none of the previous works have explored the application of attribution methods in
dataset distillation, there is an opportunity to develop attribution-based approaches for extracting
key information for dataset distillation.

B DETAILED IMPLEMENTATION

In this section, we detail the implementation specifics of InfoUtil, including the computation of
informativeness, tuning settings of teacher models, and provide the corresponding pseudocode in
the Algorithm 1.

B.1 COMPUTATION OF INFORMATIVENESS

In our implementation of InfoUtil, we leveraged the PyTorch framework together with the Captum
package to compute Shapley values. Captum provides a robust and flexible interface for model
interpretability, allowing us to quantitatively assess the contributions of individual features to the
model’s predictions. By utilizing Captum’s KernalShap1 method, we could accurately determine
the importance of each feature within a sample, which in turn guides the data refinement process
during dataset distillation. Moreover, in the first four cropping, we injected Gaussian noise drawn
from the normal distribution N (0, σ2), where σ is defined as the product of the overall standard
deviation of the Shapley values after average pooling and a hyperparameter α that controls the noise
intensity. In our experiments, we set the kernal size to 2× 2 with stride = 1, and the hyperparameter
α = 2. The final (5th) cropping maintained the original Shapley values. This approach effectively
reduced the probability of repeatedly cropping the same location.

Besides, in most scenarios, we divided each original image into a 4 × 4 grid of patches, computed
the Shapley value for each individual patch and subsequently identified the center of the patch with
the highest Shapley value as the optimal cropping center.

1https://captum.ai/api/shapley_value_sampling.html

1
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Algorithm 1 InfoUtil Pipeline

Input: original dataset D, pre-trained teacher model fθD , teacher model at early t-th epoch fθt ,
compressed size d′, noise variance σ, distilled dataset size m, number of patches k.
for each class c in D do

Dc = {(xi, yi) ∈ D | yi = c}
// Stage 1: Informativeness Maximization
for (xi, yi) ∈ Dc do

Compute ϕf (xi) using fθD
Apply average pooling to ϕf (xi) to obtain a pooled heatmap
Add noise ε ∼ (0, σ2) to the pooled heatmap
Extract ξi of size d′ from xi based on the highest heatmap value

end for
D′

c = {(ξi, yi)}
// Stage 2: Utility Maximization
for (ξi, yi) ∈ D′

c do
Compute gi = ∥∇θℓ(fθD (ξi), yi)∥

end for
Select top-k × IPC samples {ξi1, . . . , ξi,IPC×k} by gi
for j = 1 to IPC do

Combine ξi,(j−1)×k+1 to ξi,j×k into xj

For each ξik in xj , set ỹjk = fθt(ξik)
ỹj = [ỹj1, . . . , ỹjk]

D̃ = D̃ ∪ {(xj , yj)}
end for

end for
Output: Distilled dataset D̃

B.2 PRETRAINED TEACHER MODEL

When generating soft labels, we utilized teacher models from the early stages of training. Specifi-
cally, for CIFAR-10 and CIFAR-100, the teacher models were pretrained for 10 epochs using a learn-
ing rate of 0.001 on IPC = 1 and 10. Meanwhile, for other datasets (Tiny-ImageNet, ImageNette,
ImageWoof, ImageNet-100, and ImageNet-1k), we trained the teacher models for 10 epochs using
a learning rate of 0.01 on IPC = 1 and 10. For IPC = 50 scenarios, we employed fully converged
teacher models across all datasets to ensure that soft labels generated could reflect the comprehen-
sive and stable representations learned from the entire training dataset. Compared to teacher models
from early training stages, fully converged models provide richer, more accurate semantic infor-
mation, which significantly benefit the distillation process, especially when synthesizing a larger
number of representative images.

C PROOFS OF SHAPLEY VALUE AXIOMS

Building upon the game-theoretic formulation in Section 3, we now formally show that our feature
attribution method—which maximizes informativeness via Shapley values—satisfies the four ax-
iomatic properties of Shapley values. These properties ensure that the attributions assigned to input
variables are theoretically sound and fair.

Consistent with our informativeness maximization framework, we define:

• Neural network as characteristic function: The deep neural network f acts as the charac-
teristic function in a cooperative game, mapping each coalition of features to a predictive
score.

• Players: Each input variable x(i) (i ∈ [d] := {1, 2, . . . , d}) is treated as a distinct player in
the game.

• Coalitions: A binary mask s ∈ {0, 1}d represents a coalition of active features, with si = 1
indicating inclusion of x(i) and si = 0 indicating its exclusion.

