
New Complexity Results for Structurally Restricted Numeric Planning

Alexander Shleyfman1, Daniel Gnad2, Peter Jonsson2

1The Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
2Department of Computer and Information Science, Linköping University, Linköping, Sweden

shleyfman.alexander@gmail.com, daniel.gnad@liu.se, peter.jonsson@liu.se

Abstract
Numeric planning is known to be undecidable even under
severe restrictions. Prior work investigated the decidability
boundaries by restricting the expressiveness of the planning
formalism in terms of the numeric functions allowed in con-
ditions and effects. In this work, we fix one specific such for-
malism, simple numeric planning (SNP), which, while only
allowing linear conditions and action effects to add constants,
is still undecidable. We analyse the complexity of SNP by (1)
restricting the number of numeric variables, and (2) restrict-
ing the causal structure. First, we concentrate on numeric
planning with exactly one (numeric) variable. We present a
pseudo-polynomial algorithm to solve such tasks, and show
NP-hardness and PSPACE-membership for the correspond-
ing decision problem. Second, we restrict the interaction be-
tween variables in terms of the causal graph. As our main
result, we show that SNP with an arbitrary number of numeric
causal-graph leaf variables is decidable, and lies in PSPACE
if the propositional state space has fixed size.

Introduction
In recent years, significant progress has been made towards
the development of methods that solve planning tasks with
numeric variables (Hoffmann 2002; Shin and Davis 2005;
Gerevini, Saetti, and Serina 2008; Eyerich, Mattmüller, and
Röger 2009; Coles et al. 2013; Scala et al. 2016; Illanes and
McIlraith 2017; Li et al. 2018; Scala, Haslum, and Thiébaux
2016; Scala et al. 2017; Aldinger and Nebel 2017; Piacen-
tini et al. 2018a,b; Kuroiwa et al. 2021). From a theoretical
perspective, the success of these methods raises a conun-
drum, since even the most simple forms of numeric planning
are known to be undecidable (Helmert 2002). Undecidability
has been proven using planning instances with an arbitrary
number of numeric variables and arbitrary causal dependen-
cies between variables. What happens if we bound the num-
ber of numeric variables by a constant? What influence do
causal dependencies have? We consider this a very interest-
ing setting and make a step towards a better understanding
of restricted sub-classes of numeric planning in this work.

We focus on the simple numeric planning (SNP) formal-
ism (Hoffmann 2003; Scala et al. 2016). While it only al-
lows linear expressions in the goal and action conditions,
and action effects to add constants, it is still undecidable.
Our starting point is a simple numeric task (SNT) with a sin-
gle numeric variable x, which provides a platform to analyze

more interesting structures. We remark that even this simple
problem is non-trivial, namely NP-hard (Thm. 4). The basis
of our investigation is a normal form, similar to the domain
simplification of Helmert (2002), which abstracts from irrel-
evant details. Our main tool for proving complexity results
is Thm. 1, which concerns the structure of the state space
of one-variable numeric tasks: for every solvable task Πx

one can compute a bounded interval I such that there exists
a plan π that stays inside I during execution. To solve Πx,
it is thus sufficient to explore a finite part of the underly-
ing infinite state space, which makes the planning problem
decidable. Moreover, we prove a pseudo-polynomiality re-
sult that can be used for isolating polynomial-time solvable
fragments, which is possible even for optimal planning. We
prove PSPACE-membership of the corresponding planning
problem, showing that, computationally, it is no harder than
the classical planning problem. In addition, we show that it is
NP-hard even for tasks where actions have no preconditions,
in contrast to classical planning, where empty preconditions
imply polynomial-time solvability.

Building on Thm.1, we look into a restricted form of SNT
with a propositional variable v and a numeric variable x such
that x depends on v, but not vice versa. As we can enumerate
all simple paths traversing the domain of v, we can compute
a bounded interval I of x for each of them, which implies a
finite overall state space. We generalize this by showing that
SNP with an arbitrary number of numeric leaf variables is
decidable, and lies in PSPACE if the state space induced by
the propositional variables has a fixed size. The already men-
tioned work by Helmert (2002) lays important foundations
for our analysis. We discuss the connections in a dedicated
related work section. We conclude the paper by discussing
our findings and indicating directions for future research. In
particular, we believe that our results can be utilized by tech-
niques known from classical planning that require bounded
domain sizes, such as abstraction heuristics based on pro-
jections onto a subset of variables (Culberson and Schaeffer
1998; Edelkamp 2001), or decoupled search, which decom-
poses planning tasks and requires bounded state spaces for
the leaf components (Gnad and Hoffmann 2018).

Numeric Planning
We consider simple numeric planning (SNP) as introduced
by Hoffmann (2003) and refined by Scala et al. (2016). SNP

was originally defined in the STRIPS formalism (Fikes and
Nilsson 1971) but we present it (in a more general way) as
an extension of the finite-domain planning (FDR) formal-
ism (Bäckström and Nebel 1995; Helmert 2009).

A simple numeric task (SNT) is a 4-tuple Π =
〈V,A, s0, G〉, where V = Vn ∪ Vp is a finite sets of nu-
meric and propositional variables, A is the set of actions,
s0 is the initial state, and G is the set of goal conditions.
Numeric variables Vn have domain Q; each propositional
variable v ∈ Vp has a finite domain D(v). The set of states
of Π is S :=

Ś

v∈Vp D(v)×
Ś

v∈Vn Q, i.e., a state is a full
assignment over all variables V . We refer to a state s ∈ S
as a set of numeric and propositional facts s = sp ∪ sn,
where sp = {∀v ∈ Vp∃!d ∈ D(v) : 〈v, d〉}, and similarly
sn = {∀v ∈ Vn∃!q ∈ Q : 〈v, q〉}. We say that s |= (v = f)
iff 〈v, f〉 ∈ s, and write s[v] = f , i.e., s[v] indicates the
value of v ∈ V in state s. We say that s′ is a partial state if
there is a state s ∈ S such that s′ ⊂ s.

