

GROUNDING AND ENHANCING INFORMATIVENESS AND UTILITY IN DATASET DISTILLATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Dataset Distillation (DD) seeks to create a compact dataset from a large, real-
 012 world dataset. While recent methods often rely on heuristic approaches to bal-
 013 ance efficiency and quality, the fundamental relationship between original and
 014 synthetic data remains underexplored. This paper revisits knowledge distillation-
 015 based dataset distillation within a solid theoretical framework. We introduce the
 016 concepts of Informativeness and Utility, capturing crucial information within a
 017 sample and essential samples in the training set, respectively. Building on these
 018 principles, we define *optimal dataset distillation* mathematically. We then present
 019 InfoUtil, a framework that balances informativeness and utility in synthesizing the
 020 distilled dataset. InfoUtil incorporates two key components: (1) game-theoretic
 021 informativeness maximization using Shapley Value attribution to extract key infor-
 022 mation from samples, and (2) principled utility maximization by selecting globally
 023 influential samples based on Gradient Norm. These components ensure that the
 024 distilled dataset is both informative and utility-optimized. Experiments demon-
 025 strate that our method achieves a 6.1% performance improvement over the previ-
 026 ous state-of-the-art approach on ImageNet-1K dataset using ResNet-18.

033 Figure 1: Comparison of visualization results between previous method (a) RDED (Sun et al., 2024)
 034 and (b) our InfoUtil. Unlike prior methods relying on random selection and intuitive scoring, In-
 035 foUtil is both interpretable and theoretically grounded. It synthesizes images that more accurately
 036 capture semantically meaningful regions with principled scores. Prioritizing core content over irrel-
 037 evant details like background elements ensures a more focused and meaningful representation.

1 INTRODUCTION

047 Dataset distillation (DD) (Wang et al., 2018; Sachdeva & McAuley, 2023) has emerged as a promis-
 048 ing approach for enabling vision models to achieve performance comparable to training on large
 049 datasets, but with only a small set of synthetic samples. The core idea behind DD is to compress large
 050 datasets by synthesizing and optimizing a smaller, representative dataset. Models trained on distilled
 051 dataset are expected to match the performance of those trained on the original, larger dataset.

052 Currently, two primary lines of approaches are used to tackle DD: *i.e.*, matching-based meth-
 053 ods (Wang et al., 2018; Zhao & Bilen, 2022; Zhao et al., 2021; Cazenavette et al., 2022; Zhou et al.,
 2022), which aim to align the performance between the distilled dataset and the original dataset by

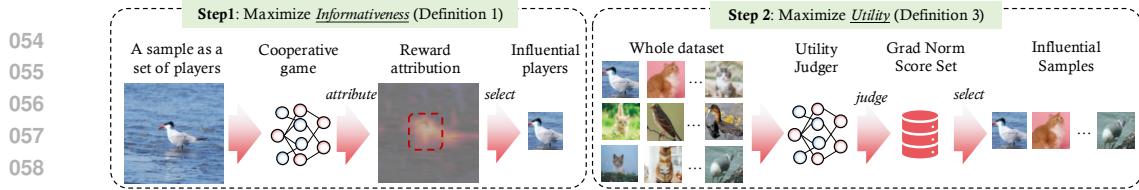


Figure 2: InfoUtil’s pipeline for *optimal dataset distillation* involves two key steps: (i) Step 1 maximizes informativeness via the Shapley Value (a game-theoretic attribution method), retaining the most informative patches to form compressed samples. (ii) Step 2 maximizes utility by scoring these candidates with a judge model—using Gradient Norm (proven as a utility upper bound)—and retaining top samples. The final distilled dataset contains only the most informative, high-utility compressed samples. Image reconstruction and soft label generation phases are omitted here.

matching gradients, features, distributions, or trajectories, and knowledge distillation-based methods (Yin et al., 2023; Shao et al., 2024a), which decouple dataset distillation into two stages. In the first stage, the real data is compressed into a teacher model. In the second stage, the teacher model transfers knowledge to the distilled images through deep inversion-like methods (Yin et al., 2020). Despite their success, these existing methods face two challenges:

Challenge 1: Efficiency-Performance Trade-off. *Most matching-based methods require significant GPU memory and time, making them impractical for real-world applications.*

For bi-level matching-based methods, the key challenge lies in the trade-off between performance and efficiency (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022; Wang et al., 2024a; Guo et al., 2023; Cui et al., 2023). For example, the state-of-the-art (SOTA) trajectory matching method (Guo et al., 2023) requires more than 4 NVIDIA A100 80GB GPUs to synthesize a 50 image-per-class (IPC) dataset on Tiny-ImageNet. Such high resource demands severely limit scalability of these methods, making it extremely challenging to apply to larger datasets like ImageNet-1K.

For knowledge distillation-based methods, although they often perform better, the lack of a solid theoretical foundation impairs their interpretability (Yin et al., 2023; Shao et al., 2024a; Sun et al., 2024) and prevents a principled solution. This limitation leaves practitioners with limited insight into why certain samples are selected for compression or how the distillation process relates to underlying data. Therefore, despite demonstrating impressive empirical results, they fall short in providing the transparency required for high-stakes or regulated applications.

Challenge 2: Lack of Interpretability. *Current methods are largely heuristic, lacking a principled framework to ensure the resulting distilled datasets are interpretable.*

To rethink previous methods within a principled framework, we reconsider the knowledge distillation-based dataset distillation process by introducing *Optimal Dataset Distillation* (Definition 4). The concept is built on *Informativeness* (Definition 1) and *Utility* (Definition 3) for desired distilled dataset. Intuitively, *Informativeness* captures essential information in each sample, while *Utility* reflects the importance of each sample for model training, whether included or excluded.

Built on the theoretical framework, we propose InfoUtil, *Informativeness* and *Utility*-enhanced Dataset Distillation (InfoUtil), a method that balances both aspects. As illustrated in Figure 2, Step 1 focuses on extracting key information from each sample, compressing it into a representation that captures its most informative components. This is achieved by maximizing the game-theoretic informativeness of each sample, which we measure using the Shapley Value (Shapley et al., 1953), a principled attribution method first introduced in game theory. In Step 2, we maximize the utility of each sample, which is critical for model training. This is done by measuring the gradient norm of each sample and selecting those with the highest values, ensuring that only the most valuable samples are retained. The main contributions of this work are summarized as follows:

1. We propose *Optimal Dataset Distillation* (Definition 4), which builds on the concepts of patch-wise Informativeness and sample-wise Utility for distilled datasets. This approach addresses the lack of interpretability in existing methods by providing a solid theoretical framework.
2. We introduce InfoUtil, a novel method balancing informativeness and utility in distilled dataset synthesis. It employs game-theoretic informativeness maximization via the Shapley Value and utility maximization to retain the most informative and valuable samples using the Gradient Norm.

108 3. InfoUtil demonstrates outstanding performance across various models and datasets. **For instance,**
 109 **our method yields a 16% improvement in performance over the previous state-of-the-art**
 110 **approach on the ImageNet-100, and a 6.1% improvement on ImageNet-1K.**

112 **2 PRELIMINARIES**

114 Given dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, dataset distillation (DD) aims to synthesize a smaller dataset
 115 $\tilde{\mathcal{D}} = \{(x_j, y_j)\}_{j=1}^m$ with $m \ll n$. The desired $\tilde{\mathcal{D}}$ should enable a model to achieve comparable, even
 116 lossless, performance to one trained on \mathcal{D} , evaluated on a held-out test dataset $\mathcal{D}_{\text{test}}$. Specifically,
 117 for a model f parameterized by θ trained with cross-entropy loss ℓ , the condition is:
 118

$$\min_{\tilde{\mathcal{D}}} \sum_{(x, y) \in \mathcal{D}_{\text{test}}} |\ell(f_{\theta_{\mathcal{D}}}(x), y) - \ell(f_{\theta_{\tilde{\mathcal{D}}}}(x), y)|, \quad (1)$$

122 where $\theta_{\mathcal{D}}$ denotes the fixed parameters trained on \mathcal{D} . Crucially, $\theta_{\tilde{\mathcal{D}}}$ represents the parameters trained
 123 on the synthetic dataset $\tilde{\mathcal{D}}$. Consequently, the term $\ell(f_{\theta_{\tilde{\mathcal{D}}}}(x), y)$ depends on $\tilde{\mathcal{D}}$ through the optimiza-
 124 tion trajectory of θ .

125 This paper focuses on knowledge distillation-based DD methods, which recently showed superior
 126 performance (Yin et al., 2023; Sun et al., 2024; Shao et al., 2024a). Here, \mathcal{D} ’s information is first
 127 learned by a teacher model $f_{\theta_{\mathcal{D}}}$, which then synthesizes $\tilde{\mathcal{D}}$. A notable work, RDED (Sun et al.,
 128 2024), uses random cropping to generate candidate patches, pruned via cross-entropy scoring. The
 129 final image contains multiple compressed images, each cropped and retained in prior steps. While
 130 RDED achieves high performance efficiently, it lacks principled guarantees. As Figure 1 shows,
 131 RDED’s randomly selected patches often miss key ground truth category information.

133 **3 METHOD**

135 **3.1 OPTIMAL DATASET DISTILLATION**

137 To theoretically analyze the above problems, we first propose the following properties before for-
 138 mally defining the optimal dataset distillation mathematically.

139 **Definition 1 (Informativeness)** *Given an arbitrary sample $x \in \mathcal{D}$ and the compressed size $d' \ll d$,
 140 the informativeness of $x \in \mathbb{R}^d$ for the model f_{θ} is defined as:*

$$I(x; f_{\theta}) := -\|f_{\theta}(s \circ x) - f_{\theta}(x)\|, \quad (2)$$

144 where $s \in \{0, 1\}^d$ and $|s| = d'$ is a d -dimensional binary mask to be optimized, \circ is the
 145 Hadamard/element-wise product, and $s \circ x$ denotes the input x with a mask s .

146 The informativeness captures the key information for a given sample. Intuitively, maximizing the
 147 informativeness of a sample x of a given compression size d' can be regarded as learning the best
 148 informative mask vector s that maximize the similarity of the performance between the original
 149 sample x and the masked sample $s \circ x$.

151 Next, we introduce Gradient Flow, a key concept we use to define the Utility function.

152 **Definition 2 (Gradient Flow)** *Let ℓ_t be the cross-entropy loss for the model $\theta^{(t)}$ at iteration t . We
 153 define the gradient flow computed on a mini-batch \mathcal{B} as:*

$$\dot{\ell}_t(f_{\theta^{(t)}}(x), y; \mathcal{B}) := \frac{\partial \ell_t(f_{\theta^{(t)}}(x), y)}{\partial t}. \quad (3)$$

158 The gradient flow $\dot{\ell}_t(f_{\theta^{(t)}}(x), y; \mathcal{B})$ represents the instantaneous rate of change of the loss for a spe-
 159 cific example (x, y) during training, providing a continuous-time approximation of training dyna-
 160 mics. Unlike discrete SGD updates, which introduce noise, gradient flow offers a smooth, analytical
 161 framework for quantifying data importance. By leveraging this, we assess the impact of removing a
 single data point (x_i, y_i) and define a utility function below as a dataset pruning metric.