2
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• Reward: The informativeness score f(s ◦ x) is regarded as the reward contributed by the
coalition s.

The Shapley value for variable x(i) is computed as:

ϕf (x
(i)) =

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f(x ◦ (s+ ei))− f(x ◦ s)) ,

where ei ∈ Rd denotes the vector with a one in the i-th position but zeros in the rest positions, and
s is a binary mask indicating active input variables.

C.1 PROOF OF AXIOM 1(LINEARITY)

Axiom 1 (Linearity) If two games can be merged into a new game, then the Shapley Values in the
two original games can also be merged. Formally, if fmerged = f1 + f2, then ϕfmerged

(x(i)) =

ϕf1(x
(i)) + ϕf2(x

(i)),∀i ∈ [d].

Proof of Axiom 1: For merged game fmerged = f1 + f2, by definition we have fmerged(x ◦ t) =
f1(x ◦ t) + f2(x ◦ t) for any mask t. Substituting into the Shapley value formula:

ϕfmerged
(x(i)) =

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(fmerged(x ◦ (s+ ei))− fmerged(x ◦ s))

=
1

d

∑
s:si=0

(
d− 1

1⊤s

)[
(f1(x ◦ (s+ ei)) + f2(x ◦ (s+ ei)))− (f1(x ◦ s) + f2(x ◦ s))

]
=

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f1(x ◦ (s+ ei))− f1(x ◦ s))+

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f2(x ◦ (s+ ei))− f2(x ◦ s))

= ϕf1(x
(i)) + ϕf2(x

(i)).

Thus, if fmerged = f1 + f2, then ϕfmerged
(x(i)) = ϕf1(x

(i)) + ϕf2(x
(i)),∀i ∈ [d].

C.2 PROOF OF AXIOM 2(DUMMY)

Axiom 2 (Dummy) A dummy player i is a player that has no interactions with other players in the
game f . Formally, if ∀s : si = 0, f(x ◦ (s+ ei)) = f(x ◦ s) + f(x ◦ ei). Then, the dummy player’s
Shapley Value is computed as f(x ◦ ei).

Proof of Axiom 2: For a dummy player i satisfying ∀s : si = 0, f(x◦(s+ei)) = f(x◦s)+f(x◦ei),
substitute the condition into the Shapley value formula:

ϕf (x
(i)) =

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f(x ◦ (s+ ei))− f(x ◦ s))

=
1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f(x ◦ ei))

= f(x ◦ ei) ·
1

d

∑
s:si=0

(
d− 1

1⊤s

)
.

Note that the sum over all s : si = 0 (subsets of the remaining d− 1 variables) satisfies:∑
s:si=0

(
d− 1

1⊤s

)
=

d−1∑
k=0

(
d− 1

k

)
= 2d−1 · d

d
= d,

where we use the identity
∑n

k=0

(
n
k

)
= 2n with n = d− 1. Thus:

ϕf (x
(i)) = f(x ◦ ei) ·

1

d
· d = f(x ◦ ei).

3
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C.3 PROOF OF AXIOM 3(SYMMETRY)

Axiom 3 (Symmetry) If two players contribute equally in every case, then their Shapley values in
the game f will be equal. Formally, if ∀s : si = sj = 0, f(x ◦ (s + ei)) = f(x ◦ (s + ej)), then
ϕf (x

(i)) = ϕf (x
(j)).

Proof of Axiom 3: For symmetric players i and j satisfying ∀s : si = sj = 0, f(x ◦ (s + ei)) =
f(x ◦ (s+ ej)), consider their Shapley values:

ϕf (x
(i)) =

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f(x ◦ (s+ ei))− f(x ◦ s)) ,

ϕf (x
(j)) =

1

d

∑
s:sj=0

(
d− 1

1⊤s

)
(f(x ◦ (s+ ej))− f(x ◦ s)) .

Define a bijection between masks s : si = 0 and t : tj = 0 via t = s if j /∈ s, and t = (s\{j})∪{i}
if j ∈ s. By symmetry, f(x◦ (s+ei)) = f(x◦ (t+ej)) and f(x◦s) = f(x◦ t). Since 1⊤s = 1⊤t,
the binomial coefficients are equal. Thus:

ϕf (x
(i)) =

1

d

∑
t:tj=0

(
d− 1

1⊤t

)
(f(x ◦ (t+ ej))− f(x ◦ t)) = ϕf (x

(j)).

C.4 PROOF OF AXIOM 4(EFFICIENCY)

Axiom 4 (Efficiency) The total reward of the game f is equal to the sum of the Shapley values of
all players. Formally, f(x)− f(0) =

∑
i∈[d] ϕf (x

(i)).