Conditions can be either propositional or numeric. Propo-
sitional conditions are partial propositional states, i.e., ψ
is a propositional condition if there is s ∈ S such that
ψ ⊆ sp. A linear numeric condition over the numeric vari-
ables V ⊆ Vn is written as ψ :

∑
v∈V wvv D w0 where

D ∈ {≥, >}, wv, w0 ∈ Q. It is satisfied by s, denoted
s |= ψ, if

∑
v∈V wvs[v] D w0. We extend this to sets of

conditions Ψ by s |= Ψ.
An action a ∈ A is a tuple 〈pre(a), eff(a)〉, where pre(a)

are the preconditions, and eff(a) the effects of a. Precondi-
tions are defined as pre(a) := prep(a)∪pren(a), with propo-
sitional and linear numeric conditions, respectively. Effects
eff(a) := effp(a) ∪ effn(a) are similarly defined as sets of
propositional and numeric effects. For SNT, numeric effects
have the form (v += c), where v ∈ Vn and c ∈ Q \ {0}.
Actions have at most one effect on each numeric variable.
We say that action a is applicable in state s if s |= pre(a).
The result of applying a in s is denoted by sJaK := s′p ∪ s′n,
with s′p[v] = d if 〈v, d〉 ∈ effp(a), s′n[v] = sn[v] + c if
(v += c) ∈ effn(a), and s′n[v] = sn[v] otherwise.

The goal condition G = Gp ∪ Gn denotes propositional
and numeric conditions, respectively. We say that s∗ is a
goal state if s∗ |= G. An s-plan is an action sequence π
that can be applied successively in s and results in a goal
state s∗ |= G. A plan for Π is an s0-plan.

The set of all numeric conditions appearing in Π is de-
noted by Ψ(Π); by Ψ(v,Π) we denote all numeric condi-
tions where the variable v ∈ Vn appears. If Π is obvious
from the context, we simply write Ψ(v). ‖Π‖ is the number
of bits needed for representing Π.

A restricted task (RT) is a variant of SNT where all nu-
meric conditions are of the form: ψ : v ./ w0, with w0 ∈ Q,
v ∈ Vn, and ./∈ {>,≥, <,≤}. Similar to SNT, actions can
only increase or decrease variables by constant quantities
(Hoffmann 2003; Scala, Haslum, and Thiébaux 2016). An
SNT can be reduced to an RT with a simple translation.

Translating SNT to RT. Given a SNT Π = 〈V,A, s0, G〉,
we define a transformed task ΠRT = 〈VRT,ART, sRT

0 , G
RT〉

constructed as follows. For every numeric condition ψ :∑
v∈V wvvDw0 in Ψ(Π), we introduce a new numeric vari-

able vψ ∈ VRT
n , with s0[vψ] =

∑
v∈V wvs0[v]. Each ψ is

then replaced by vψ ./ w0 and, for every action a with an
effect v += cav on a v ∈ V , a numeric effect on vψ must
be added, with the form vψ +=

∑
v∈V c

a
v . This translation

is polynomial in the number of numeric conditions. In what
follows, unless stated otherwise, we assume all tasks to be
in RT form.

Integer Restricted Tasks
In this section we present integer RT tasks, a normal form
which simplifies the forthcoming proofs. The transformation
is very similar to the “domain simplification” of Helmert
(2002), but additionally normalises initial state values to 0
and conditions to be integer for all numeric variables. We re-
define the transformation here in our terms, since we heavily
rely on it for our results. We also prove the correspondence
to the original task formally, which was not done in detail by
Helmert (2002).

Suppose we have an RT Π = 〈V,A, s0, G〉. In this task,
any condition can be seen as a check whether x ∈ Vn be-
longs to a given rational interval (which is not necessarily
bounded). We let Jl−, l+K denote any closed, open, or half-
open interval, where l− ∈ {−∞} ∪ Q, l+ ∈ Q ∪ {+∞},
and l− ≤ l+. The precondition of each action a has the form
pre(a) = {x ∈ Jl−, l+K | x ∈ Vn}. Note that (1) x ∈
Jl−, l+K is a semantic notation meaning s |= x ∈ Jl−, l+K iff
s[x] ∈ Jl−, l+K, and (2) we define conditions on all numeric
variables replacing empty conditions with x ∈ (−∞,∞).
The numeric goal conditions Gn have the same form. By
W(x) we denote the set of numbers that appear in the nu-
meric conditions on x,W(x) := {l−, l+ | (x ∈ Jl−, l+K) ∈
Ψ(x)}. Note thatW(x) is a finite set of rationals. Each ac-
tion a has numeric effects of the form x += c with c 6= 0.
We let C(x) := {c | x += c ∈ effn(a), a ∈ A} ⊆ Q denote
the set of additive constants affecting x.

We say that an RT Π̄ is integer if for each x ∈ Vn the
conditions P1–P3 hold.
P1. C(x) ∪W(x) ⊆ Z,
P2. s0[x] = 0, and
P3. if (x ∈ Jl−, l+K) ∈ Gn, then Jl−, l+K ∩ Z ⊆ N.

We will show that every restricted task Π has a corre-
sponding integer instance Π̄ that is solvable iff Π is. Further-
more, Π̄ can be computed in polynomial time. We start by
showing that restricted numeric tasks are well-behaved un-
der linear transformations. AssumeC ∈ Q\{0} andB ∈ Q.
We define the map (C ·x+B)(Π) on Π and an x ∈ Vn as fol-
lows: each condition of the form x ∈ Ja, bK in Π is replaced
with x ∈ JC · a + B,C · b + BK, and the effect x += c
is replaced with x += C · c. The initial state s0[x] = x0 is
replaced with s0[x] = C · x0 +B.

Lemma 1. Any plan for Π is also a plan for (C ·x+B)(Π),
where C ∈ Q \ {0} and B ∈ Q, and vice-versa.

Proof. Let π = 〈a1, . . . , an〉 be a plan for Π. By sk we de-
note the state that corresponds to the subsequent application
of the first k actions of π, starting at the state s0. Suppose
that x += ck is the effect of action ak on x. Here we al-
low ck = 0, so that each action has an effect on x. Thus,

sk[x] = s0[x] +
∑k
i=1 ci. Since each ak is applicable in

sk−1, it holds that sk−1[x] = s0[x] +
∑k−1
i=1 ci ∈ Jak, bkK,

where (x ∈ Jak, bkK) ∈ pre(ak), and sn[x] ∈ Jag, bgK,
where (x ∈ Jag, bgK) ∈ Gn. We need to show that π is
also a plan for (C · x + B)(Π). The proof is by induction,
suppose that the actions were applied up to some k − 1. Let
s′k be the resulting state, then

s′k−1[x] = C · s0[x] +B + C ·
k−1∑
i=1

ci =

C(s0[x] +

k−1∑
i=1

ci) +B ∈ JC · ak +B,C · bk +BK ⇐⇒

sk−1[x] = s0[x] +

k−1∑
i=1

ci ∈ Jak, bkK.