162 **Definition 3 (Utility)** Let the gradient flow $\dot{\ell}_t$ be defined as in Definition 2. For a data point (x_i, y_i)
 163 in dataset \mathcal{D} , let $\mathcal{B} \subseteq \mathcal{D}$ be the mini-batch at iteration t ; define $\mathcal{B}_{\neg i} := \mathcal{B} \setminus \{(x_i, y_i)\}$. We measure
 164 the importance of (x_i, y_i) by how much its removal changes the gradient flow over all relevant pairs:
 165

$$166 \quad \mathcal{U}(x_i, y_i; f_{\theta(t)}) := \max_{(x_j, y_j) \in \mathcal{D}} \left| \dot{\ell}_t(f_{\theta(t)}(x_j), y_j; \mathcal{B}) - \dot{\ell}_t(f_{\theta(t)}(x_j), y_j; \mathcal{B}_{\neg i}) \right|.$$

168 This utility definition captures the *worst-case* impact of removing a data point on gradient flow,
 169 ensuring it reflects data importance. By maximizing the change in $\dot{\ell}_t(f_{\theta(t)}(x_j), y_j; \mathcal{B})$ over all
 170 $(x_j, y_j) \in \mathcal{D}$, it identifies points that most influence training dynamics. This aligns with dataset
 171 pruning by preserving critical samples while discarding those with minimal effect.
 172

173 Based on Definition 1 and Definition 3, we propose the optimal dataset distillation in Definition 4:

174 **Definition 4 (Optimal Dataset Distillation)** Let f_θ be the classifier model with parameter θ and \mathcal{D}
 175 the original training dataset. Let $\mathcal{D}_{\text{test}}$ be the test dataset. Define $\mathcal{D}' \subseteq \mathcal{D}$ as a compressed subset,
 176 and $\tilde{\mathcal{D}} \subseteq \mathcal{D}'$ as the final distilled dataset. Let $\mathcal{U}(x, y; f'_\theta)$ measure the utility of f'_θ on a test example
 177 (x, y) defined in Definition 3. Let $I(x; f_\theta)$ measure the informativeness of original samples defined
 178 in Definition 1 and s be the informative mask with compressed size d' . The goal is to find the optimal
 179 pruned dataset $\tilde{\mathcal{D}}$ that maximizes both informativeness and utility on $\mathcal{D}_{\text{test}}$:
 180

$$181 \quad \arg \max_{\substack{\tilde{\mathcal{D}} \subseteq \mathcal{D}' \\ |\tilde{\mathcal{D}}|=m}} \sum_{(x, y) \in \mathcal{D}_{\text{test}}} \mathcal{U}(x, y; f'_\theta), \quad \text{s.t.} \quad \mathcal{D}' = \left\{ x_i \circ s_i \left| \begin{array}{l} \arg \max_{\substack{s_i \in \{0,1\}^d \\ |s_i|=d'}} I(x_i; f_\theta) \end{array} \right. \right\}_{i=1}^n.$$

185 This formulation establishes the dataset distillation problem. The key challenge is then to define a
 186 rigorous utility function that effectively quantifies (i) the importance of each component within a
 187 sample for model prediction and also (ii) the importance of each sample for model training.
 188

189 3.2 INFOUTIL

191 In this subsection, we introduce InfoUtil, built upon the *optimal dataset distillation* formulation in
 192 Definition 4. The pipeline has two main steps: (i) game-theoretic informativeness maximization and
 193 (ii) principled utility maximization. Detailed algorithm pseudocode is in Appendix B.

194 3.2.1 GAME-THEORETIC INFORMATIVENESS MAXIMIZATION

196 As in Definition 1, InfoUtil is to maximize the informativeness of each sample x to obtain a com-
 197 pressed sample $s \circ x$, represented by a mask s . This task can be framed as a feature attribution
 198 problem (Zhou et al., 2016; Selvaraju et al., 2020; Binder et al., 2016; Shapley et al., 1953; Qin
 199 et al., 2023), where the model attributes decisions to input variables based on their importance.

200 Among attribution methods, the Shapley Value (Shapley et al., 1953) is regarded as a robust ap-
 201 proach grounded in game theory. Specifically, given an input x with d input variables $x =$
 202 $[x^{(1)}, x^{(2)}, \dots, x^{(d)}]^\top$, we can view a deep neural network as a game with d players $[d] :=$
 203 $\{1, 2, \dots, d\}$. Each player i corresponds to an input variable $x^{(i)}$. Thus, the task of fairly assigning
 204 the reward in the game translates to fairly estimating attributions of input variables in the deep neural
 205 network f . Formally, the Shapley value ϕ can be defined as:

$$207 \quad \phi_f(x^{(i)}) = \frac{1}{d} \sum_{s: s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_i)) - f(x \circ s)), \quad (4)$$

209 where $e_i \in \mathbb{R}^d$ denotes the vector with a one in the i -th position but zeros in the rest positions.
 210 Notably, the Shapley Value is renowned for satisfying four key axioms (Young, 1985):
 211

212 For detailed technical derivations, including the complete proof, please refer to Appendix C.
 213

214 **Axiom 1 (Linearity. Proof in Appendix C.1)** If two games can be merged into a new game, then
 215 the Shapley Values in the two original games can also be merged. Formally, if $f_{\text{merged}} = f_1 + f_2$,
 then $\phi_{f_{\text{merged}}}(x^{(i)}) = \phi_{f_1}(x^{(i)}) + \phi_{f_2}(x^{(i)}), \forall i \in [d]$.

216 **Axiom 2 (Dummy. Proof in Appendix C.2)** A dummy player i is a player that has no interactions
 217 with other players in the game f . Formally, if $\forall s : s_i = 0$, $f(x \circ (s + e_i)) = f(x \circ s) + f(x \circ e_i)$.
 218 Then, the dummy player's Shapley Value is computed as $f(x \circ e_i)$.
 219

220 **Axiom 3 (Symmetry. Proof in Appendix C.3)** If two players contribute equally in every case, then
 221 their Shapley values in the game f will be equal. Formally, if $\forall s : s_i = s_j = 0$, $f(x \circ (s + e_i)) =$
 222 $f(x \circ (s + e_j))$, then $\phi_f(x^{(i)}) = \phi_f(x^{(j)})$.
 223

224 **Axiom 4 (Efficiency. Proof in Appendix C.4)** The total reward of the game f is equal to the sum
 225 of the Shapley values of all players. Formally, $f(x) - f(\mathbf{0}) = \sum_{i \in [d]} \phi_f(x^{(i)})$.
 226

227 The Shapley value is the unique attribution method that satisfies the four key axioms (Young, 1985).
 228 However, directly computing the Shapley value is computationally expensive in practice. For in-
 229 stance, calculating the Shapley value for an image with 4×4 patches requires 2^{16} inferences, as-
 230 suming each patch is a player. To address this issue, prior works (Charnes et al., 1988; Lundberg &
 231 Lee, 2017) have proposed using kernel-based estimation of the Shapley value, as follows:

$$232 \quad \phi = \arg \min_{\phi} \mathbb{E}_{s \sim q(s)} \left[\left(f(x \circ s) - f(\mathbf{0}) - s^\top \phi \right)^2 \right], \quad \text{s.t.} \quad \mathbf{1}^\top \phi = f(x) - f(\mathbf{0}), \quad (5)$$

235 where $q(s) = (d-1) / \binom{d}{1^\top s} (1^\top s) (d-1^\top s)$, $\forall 1 < 1^\top s < d$ denotes the Shapley Kernel. We
 236 follow KernelShap (Lundberg & Lee, 2017) to achieve fast estimation of the Shapley value based
 237 on Eq. (5), making it possible to be adept in practice.
 238

239 After obtaining the Shapley value $\phi_f(x^{(i)})$ of each sample $x^{(i)}$, we apply average pooling of the
 240 Shapley value map $\phi_f(x) = [\phi_f(x^{(1)}), \phi_f(x^{(2)}), \dots, \phi_f(x^{(d)})]$ to obtain the most informative re-
 241 gion inside a image. This step would generate a $d' < d$ size compressed image (e.g., $d' = d/4$) with
 242 the maximized informativeness, resulting a compressed dataset with n compressed samples \mathcal{D}' .
 243

244 **Diversity control.** The Shapley value attribution typically identifies only the most informative patch.
 245 To introduce diversity in the patch selection process, we incorporate random noise $\varepsilon \sim (0, \sigma^2)$,
 246 where σ is the standard deviation fixed. Specifically, the random noise is employed on the average
 247 pooled attribution heatmap, resulting in diverse informative patches considered in the next phase.
 248

248 3.2.2 PRINCIPLED UTILITY MAXIMIZATION

250 After obtaining the compressed dataset, the next step is selecting samples to maximize dataset utility.
 251 Computing utility (Definition 3) is challenging, as it requires training models with and without each
 252 sample x to assess its utility. We show the utility function can be upper-bounded by the gradient
 253 norm (Theorem 1), simplifying computation. We now define the gradient norm.
 254

255 **Definition 5 (Gradient Norm)** The gradient norm of a training example (x, y) for model f par-
 256 meterized by $\theta^{(t)}$ at time t is denoted as
 257

$$258 \quad \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x), y)\|.$$

259 Given the definition of Gradient Norm, we then show that Utility can be upper bounded by the
 260 gradient norm through detailed analysis here.
 261

262 **Theorem 1 (Utility is bounded by Gradient Norm. Proof in Appendix D)** Let the utility func-
 263 tion \mathcal{U} be defined as in Definition 3. Then there exists a constant $c > 0$ such that
 264

$$265 \quad \mathcal{U}(x_i, y_i; f_{\theta^{(t)}}) \leq c \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_i), y_i)\|.$$

266 *Proof of Theorem 1.* For detailed technical derivations, including the complete proof of Theorem 1
 267 and auxiliary lemmas, please refer to the supplementary materials. The full proof includes step-by-
 268 step expansions of gradient flow decompositions, rigorous bounds under SGD updates, and verifi-
 269 cation of assumptions underlying the utility-gradient norm relationship.

Table 1: Performance comparison between InfoUtil and SOTA methods on seven datasets. We evaluate dataset distillation using ResNet-18, ResNet-101, and ConvNet, reporting top-1 accuracy (%). Datasets were distilled with ResNet-18 and ConvNet, then evaluated on matching architectures. Additionally, datasets distilled by ResNet-18 were also evaluated with ResNet-101.