Proof of Axiom 4: Summing Shapley values over all players:∑
i∈[d]

ϕf (x
(i)) =

∑
i∈[d]

1

d

∑
s:si=0

(
d− 1

1⊤s

)
(f(x ◦ (s+ ei))− f(x ◦ s))

=
1

d

∑
s⊆[d]

∑
i/∈s

(
d− 1

1⊤s

)
(f(x ◦ (s+ ei))− f(x ◦ s)) .

For a fixed mask s with 1⊤s = k, there are d− k players not in s. The inner sum becomes:∑
i/∈s

(f(x ◦ (s+ ei))− f(x ◦ s)) =
∑
i/∈s

f(x ◦ (s+ ei))− (d− k)f(x ◦ s).

Summing over all s and telescoping the series, all intermediate terms cancel, leaving:∑
i∈[d]

ϕf (x
(i)) = f(x)− f(0).

D PROOFS OF THEOREMS

This appendix presents the full derivation to formally establish Theorem 1, complementing the par-
tial analysis in the main text.

Recall the definition of utility:

Theorem 1: Utility is bounded by Gradient Norm. Let the utility function U be defined as in
Definition 3. Then there exists a constant c > 0 such that

U(xi, yi; fθ(t)) ≤ c∥∇θ(t)ℓt(fθ(t)(xi), yi)∥.

Using the chain rule for gradient flow, we have

ℓ̇t(fθ(t)(xj), yj ;B) = ∇θ(t)ℓt(fθ(t)(xj), yj) ·
∂θ(t)

∂t

∣∣∣
B
,

4
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and similarly for B¬i. Thus, the change in gradient flow is∣∣∣ℓ̇t(fθ(t)(xj), yj ;B)− ℓ̇t(fθ(t)(xj), yj ;B¬i)
∣∣∣ = ∣∣∣∣∇θ(t)ℓt(fθ(t)(xj), yj) ·

(
∂θ(t)

∂t

∣∣∣
B
− ∂θ(t)

∂t

∣∣∣
B¬i

)∣∣∣∣ .
Under SGD with learning rate η, the update step is

∂θ(t)

∂t

∣∣∣
B
= −η

∑
(x,y)∈B

∇θ(t)ℓt(fθ(t)(x), y).

Removing (xi, yi) gives

∂θ(t)

∂t

∣∣∣
B¬i

= −η
∑

(x,y)∈B¬i

∇θ(t)ℓt(fθ(t)(x), y).

Taking the difference,

∂θ(t)

∂t

∣∣∣
B
− ∂θ(t)

∂t

∣∣∣
B¬i

= −η∇θ(t)ℓt(fθ(t)(xi), yi).

Substituting this into the gradient flow change gives∣∣∣ℓ̇t(fθ(t)(xj), yj ;B)− ℓ̇t(fθ(t)(xj), yj ;B¬i)
∣∣∣

= η |∇θ(t)ℓt(fθ(t)(xj), yj) · ∇θ(t)ℓt(fθ(t)(xi), yi)|
≤ η∥∇θ(t)ℓt(fθ(t)(xj), yj)∥ · ∥∇θ(t)ℓt(fθ(t)(xi), yi)∥

where the last step follows from the Cauchy–Schwarz inequality. Let

c = η max
(xj ,yj)∈D

∥∇θ(t)ℓt(fθ(t)(xj), yj)∥

be a constant independent of (xi, yi). Taking the maximum over (xj , yj) ∈ D, we obtain

U(xi, yi; fθ(t)) ≤ c∥∇θ(t)ℓt(fθ(t)(xi), yi)∥.

Note that c = ηmax(xj ,yj)∈D ∥∇θ(t)ℓt(fθ(t)(xj), yj)∥ satisfies the following properties:

1. It is independent of the current measured data (xi, yi), ensuring that the bound in Theorem 1
holds uniformly for all training examples.

2. It only assumes that the gradient norm ∥∇θ(t)ℓt(fθ(t)(xj), yj)∥ has an upper bound, which is a
reasonable assumption for any successfully converged model.