The claim s′n |= G is proved exactly in the same fash-
ion. Note that all other conditions and affects were left un-
changed, and the map affects only the variable x, thus π is
also a plan for (C · x+B)(Π).

To prove that any plan for (C · x+B)(Π) is a plan for Π,
all we need is to recall that if C 6= 0, then the linear transfor-
mation is invertible, i.e., (C · x+B)(Π) is transformed into
Π using the linear transformation x 7→ 1

Cx −
B
C . We finish

by applying the previous claim to this linear function.

Let LCD(X) denote the least common denominator of a
finite setX of rational numbers, i.e., LCD(X) is the smallest
number such that LCD(X) ·x is an integer for every x ∈ X .
Corollary 1. For each RT Π, there exists an integer RT Π̄
such that Π̄ is solvable if and only if Π is solvable.

Proof. Consider the instance Πx = (C · x + B)(Π). If
C = LCD(C(x) ∪ W(x)), then P1 holds for x in Πx, and
choosing B = −C · s0[x] guarantees P2. We need to see to
that the goal condition is positive. Let x ∈ Jl−, l+K be the
goal condition of Πx. If s0[x] ∈ Jl−, l+K the task is trivial,
thus replace the goal condition with x = s0[x]. Otherwise,
either s0[x] ≤ l− or s0[x] ≥ l+. In the second case we mul-
tiply C andB by−1, and we do nothing in the first case. We
finalize that claim by repeating this process for each x ∈ Vn.
This is can be done, since each map affects x independently
of all other numeric variables.

Using Col. 1 we estimate the size of the integer RT we
got. Finding the least common multiple of a finite set N ⊆
N can be done in log2 maxN steps, i.e., it is linear in the
number of bits representing N . Thus, we can compute the
least common denominator of a set of rational numbers in
linear time which leads to the following result.
Lemma 2. Let Π be an RT. Then, an integer RT Π̄ can be
computed in polynomial time, ‖Π̄‖ ∈ O(n2), and the size of
each number in Π̄ is at most n bits.

Proof. If ‖Π‖ = n, then no number in Π uses more than n
bits. The task Π̄ can be computed in polynomial time since,
by Cor. 1, the needed arithmetic operations can be performed
in polynomial time. If two m-bit numbers are multiplied,

then the result can be written down using at most 2m bits
so each number in Π̄ has at most n bits since the sum of
their bits does not exceed n. Moreover, Π̄ may contain at
most n numbers, since each number needs at least one bit so
‖Π̄‖ = O(n2).

In addition, we would like to show that in some specific
tasks we can bound the numeric goal conditions to a closed
interval. This will be helpful later on.

Lemma 3. Let Π be an integer RT, where (x ≥ g) ∈ Gn,
and each action that affects the numeric variable x ∈ Vn
affects no other variables. Then, there is a g′ ≥ g such that
each plan that solves Π contains a sub-sequence of actions
that solves Π′.

Proof. LetC+ = maxc∈C(x) c. Let π be a plan for Π, and let
s∗ |= G be the state where π terminates. Let g′ = g + C+.
If s∗[x] ∈ [g, g′] we are done, otherwise, assume s∗[x] ≥ g′.
Since we start at s0[x] = 0 and each action adds to x at most
C+ there is at least one state alongside the execution of π
that lies inside [g, g+C+]. Thus, π has a prefix that achieves
x ∈ [g, g′]. Since all actions that affect x do not affect any
other variable, we can ignore all actions that affect x after
the first one that achieves the goal condition on x.

If the conditions of Lemma 3 hold for x ∈ Vn, we replace
the goal condition x ≥ g with x ∈ [g, g + C+]. In what fol-
lows, we consider integer RTs with bounded numeric goal
intervals. We start with the most basic case of a single nu-
meric variable.

Single Numeric Variable
Suppose we have a planning task with a Single Numeric
Variable (SVNT), Πx = 〈V,A, s0, G〉, where V = Vn =
{x}. In this section we analyse the computational complex-
ity of the plan existence problem for SVNTs. We denote this
problem by PESVNT. We first prove that PESVNT always
can be solved by search in a finite subset of the state space;
this is not clear a priori from the problem formulation. This
is the basis for our forthcoming complexity results.

Finite Search Space
Since a SVNT has exactly one numeric variable, it is an RT
by definition. By Cor. 1 and Lem. 3 we have that Πx can be
transformed into an integer RT with a bounded goal condi-
tion, and by Lem. 2 it can be done in polynomial time.

We aim to show that every solvable task Πx has the fol-
lowing property: one can compute a bounded interval I from
Πx and if there exists a plan π for Πx, then there exists a re-
ordering of π such that x stays inside I during its execution.
In other words, one only needs to consider a finite part of the
infinite state space, hence PESVNT is a decidable problem.

Lemma 4. Let C ⊆ Z be a finite set of integers, and let
Cmax = maxc∈C |c|. Let a, b ∈ Z be such that |a − b| ≤
2Cmax, and let {ci}ni=1 be a sequence of numbers such that

∀i ∈ [n] : ci ∈ C and a+

n∑
i=1

ci = b.

Then, for each y ∈ R such that a, b ∈ [y, y + 2Cmax] there
is a permutation σ : [n] → [n] such that for each k ∈ [n] it
holds that a+

∑k
i=1 cσ(i) ∈ [y, y + 2Cmax].

Proof. The proof is by induction. Suppose that for k − 1 it
holds that ak−1 := a +

∑k−1
i=1 cσ(i) ∈ [y, y + 2Cmax]. For

the element of the index σ(k) we need to chose one of the
indices from the set [n] \ σ([k − 1]). We have three cases:

Case 1. There is i ∈ [n] \ σ([k − 1]) such that ci = 0.
Then, set σ(k) := i, and ak−1 = ak.