Dataset	IPC	ResNet-18			ResNet-101			ConvNet					
		SRe2L	RDED	InfoUtil	SRe2L	RDED	InfoUtil	MTT	IDM	TESLA	DATM	RDED	InfoUtil
CIFAR-10	1	16.6 \pm 0.9	22.9 \pm 0.4	25.3\pm0.4	13.7 \pm 0.2	18.7 \pm 0.1	19.6\pm0.6	46.3 \pm 0.8	45.6 \pm 0.7	48.5\pm0.8	46.9 \pm 0.5	23.5 \pm 0.3	28.5 \pm 1.4
	10	29.3 \pm 0.5	37.1 \pm 0.3	53.8\pm0.1	24.3 \pm 0.6	33.7 \pm 0.3	38.4\pm1.0	65.3 \pm 0.7	58.6 \pm 0.1	66.4 \pm 0.8	66.8\pm0.2	50.2 \pm 0.3	54.1 \pm 0.5
	50	45.0 \pm 0.7	62.1 \pm 0.1	71.0\pm0.8	34.9 \pm 0.1	51.6 \pm 0.4	67.1\pm0.5	71.6 \pm 0.2	67.5 \pm 0.1	72.6 \pm 0.7	76.1\pm0.3	68.4 \pm 0.1	69.8 \pm 0.1
CIFAR-100	1	6.6 \pm 0.2	11.0 \pm 0.3	22.9\pm0.4	6.2 \pm 0.0	10.8 \pm 0.1	16.5\pm0.5	24.3 \pm 0.3	20.1 \pm 0.3	24.8 \pm 0.5	27.9 \pm 0.2	19.6 \pm 0.3	33.1\pm0.3
	10	27.0 \pm 0.4	42.6 \pm 0.2	47.5\pm0.7	30.7 \pm 0.3	41.1 \pm 0.2	41.9\pm0.6	40.1 \pm 0.4	45.1 \pm 0.1	41.7 \pm 0.3	47.2 \pm 0.4	48.1 \pm 0.3	50.5\pm0.3
	50	50.2 \pm 0.4	62.6 \pm 0.1	64.7\pm0.2	56.9 \pm 0.1	63.4 \pm 0.3	66.0\pm0.2	47.7 \pm 0.2	50.0 \pm 0.2	47.9 \pm 0.3	55.0 \pm 0.2	57.0 \pm 0.1	57.8\pm0.2
ImageNette	1	19.1 \pm 1.1	35.8 \pm 1.0	43.8\pm0.7	15.8 \pm 0.6	25.1 \pm 2.7	28.2\pm0.5	47.7\pm0.9	-	-	-	33.8 \pm 0.8	42.3 \pm 0.7
	10	29.4 \pm 3.0	61.4 \pm 0.4	68.6\pm0.6	23.4 \pm 0.8	54.0 \pm 0.4	59.8\pm1.1	63.0 \pm 1.3	-	-	-	63.2 \pm 0.7	66.6\pm0.4
	50	40.9 \pm 0.3	80.4 \pm 0.4	86.2\pm0.6	36.5 \pm 0.7	75.0 \pm 1.2	82.4\pm0.3	-	-	-	-	83.8 \pm 0.2	84.4\pm0.6
ImageWoof	1	13.3 \pm 0.5	20.8 \pm 1.2	25.0\pm0.8	13.4 \pm 0.1	19.6 \pm 1.8	20.2\pm0.4	28.6\pm0.8	-	-	-	18.5 \pm 0.9	22.8 \pm 0.4
	10	20.2 \pm 0.2	38.5 \pm 2.1	51.4\pm2.5	17.7 \pm 0.9	31.3 \pm 1.3	42.6\pm1.2	35.8 \pm 1.8	-	-	-	40.6 \pm 2.0	43.8\pm1.3
	50	23.3 \pm 0.3	68.5 \pm 0.7	69.6\pm0.8	21.2 \pm 0.2	59.1 \pm 0.7	67.2\pm0.8	-	-	-	-	61.5 \pm 0.3	62.6\pm0.4
Tiny-ImageNet	1	2.6 \pm 0.1	9.7 \pm 0.4	17.0\pm1.3	1.9 \pm 0.1	3.8 \pm 0.1	11.9\pm0.6	8.8 \pm 0.3	10.1 \pm 0.2	-	17.1 \pm 0.3	12.0 \pm 0.1	19.6\pm0.5
	10	16.1 \pm 0.2	41.9 \pm 0.2	45.6\pm0.3	14.6 \pm 1.1	22.9 \pm 3.3	34.4\pm0.2	23.2 \pm 0.2	21.9 \pm 0.3	-	31.1 \pm 0.3	39.6 \pm 0.1	40.2\pm0.3
	50	41.1 \pm 0.4	58.2 \pm 0.1	58.5\pm0.3	42.5 \pm 0.2	41.2 \pm 0.4	54.7\pm0.3	28.0 \pm 0.3	27.7 \pm 0.3	-	39.7 \pm 0.3	47.6 \pm 0.2	48.0\pm0.5
ImageNet-100	1	3.0 \pm 0.3	8.1 \pm 0.3	15.7\pm0.2	2.1 \pm 0.1	6.1 \pm 0.8	11.4\pm0.2	-	11.2 \pm 0.5	-	-	7.1 \pm 0.2	15.0 \pm 0.8
	10	9.5 \pm 0.4	36.0 \pm 0.3	50.5\pm0.4	6.4 \pm 0.1	33.9 \pm 0.1	49.9\pm0.4	-	17.1 \pm 0.6	-	-	29.6 \pm 0.1	42.2\pm0.7
	50	27.0 \pm 0.4	61.6 \pm 0.1	68.3\pm0.4	25.7 \pm 0.3	66.0 \pm 0.6	69.7\pm0.4	-	26.3 \pm 0.4	-	-	50.2 \pm 0.2	60.8\pm0.9
ImageNet-1K	1	0.1 \pm 0.1	6.6 \pm 0.2	12.8\pm0.7	0.6 \pm 0.1	5.9 \pm 0.4	6.8\pm0.7	-	-	7.7\pm0.2	-	6.4 \pm 0.1	6.6 \pm 0.3
	10	21.3 \pm 0.6	42.0 \pm 0.1	44.2\pm0.4	30.9 \pm 0.1	48.3 \pm 1.0	51.4\pm0.3	-	-	17.8 \pm 1.3	-	20.4 \pm 0.1	21.5\pm0.3
	50	46.8 \pm 0.2	56.5 \pm 0.1	58.0\pm0.3	60.8 \pm 0.5	61.2 \pm 0.4	63.8\pm0.6	-	-	27.9 \pm 1.2	-	38.4 \pm 0.2	40.2\pm0.4

Given Theorem 1, we can efficiently calculate the utility of each sample using the upper bound of the gradient norm. Then, we can directly select the most influential samples with the highest gradient norms to maximize utility. Specifically, we employ gradient norm scoring for all compressed samples in \mathcal{D}' with size n , and selected samples with top norm scores, resulting $\tilde{\mathcal{D}}$ with size $m \ll n$.

Image Reconstruction. Following prior works (Yin et al., 2023; Sun et al., 2024; Shao et al., 2024a), we reconstruct normal-sized images by combining compressed samples. Low-resolution datasets use a single image per category, while high-resolution datasets merge four 1/4-resolution images from the same category into one full-size image. For soft label generation, patch-specific logits are assigned by resizing the compressed samples. Inspired by (Qin et al., 2024; Wang et al., 2024b), intermediate checkpoints of a pretrained model are used to balance discriminativity and diversity, improving performance. Further details are in Section 5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and network architectures. We evaluated our approach using widely recognized datasets. For lower-resolution datasets, we employed CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) (32×32) and Tiny-ImageNet (Deng et al., 2009) (64×64). For higher-resolution experiments, we used ImageNet-1K (Deng et al., 2009) (224×224) along with three commonly used ImageNet subsets: ImageNette, ImageWoof, and ImageNet-100 (all at 224×224). In line with previous works on dataset distillation, we adopt the following backbone architectures: ConvNet (Liu et al., 2022), ResNet-18, 50, 101 (He et al., 2016), MobileNet-V2 (Howard et al., 2019), VGG-11 (Simonyan & Zisserman, 2014), and Swin-V2-Tiny (Liu et al., 2021). Specifically, dataset distillation is performed using a 3-layer ConvNet for CIFAR-10/100, a 4-layer ConvNet for Tiny-ImageNet and ImageNet-1K, a 5-layer ConvNet for ImageWoof and ImageNette, and a 6-layer ConvNet for ImageNet-100.

Baseline methods. Following previous studies, we assessed the quality of the condensed datasets by training neural networks from scratch using them. We reported the resulting test accuracies on the actual validation sets. **Baseline include trajectory-matching approaches such as MTT (Cazenavette**

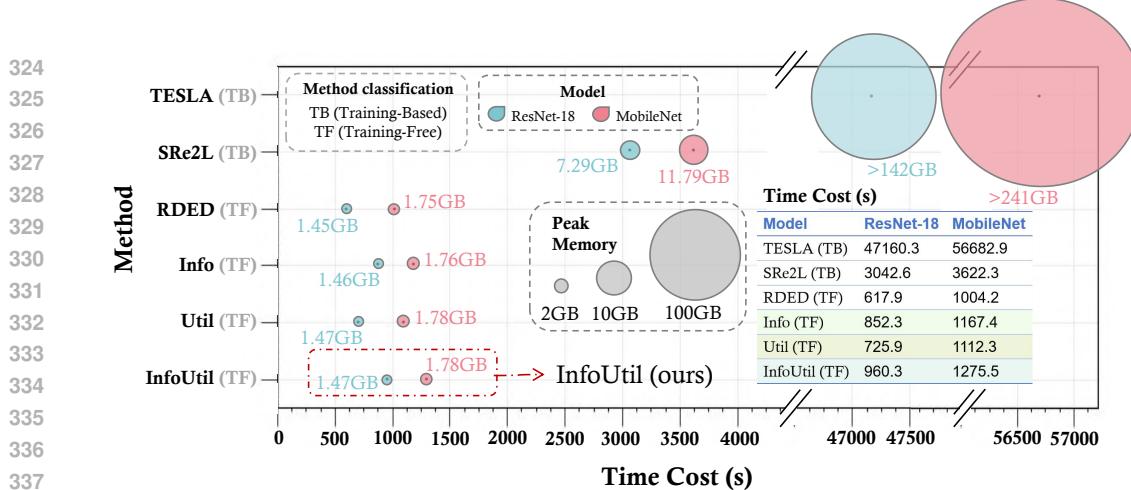


Figure 3: Performance comparison on ResNet-18 and MobileNet. (a) Time cost in seconds (lower is better): “TB” denotes training-based methods (TESLA and SRe2L fall into this category); “TF” denotes training-free methods (others belong to this type). (b) Peak memory in GB (lower is better): InfoUtil performs competitively with far lower costs than training-based methods. “Info” denotes Informativeness only, while “Util” denotes Utility only.

et al., 2022), TESLA (Cui et al., 2023), and DATM (Guo et al., 2023), and distribution-matching methods like IDM (Zhao et al., 2023). For our primary comparison, we also include SOTA knowledge distillation-based methods, SRe2L (Yin et al., 2023) and RDED (Sun et al., 2024).

Implementation details of InfoUtil. Our setup follows RDED, using pretrained networks for dataset synthesis. For small IPC, we adopt the approach in (Qin et al., 2024), extracting training-stage soft labels to capture rich semantics. For larger IPC, fully converged networks from RDED are used. Details are in Appendix B. For low-resolution datasets, one synthetic image per class is used, while high-resolution datasets use four per class. The 300-image subset matches RDED’s configuration. As in Table 1, AutoAug (Cubuk et al., 2018) is applied to enhance synthetic dataset performance. All experiments ran on a single NVIDIA A100 GPU.

4.2 MAIN RESULTS

We verified InfoUtil’s effectiveness on benchmark datasets across image-per-class (IPC) settings.

Higher-resolution datasets. We benchmarked InfoUtil against state-of-the-art methods on higher-resolution datasets like ImageNet-1K and its subsets. As Table 1 shows, InfoUtil achieves superior or comparable performance across IPC settings. Notably, on ImageNet-100 (ResNet-101, IPC=10), it outperforms RDED (Sun et al., 2024) by 16% in accuracy; on ImageWoof (ResNet-18, IPC=10), it gains 12.9% over RDED. Moreover, on ImageNet-1K (ResNet-18, IPC=1), InfoUtil surpasses RDED by 6.1%, highlighting its effectiveness in small IPC scenarios.

CIFAR-10/100 and Tiny-ImageNet. We evaluated InfoUtil on lower-resolution datasets with additional experiments on CIFAR-10/100 and Tiny-ImageNet. Our method continues to show superior performance across most scenarios, highlighting robustness and generalizability of InfoUtil. Specifically, as in Table 1, on Tiny-ImageNet, using ResNet-101 at IPC = 50 yields a 13.5% improvement; on CIFAR-10, ResNet-18 at IPC = 10 obtains a 16.7% improvement.

Cross-architecture generalization. We evaluated InfoUtil’s cross-architecture generalization across ResNet-18/50 (He et al., 2016), VGG-11 (Simonyan & Zisserman, 2014), MobileNet-V2 (Howard et al., 2019), and Swin-V2-Tiny (Liu et al., 2021). Table 2 shows InfoUtil outperforms SOTA (SRe2L, RDED) by 10% in the VGG-11 (teacher) vs. Swin-V2-Tiny (student) setting, confirming versatility. Further validation with baselines SCDD, G-VBSM (structural regularization) and D3S (data efficiency) on ImageNet-1K across ResNet-18/101 (Table 3) shows InfoUtil consistently outperforms SRe2L/RDED and these baselines across all IPC settings.

Efficiency Analysis. We carefully measured InfoUtil’s runtime and GPU usage on a single NVIDIA A100. (i) It is highly efficient: time is **50x lower** and memory **100x smaller** than TESLA across all distillation stages (Figure 3). (ii) For large-scale datasets like ImageNet-21K, distillation com-

Table 2: Cross-architecture performance (%) on ImageNet-1K (IPC=10). Using ResNet-18/50, VGG-11, MobileNet-V2, and Swin-V2-Tiny as teachers; ResNet-18, MobileNet-V2, and Swin-V2-Tiny as students.