3. Since the learning rate η can be chosen to be small in practice, the value of c remains controlled
and does not become excessively large.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the official ICLR policy regarding the mandatory disclosure of large language
model (LLM) usage, we explicitly and unequivocally state that no LLMs were employed in the
entire process of the development of this work. All essential components of our research, including
theoretical analysis, detailed algorithm design, practical implementation, systematic experimental
validation, and thorough manuscript writing, were conducted carefully and entirely without the aid
of any LLM-based tools or services. This explicit statement ensures that the contributions reported
in this paper are derived solely from the authors’ original and independent efforts and do not rely in
any way on automated text generation or machine-assisted writing systems.
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F ADDITIONAL VISUALIZATIONS OF SYNTHETIC DATA

Compared to optimization-based SRe2L, InfoUtil creates more realistic images by preserving details
and color consistency. Compared to optimization-free methods like RDED, InfoUtil stands out
with its enhanced interpretability and structured framework, emphasizing key semantic details while
reducing focus on irrelevant areas. We present further visual comparisons of synthetic ImageNet-1K
images generated by SRe2L, RDED, and InfoUtil at IPC = 10. Specifically, Figures 6, 7, 8 and 9
illustrate results across three representative classes, clearly highlighting the superior visual quality
attained by InfoUtil. As intuitive evidence, Figure 5 shows condensed images for ImageNet-1K’s
indigo bunting category, including results from Original, Herding, SRe2L, RDED, and InfoUtil
(Ours). InfoUtil focuses on the most discriminative object parts, yielding more informative results.
Additional visualizations are provided in the supplements due to space constraints.

Original Herding SRe2l RDED InfoUtil (Ours)

Figure 5: Visualization of condensed images for the indigo bunting category on ImageNet-1K.

(a) SRe2L

(b) RDED

(c) InfoUtil (ours)

Figure 6: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1K. These images are distilled from the “Welsh Springer Spaniel” category.

6
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(a) SRe2L

(b) RDED

(c) InfoUtil (ours)

Figure 7: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1K. These images are distilled from the “schooner” category.

(a) SRe2L

(b) RDED

(c) InfoUtil (ours)

Figure 8: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1K. These images are distilled from the “indigo bunting” category.

(a) SRe2L

(b) RDED

(c) InfoUtil (ours)

Figure 9: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1K. These images are distilled from the “Siamese cat” category.

7
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Table 7: Comparison of Storage Costs: Total Disk Space required to store the synthesized dataset
for ResNet-18 (MB).

Datasets IPC SRe2L RDED (on-the-fly) InfoUtil (on-the-fly) InfoUtil (store top-10)

ImageNet-100
1 6.9MB 42.8MB 42.8MB 3.5MB

10 64.8MB 42.8MB 42.8MB 35.0MB
50 324.2MB 42.8MB 42.8MB 175.0MB

ImageNet-1K
1 579.8MB 44.7MB 44.7MB 35.0MB

10 5798.3MB 44.7MB 44.7MB 350.0MB
50 28990.8MB 44.7MB 44.7MB 1750.0MB

G ANALYSIS OF DATASET STORAGE EFFICIENCY

The computational and storage efficiency of synthesized datasets is a crucial metric for knowledge
distillation, particularly in resource-constrained environments. In this section, we clarify the storage
protocol utilized by InfoUtil and quantify the associated memory costs.

G.1 PROTOCOL FOR ON-THE-FLY SOFT LABEL GENERATION

The InfoUtil framework, similar to the protocol used by our main baseline RDED Sun et al. (2024),
operates without storing explicit soft labels as part of the distilled dataset artifact. This adherence
ensures a fair and direct comparison with prior distillation-based synthesis methods, demonstrating
that performance gains stem from the quality of the synthesized images, not a larger auxiliary budget.
The final distilled dataset artifact contains only the compressed synthetic images. Soft labels are
generated on-the-fly by a fixed, pre-trained teacher model (a separate, static artifact) during the
downstream training of the student model. Consequently, the storage cost of the distilled dataset is
inherently minimal, determined exclusively by the number and resolution of the synthetic images.
For instance, the static cost for storing the ResNet-18 teacher model for all Images Per Class (IPC)
settings on the ImageNet-1K dataset is 44.7MB.

G.2 QUANTIFYING LABEL SPARSIFICATION FOR POTENTIAL STORAGE

Although InfoUtil’s standard protocol avoids soft label storage, investigating the potential for label
efficiency is valuable for scenarios requiring stored knowledge. To demonstrate the robustness and
sparsity of the captured knowledge, we conducted a simulation where we quantify the memory cost
required to store labels using a Top-K approach. This simulates a storage requirement by only
retaining the indices and values of the Top-K logits (here, K = 10). The results in Table 7 quantify
the total disk space required across different IPC settings. The ”on-the-fly” columns represent the
minimal storage cost of the synthesized images (identical for RDED and InfoUtil).