Case 2. All elements with indices in [n] \ σ([k − 1]) are
of the same sign. In this case, for each i ∈ [n] \ σ([k − 1])
the sum ak−1 + ci lies on the interval between ak−1 and b,
which is contained in [y, y+ 2Cmax], since ak−1 belongs to
this interval by induction, and b by definition. Thus, we can
set σ(k) := i for any i ∈ [n] \ σ([k − 1]).

Case 3. There are two indices i, j ∈ [n]\σ([k−1])} such
that ci and cj are of different sign. By definition, it holds that
|ci|, |cj | ≤ Cmax. Note that since ak−1 ∈ [y, y + 2Cmax],
it either holds that ak−1 − y ≤ Cmax or that y + 2Cmax −
ak−1 ≤ Cmax, i.e., the distance from ak−1 to one of the
endpoints of the interval exceeds Cmax. Thus, either ak−1 +
ci or ak−1 + cj lies in the interval [y, y + 2Cmax]. Without
loss of generality, assume that ak−1 + cj ∈ [y, y + 2Cmax].
Then, we set σ(k) := j, and repeat the process.

Given an SVNT Πx and a bounded interval I , we let
ΠI
x denote Πx where each precondition pre(a) = {x ∈

Jl−, l+K} of each action a ∈ A is replaced with the pre-
condition pre(a) = {x ∈ Jl−, l+K ∩ I}.
Theorem 1. Let Πx be an SVNT. Then there exists a
bounded interval I = [M− − 2Cmax,M+ + 2Cmax] such
that each plan π for Πx can be reordered into a plan π′

for ΠI
x. The constants are Cmax = maxc∈C(x) |c|, M− =

min(W(x) ∪ {0})− 1, and M+ = max(W(x) ∪ {0}) + 1.

Proof. Let π be a plan for Πx, and 〈s0, . . . , sn〉 be the se-
quence of states traversed by π. Intuitively, we would like
to reorder not the whole plan π, but only the parts of the
plan that exceed M+ from above and M− from below. Let
us look at the following state\action sequence

s0, a1, s1, a2, . . . sk1 , ak1+1, sk1+1, . . . , ak2 , sk2+1, . . . ,

ak3 , . . . , ak4 , . . . , ak5 , . . . , ak6 , . . . , sn |= G.

We say that an action exceeds M+ if both the start and the
end state of this action exceed M+ from above. The defi-
nition for exceeding M− is the same, but the states should
exceed M− from below. Suppose that the red sub-sequences
in the plan are the ones that exceedM+ and the blue ones ex-
ceedM−. Note that, sinceM− < M+, between each red and
blue sub-sequence, there must be at least one black action.
The first and the last actions in the sequence are also black,
since, by definition, both s0[x] = 0 and the interval [g1, g2]
lie inside the interval [M−,M+], whereG = {x ∈ [g1, g2]}.

Let I = [L−, L+]. First, we obtain the L− bound. Let
A−∞ := {a ∈ A | ∀s[x] ≤ M− : s |= pre(a)}. So A−∞ is
the set of all actions that have as precondition either x ∈ Q
(no preconditions) or x ≤ b for some b ∈ Q, i.e., the actions
that can be applied with an arbitrarily small x.

If no state in 〈s0, . . . , sn〉 achieves a value below M−,
there is no need for reordering. Otherwise, let sk1 be the
first state below M−, and let πk1→k2 := {ak1+i}

k2−k1
i=1

be the longest sub-sequence of π that starts in sk1 such
that all actions in πk1→k2 exceed M−. Let sk2 be the last
state along the application of πk1→k2 . Note that it may hap-
pen that sk1 = sk2 , in this case πk1→k2 = ∅. By defini-
tion, sk1 6= s0 and sk2 6|= G. Since each action cannot
increase or decrease the value of x by more than Cmax,
it holds that sk1 [x], sk2 [x] ∈ [M− − Cmax,M−]. Thus,
|sk1 [x] − sk2 [x]| ≤ Cmax. Moreover, since πk1→k2 is a se-
quence of action applications:

sk1 [x] +

k2−k1∑
i=1

ck1+i = sk2 [x],

where cj is the effect of applying the action aj in the state
sj−1. By construction, all actions in πk1→k2 belong toA−∞,
and thus can be applied within the interval (−∞,M−]. By
Lem. 4, there exists a permutation σ of indices of πk1→k2
such that

sk1 [x] +

k2−k1∑
i=1

ck1+σ(i) ∈ [M− − 2Cmax,M−].

Set L− := M− − 2Cmax. We remark that there is a fi-
nite number of such disjoint prefixes, and each prefix can
be reordered in such a way that for each state s along the
reordered plan, it holds that s[x] ≥ L−.

The reordering that bounds the value of x along π from
above is obtained in the same way, taking the upper bound
L+ := M+ + 2Cmax instead.

Complexity Results
Armed with Thm. 1, we are ready to prove concrete com-
plexity results. We begin with a pseudopolynomiality result.

Theorem 2. The problem PESVNT can be solved in
pseudopolynomial-time O(|A|(Cmax + Wmax)), where
Cmax andWmax are the maximums over the absolute values
of the sets C(x) andW(x), respectively.

Proof. Let Πx be an instance of PESVNT. Let Π̄x be the
normalised version of Πx via Lem. 2. By Thm. 1, we can
construct a bounded-interval SVNT Π̄I

x such that for each
plan for Π̄x there is a plan for Π̄I

x. By construction of the
interval I we have that |I∩Z| ≤ 4Cmax+2Wmax. Note that
x in the task Π̄I

x can take only integer values since s0[x] = 0
and all additive constants are integers. Thus, to find a plan
for Π̄I

x we can use dynamic programming, breaking down
the problem into sub-problems of finding the shortest path
from x = 0 to any of the integers in the interval I . Hence,
the complexity is O(|A|(Cmax +Wmax)).

If X is a set of SVNTs with bounded Cmax and Wmax,
then the corresponding planning problem can be solved in
polynomial time by Thm. 2. We additionally note that the
dynamic programming approach can be used for finding an
optimal plan; recall that the plan obtained by Thm. 1 has at
most the length (and cost) as the original plan. We continue

by proving that if the parameters are not bounded, then the
problem becomes NP-hard. We also present a positive result:
PESVNT is in PSPACE so it is not computationally harder
than the FDR planning problem.