Squeezed \ Evaluation		ResNet-18	MobileNet-V2	Swin-V2-Tiny	
ResNet-18	SRe2L	21.7 \pm 0.6	15.4 \pm 0.2	-	
	RDED	42.3 \pm 0.6	40.4\pm0.1	17.2 \pm 0.2	
	InfoUtil	44.8\pm0.4	37.1 \pm 0.5	19.8\pm0.4	
ResNet-50	SRe2L	-	-	-	
	RDED	33.9 \pm 0.5	26.0 \pm 0.3	17.3\pm0.2	
	InfoUtil	34.7\pm1.4	28.1\pm0.6	15.6 \pm 0.4	
MobileNet-V2	SRe2L	19.7 \pm 0.1	10.2 \pm 2.6	-	
	RDED	34.4 \pm 0.2	33.8 \pm 0.8	11.8 \pm 0.3	
	InfoUtil	39.2\pm0.3	35.5\pm0.5	20.6\pm0.2	
VGG-11	SRe2L	16.5 \pm 0.1	10.6 \pm 0.1	-	
	RDED	22.7 \pm 0.1	21.6 \pm 0.2	7.8 \pm 0.1	
	InfoUtil	35.1\pm0.3	31.6\pm0.1	17.8\pm0.4	
Swin-V2-Tiny	SRe2L	9.6 \pm 0.3	7.4 \pm 0.1	-	
	RDED	17.8 \pm 0.1	18.1 \pm 0.2	12.1 \pm 0.2	
	InfoUtil	18.4\pm0.4	19.7\pm0.4	16.4\pm0.3	

Table 5: Comparison with baseline methods under large IPC settings. We used ResNet-18 for dataset synthesis on Tiny-ImageNet and ImageNet-1K, and evaluated on ResNet-18 and ResNet-50 models. Note that TESLA (Cui et al., 2023) used the downsampled ImageNet-1K dataset.

Dataset	IPC	TESLA (R18)	SRe2L (R18)	RDED (R18)	InfoUtil (R18)	SRe2L (R50)	InfoUtil (R50)
Tiny-ImageNet	50	-	41.1 \pm 0.4	58.2 \pm 0.1	58.5\pm0.3	42.2 \pm 0.5	48.3\pm0.4
	100	-	49.7 \pm 0.3	59.9\pm0.4	60.6\pm0.5	51.2 \pm 0.4	53.7\pm0.4
	200	-	51.2\pm0.6	61.5\pm0.3	62.0\pm0.3	-	58.0\pm0.3
ImageNet-1K	10	17.8 \pm 1.3	21.3 \pm 0.6	42.0 \pm 0.1	43.5\pm0.4	28.4 \pm 0.1	48.0\pm0.5
	50	27.9 \pm 1.2	46.8 \pm 0.2	56.5 \pm 0.1	57.6\pm0.3	55.6 \pm 0.3	63.1\pm0.4
	100	-	52.8 \pm 0.3	58.2\pm0.6	58.8\pm0.4	61.0 \pm 0.4	65.5\pm0.5
	200	-	57.0 \pm 0.4	62.5\pm0.8	63.4\pm0.3	64.6 \pm 0.3	68.0\pm0.4

plete in just 5.83 hours. This combination of remarkable efficiency and strong performance makes InfoUtil a practical, scalable solution for modern dataset distillation.

Performance on large IPC settings. We tested Tiny-ImageNet and ImageNet-1K under large IPC scenarios, comparing with bi-level Tesla (Cui et al., 2023) and uni-level SRe2L (Yin et al., 2023), RDED (Sun et al., 2024). Table 5 shows our method significantly outperforms existing SOTA in large IPC cases, demonstrating strong scalability and superior performance. For IPC=200 on ImageNet-1K, we used full images (not 2 \times 2 cropped patches as prior work) to mitigate imbalance (following (Sun et al., 2024)); image count before scoring was 600 instead of 300.

Downstream tasks of distilled samples. We explored the effectiveness of distilled samples in downstream tasks via experiments on ImageNette (50 IPC) with 5-step continual learning, where new classes are incrementally introduced at each stage. To ensure the robustness of results, experiments were repeated 5 times with varied class orders. As shown in Table 4, our method (InfoUtil) consistently surpasses the SOTA method RDED across all stages.

Visualization. InfoUtil shows significant improvements in visual quality over existing methods. First, vs. optimization-based methods like SRe2L (Yin et al., 2023), it produces more realistic representations by preserving intricate details and maintaining natural color fidelity. Second, vs. optimization-free methods like RDED (Sun et al., 2024), InfoUtil is more interpretable and principled, effectively capturing key informative semantic content while minimizing focus on irrelevant regions. Due to space constraints, visualization images are provided in Appendix F.

4.3 ABLATION STUDIES

To analyze the individual contributions of InfoUtil’s components, we conducted comprehensive ablation studies comparing three configurations: (1) the baseline RDED method (Rand. Crop + Loss Scoring), (2) Utility Maximization alone (GradN Scoring), and (3) the complete InfoUtil (GradN Scoring + Attr. Cropping). Results across multiple datasets (ImageWoof, ImageNette, ImageNet-1K) with varying IPC values are presented in Table 6.

432
433
434
435
436

Methods		ImageWoof	ImageNette	ImageNet-1K
GradNorm Scoring	Attribution Cropping	IPC=1	IPC=50	IPC=50
IPC=10				
✗	✓	38.5	68.5	80.4
✓	✗	43.6	68.8	85.0
✓	✓	45.2	69.6	43.5
				44.2

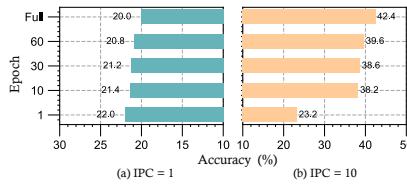


Figure 4: Analysis of teacher networks for soft label generation. ConvNet performance on ImageWoof using labels from five training stages (IPC=1/10). “Full” denotes pretrained teacher. (a) IPC=1: Early high-entropy labels beat full model, aiding low-data scenarios. (b) IPC=10: Full model’s low-entropy labels excel in data-rich conditions.

• **Effect of Utility Maximization.** Replacing Loss Scoring with GradN Scoring while maintaining random cropping brings significant performance improvements. As shown in Table 6, Utility Maximization alone achieves a 4.6% performance boost on ImageNette (IPC=50, from 80.4% to 85.0%) and a 1.5% improvement on ImageNet-1K (IPC=10, from 42.0% to 43.5%). These results demonstrate that gradient norm-based scoring plays a crucial role in selecting more informative samples.

• **Effect of Combined Components.** The integration of both Utility Maximization and Informativeness Maximization through Attri. Cropping yields the best performance. InfoUtil achieves additional gains of 1.2% on ImageNette (reaching 86.2%) and 0.7% on ImageNet-1K (reaching 44.2%) compared to using Utility Maximization alone. This synergistic combination demonstrates that attribute-guided cropping effectively captures the most discriminative regions while gradient-based scoring ensures the selection of pedagogically valuable samples, together producing high-quality synthetic data that consistently outperforms the baseline across all experimental settings.

5 DISCUSSION

Soft labels encode richer probabilistic supervision in dataset distillation. Prior works (Guo et al., 2023; Yin et al., 2023; Wang et al., 2024b; Qin et al., 2024; Sun et al., 2024) show they capture inter-class relationships. (Qin et al., 2024) finds early high-entropy labels help low-data regimes, while late low-entropy labels suit data-rich settings. (Wang et al., 2024b) notes effective labels balance diversity and discriminability. However, these focus on matching-based distillation, leaving knowledge-distillation-based DD with soft labels unexplored.

To investigate this further, we explored the effectiveness of teacher model for soft label generation using ConvNet on ImageWoof. For small IPC settings, we extracted soft labels from models at an intermediate training stage (10-th epoch), leveraging the high-entropy, diverse information characteristic of early epochs. In contrast, for large IPC settings, we used fully pretrained networks from RDED, leveraging the low-entropy, precise labels typical of later training phases.

Our findings, as it shown in Figure 4, clearly highlight the effectiveness of this strategy. In small IPC scenarios (e.g., IPC = 1), synthetic images with soft labels generated with models at 10-th epoch outperformed those from pretrained networks, emphasizing the importance of rich label information when limited data are provided. Conversely, in larger IPC scenarios (e.g., IPC = 10 or IPC = 50), labels from fully pretrained networks yielded superior results.

6 CONCLUSION

In this paper, we present a principled approach to dataset distillation, grounded in a rigorous theoretical framework for modeling optimal distillation. We introduce *Informativeness* and *Utility*, capturing, the critical information within a sample and essential samples for effective training. Building on these, we propose InfoUtil, a framework that synergistically combines game-theoretic informativeness maximization with principled utility maximization. Specifically, InfoUtil leverages Shapley value attribution to extract informative features and employs gradient norm-based optimization to select samples optimized for utility. InfoUtil demonstrates superior performance in dataset distillation and cross-architecture generalization. Future work includes extending InfoUtil to more complex and diverse datasets, focusing on scalability and robustness in real-world applications.

Table 6: Ablation study of InfoUtil components’ impact on image classification. Top-1 accuracy (%) on ResNet-18 across datasets are reported.

486
487

ETHICS STATEMENT

488
489
490
491
492
493
494

This work focuses on developing machine learning methods for general research purposes. The datasets employed in our experiments are publicly available and do not contain personally identifiable or sensitive information. We carefully considered potential risks of bias and unfairness, and we report evaluations in a transparent manner. Although our method could, in principle, be misused in applications beyond the intended scope, we believe that responsible usage guided by community standards will mitigate such risks. Overall, we believe our contributions are aligned with the ethical principles of the research community.

495
496

REPRODUCIBILITY STATEMENT

497

498
499
500
501
502
503

We are committed to ensuring reproducibility of our results. All code, configuration files, and scripts necessary to reproduce our experiments will be released upon publication. We provide detailed descriptions of datasets, preprocessing steps, hyperparameters, and model architectures in the main text and appendix. All experiments were conducted with fixed random seeds and we report averages over multiple runs where applicable. Further implementation details and instructions for reproduction are included in the supplementary material.

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech Samek.
543 Layer-wise relevance propagation for neural networks with local renormalization layers. In *Artificial Neural*
544 *Networks and Machine Learning–ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6–9, 2016, Proceedings, Part II 25*, pp. 63–71. Springer, 2016.

545 George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
546 by matching training trajectories. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
547 *Pattern Recognition*, pp. 4750–4759, 2022.

548 A Charnes, B Golany, M Keane, and J Rousseau. Extremal principle solutions of games in characteristic
549 function form: core, chebychev and shapley value generalizations. *Econometrics of planning and efficiency*,
550 pp. 123–133, 1988.

551 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
552 augmentation policies from data. *arXiv preprint arXiv:1805.09501*, 2018.

553 Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with
554 constant memory. In *International Conference on Machine Learning*, pp. 6565–6590. PMLR, 2023.

555 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
556 image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255, 2009.
557 doi: 10.1109/CVPR.2009.5206848.

558 Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumulated
559 trajectory error to improve dataset distillation. In *Proceedings of the IEEE/CVF Conference on Computer*
560 *Vision and Pattern Recognition*, pp. 3749–3758, 2023.

561 Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless dataset
562 distillation via difficulty-aligned trajectory matching. *arXiv preprint arXiv:2310.05773*, 2023.

563 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
564 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

565 Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
566 Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In *Proceedings of the IEEE/CVF*
567 *international conference on computer vision*, pp. 1314–1324, 2019.

568 Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha,
569 and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In *International*
570 *Conference on Machine Learning*, pp. 11102–11118. PMLR, 2022.

571 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

572 Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset condensation with
573 contrastive signals. In *International Conference on Machine Learning*, pp. 12352–12364. PMLR, 2022.

574 Haoyang Liu, Yijiang Li, Tiancheng Xing, Peiran Wang, Vibhu Dalal, Luwei Li, Jingrui He, and Haohan Wang.
575 Dataset distillation via the wasserstein metric. In *Proceedings of the IEEE/CVF International Conference*
576 *on Computer Vision*, pp. 1205–1215, 2025.

577 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
578 transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF inter-*
579 *national conference on computer vision*, pp. 10012–10022, 2021.

580 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet
581 for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
582 11976–11986, 2022.

583 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances in neural*
584 *information processing systems*, 30, 2017.

585 Dong Qin, George Amariucai, Daji Qiao, Yong Guan, and Shen Fu. A comprehensive and reliable feature
586 attribution method: Double-sided remove and reconstruct (dorar), 2023. URL <https://arxiv.org/abs/2310.17945>.

587 Tian Qin, Zhiwei Deng, and David Alvarez-Melis. A label is worth a thousand images in dataset distillation.
588 *arXiv preprint arXiv:2406.10485*, 2024.

594 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the predictions
 595 of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
 596 and data mining*, pp. 1135–1144, 2016.

597 Noveen Sachdeva and Julian McAuley. Data distillation: A survey. *arXiv preprint arXiv:2301.04272*, 2023.

598 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
 599 Batra. Grad-cam: visual explanations from deep networks via gradient-based localization. *International
 600 journal of computer vision*, 128:336–359, 2020.