The comparison highlights that the storage overhead concern associated with soft labels does not ap-
ply to the standard InfoUtil protocol. Even in the scenario where sparse label storage is required, the
essential knowledge can be captured with extreme efficiency, demonstrating high compressibility.

H EXTENSIVE COMPARISON WITH STATE-OF-THE-ART METHODS

We conduct an extensive comparison of InfoUtil against several state-of-the-art methods in data
synthesis and knowledge distillation. The evaluation covers diverse datasets and Images Per Class
(IPC) settings.

H.1 COMPARISON WITH TEDDY BASELINE

Table 8 compares InfoUtil’s performance against the TEDDY Yu et al. (2024) on ImageNet-1K and
Tiny-ImageNet.
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Table 8: Comparison of Top-1 Accuracy (%) with TEDDY baseline (ResNet-18 Student Model).

Dataset IPC SRe2L TEDDY InfoUtil (Ours)

ImageNet-1K
10 21.3± 0.6 34.1± 0.1 44.2± 0.4
50 46.8± 0.2 52.5± 0.1 58.0± 0.3

100 52.8± 0.3 56.5± 0.1 58.8± 0.4

Tiny-ImageNet 50 41.1± 0.4 45.2± 0.1 58.5± 0.3
100 49.7± 0.3 52.0± 0.2 60.6± 0.5

Table 9: Comparison of Top-1 Accuracy (%) with EDF baseline on ImageNette, ImageWoof, and
ImageNet-100 (ResNet-18).

Dataset IPC SRe2L RDED EDF InfoUtil (Ours)

Imagenette
1 20.8± 0.2 33.8± 0.8 25.7± 0.4 42.3± 0.7

10 50.6± 0.8 63.2± 0.7 64.5± 0.6 66.6± 0.4
50 73.8± 0.6 83.8± 0.2 84.8± 0.5 84.9± 0.6

Imagewoof
1 15.8± 0.8 18.5± 0.9 19.2± 0.2 22.8± 0.4

10 38.4± 0.4 40.6± 2.0 42.3± 0.3 43.8± 1.3
50 49.2± 0.4 61.5± 0.3 61.6± 0.8 62.6± 0.4

ImageNet-100
1 – 7.1± 0.2 8.1± 0.6 19.6± 0.5

10 – 29.6± 0.1 32.0± 0.5 40.2± 0.3
50 – 50.2± 0.2 45.6± 0.5 48.0± 0.5

Table 10: Comparison of Top-1 Accuracy (%) with DELT baseline on Cifar-10, ImageNette, and
TinyImageNet (ResNet-18 Student Model).

Dataset (ResNet-18) IPC SRe2L RDED DELT InfoUtil (Ours)

Cifar-10
1 16.6± 0.9 22.9± 0.4 24.0± 0.8 25.3± 0.6
10 29.3± 0.5 37.1± 0.3 43.0± 0.9 53.8± 0.1
50 45.0± 0.7 62.1± 0.1 64.9± 0.9 71.0± 1.4

ImageNette
1 19.1± 1.1 35.8± 1.0 24.1± 1.8 43.8± 0.7
10 29.4± 3.0 61.4± 0.4 66.0± 1.4 68.8± 0.6
50 40.9± 0.3 80.4± 0.4 88.2± 1.2 86.2± 0.6

TinyImageNet
1 2.6± 0.1 9.7± 0.4 9.3± 0.5 17.0± 1.3
10 16.1± 0.2 41.9± 0.2 43.0± 0.1 45.6± 0.3
50 41.1± 0.4 58.2± 0.1 55.7± 0.5 58.5± 0.3

H.2 COMPARISON WITH EDF AND IMAGEWOOF

Table 9 provides a detailed comparison against the EDF Wang et al. (2025) across multiple small-
scale datasets, including ImageWoof.

I COMPARISON WITH DELT (RESNET-18)

The following table presents a detailed comparison of InfoUtil against DELT on various datasets
and Images Per Class (IPC) settings, using a ResNet-18 student model.

I.1 COMPARISON WITH WMDD

Table 11 summarizes the performance of InfoUtil against WMDD Liu et al. (2025), primarily fo-
cusing on ImageNette, Tiny-ImageNet, and ImageNet-1K.
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Table 11: Comparison of Top-1 Accuracy (%) with WMDD and RDED baselines (ResNet-18 Stu-
dent Model).