To prove membership in PSPACE we need the fol-
lowing famous result by Savitch (1970). We remind that
NSPACE(f(n)) is the class of all decision problems that
can be solved by nondeterministic algorithms using space
O(f(n)), while DSPACE(f(n)) is defined the same but for
deterministic algorithms.
Theorem 3. Suppose that f(n) can be computed in
O(f(n)) time. Then, NSPACE(f(n)) ⊆ DSPACE(f(n)2).

We use this theorem to prove the following result.
Theorem 4. The problem PESVNT is in PSPACE, and it
is NP-hard even if all preconditions are empty.

Proof. Membership in PSPACE: Let Πx be an SVNT with
‖Πx‖ = n. By Lem. 2, ‖Π̄x‖ ∈ O(n2) and Cmax,Wmax

use at most 2n bits. By Thm. 1 there is an interval I =
[−Wmax−2Cmax,Wmax+2Cmax] such that Π̄x is solvable
iff Π̄I

x is.
By the proof of Thm. 2, the size of the search space of

Π̄I
x is bounded by the size of the interval I , i.e., 4Cmax +

2Wmax, which is, in turn, at most 4 · 22n + 2 · 22n ≤
22n+3. Thus, any solution of length 22n+3 or larger has cy-
cles. Such cycles can be removed, resulting in a solution
of length less than 22n+3. We can guess a plan one action
at a time and verify it step by step using only polynomial
space. No more than 22n+3 non-deterministic choices are
required so this non-deterministic algorithm uses only poly-
nomial space. By Savitch’s theorem (1970), it holds that
NPSPACE = PSPACE so PESVNT is in PSPACE.

NP-hardness. The basis for our proof is the feasibility ver-
sion of the change-making problem (FEAS-CMP) (Martello
and Toth 1990, Sec. 5). An instance is an n-vector
(c1, . . . , cn) of non-negative integers and a non-negative in-
teger b. The question is if there are non-negative integers
x1, . . . , xn such that

∑n
i=1 ci · xi = b? The NP-hardness of

this problem was originally proved by Lueker (1975).
We present a polynomial-time reduction from FEAS-

CMP to PESVNT. Let (c̄, b) denote an arbitrary instance
of this problem with c̄ = (c1, . . . , cn). We construct a plan-
ning task Πx as follows: introduce a variable x and actions
ai, i ∈ [n], with empty preconditions and effects x += ci.
The initial state is x = 0 and the goal state is x = b. The
task Πx can be constructed in polynomial time and (c̄, b) has
a solution iff Πx is solvable.

We note that FDR planning is strongly NP-hard even in
severely restricted cases (see Figure 3 in (Bäckström and
Nebel 1995)). Thus, pseudopolynomial algorithms for FDR
are ruled out under standard assumptions. This is a quite
noticeable difference between FDR planning and PESVNT
(that are closely related by both being in PSPACE).

Numeric Causal-Graph Leaf Variables
Planning tasks are typically structurally complex, and causal
graphs are a common means to study this structure (e.g.,

Knoblock 1994; Bacchus and Yang 1994; Domshlak and
Brafman 2002). In this paper we use the compact defini-
tion by Helmert (2004): the causal graph (CG) of a clas-
sical planning task Π = 〈V,A, I, G〉 is a digraph CG(Π) =
〈V, E〉, where (u, v) ∈ E if u 6= v and there exists a ∈ A,
s.t. u ∈ vars(pre(a)) ∪ vars(eff(a)) and v ∈ vars(eff(a)),
where vars(s) denotes the set of variables defined in the
(partial) state s. Intuitively, the CG contains an edge from a
variable v to a variable v′, if changing the value of v′ might
require v to change its value, too, so v′ depends on v.

For general numeric planning, it is not immediately clear
how to adopt this definition. We start with the more obvious
case of an RT. As every precondition and effect of an action
a ∈ A of an RT touches at most one numeric variable, the
influence of a on the CG of the task is the same as one of an
action with propositional effects. Thus, we can treat numeric
variables exactly as propositional ones for CG construction.

The case of linear conditions ψ :
∑
x∈V wxs[x] D w0 ∈

pren(a) in SNT is somewhat more intricate. If numeric vari-
ables x1 and x2 both appear in V , they are co-dependent in
terms of ψ. Note that the case x1 + x2 ≥ w0 differs from
the case when x1 ≥ w1 and x2 ≥ w2. This co-dependency
is also shown by the fact that the translation to RT, which in-
troduces a new variable vψ , introduces cycles in the causal
graph between x1, x2, and vψ . How to define a CG in this
cases remains an open question.

In this work we consider only the case of RT. Moreover,
we concentrate on numeric variables that are leaves in the
causal graph, i. e., they might depend on other variables via
action preconditions, but no other variable depends on their
value and there are no co-effects. We call numeric variables
that are leaves in the causal graph numeric leaves. In what
follows, all numeric variables are numeric leaves. We further
say that a CG has a fork structure, or simply is a fork, if there
exists a variable v such that all edges in the causal graph
are of the form v → x, and there is an edge for each x ∈
Vn. The notion of forks was introduce in classical planning
by Katz and Domshlak (2008). To our best knowledge this
work is the first work that uses causal graphs in the setting
of numeric planning.

Forks have a Finite Search Space
We start with a claim that constitutes a basic building block
to the complexity results below, when there exists only a
single numeric leaf variable that depends on a single propo-
sitional variable.
Lemma 5. Let Πv,x be an RT with two variables V =
{v, x}, where v ∈ Vp is a propositional variable, and
x ∈ Vn is a numeric variable. Assume further that the causal
graph of the task has exactly one edge (v, x). Then, the plan
existence problem for Πv,x is decidable.

Proof. We assume that Πv,x is an integer task with bounded
numeric goal condition, since by Cor. 1, Lem. 2, and Lem. 3
Πv,x can be transformed to this form in quadratic time.