602 Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized large-scale data
 603 condensation via various backbone and statistical matching. In *Proceedings of the IEEE/CVF Conference
 604 on Computer Vision and Pattern Recognition*, pp. 16709–16718, 2024a.

605 Shitong Shao, Zikai Zhou, Huanran Chen, and Zhiqiang Shen. Elucidating the design space of dataset condens-
 606 ation. *Advances in Neural Information Processing Systems*, 37:99161–99201, 2024b.

607 Lloyd S Shapley et al. A value for n-person games. 1953.

608 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
 609 *arXiv preprint arXiv:1409.1556*, 2014.

611 Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An efficient
 612 dataset distillation paradigm. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 613 Recognition*, pp. 9390–9399, 2024.

614 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
 615 Gordon. An empirical study of example forgetting during deep neural network learning. *arXiv preprint
 616 arXiv:1812.05159*, 2018.

617 Kai Wang, Zekai Li, Zhi-Qi Cheng, Samir Khaki, Ahmad Sajedi, Ramakrishna Vedantam, Konstantinos N
 618 Plataniotis, Alexander Hauptmann, and Yang You. Emphasizing discriminative features for dataset distilla-
 619 tion in complex scenarios. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 620 30451–30461, 2025.

621 Shaobo Wang, Yantai Yang, Qilong Wang, Kaixin Li, Linfeng Zhang, and Junchi Yan. Not all samples
 622 should be utilized equally: Towards understanding and improving dataset distillation. *arXiv preprint
 623 arXiv:2408.12483*, 2024a.

624 Shaobo Wang, Yantai Yang, Shuaiyu Zhang, Chenghao Sun, Weiya Li, Xuming Hu, and Linfeng Zhang. Drupi:
 625 Dataset reduction using privileged information. *arXiv preprint arXiv:2410.01611*, 2024b.

627 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv preprint
 628 arXiv:1811.10959*, 2018.

629 Max Welling. Herding dynamical weights to learn. In *Proceedings of the 26th annual international conference
 630 on machine learning*, pp. 1121–1128, 2009.

631 Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and
 632 Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In *Proceedings of the
 633 IEEE/CVF conference on computer vision and pattern recognition*, pp. 8715–8724, 2020.

634 Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at imagenet
 635 scale from a new perspective. *Advances in Neural Information Processing Systems*, 36:73582–73603, 2023.

637 H Peyton Young. Monotonic solutions of cooperative games. *International Journal of Game Theory*, 14(2):
 638 65–72, 1985.

639 Ruonan Yu, Songhua Liu, Jingwen Ye, and Xinchao Wang. Teddy: Efficient large-scale dataset distillation via
 640 taylor-approximated matching. In *European Conference on Computer Vision*, pp. 1–17. Springer, 2024.

641 Ruonan Yu, Songhua Liu, Zigeng Chen, Jingwen Ye, and Xinchao Wang. Heavy labels out! dataset distillation
 642 with label space lightening. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 643 pp. 5017–5026, 2025.

645 Xin Zhang, Jiawei Du, Ping Liu, and Joey Tianyi Zhou. Breaking class barriers: Efficient dataset distillation
 646 via inter-class feature compensator. *arXiv preprint arXiv:2408.06927*, 2024.

647 Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In *International
 648 Conference on Machine Learning*, pp. 12674–12685. PMLR, 2021.

648 Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching, 2022.
649
650 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In *Inter-*
651 *national Conference on Learning Representations*, 2021. URL [https://openreview.net/forum?](https://openreview.net/forum?id=mSAKhLYLSS1)
652 $id=mSAKhLYLSS1$.
653 Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset con-
654 densation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
655 7856–7865, 2023.
656 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features
657 for discriminative localization. In *Proceedings of the IEEE conference on computer vision and pattern*
658 *recognition*, pp. 2921–2929, 2016.
659 Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regression. *Ad-*
660 *vances in Neural Information Processing Systems*, 35:9813–9827, 2022.
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A REALTED WORK**
703704 As contextualized in the main text, our work builds on two key research strands: dataset distilla-
705 tion and explainable AI attribution methods. Below, we expand on these areas, detailing existing
706 limitations and the specific research gap our method addresses.
707708 **A.1 DATASET DISTILLATION**
709710 Dataset Distillation, or Dataset Condensation, aims to reduce a large dataset into a smaller one.
711 Current methods can be categorized into two main approaches: *i.e.*, matching-based methods (Zhao
712 et al., 2021; Lee et al., 2022; Zhao & Bilen, 2021; Wang et al., 2024a; Cazenavette et al., 2022;
713 Cui et al., 2023; Guo et al., 2023; Zhao & Bilen, 2022; Kim et al., 2022; Du et al., 2023; Zhou
714 et al., 2022), and knowledge-distillation-based methods (Yin et al., 2023; Shao et al., 2024a; Sun
715 et al., 2024). Matching-based methods are typically formulated as bi-level optimization problems
716 but struggle with the trade-off between efficiency and the quality of the distilled dataset. In contrast,
717 knowledge-distillation-based methods decouple the problem into a two-step process but often lack
718 theoretical guarantees and interpretability. Therefore, a deeper investigation is needed to formalize
719 knowledge-distillation-based methods in a principled manner to ensure their reliability in practical
720 scenarios with theoretical support, which we address in this paper.
721722 **A.2 ATTRIBUTION METHODS IN EXPLAINABLE AI**
723724 Attribution methods are essential for post-hoc explanations of black-box models, revealing each
725 input variable’s contribution to the final prediction. Among them, the Shapley Value is considered a
726 principled tool due to its key axioms: *i.e.*, *linearity*, *dummy*, *symmetry*, and *efficiency* (Shapley et al.,
727 1953; Young, 1985). To reduce the computational burden, KernelShap (Lundberg & Lee, 2017) was
728 introduced to efficiently approximate the Shapley Value using Linear LIME (Ribeiro et al., 2016).
729 However, since none of the previous works have explored the application of attribution methods in
730 dataset distillation, there is an opportunity to develop attribution-based approaches for extracting
731 key information for dataset distillation.
732733 **B DETAILED IMPLEMENTATION**
734735 In this section, we detail the implementation specifics of InfoUtil, including the computation of
736 informativeness, tuning settings of teacher models, and provide the corresponding pseudocode in
737 the Algorithm 1.
738739 **B.1 COMPUTATION OF INFORMATIVENESS**
740741 In our implementation of InfoUtil, we leveraged the PyTorch framework together with the Captum
742 package to compute Shapley values. Captum provides a robust and flexible interface for model
743 interpretability, allowing us to quantitatively assess the contributions of individual features to the
744 model’s predictions. By utilizing Captum’s KernalShap¹ method, we could accurately determine
745 the importance of each feature within a sample, which in turn guides the data refinement process
746 during dataset distillation. Moreover, in the first four cropping, we injected Gaussian noise drawn
747 from the normal distribution $\mathcal{N}(0, \sigma^2)$, where σ is defined as the product of the overall standard
748 deviation of the Shapley values after average pooling and a hyperparameter α that controls the noise
749 intensity. In our experiments, we set the kernel size to 2×2 with stride = 1, and the hyperparameter
750 $\alpha = 2$. The final (5th) cropping maintained the original Shapley values. This approach effectively
751 reduced the probability of repeatedly cropping the same location.
752753 Besides, in most scenarios, we divided each original image into a 4×4 grid of patches, computed
754 the Shapley value for each individual patch and subsequently identified the center of the patch with
755 the highest Shapley value as the optimal cropping center.
756757 ¹https://captum.ai/api/shapley_value_sampling.html

756 **Algorithm 1** InfoUtil Pipeline

757 **Input:** original dataset \mathcal{D} , pre-trained teacher model f_{θ_D} , teacher model at early t -th epoch f_{θ_t} ,
 758 compressed size d' , noise variance σ , distilled dataset size m , number of patches k .
 759 **for** each class c in \mathcal{D} **do**
 760 $\mathcal{D}_c = \{(x_i, y_i) \in \mathcal{D} \mid y_i = c\}$
 761 **// Stage 1: Informativeness Maximization**
 762 **for** $(x_i, y_i) \in \mathcal{D}_c$ **do**
 763 Compute $\phi_f(x_i)$ using f_{θ_D}
 764 Apply average pooling to $\phi_f(x_i)$ to obtain a pooled heatmap
 765 Add noise $\varepsilon \sim (0, \sigma^2)$ to the pooled heatmap
 766 Extract ξ_i of size d' from x_i based on the highest heatmap value
 767 **end for**
 768 $\mathcal{D}'_c = \{(\xi_i, y_i)\}$
 769 **// Stage 2: Utility Maximization**
 770 **for** $(\xi_i, y_i) \in \mathcal{D}'_c$ **do**
 771 Compute $g_i = \|\nabla_{\theta} \ell(f_{\theta_D}(\xi_i), y_i)\|$
 772 **end for**
 773 Select top- $k \times \text{IPC}$ samples $\{\xi_{i1}, \dots, \xi_{i, \text{IPC} \times k}\}$ by g_i
 774 **for** $j = 1$ to IPC **do**
 775 Combine $\xi_{i, (j-1) \times k + 1}$ to $\xi_{i, j \times k}$ into x_j
 776 For each ξ_{ik} in x_j , set $\widetilde{y}_{jk} = f_{\theta_t}(\xi_{ik})$
 777 $\widetilde{y}_j = [\widetilde{y}_{j1}, \dots, \widetilde{y}_{jk}]$
 778 $\widetilde{\mathcal{D}} = \widetilde{\mathcal{D}} \cup \{(x_j, y_j)\}$
 779 **end for**
 780 **end for**
 781 **Output:** Distilled dataset $\widetilde{\mathcal{D}}$

782 **B.2 PRETRAINED TEACHER MODEL**

783 When generating soft labels, we utilized teacher models from the early stages of training. Specifically, for CIFAR-10 and CIFAR-100, the teacher models were pretrained for 10 epochs using a learning rate of 0.001 on $\text{IPC} = 1$ and 10. Meanwhile, for other datasets (Tiny-ImageNet, ImageNette, ImageWoof, ImageNet-100, and ImageNet-1k), we trained the teacher models for 10 epochs using a learning rate of 0.01 on $\text{IPC} = 1$ and 10. For $\text{IPC} = 50$ scenarios, we employed fully converged teacher models across all datasets to ensure that soft labels generated could reflect the comprehensive and stable representations learned from the entire training dataset. Compared to teacher models from early training stages, fully converged models provide richer, more accurate semantic information, which significantly benefit the distillation process, especially when synthesizing a larger number of representative images.

795 **C PROOFS OF SHAPLEY VALUE AXIOMS**

796 Building upon the game-theoretic formulation in Section 3, we now formally show that our feature attribution method—which maximizes informativeness via Shapley values—satisfies the four axiomatic properties of Shapley values. These properties ensure that the attributions assigned to input variables are theoretically sound and fair.

801 Consistent with our informativeness maximization framework, we define:

- 802 • Neural network as characteristic function: The deep neural network f acts as the characteristic function in a cooperative game, mapping each coalition of features to a predictive score.
- 803 • Players: Each input variable $x^{(i)}$ ($i \in [d] := \{1, 2, \dots, d\}$) is treated as a distinct player in the game.
- 804 • Coalitions: A binary mask $s \in \{0, 1\}^d$ represents a coalition of active features, with $s_i = 1$ indicating inclusion of $x^{(i)}$ and $s_i = 0$ indicating its exclusion.

810 • Reward: The informativeness score $f(s \circ x)$ is regarded as the reward contributed by the
 811 coalition s .

813 The Shapley value for variable $x^{(i)}$ is computed as:

$$814 \quad \phi_f(x^{(i)}) = \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_i)) - f(x \circ s)),$$

817 where $e_i \in \mathbb{R}^d$ denotes the vector with a one in the i -th position but zeros in the rest positions, and
 818 s is a binary mask indicating active input variables.