Dataset IPC SRe2L WMDD RDED InfoUtil (Ours)

ImageNette
1 19.1± 1.1 40.2± 0.6 35.8± 1.0 43.8± 0.7
10 29.4± 3.0 64.8± 0.4 61.4± 0.4 68.6± 0.6
50 40.9± 0.3 83.5± 0.3 80.4± 0.4 86.2± 0.6

Tiny-ImageNet
1 2.6± 0.1 7.6± 0.2 9.7± 0.4 17.0± 1.3
10 16.1± 0.2 41.8± 0.1 41.9± 0.2 45.6± 0.3
50 41.1± 0.4 59.4± 0.5 58.2± 0.1 58.5± 0.3

ImageNet-1K
1 0.1± 0.1 3.2± 0.3 6.6± 0.2 12.7± 0.7
10 21.3± 0.6 38.2± 0.2 42.0± 0.1 44.2± 0.4
50 46.8± 0.2 57.6± 0.5 56.5± 0.1 58.0± 0.3

Table 12: Comparison of Top-1 Accuracy (%) with HeLlo baseline on ImageNet-100 and ImageNet-
1K (ResNet-18).

Dataset IPC SRe2L RDED HeLlo InfoUtil (Ours)

ImageNet-100
1 3.0± 0.3 8.1± 0.3 12.5± 0.2 15.7± 0.2

10 9.5± 0.4 36.0± 0.3 48.9± 0.1 50.5± 0.4
50 27.0± 0.4 61.6± 0.1 69.4± 0.1 68.3± 0.4

ImageNet-1K
1 0.1± 0.1 6.6± 0.2 12.9± 0.3 12.7± 0.7

10 21.3± 0.6 42.0± 0.1 43.7± 0.1 44.2± 0.4
50 46.8± 0.2 56.5± 0.1 52.2± 0.1 58.0± 0.3

Table 13: Comparison of Top-1 Accuracy (%) with INFER baseline on Cifar10, Tiny-ImageNet,
and ImageNet-1K (ResNet-18).

Dataset IPC SRe2L INFER RDED InfoUtil (Ours)

Cifar10 10 29.3± 0.5 30.7± 0.3 37.1± 0.3 53.8± 0.1
50 45.0± 0.7 60.7± 0.9 62.1± 0.1 71.0± 1.4

Tiny-ImageNet 10 16.1± 0.2 41.0± 0.4 41.9± 0.2 45.6± 0.3
50 41.1± 0.4 54.6± 0.4 58.2± 0.1 58.5± 0.3

ImageNet-1K 50 46.8± 0.2 54.3± 0.6 56.5± 0.1 58.0± 0.3

I.2 COMPARISON WITH HELLO

Table 12 highlights the performance on ImageNet-100, comparing against the HeLlo Yu et al.
(2025).

I.3 COMPARISON WITH INFER

Table 13 provides a comparison against the INFER Zhang et al. (2024), including results on the
Cifar10 dataset.

J CORESET SELECTION COMPARISON AND INFORMATION DENSITY

We investigate the fundamental distinction between data synthesis (InfoUtil) and traditional coreset
selection methods, which aim to construct a compact dataset by selecting unaltered real samples.
While both approaches pursue dataset compression, InfoUtil’s ability to synthesize highly informa-
tive, compressed knowledge yields a significant performance gap, especially under extreme data
scarcity (IPC = 1 or 10).

10
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Table 14: Comparison of Top-1 Accuracy (%) of InfoUtil vs. Classic Coreset Selection Methods
(ConvNet).

Model Dataset IPC Random Herding Forgetting InfoUtil (Ours)

ConvNet

CIFAR-10
1 14.4± 2.0 21.5± 1.2 13.5± 1.2 28.5± 1.4

10 26.0± 1.2 31.6± 0.7 23.3± 1.0 54.1± 0.5
50 43.4± 1.0 40.4± 0.6 23.3± 1.1 69.8± 0.1

CIFAR-100
1 4.2± 0.3 8.4± 0.3 4.5± 0.2 33.1± 0.3

10 14.6± 0.5 17.3± 0.3 15.1± 0.3 50.5± 0.3
50 30.0± 0.4 33.7± 0.5 30.5± 0.3 57.8± 0.2

Tiny ImageNet
1 1.4± 0.1 1.4± 0.1 1.6± 0.1 19.6± 0.5

10 5.0± 0.2 5.0± 0.2 5.1± 0.2 40.2± 0.3
50 15.0± 0.4 15.0± 0.4 15.0± 0.3 48.0± 0.5

Table 15: Comparison of Top-1 Accuracy (%) of InfoUtil vs. Coreset Selection (ResNet-18 Student
Model).