We start with the observation that each action a can not
affect both v and x due to the CG structure of the task.
Hence, if an action affects the propositional variable v it has
the form pre(a) = {〈v, u〉} and eff(a) = {〈v, u′〉}, where

u, u′ ∈ D(v). Thus, all actions affecting v are inner ac-
tions. We can view the values of v as a directed graph where
the nodes are values of v, and each action with precondition
pre(a) = {〈v, u〉} and effect eff(a) = {〈v, u′〉} corresponds
to a directed edge (u, u′). We denote the k ∈ N strongly con-
nected components (SCC) of this graph by {Cj}kj=1. Recall,
that the SCCs of a graph induce a DAG. For each fact 〈v, u〉
that belongs to an SCC Cj we write u ∈ Cj .

We denote the constants Cmax
x = maxc∈C(x) |c|, M− =

min(W(x) ∪ {0})− 1, and M+ = max(W(x) ∪ {0}) + 1.
Our goal for the proof is to compute an interval [Lx−, L

x
+]

s.t. for each plan π there exist a plan π′ where for all states s
traversed by π′ it holds that s[x] ∈ [Lx−, L

x
+]. Intuitively, we

would like to reconstruct not the whole, but only the parts of
the plan, where the value of x exceeds M+ from above or
M− from below. Let π be a plan for Πv,x, and 〈s0, . . . , sn〉
be the sequence of states traversed by π.

Consider the following state/action sequence:

s0, a1, s1, a2, . . . sk1 , ak1+1, sk1+1, . . . , ak2 , sk2+1, . . . ,

ak3 , . . . , ak4 , . . . , ak5 , . . . , ak6 , . . . , sn |= G.

We say that an action exceeds M+ if both in the start and
the end state of this action the value of x exceeds M+ from
above. The definition for exceeding M− is the same, but the
states should exceed M− from below.

If no state in 〈s0, . . . , sn〉 achieves a value below M−,
there is no need for reconstruction. Otherwise, let sk1 be the
first state below M−, and let πk1→k2 := {ak1+i}

k2−k1
i=1 be

the longest sub-sequence of π that starts in sk1 such that
all actions in πk1→k2 exceed M−. Let sk2 be the last state
along the application of πk1→k2 . Note that it may happen
that sk1 = sk2 , in this case we set πk1→k2 = ∅. Otherwise,
by definition, sk1 6= s0 and sk2 6|= G. By construction of the
sub-sequence it holds that sk1−1[x], sk2+1[x] < M−, thus
sk1 [x], sk2 [x] ∈ [M−−Cmax

x ,M−]. Define a := sk1 [x] and
b := sk2 [x]. The actions in πk1→k2 traverse the values of v
in some order over its SCCs, assume this order to be

~C : C1 → C2 → · · · → Cm.

We next show how to compute a boundM~C,a,b
− for all possi-

ble value pairs a, b ∈ [M−−Cmax
x ,M−]∩N and all possible

SCC-chains ~C. Thus, for each sub-sequence πk1→k2 of the
plan π that exceeds M− from below there will be a bound

Lx− = min
~C;a,b∈[M−−Cmax

x ,M−]
M~C,a,b
−

that bounds a reconstructed plan from below. We can com-
pute Lx− by iteratively solving an appropriate minimization
problem, which we explain next.

We need to check if there exists an action sequence that
drives x from a to b without exceeding M−. We iterate over
all possible sequences of SCCs. Let ~C be such a sequence.
Define for each i ∈ [m] the following sets of actions:

Axi = Ax0 ∪ {a ∈ A |pre(a) = {〈v, u〉, x ∈ (−∞, wa]},
M− ≤ wa, u ∈ Ci},where

Ax0 = {a ∈ A | pre(a) = {x ∈ (−∞, wa]},M− ≤ wa}.

Note that all actions in Axi can be applied interchangeably.
Define the following minimization problem on the number
of times nja an action a with additive effect ca is applied
while v has a value in Cj as follows:

max f(n) :=

m∑
j=1

∑
a∈Ax

j :ca<0

njaca,

s.t.
m∑
j=1

∑
a∈Ax

j

njaca = b− a, (♥)

k∑
j=1

∑
a∈Ax

j

njaca ≤M− (∀k ∈ [m− 1]) ,

nja ∈ N (∀a ∈ A, j ∈ [m]) .

It is important to note that we can apply the actions inAxi
in any order we want (modulo the applications of inner ac-
tions of v). Thus, by Lemma 4 if the minimization problem
has a solution, there is a sequence of actions that leads from
a := sk1 [x] to b := sk2 [x], where for each state along the
application of this sequence the value of x does not exceed
M−. Note that we want to maximize f(n) since all consid-
ered ca are negative, so we attempt to get as close to 0 as
possible.

Let n∗ be the optimal solution for the optimisation prob-
lem. By construction, any ordering of action applications
can reach a point that is less that f(n∗), thus we set

M~C,a,b
− := f(n∗).

By solving this problem for all possible ~C, a, and b, we can
obtain the lower bound L−x . The number of optimization
problems we need to solve to obtain L−x is then 2N (Cmax

x)2,
where N is the number of SCCs in the domain of v.

The solution for L+
x is almost the same but we replace <

with> and max with min in the optimisation problems.

This result brings us an important step forward into ana-
lyzing more general numeric planning tasks. In the next sec-
tion, we generalize the result to tasks with multiple numeric
leaves.

PSPACE Membership of Forks
Let Πv,x1,...,xn be an RT with a propositional variable v
and numeric leaf variables xi. Note that we can transform
Πv,x1,...,xn

into an integer RT with bounded numeric goal
conditions in polynomial time. We consider such trans-
formed tasks in the following and denote them by FRT. The
plan existence problem for FRT is denoted by PEFRT.

We show that deciding if the modified task Πv,x1,...,xn is
solvable lies in PSPACE. To show this, we need the follow-
ing result by Papadimitriou (1981, Lemma 4). We assume
that the coefficients in integer linear programs (ILP) always
are integers.

Lemma 6. If the following ILP program is feasible and
bounded, then for its optimal solution z∗ holds that |z∗| ≤

M ·
∑t
i=1 |ci|.

min c′x

s.t. Ax ≤ b, x ∈ N,
Here, M = t2(ma2)2m+3, where m × t is the size of the
integer program, and a = maxi∈[t],j∈[m]{|ai,j |, |bi|} is a
bound on the sizes of numbers in the program.
Theorem 5. PEFRT lies in PSPACE.