820 C.1 PROOF OF AXIOM 1(LINEARITY)

821 **Axiom 1 (Linearity)** *If two games can be merged into a new game, then the Shapley Values in the
 822 two original games can also be merged. Formally, if $f_{\text{merged}} = f_1 + f_2$, then $\phi_{f_{\text{merged}}}(x^{(i)}) =$
 823 $\phi_{f_1}(x^{(i)}) + \phi_{f_2}(x^{(i)})$, $\forall i \in [d]$.*

825 **Proof of Axiom 1:** For merged game $f_{\text{merged}} = f_1 + f_2$, by definition we have $f_{\text{merged}}(x \circ t) =$
 826 $f_1(x \circ t) + f_2(x \circ t)$ for any mask t . Substituting into the Shapley value formula:

$$\begin{aligned} 828 \quad \phi_{f_{\text{merged}}}(x^{(i)}) &= \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f_{\text{merged}}(x \circ (s + e_i)) - f_{\text{merged}}(x \circ s)) \\ 829 \\ 830 \quad &= \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} \left[(f_1(x \circ (s + e_i)) + f_2(x \circ (s + e_i))) - (f_1(x \circ s) + f_2(x \circ s)) \right] \\ 831 \\ 832 \quad &= \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f_1(x \circ (s + e_i)) - f_1(x \circ s)) + \\ 833 \\ 834 \quad &\quad \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f_2(x \circ (s + e_i)) - f_2(x \circ s)) \\ 835 \\ 836 \quad &= \phi_{f_1}(x^{(i)}) + \phi_{f_2}(x^{(i)}). \end{aligned}$$

838 Thus, if $f_{\text{merged}} = f_1 + f_2$, then $\phi_{f_{\text{merged}}}(x^{(i)}) = \phi_{f_1}(x^{(i)}) + \phi_{f_2}(x^{(i)})$, $\forall i \in [d]$.

842 C.2 PROOF OF AXIOM 2(DUMMY)

843 **Axiom 2 (Dummy)** *A dummy player i is a player that has no interactions with other players in the
 844 game f . Formally, if $\forall s : s_i = 0$, $f(x \circ (s + e_i)) = f(x \circ s) + f(x \circ e_i)$. Then, the dummy player's
 845 Shapley Value is computed as $f(x \circ e_i)$.*

847 **Proof of Axiom 2:** For a dummy player i satisfying $\forall s : s_i = 0$, $f(x \circ (s + e_i)) = f(x \circ s) + f(x \circ e_i)$,
 848 substitute the condition into the Shapley value formula:

$$\begin{aligned} 849 \quad \phi_f(x^{(i)}) &= \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_i)) - f(x \circ s)) \\ 850 \\ 851 \quad &= \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ e_i)) \\ 852 \\ 853 \quad &= f(x \circ e_i) \cdot \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s}. \end{aligned}$$

857 Note that the sum over all $s : s_i = 0$ (subsets of the remaining $d-1$ variables) satisfies:

$$859 \quad \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} = \sum_{k=0}^{d-1} \binom{d-1}{k} = 2^{d-1} \cdot \frac{d}{d} = d,$$

862 where we use the identity $\sum_{k=0}^n \binom{n}{k} = 2^n$ with $n = d-1$. Thus:

$$863 \quad \phi_f(x^{(i)}) = f(x \circ e_i) \cdot \frac{1}{d} \cdot d = f(x \circ e_i).$$

864 C.3 PROOF OF AXIOM 3(SYMMETRY)
865866 **Axiom 3 (Symmetry)** *If two players contribute equally in every case, then their Shapley values in*
867 *the game f will be equal. Formally, if $\forall s : s_i = s_j = 0$, $f(x \circ (s + e_i)) = f(x \circ (s + e_j))$, then*
868 $\phi_f(x^{(i)}) = \phi_f(x^{(j)})$.
869870 **Proof of Axiom 3:** For symmetric players i and j satisfying $\forall s : s_i = s_j = 0$, $f(x \circ (s + e_i)) =$
871 $f(x \circ (s + e_j))$, consider their Shapley values:
872

873
$$\phi_f(x^{(i)}) = \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_i)) - f(x \circ s)),$$

874

875
$$\phi_f(x^{(j)}) = \frac{1}{d} \sum_{s:s_j=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_j)) - f(x \circ s)).$$

876

877 Define a bijection between masks $s : s_i = 0$ and $t : t_j = 0$ via $t = s$ if $j \notin s$, and $t = (s \setminus \{j\}) \cup \{i\}$
878 if $j \in s$. By symmetry, $f(x \circ (s + e_i)) = f(x \circ (t + e_j))$ and $f(x \circ s) = f(x \circ t)$. Since $\mathbf{1}^\top s = \mathbf{1}^\top t$,
879 the binomial coefficients are equal. Thus:
880

881
$$\phi_f(x^{(i)}) = \frac{1}{d} \sum_{t:t_j=0} \binom{d-1}{\mathbf{1}^\top t} (f(x \circ (t + e_j)) - f(x \circ t)) = \phi_f(x^{(j)}).$$

882

883 C.4 PROOF OF AXIOM 4(EFFICIENCY)
884885 **Axiom 4 (Efficiency)** *The total reward of the game f is equal to the sum of the Shapley values of*
886 *all players. Formally, $f(x) - f(\mathbf{0}) = \sum_{i \in [d]} \phi_f(x^{(i)})$.*
887888 **Proof of Axiom 4:** Summing Shapley values over all players:
889

890
$$\begin{aligned} \sum_{i \in [d]} \phi_f(x^{(i)}) &= \sum_{i \in [d]} \frac{1}{d} \sum_{s:s_i=0} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_i)) - f(x \circ s)) \\ &= \frac{1}{d} \sum_{s \subseteq [d]} \sum_{i \notin s} \binom{d-1}{\mathbf{1}^\top s} (f(x \circ (s + e_i)) - f(x \circ s)). \end{aligned}$$

891

892 For a fixed mask s with $\mathbf{1}^\top s = k$, there are $d - k$ players not in s . The inner sum becomes:
893

894
$$\sum_{i \notin s} (f(x \circ (s + e_i)) - f(x \circ s)) = \sum_{i \notin s} f(x \circ (s + e_i)) - (d - k) f(x \circ s).$$

895

896 Summing over all s and telescoping the series, all intermediate terms cancel, leaving:
897

898
$$\sum_{i \in [d]} \phi_f(x^{(i)}) = f(x) - f(\mathbf{0}).$$

899

900 D PROOFS OF THEOREMS
901902 This appendix presents the full derivation to formally establish Theorem 1, complementing the par-
903 tial analysis in the main text.
904905 Recall the definition of utility:
906907 **Theorem 1: Utility is bounded by Gradient Norm.** Let the utility function \mathcal{U} be defined as in
908 Definition 3. Then there exists a constant $c > 0$ such that
909

910
$$\mathcal{U}(x_i, y_i; f_{\theta^{(t)}}) \leq c \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_i), y_i)\|.$$

911

912 Using the chain rule for gradient flow, we have
913

914
$$\dot{\ell}_t(f_{\theta^{(t)}}(x_j), y_j; \mathcal{B}) = \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j) \cdot \frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}},$$

915

918 and similarly for $\mathcal{B}_{\neg i}$. Thus, the change in gradient flow is
 919

$$920 \quad \left| \dot{\ell}_t(f_{\theta^{(t)}}(x_j), y_j; \mathcal{B}) - \dot{\ell}_t(f_{\theta^{(t)}}(x_j), y_j; \mathcal{B}_{\neg i}) \right| = \left| \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j) \cdot \left(\frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}} - \frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}_{\neg i}} \right) \right|.$$

922 Under SGD with learning rate η , the update step is
 923

$$924 \quad \frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}} = -\eta \sum_{(x,y) \in \mathcal{B}} \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x), y).$$

927 Removing (x_i, y_i) gives
 928

$$929 \quad \frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}_{\neg i}} = -\eta \sum_{(x,y) \in \mathcal{B}_{\neg i}} \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x), y).$$

932 Taking the difference,
 933

$$934 \quad \frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}} - \frac{\partial \theta^{(t)}}{\partial t} \Big|_{\mathcal{B}_{\neg i}} = -\eta \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_i), y_i).$$

936 Substituting this into the gradient flow change gives
 937

$$938 \quad \left| \dot{\ell}_t(f_{\theta^{(t)}}(x_j), y_j; \mathcal{B}) - \dot{\ell}_t(f_{\theta^{(t)}}(x_j), y_j; \mathcal{B}_{\neg i}) \right| \\ 939 = \eta \left| \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j) \cdot \nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_i), y_i) \right| \\ 940 \leq \eta \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j)\| \cdot \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_i), y_i)\|$$

942 where the last step follows from the Cauchy–Schwarz inequality. Let
 943

$$944 \quad c = \eta \max_{(x_j, y_j) \in \mathcal{D}} \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j)\|$$

945 be a constant independent of (x_i, y_i) . Taking the maximum over $(x_j, y_j) \in \mathcal{D}$, we obtain
 946

$$947 \quad \mathcal{U}(x_i, y_i; f_{\theta^{(t)}}) \leq c \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_i), y_i)\|.$$

948 Note that $c = \eta \max_{(x_j, y_j) \in \mathcal{D}} \|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j)\|$ satisfies the following properties:
 949

- 950 1. It is independent of the current measured data (x_i, y_i) , ensuring that the bound in Theorem 1
 951 holds uniformly for all training examples.
- 952 2. It only assumes that the gradient norm $\|\nabla_{\theta^{(t)}} \ell_t(f_{\theta^{(t)}}(x_j), y_j)\|$ has an upper bound, which is a
 953 reasonable assumption for any successfully converged model.
- 954 3. Since the learning rate η can be chosen to be small in practice, the value of c remains controlled
 955 and does not become excessively large.

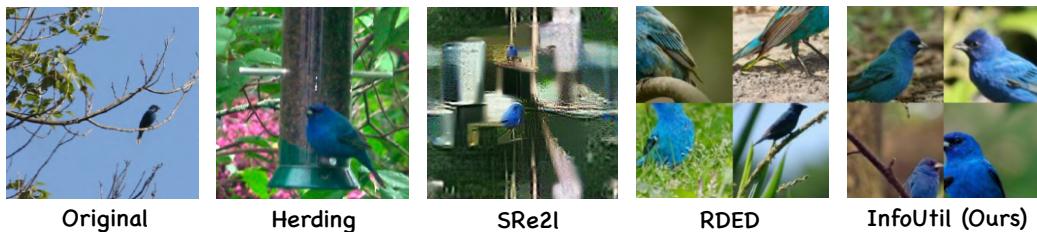
957 E THE USE OF LARGE LANGUAGE MODELS (LLMs)

959 In accordance with the official ICLR policy regarding the mandatory disclosure of large language
 960 model (LLM) usage, we explicitly and unequivocally state that no LLMs were employed in the
 961 entire process of the development of this work. All essential components of our research, including
 962 theoretical analysis, detailed algorithm design, practical implementation, systematic experimental
 963 validation, and thorough manuscript writing, were conducted carefully and entirely without the aid
 964 of any LLM-based tools or services. This explicit statement ensures that the contributions reported
 965 in this paper are derived solely from the authors’ original and independent efforts and do not rely in
 966 any way on automated text generation or machine-assisted writing systems.

967
 968
 969
 970
 971

972 F ADDITIONAL VISUALIZATIONS OF SYNTHETIC DATA
973

974 Compared to optimization-based SRe2L, InfoUtil creates more realistic images by preserving details
975 and color consistency. Compared to optimization-free methods like RDED, InfoUtil stands out
976 with its enhanced interpretability and structured framework, emphasizing key semantic details while
977 reducing focus on irrelevant areas. We present further visual comparisons of synthetic ImageNet-1K
978 images generated by SRe2L, RDED, and InfoUtil at $IPC = 10$. Specifically, Figures 6, 7, 8 and 9
979 illustrate results across three representative classes, clearly highlighting the superior visual quality
980 attained by InfoUtil. As intuitive evidence, Figure 5 shows condensed images for ImageNet-1K's
981 *indigo bunting* category, including results from Original, Herding, SRe2L, RDED, and InfoUtil
982 (Ours). InfoUtil focuses on the most discriminative object parts, yielding more informative results.
983 Additional visualizations are provided in the supplements due to space constraints.
984

991
992 Figure 5: Visualization of condensed images for the indigo bunting category on ImageNet-1K.
993994 (a) SRe2L
995
996
997
9981000 (b) RDED
1001
1002
10031004 (c) InfoUtil (ours)
1005
1006
1007
10081009 Figure 6: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-1K. These images are distilled from the "Welsh Springer Spaniel" category.
1010

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

(a) SRe2L

(b) RDED

(c) InfoUtil (ours)

1041 Figure 7: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1042 1K. These images are distilled from the “schooner” category.