Model Dataset IPC Random Herding K-Means InfoUtil (Ours)

ResNet-18 Tiny ImageNet 10 7.5± 0.1 9.0± 0.3 8.9± 0.2 45.6± 0.3
ImageNet-1K 10 4.4± 0.1 5.8± 0.1 5.5± 0.1 44.2± 0.4

J.1 FUNDAMENTAL DISTINCTION AND EMPIRICAL ADVANTAGE

Traditional coreset selection methods (such as Random, Herding Welling (2009) and Forget-
ting (Toneva et al., 2018)) are constrained by the quality and content of the original training sam-
ples. InfoUtil overcomes this limitation by dynamically synthesizing samples that are optimized
for knowledge transfer, extracting informative patches, and utilizing soft labels to condense teacher
knowledge. To empirically demonstrate this advantage, we compare InfoUtil against classic coreset
selection baselines across CIFAR, Tiny-ImageNet, and ImageNet-1K.

J.2 PERFORMANCE ON LARGE-SCALE DATASETS

We further validate the results using a deeper architecture (ResNet-18) on challenging large-scale
datasets, comparing against K-Means coreset selection.

The empirical results show a massive performance gap. For example, on ImageNet-1K (IPC = 10),
InfoUtil achieves 44.2%, which is nearly 7.6 times higher than the best coreset method (Herding,
5.8%). This clearly illustrates that simply selecting real images is insufficient for training deep net-
works from scratch on such limited budgets. Coreset methods inherently suffer from background
noise and reliance on hard labels. In contrast, InfoUtil’s synthesis mechanism which incorporates at-
tribution cropping (Informativeness) and soft labels, effectively condenses the necessary knowledge,
making it far more efficient and powerful than standard subset selection.

K ABLATION STUDY ON NOISE INJECTION IN PATCH SELECTION

We investigate the role of randomness within the attribution-guided patch selection mechanism,
which is critical for generating diverse and non-redundant synthetic data.

K.1 IMPORTANCE OF NOISE FOR DATA DIVERSITY

The core of our data synthesis relies on identifying the most informative region (peak) of the Shap-
ley heatmap. Without introducing noise, the cropping process becomes entirely deterministic and
greedy, resulting in synthesized patches that are nearly identical across samples within the same
class. This lack of diversity severely hinders the student model’s ability to generalize. The strate-
gic injection of Gaussian noise into the heatmap’s peak coordinates allows the cropping window to
subtly shift around the highest attribution regions.
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Table 16: Ablation Study on Noise Injection in Patch Selection: Top-1 Accuracy (%).

Dataset IPC InfoUtil (Standard) InfoUtil (w/o Noise)

ImageNette
1 43.8 35.4
10 68.6 59.8
50 86.2 70.6

ImageWoof
1 25.0 23.2
10 51.4 40.0
50 69.6 59.4

ImageNet-100
1 15.7 12.6
10 50.5 43.8
50 68.3 56.3

ImageNet-1K
1 12.8 9.63
10 44.2 38.5
50 58.0 48.3

K.2 EMPIRICAL ANALYSIS

We conducted a detailed ablation study comparing the standard InfoUtil method with a variant where
noise injection is removed (”w/o Noise”). The student model is a ResNet-18, and the results across
various IPC settings are summarized in Table 16. The empirical results clearly demonstrate that
removing noise leads to a significant performance drop across all datasets and IPC settings.

• Impact at High IPC: The performance gap is particularly pronounced at higher IPC values
(e.g., 86.2% vs. 70.6% at ImageNette IPC = 50), resulting in a drop of over 15%. This
confirms that when synthesizing multiple samples per class, the diversity induced by noise
is essential to avoid redundant information and ensure effective feature space coverage.

• Consistent Necessity: Even at minimal sparsity (IPC = 1), removing noise consistently
hurts performance (e.g., 12.8% vs. 9.63% on ImageNet-1K), suggesting that noise helps
locate more robust and central features rather than relying on brittle local maxima in the
attribution map.

L SELECTION OF ATTRIBUTION METHOD: SHAPLEY VS. GRAD-CAM

The selection of an appropriate attribution method is central to defining the ”Informativeness” of
image patches. We compared the theoretically rigorous Shapley Value against the computationally
cheaper, but heuristic, Grad-CAM.

L.0.1 THEORETICAL JUSTIFICATION

While gradient-based methods like Grad-CAM are efficient, they lack axiomatic guarantees and
often suffer from issues such as gradient saturation. In contrast, the Shapley Value is the unique
attribution method that satisfies fundamental axioms, including Efficiency, Symmetry, Dummy, and
Linearity. This theoretical rigor ensures that the ”Informativeness” (as defined in our framework) is
distributed fairly among patches, accurately capturing the marginal contribution of each region to
the model’s prediction.