Proof. Let Πv,x1,...,xn
= n be an FRT of a size n, implying

|D(v)| ≤ n. Let further
~C : C1 → C2 → · · · → Cm

be a path through the SCCs in the domain of v. To show
the claim we iterate over all possible such paths, of which
there are at most 2n, fix one ~C at a time, bound the problem,
and check for solvability. Note that if Πv,x1,...,xn

has a so-
lution, it must traverse a ~C. Such a plan π needs to respect
~C, so 〈v, u〉 ∈ s0 ∩ C1, and, if 〈v, u′〉 ∈ G, we also require
〈v, u′〉 ∈ Cm. Note that for a given ~C we can ignore actions
with preconditions and effects in v that do not obey ~C.

With a fixed ~C, we can use Lemma 5 to individually bound
the domains of {xi}ni=1. For each x ∈ {xi}ni=1 the bound
from below for an ~C is given by a solution of (Cmax

x)2 ILPs,
and constitutes

Lx,
~C
− = min

a,b∈[M−−Cmax
x ,M−]

M~C,a,b
−

We have that Cmax
x ≤ 2n since it is part of the input. Iterat-

ing over all possible a and b we solve the ILP optimization
problem given in the proof of Lemma 5. Note that all con-
stants except b − a in the ILP come from the definition of
the problem, and |b− a| ≤ Cmax

x ≤ 2n. The solution of the
problem is bounded from above by 0 (ca < 0 and na ≥ 0),
thus if the program is feasible it has an optimal solution,
which we denote by z∗. Now, we apply Lemma 6. The num-
ber of constraints in this program (see♥) equals the number
of SCCs traversed by ~C, so is bounded by n; the number of
variables is |~C|·|A|, since some actions can appear in all con-
nected components. We can bound the number of variables
by n2. Hence, by Lemma 6 we have

|z∗| ≤ n4(n22n)2n+3 ·
n∑
i=1

2n = n2n+824n
2+7n.

Thus, we can bound |z∗| by 24n
2+8n for sufficiently large n.

To obtain an upper bound on the values taken by x, we
compute Lx,

~C
+ in the same fashion. Hence, the domain of the

numeric variable x under the path ~C is of the size 24n
2+8n+1.

The whole state space given the path ~C can be bounded by

|D(v)| ·Πn
i=1|D(xi)| ≤ n2

∑n
i=1 4n2+8n+1 = n24n

3+8n1+n

Finally, to account for the choice of ~C and get the whole
search space we need to multiply by the number of directed
paths ~C, which also cannot exceed 2n. Hence, the whole state
space can not exceed 25n

3

for sufficiently large n.
Thus, by Savitch’s theorem, we can guess a solution of

the task Πv,x1,...,xn
in polynomial space.

Thm. 5 is a major step forward in our analysis, showing
tasks with fork causal graph that may have an arbitrary num-
ber of numeric variables to be computationally no harder
than classical planning.

General Causal Graphs with Numeric Leaves
In this section, we further generalize the previous result to
tasks with multiple propositional variables, where all nu-
meric variables are causal-graph leaves. Let Π be such an RT
task. Note that since all numeric variables of Π are leaves in
the CG, we can transform the RT into its integer form with
bounded goal conditions for all numeric variables. We de-
note such tasks by NLRT and the corresponding plan exis-
tance problem by PENLRT.
Theorem 6. PENLRT is decidable.

Proof. Recall that by Thm. 5, checking plan existence for
an RT with a with a fork-structured CG with numeric leaves
is in PSPACE, so decidable. Here, we show that we can
transform an NLRT to an FRT using exponential space.
While this transformation does not preserve membership in
PSPACE, it is sufficient to show that PENLRT is decidable.

Let us look at all partial propositional states of the task
Π, S(Vp) :=

Ś

v∈Vp D(v). We can replace all propositional
variables in Π with a single variable s s.t. D(s) = S(Vp).
Each action that affects a v ∈ Vp is transformed to an inner
action of s. The transformation may produce an exponential
number of actions, since S(Vp) is a projection of the state
transition graph on Vp, and thus may have exponential num-
ber of partial states and inner actions in the size of |Vp|.

The actions that affect any variable x ∈ Vn do not af-
fect any other variable v ∈ V , because this was already
the case in the original task. Hence we know that the trans-
formed task has one propositional CG-root variable s with a
potentially exponential-size domain, and numeric variables
x1, . . . , xn that may depend on s. Hence, each x ∈ Vn is
either a CG-leaf, or constitutes a singleton. Since separated
components of a CG can be solved separately, we invoke
Thm. 5 to check for the decidability of the fork, and Thm. 1
to check for the decidability of singletons.

Our last result shows PSPACE-membership if we fix the
number of propositional variables. We denote by k-PENLRT
the plan existence problem for NLRT with a fixed number k
of propositional variables.
Corollary 2. k-PENLRT is in PSPACE.

Proof. Let Π be an NLRT where ‖Π‖ = n and |Vp| = k.
Let S(Vp) be the domain of the new CG-root variable as in-
troduced in the proof of Thm. 6. Note that since the domains
of our propositional variables are not bounded we have that
|S(Vp)| ∈ O(nk). This is due to the fact that for each v ∈ Vp
we have |D(v)| ≤ n. The number of actions in the new task
is O(|A| ·nk) = O(nk+1), since every new action may have
at most one precondition in S(Vp). By plugging this number
into the last part of the proof of Thm. 5, we have that the state
space of the transformed task is 2O(nk+c) for some small uni-
versal constant c ∈ N. The overall state space of the bounded
numeric RT is bounded by |S(Vp)| · maxi∈[n] |D(xi)|n so

we need to bound |D(xi)| for xi ∈ Vn. As before, we apply
Lem. 6 to the ILP ♥ from the proof of Lem. 5. In our case,
the number of constraints is equal to the number of SCCs
of S(Vp), m := nk. The number of variables is the num-
ber of actions in the new task times the number of SCCs,
that is t := n2k+1. The maximal constant of the problem is
a := 2n. Thus, the size of the state space is bounded by

2t2(ma2)2m+3 = 2 · n2k+1(nk22n)2n
k+3 =

O(25n
k+1

) ⊆ 2O(nk+1).

The multiplication by 2 takes into account that we solve two
ILPSs: one for the positive bound and one for the negative
bound. Take this bound to the power of n so that we cover all
numeric variables and we see that the universal constant c =
2, since (2O(nk+1))n = 2nO(nk+1) = 2O(nk+2). Thus, by
Savitch’s theorem (1970), k-PENLRT is in PSPACE.