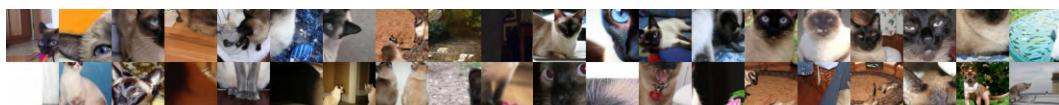
(a) SRe2L

(b) RDED

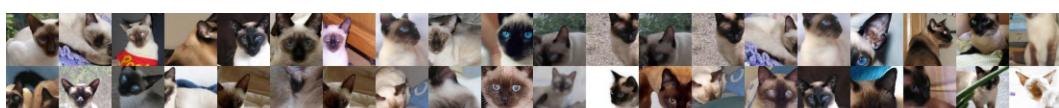
(c) InfoUtil (ours)

1059 Figure 8: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1060 1K. These images are distilled from the “indigo bunting” category.

(a) SRe2L



(b) RDED



(c) InfoUtil (ours)

1078 Figure 9: We visualized synthesized images generated by SOTA methods and InfoUtil on ImageNet-
1079 1K. These images are distilled from the “Siamese cat” category.

1080 Table 7: Comparison of Storage Costs: Total Disk Space required to store the synthesized dataset
 1081 for ResNet-18 (MB).

Datasets	IPC	SRe2L	RDED (on-the-fly)	InfoUtil (on-the-fly)	InfoUtil (store top-10)
ImageNet-100	1	6.9 MB	42.8 MB	42.8 MB	3.5 MB
	10	64.8 MB	42.8 MB	42.8 MB	35.0 MB
	50	324.2 MB	42.8 MB	42.8 MB	175.0 MB
ImageNet-1K	1	579.8 MB	44.7 MB	44.7 MB	35.0 MB
	10	5798.3 MB	44.7 MB	44.7 MB	350.0 MB
	50	28990.8 MB	44.7 MB	44.7 MB	1750.0 MB

G ANALYSIS OF DATASET STORAGE EFFICIENCY

The computational and storage efficiency of synthesized datasets is a crucial metric for knowledge distillation, particularly in resource-constrained environments. In this section, we clarify the storage protocol utilized by InfoUtil and quantify the associated memory costs.

G.1 PROTOCOL FOR ON-THE-FLY SOFT LABEL GENERATION

The InfoUtil framework, similar to the protocol used by our main baseline RDED Sun et al. (2024), operates without storing explicit soft labels as part of the distilled dataset artifact. This adherence ensures a fair and direct comparison with prior distillation-based synthesis methods, demonstrating that performance gains stem from the quality of the synthesized images, not a larger auxiliary budget. The final distilled dataset artifact contains *only the compressed synthetic images*. Soft labels are generated **on-the-fly** by a fixed, pre-trained teacher model (a separate, static artifact) during the downstream training of the student model. Consequently, the storage cost of the distilled dataset is inherently minimal, determined exclusively by the number and resolution of the synthetic images. For instance, the static cost for storing the ResNet-18 teacher model for all Images Per Class (IPC) settings on the ImageNet-1K dataset is 44.7 MB.

G.2 QUANTIFYING LABEL SPARSIFICATION FOR POTENTIAL STORAGE

Although InfoUtil’s standard protocol avoids soft label storage, investigating the potential for label efficiency is valuable for scenarios requiring stored knowledge. To demonstrate the robustness and sparsity of the captured knowledge, we conducted a simulation where we quantify the memory cost required to store labels using a **Top-K** approach. This simulates a storage requirement by only retaining the indices and values of the Top-K logits (here, $K = 10$). The results in Table 7 quantify the total disk space required across different IPC settings. The “on-the-fly” columns represent the minimal storage cost of the synthesized images (identical for RDED and InfoUtil).

The comparison highlights that the storage overhead concern associated with soft labels does not apply to the standard InfoUtil protocol. Even in the scenario where sparse label storage is required, the essential knowledge can be captured with extreme efficiency, demonstrating high compressibility.

H EXTENSIVE COMPARISON WITH STATE-OF-THE-ART METHODS

We conduct an extensive comparison of InfoUtil against several state-of-the-art methods in data synthesis and knowledge distillation. The evaluation covers diverse datasets and Images Per Class (IPC) settings.

H.1 COMPARISON WITH TEDDY BASELINE

Table 8 compares InfoUtil’s performance against the TEDDY Yu et al. (2024) on ImageNet-1K and Tiny-ImageNet.

1134 Table 8: Comparison of Top-1 Accuracy (%) with TEDDY baseline (ResNet-18 Student Model).
1135

Dataset	IPC	SRe2L	TEDDY	InfoUtil (Ours)
ImageNet-1K	10	21.3 ± 0.6	34.1 ± 0.1	44.2 ± 0.4
	50	46.8 ± 0.2	52.5 ± 0.1	58.0 ± 0.3
	100	52.8 ± 0.3	56.5 ± 0.1	58.8 ± 0.4
Tiny-ImageNet	50	41.1 ± 0.4	45.2 ± 0.1	58.5 ± 0.3
	100	49.7 ± 0.3	52.0 ± 0.2	60.6 ± 0.5

1144 Table 9: Comparison of Top-1 Accuracy (%) with EDF baseline on ImageNette, ImageWoof, and
1145 ImageNet-100 (ResNet-18).
1146

Dataset	IPC	SRe2L	RDED	EDF	InfoUtil (Ours)
Imagenette	1	20.8 ± 0.2	33.8 ± 0.8	25.7 ± 0.4	42.3 ± 0.7
	10	50.6 ± 0.8	63.2 ± 0.7	64.5 ± 0.6	66.6 ± 0.4
	50	73.8 ± 0.6	83.8 ± 0.2	84.8 ± 0.5	84.9 ± 0.6
Imagewoof	1	15.8 ± 0.8	18.5 ± 0.9	19.2 ± 0.2	22.8 ± 0.4
	10	38.4 ± 0.4	40.6 ± 2.0	42.3 ± 0.3	43.8 ± 1.3
	50	49.2 ± 0.4	61.5 ± 0.3	61.6 ± 0.8	62.6 ± 0.4
ImageNet-100	1	–	7.1 ± 0.2	8.1 ± 0.6	19.6 ± 0.5
	10	–	29.6 ± 0.1	32.0 ± 0.5	40.2 ± 0.3
	50	–	50.2 ± 0.2	45.6 ± 0.5	48.0 ± 0.5

1159 Table 10: Comparison of Top-1 Accuracy (%) with DELT baseline on Cifar-10, ImageNette, and
1160 TinyImageNet (ResNet-18 Student Model).
1161

Dataset (ResNet-18)	IPC	SRe2L	RDED	DELT	InfoUtil (Ours)
Cifar-10	1	16.6 ± 0.9	22.9 ± 0.4	24.0 ± 0.8	25.3 ± 0.6
	10	29.3 ± 0.5	37.1 ± 0.3	43.0 ± 0.9	53.8 ± 0.1
	50	45.0 ± 0.7	62.1 ± 0.1	64.9 ± 0.9	71.0 ± 1.4
ImageNette	1	19.1 ± 1.1	35.8 ± 1.0	24.1 ± 1.8	43.8 ± 0.7
	10	29.4 ± 3.0	61.4 ± 0.4	66.0 ± 1.4	68.8 ± 0.6
	50	40.9 ± 0.3	80.4 ± 0.4	88.2 ± 1.2	86.2 ± 0.6
TinyImageNet	1	2.6 ± 0.1	9.7 ± 0.4	9.3 ± 0.5	17.0 ± 1.3
	10	16.1 ± 0.2	41.9 ± 0.2	43.0 ± 0.1	45.6 ± 0.3
	50	41.1 ± 0.4	58.2 ± 0.1	55.7 ± 0.5	58.5 ± 0.3

1173 H.2 COMPARISON WITH EDF AND IMAGEWOOF

1174
1175 Table 9 provides a detailed comparison against the EDF Wang et al. (2025) across multiple small-
1176 scale datasets, including ImageWoof.
1177

1178 I COMPARISON WITH DELT (RESNET-18)

1181 The following table presents a detailed comparison of InfoUtil against DELT on various datasets
1182 and Images Per Class (IPC) settings, using a ResNet-18 student model.
1183

1184 I.1 COMPARISON WITH WMDD

1185
1186 Table 11 summarizes the performance of InfoUtil against WMDD Liu et al. (2025), primarily fo-
1187 cusing on ImageNette, Tiny-ImageNet, and ImageNet-1K.
1188

1188 Table 11: Comparison of Top-1 Accuracy (%) with WMDD and RDED baselines (ResNet-18 Stu-
1189 dent Model).

Dataset	IPC	SRe2L	WMDD	RDED	InfoUtil (Ours)
ImageNette	1	19.1 ± 1.1	40.2 ± 0.6	35.8 ± 1.0	43.8 ± 0.7
	10	29.4 ± 3.0	64.8 ± 0.4	61.4 ± 0.4	68.6 ± 0.6
	50	40.9 ± 0.3	83.5 ± 0.3	80.4 ± 0.4	86.2 ± 0.6
Tiny-ImageNet	1	2.6 ± 0.1	7.6 ± 0.2	9.7 ± 0.4	17.0 ± 1.3
	10	16.1 ± 0.2	41.8 ± 0.1	41.9 ± 0.2	45.6 ± 0.3
	50	41.1 ± 0.4	59.4 ± 0.5	58.2 ± 0.1	58.5 ± 0.3
ImageNet-1K	1	0.1 ± 0.1	3.2 ± 0.3	6.6 ± 0.2	12.7 ± 0.7
	10	21.3 ± 0.6	38.2 ± 0.2	42.0 ± 0.1	44.2 ± 0.4
	50	46.8 ± 0.2	57.6 ± 0.5	56.5 ± 0.1	58.0 ± 0.3

1202 Table 12: Comparison of Top-1 Accuracy (%) with HeLlo baseline on ImageNet-100 and ImageNet-
1203 1K (ResNet-18).

Dataset	IPC	SRe2L	RDED	HeLlo	InfoUtil (Ours)
ImageNet-100	1	3.0 ± 0.3	8.1 ± 0.3	12.5 ± 0.2	15.7 ± 0.2
	10	9.5 ± 0.4	36.0 ± 0.3	48.9 ± 0.1	50.5 ± 0.4
	50	27.0 ± 0.4	61.6 ± 0.1	69.4 ± 0.1	68.3 ± 0.4
ImageNet-1K	1	0.1 ± 0.1	6.6 ± 0.2	12.9 ± 0.3	12.7 ± 0.7
	10	21.3 ± 0.6	42.0 ± 0.1	43.7 ± 0.1	44.2 ± 0.4
	50	46.8 ± 0.2	56.5 ± 0.1	52.2 ± 0.1	58.0 ± 0.3

1213 Table 13: Comparison of Top-1 Accuracy (%) with INFER baseline on Cifar10, Tiny-ImageNet,
1214 and ImageNet-1K (ResNet-18).

Dataset	IPC	SRe2L	INFER	RDED	InfoUtil (Ours)
Cifar10	10	29.3 ± 0.5	30.7 ± 0.3	37.1 ± 0.3	53.8 ± 0.1
	50	45.0 ± 0.7	60.7 ± 0.9	62.1 ± 0.1	71.0 ± 1.4
Tiny-ImageNet	10	16.1 ± 0.2	41.0 ± 0.4	41.9 ± 0.2	45.6 ± 0.3
	50	41.1 ± 0.4	54.6 ± 0.4	58.2 ± 0.1	58.5 ± 0.3
ImageNet-1K	50	46.8 ± 0.2	54.3 ± 0.6	56.5 ± 0.1	58.0 ± 0.3

1224 I.2 COMPARISON WITH HELLO

1227 Table 12 highlights the performance on ImageNet-100, comparing against the HeLlo Yu et al.
1228 (2025).

1230 I.3 COMPARISON WITH INFER

1232 Table 13 provides a comparison against the INFER Zhang et al. (2024), including results on the
1233 Cifar10 dataset.