L.0.2 EMPIRICAL COMPARISON

To validate this theoretical advantage, we replaced our Shapley-based selection with a Grad-CAM
approach (keeping other components constant) and measured the resulting Top-1 Accuracy on
ImageNet-1K (Table 17). Shapley-based selection consistently and significantly outperforms Grad-
CAM across all settings. Notably, at IPC = 10, Shapley achieves 43.88%, surpassing Grad-CAM

12
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Table 17: Empirical Comparison of Attribution Methods: Shapley Value vs. Grad-CAM on
ImageNet-1K (ResNet-18 Student Model).

Model Dataset IPC Grad-CAM Shapley (Ours)

ResNet-18 ImageNet-1K
1 4.418 7.154

10 30.394 43.880
50 52.610 56.920

Table 18: Validation of Data Quality: Using Synthesized Datasets for EDC Initialization on
ImageNet-1K (ResNet-18).

Method Initialization IPC=1 IPC=10 IPC=50

RDED - 6.6± 0.2 42.0± 0.1 56.5± 0.2
EDC Standard 12.8± 0.1 48.6± 0.3 58.0± 0.2

EDC + RDED Init 12.9 48.8 58.2
EDC + InfoUtil Init (Ours) 13.0 49.5 58.7

(30.39%) by a substantial margin of 13.49%. This confirms that Shapley Values identify patches
that are more semantically robust and critical for effective dataset distillation.

M DATA QUALITY VALIDATION VIA INITIALIZATION FOR TRAINING-BASED
METHODS

We investigated whether the distilled data from InfoUtil could serve as a superior initialization for
training-based (TB) methods, such as External Data Condensation (EDC) Shao et al. (2024b). The
goal is to prove that InfoUtil’s synthesized data possesses higher intrinsic knowledge quality than
methods like RDED.

We compared three initialization strategies for EDC on ImageNet-1K (ResNet-18), as shown in Ta-
ble 18. The results affirmatively demonstrate that using InfoUtil data for initialization consistently
boosts the performance of EDC across all IPC settings. Specifically, at IPC = 10, InfoUtil initial-
ization improves EDC’s performance from 48.6% to 49.5%, showcasing a clear gain (+0.7% over
Standard, +0.5% over RDED Init at IPC = 50). This confirms the superior intrinsic quality and
high informativeness of the condensed patterns generated by InfoUtil.

N ANALYSIS OF SOFT LABELING STRATEGY ROBUSTNESS

To ensure a fair performance assessment, we rigorously isolate the contribution of our proposed
InfoUtil from potential advantages conferred by the soft-labeling strategy employed by the teacher
model. While previous distillation literature has explored utilizing “early-stage teacher” models
for maximizing performance at low Images Per Class (IPC) settings, we demonstrate the intrinsic
robustness of InfoUtil by unifying the teacher protocol.

N.1 CONTROLLED EXPERIMENT WITH FULLY CONVERGED TEACHER

We conducted a controlled experiment on the ImageWoof dataset where both the baseline (RDED)
and our InfoUtil method were strictly constrained to use the exact same Fully Converged Teacher
model across all tested IPC settings (1, 10, and 50). This experimental setup eliminates any poten-
tial performance artifact stemming from differences in teacher model convergence stages, ensuring
that measured gains are attributed solely to InfoUtil’s data synthesis mechanism (Shapley-based
informativeness and GradNorm utility).

The results across different student architectures (ConvNet, ResNet-18, and ResNet-101) are re-
ported in Table 19. As evidenced by Table 19, our method consistently maintains a clear perfor-
mance advantage over the RDED baseline under this strict controlled setting, with improvements
observed across every student architecture and IPC configuration. The gains are particularly sub-
stantial in deeper architectures and higher compression rates (e.g., a 7.9% margin for ResNet-101 at
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Table 19: Top-1 Accuracy (%) under the Controlled ”Fully Converged Teacher” Setting on Image-
Woof.

Model Method IPC=1 IPC=10 IPC=50

ConvNet RDED 18.5 40.6 61.5
InfoUtil (Ours) 20.0 42.4 62.6

ResNet-18 RDED 20.8 38.5 68.5
InfoUtil (Ours) 21.4 43.6 69.2

ResNet-101 RDED 19.6 31.3 59.1
InfoUtil (Ours) 19.8 35.0 67.0

IPC = 50). This data strongly validates that the performance gains are not an artifact of the label-
ing strategy but are directly attributable to InfoUtil’s core mechanism of selecting and synthesizing
high-informativeness data.
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