The generalization to multiple propositional variables has
important practical implications, since it allows to augment
arbitrary classical planning tasks with many numeric leaf
variables, without affecting the computational complexity.

Related Work
We are only aware of one important piece of related work,
the complexity analysis by Helmert (2002). As indicated
before, that work focused on investigating the decidability
boundaries of general numeric planning as defined by the
“level 2” of PDDL2.1 (Fox and Long 2003). In their analy-
sis, Helmert (2002) consider different levels of expressive-
ness of the mathematical formulas allowed in conditions and
effects. The simple numeric planning formalism considered
in our work corresponds to their class (Cc, Cc, E±c), i. e., the
class of tasks where numeric variables can be compared to
constants in preconditions and the goal, and effects can only
add constants. This was proved to be undecidable.

In our work, we introduced a normal form for SNP tasks
that is similar to the domain simplification of Helmert
(2002). We outlined the differences between the two in the
section on Integer Restricted Tasks. Besides this, there is
a weak connection between the constructions in some of
our proofs and their Algorithm 22. Both approaches rely on
guessing action sequences, and both employ an ILP that en-
codes the number of times certain actions are applied. The
details of how these approaches are used differ significantly,
though. While Helmert (2002) only requires the number of
guesses to be bounded to show decidability, we derive a
bound that shows PSPACE-membership.

Discussion
Our results are a major step forward in the complexity anal-
ysis of simple numeric planning. Prior results by Helmert
(2002) show that numeric planning is undecidable even for
highly restricted instances, but that work focused on the ex-
pressive power of the mathematical expressions that are used
in conditions and effects. In this work, we analyzed the im-
pact of the number of numeric variables and the causal struc-
ture of planning tasks. We investigated the case of a single
numeric variable as a basis for our more advanced results,

showing that it is NP-hard in general. With this, we proved
that SNP is decidable as long as the numeric variables are
leaf nodes in the causal graph. The decision problem even
lies in PSPACE for a fixed number of propositional vari-
ables, so it stays in the class of classical planning.

Beyond the theoretical insights, we believe that our re-
sults can have a relevant practical impact. Many techniques
known from classical planning rely on finite domain sizes, so
are not directly applicable to unbounded numeric variables.
With our findings, we can provide exactly these bounds.
Hence, techniques such pattern database heuristics (Culber-
son and Schaeffer 1998; Edelkamp 2001), which project
onto a subset of the variables, and decoupled search (Gnad
and Hoffmann 2018), which requires bounded leaf compo-
nents, can probably be adopted to numeric planning.

For the future, we intend to further continue both
“branches” of our analysis. The complexity of SNP tasks
with two numeric variables is still unknown (the case for
three or more variables is undecidable, which follows from
a result of Helmert 2002). Moreover, looking into different
causal structures is obviously highly interesting.

Acknowledgements
The work of Alexander Shleyfman is partially supported by
the Israel Academy of Sciences and Humanities program
for Israeli postdoctoral researchers. Daniel Gnad was par-
tially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215. Peter Jon-
sson is partially supported by the Swedish Research Council
(VR) under grant 2021-04371.

References
Aldinger, J.; and Nebel, B. 2017. Interval Based Relax-
ation Heuristics for Numeric Planning with Action Costs.
In SOCS, 155–156.
Bacchus, F.; and Yang, Q. 1994. Downward Refinement and
the Efficiency of Hierarchical Problem Solving. AIJ, 71(1):
43–100.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
Hybrid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. JAIR, 46: 343–412.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Domshlak, C.; and Brafman, R. I. 2002. Structure and Com-
plexity in Planning with Unary Operators. In AIPS, 34–43.
Edelkamp, S. 2001. Planning with Pattern Databases. In
ECP 2001, 13–24.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In ICAPS, 130–137.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell., 2: 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR,
20: 61–124.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An Approach
to Efficient Planning with Numerical Fluents and Multi-
Criteria Plan Quality. Artif. Intell., 172(8-9): 899–944.
Gnad, D.; and Hoffmann, J. 2018. Star-topology decoupled
state space search. Artif. Intell., 257: 24–60.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In AIPS, 303–
312.
Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In ICAPS, 161–170.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artif. Intell., 173: 503–535.
Hoffmann, J. 2002. Extending FF to Numerical State Vari-
ables. In ECAI, 571–575.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables.
JAIR, 20: 291–341.
Illanes, L.; and McIlraith, S. A. 2017. Numeric Planning
via Abstraction and Policy Guided Search. In IJCAI, 4338–
4345.
Katz, M.; and Domshlak, C. 2008. Structural Patterns
Heuristics via Fork Decomposition. In ICAPS, 182–189.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. AIJ, 68(2): 243–302.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2021. LM-cut and Operator Counting
Heuristics for Optimal Numeric Planning with Simple Con-
ditions. In ICAPS, 210–218.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-Abstraction Based Relaxation for Linear Numeric
Planning. In IJCAI, 4787–4793.
Lueker, G. 1975. Two NP-Complete Problems in Nonneg-
ative Integer Programming. Technical Report 178 CSL,
Princeton University.
Martello, S.; and Toth, P. 1990. Knapsack Problems: Algo-
rithms and Computer Implementations. John Wiley & Sons.
Papadimitriou, C. H. 1981. On the complexity of integer
programming. Journal of the ACM, 28(4): 765–768.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018a. Compiling Optimal Numeric Planning to Mixed In-
teger Linear Programming. In ICAPS, 383–387.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018b. Linear and Integer Programming-Based Heuristics
for Cost-Optimal Numeric Planning. In AAAI, 6254–6261.
Savitch, W. J. 1970. Relationships Between Nondetermin-
istic and Deterministic Tape Complexities. Journal of Com-
puter and System Sciences, 4(2): 177–192.

Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In IJ-
CAI, 4384–4390.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In IJCAI, 3228–3234.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016.
Numeric Planning with Disjunctive Global Constraints via
SMT. In ICAPS, 276–284.
Shin, J.; and Davis, E. 2005. Processes and Continuous
Change in a SAT-Based Planner. Artif. Intell., 166(1-2):
194–253.