1235 J CORESET SELECTION COMPARISON AND INFORMATION DENSITY

1238 We investigate the fundamental distinction between data synthesis (InfoUtil) and traditional coresets
1239 selection methods, which aim to construct a compact dataset by selecting unaltered real samples.
1240 While both approaches pursue dataset compression, InfoUtil’s ability to synthesize highly informative,
1241 compressed knowledge yields a significant performance gap, especially under extreme data
scarcity (IPC = 1 or 10).

1242 Table 14: Comparison of Top-1 Accuracy (%) of InfoUtil vs. Classic Coreset Selection Methods
1243 (ConvNet).

Model	Dataset	IPC	Random	Herding	Forgetting	InfoUtil (Ours)
ConvNet	CIFAR-10	1	14.4 \pm 2.0	21.5 \pm 1.2	13.5 \pm 1.2	28.5 \pm 1.4
		10	26.0 \pm 1.2	31.6 \pm 0.7	23.3 \pm 1.0	54.1 \pm 0.5
		50	43.4 \pm 1.0	40.4 \pm 0.6	23.3 \pm 1.1	69.8 \pm 0.1
	CIFAR-100	1	4.2 \pm 0.3	8.4 \pm 0.3	4.5 \pm 0.2	33.1 \pm 0.3
		10	14.6 \pm 0.5	17.3 \pm 0.3	15.1 \pm 0.3	50.5 \pm 0.3
		50	30.0 \pm 0.4	33.7 \pm 0.5	30.5 \pm 0.3	57.8 \pm 0.2
	Tiny ImageNet	1	1.4 \pm 0.1	1.4 \pm 0.1	1.6 \pm 0.1	19.6 \pm 0.5
		10	5.0 \pm 0.2	5.0 \pm 0.2	5.1 \pm 0.2	40.2 \pm 0.3
		50	15.0 \pm 0.4	15.0 \pm 0.4	15.0 \pm 0.3	48.0 \pm 0.5

1254 Table 15: Comparison of Top-1 Accuracy (%) of InfoUtil vs. Coreset Selection (ResNet-18 Student
1255 Model).

Model	Dataset	IPC	Random	Herding	K-Means	InfoUtil (Ours)
ResNet-18	Tiny ImageNet	10	7.5 \pm 0.1	9.0 \pm 0.3	8.9 \pm 0.2	45.6 \pm 0.3
	ImageNet-1K	10	4.4 \pm 0.1	5.8 \pm 0.1	5.5 \pm 0.1	44.2 \pm 0.4

1262

J.1 FUNDAMENTAL DISTINCTION AND EMPIRICAL ADVANTAGE

1264 Traditional coreset selection methods (such as Random, Herding Welling (2009) and Forgetting
1265 (Toneva et al., 2018)) are constrained by the quality and content of the original training
1266 samples. InfoUtil overcomes this limitation by dynamically synthesizing samples that are optimized
1267 for knowledge transfer, extracting informative patches, and utilizing soft labels to condense teacher
1268 knowledge. To empirically demonstrate this advantage, we compare InfoUtil against classic coreset
1269 selection baselines across CIFAR, Tiny-ImageNet, and ImageNet-1K.

1271

J.2 PERFORMANCE ON LARGE-SCALE DATASETS

1273 We further validate the results using a deeper architecture (ResNet-18) on challenging large-scale
1274 datasets, comparing against K-Means coreset selection.

1276 The empirical results show a massive performance gap. For example, on ImageNet-1K (IPC = 10),
1277 InfoUtil achieves 44.2%, which is nearly 7.6 times higher than the best coreset method (Herding,
1278 5.8%). This clearly illustrates that simply selecting real images is insufficient for training deep net-
1279 works from scratch on such limited budgets. Coreset methods inherently suffer from background
1280 noise and reliance on hard labels. In contrast, InfoUtil’s synthesis mechanism which incorporates at-
1281 tribution cropping (Informativeness) and soft labels, effectively condenses the necessary knowledge,
1282 making it far more efficient and powerful than standard subset selection.

1283

K ABLATION STUDY ON NOISE INJECTION IN PATCH SELECTION

1286 We investigate the role of randomness within the attribution-guided patch selection mechanism,
1287 which is critical for generating diverse and non-redundant synthetic data.

1289

K.1 IMPORTANCE OF NOISE FOR DATA DIVERSITY

1291 The core of our data synthesis relies on identifying the most informative region (peak) of the Shap-
1292 ley heatmap. Without introducing noise, the cropping process becomes entirely deterministic and
1293 greedy, resulting in synthesized patches that are nearly identical across samples within the same
1294 class. This lack of diversity severely hinders the student model’s ability to generalize. The strate-
1295 gic injection of Gaussian noise into the heatmap’s peak coordinates allows the cropping window to
1296 subtly shift around the highest attribution regions.

1296 Table 16: Ablation Study on Noise Injection in Patch Selection: Top-1 Accuracy (%).
1297

1298 Dataset	1299 IPC	1300 InfoUtil (Standard)	1301 InfoUtil (w/o Noise)
1300 ImageNette	1	43.8	35.4
	10	68.6	59.8
	50	86.2	70.6
1303 ImageWoof	1	25.0	23.2
	10	51.4	40.0
	50	69.6	59.4
1307 ImageNet-100	1	15.7	12.6
	10	50.5	43.8
	50	68.3	56.3
1310 ImageNet-1K	1	12.8	9.63
	10	44.2	38.5
	50	58.0	48.3

1315 K.2 EMPIRICAL ANALYSIS

1316
1317 We conducted a detailed ablation study comparing the standard InfoUtil method with a variant where
1318 noise injection is removed ("w/o Noise"). The student model is a ResNet-18, and the results across
1319 various IPC settings are summarized in Table 16. The empirical results clearly demonstrate that
1320 removing noise leads to a significant performance drop across all datasets and IPC settings.

- 1321 • **Impact at High IPC:** The performance gap is particularly pronounced at higher IPC values
1322 (e.g., 86.2% vs. 70.6% at ImageNette IPC = 50), resulting in a drop of over 15%. This
1323 confirms that when synthesizing multiple samples per class, the diversity induced by noise
1324 is essential to avoid redundant information and ensure effective feature space coverage.
- 1325 • **Consistent Necessity:** Even at minimal sparsity (IPC = 1), removing noise consistently
1326 hurts performance (e.g., 12.8% vs. 9.63% on ImageNet-1K), suggesting that noise helps
1327 locate more robust and central features rather than relying on brittle local maxima in the
1328 attribution map.

1331 L SELECTION OF ATTRIBUTION METHOD: SHAPLEY VS. GRAD-CAM

1332
1333 The selection of an appropriate attribution method is central to defining the "Informativeness" of
1334 image patches. We compared the theoretically rigorous Shapley Value against the computationally
1335 cheaper, but heuristic, Grad-CAM.

1337 L.0.1 THEORETICAL JUSTIFICATION

1338
1339 While gradient-based methods like Grad-CAM are efficient, they lack axiomatic guarantees and
1340 often suffer from issues such as gradient saturation. In contrast, the Shapley Value is the unique
1341 attribution method that satisfies fundamental axioms, including Efficiency, Symmetry, Dummy, and
1342 Linearity. This theoretical rigor ensures that the "Informativeness" (as defined in our framework) is
1343 distributed fairly among patches, accurately capturing the marginal contribution of each region to
1344 the model's prediction.

1345 L.0.2 EMPIRICAL COMPARISON

1346
1347 To validate this theoretical advantage, we replaced our Shapley-based selection with a Grad-CAM
1348 approach (keeping other components constant) and measured the resulting Top-1 Accuracy on
1349 ImageNet-1K (Table 17). Shapley-based selection consistently and significantly outperforms Grad-
CAM across all settings. Notably, at IPC = 10, Shapley achieves 43.88%, surpassing Grad-CAM

1350
1351 Table 17: Empirical Comparison of Attribution Methods: Shapley Value vs. Grad-CAM on
1352 ImageNet-1K (ResNet-18 Student Model).

Model	Dataset	IPC	Grad-CAM	Shapley (Ours)
ResNet-18	ImageNet-1K	1	4.418	7.154
		10	30.394	43.880
		50	52.610	56.920

1353
1354 Table 18: Validation of Data Quality: Using Synthesized Datasets for EDC Initialization on
1355 ImageNet-1K (ResNet-18).

Method	Initialization	IPC=1	IPC=10	IPC=50
RDED	-	6.6 ± 0.2	42.0 ± 0.1	56.5 ± 0.2
EDC	Standard	12.8 ± 0.1	48.6 ± 0.3	58.0 ± 0.2
EDC	+ RDED Init	12.9	48.8	58.2
EDC	+ InfoUtil Init (Ours)	13.0	49.5	58.7

1366
1367 (30.39%) by a substantial margin of 13.49%. This confirms that Shapley Values identify patches
1368 that are more semantically robust and critical for effective dataset distillation.1370 M DATA QUALITY VALIDATION VIA INITIALIZATION FOR TRAINING-BASED
1371 METHODS
13721373 We investigated whether the distilled data from InfoUtil could serve as a superior initialization for
1374 training-based (TB) methods, such as External Data Condensation (EDC) Shao et al. (2024b). The
1375 goal is to prove that InfoUtil’s synthesized data possesses higher intrinsic knowledge quality than
1376 methods like RDED.1377 We compared three initialization strategies for EDC on ImageNet-1K (ResNet-18), as shown in Ta-
1378 ble 18. The results affirmatively demonstrate that using InfoUtil data for initialization consistently
1379 boosts the performance of EDC across all IPC settings. Specifically, at IPC = 10, InfoUtil initial-
1380 ization improves EDC’s performance from 48.6% to 49.5%, showcasing a clear gain (+0.7% over
1381 Standard, +0.5% over RDED Init at IPC = 50). This confirms the superior intrinsic quality and
1382 high informativeness of the condensed patterns generated by InfoUtil.1384 N ANALYSIS OF SOFT LABELING STRATEGY ROBUSTNESS
13851386 To ensure a fair performance assessment, we rigorously isolate the contribution of our proposed
1387 InfoUtil from potential advantages conferred by the soft-labeling strategy employed by the teacher
1388 model. While previous distillation literature has explored utilizing “early-stage teacher” models
1389 for maximizing performance at low Images Per Class (IPC) settings, we demonstrate the intrinsic
1390 robustness of InfoUtil by unifying the teacher protocol.1392 N.1 CONTROLLED EXPERIMENT WITH FULLY CONVERGED TEACHER
13931394 We conducted a controlled experiment on the ImageWoof dataset where both the baseline (RDED)
1395 and our InfoUtil method were strictly constrained to use the exact same Fully Converged Teacher
1396 model across all tested IPC settings (1, 10, and 50). This experimental setup eliminates any poten-
1397 tial performance artifact stemming from differences in teacher model convergence stages, ensuring
1398 that measured gains are attributed solely to InfoUtil’s data synthesis mechanism (Shapley-based
1399 informativeness and GradNorm utility).1400 The results across different student architectures (ConvNet, ResNet-18, and ResNet-101) are re-
1401 ported in Table 19. As evidenced by Table 19, our method consistently maintains a clear per-
1402 formance advantage over the RDED baseline under this strict controlled setting, with improvements
1403 observed across every student architecture and IPC configuration. The gains are particularly sub-
stantial in deeper architectures and higher compression rates (e.g., a 7.9% margin for ResNet-101 at

1404 Table 19: Top-1 Accuracy (%) under the Controlled "Fully Converged Teacher" Setting on Image-
1405 Woof.

Model	Method	IPC=1	IPC=10	IPC=50
ConvNet	RDED	18.5	40.6	61.5
	InfoUtil (Ours)	20.0	42.4	62.6
ResNet-18	RDED	20.8	38.5	68.5
	InfoUtil (Ours)	21.4	43.6	69.2
ResNet-101	RDED	19.6	31.3	59.1
	InfoUtil (Ours)	19.8	35.0	67.0

1416
1417 IPC = 50). This data strongly validates that the performance gains are not an artifact of the labeling
1418 strategy but are directly attributable to InfoUtil's core mechanism of selecting and synthesizing
1419 high-informativeness data.