
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BI-SHARE LORA: ENHANCING THE PARAMETER
EFFICIENCY OF LORA VIA INTRA-LAYER AND
INTER-LAYER SHARING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning
method for large language models (LLMs) to adapt to downstream tasks. How-
ever, in scenarios where multiple LoRA models are deployed simultaneously,
standard LoRA introduces substantial trainable parameters, resulting in significant
memory overhead and inference latency, particularly when supporting thousands
of downstream tasks on a single server. While existing methods reduce stored
parameters via parameter sharing, they fail to capture both local and global infor-
mation simultaneously. To address this issue, we propose Bi-Share LoRA, which
integrates local parameters with intra-layer and inter-layer shared parameters to
more effectively capture information at both local and global levels. By shar-
ing parameters both within and across layers, our method significantly reduces
the number of trainable parameters while preserving or improving model perfor-
mance. Additionally, we set a local LoRA to capture local parameters, enabling
more precise and fine-grained information extraction at the local level. The final
implementation introduces three parallel sub-LoRAs and designs transformation
techniques to adapt shared parameters of varying shapes, ensuring compatibility
and efficient sharing. Experiments on the 7B, 8B, and 13B versions of Llama show
that Bi-Share LoRA, with only 44.59% of the parameters of standard LoRA, out-
performs LoRA by approximately 0.33% on commonsense reasoning and 2.08%
on MMLU benchmarks.

1 INTRODUCTION

Large language models (LLMs), such as GPT-4o (Openai, 2023) and Claude-3 (Anthropic, 2024),
have recently demonstrated remarkable generalization capabilities across a wide range of natural lan-
guage tasks (Raiaan et al., 2024; Chang et al., 2024; Zhang et al., 2023). This enhanced performance
is largely attributed to the rapid increase in model parameters, for example, GPT-3 (Brown et al.,
2020) contains 175 billion parameters, while the largest version of Llama 3.1 (Touvron et al., 2023)
features up to 405 billion parameters. However, the ever-increasing size of these models presents
significant challenges for fine-tuning, as full parameter fine-tuning becomes computationally expen-
sive and memory-intensive. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) methods
have been introduced, achieving performance comparable to full fine-tuning by adjusting only a
small subset of parameters (Han et al., 2024) while keeping the majority of the model parameters
frozen. Among these methods, LoRA (Hu et al., 2022) stands out by approximating parameter
updates using the product of two low-rank matrices and has gained increasing popularity.

However, with the continued scaling up of models’ parameters, fine-tuning LLMs with LoRA would
introduce a considerable number of additional parameters, even when using a relatively low rank.
For instance, fine-tuning the Llama 70B model with a LoRA rank of 64 introduces approximately
360 million parameters (1.4G of memory), which makes the training process more challenging, an
issue that becomes more severe when multiple LoRA services are deployed simultaneously (Wang
et al., 2024). For the deployment scenario, LoRA modules are often kept separate from the pre-
trained parameters to facilitate multi-task inference services (Chen et al., 2024). Due to the mul-
titude of downstream tasks, storing numerous LoRA weight backups consumes significant storage
space. Additionally, during inference, the excessive quantity of LoRA parameters can occupy sub-
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Figure 1: The entropy similarity (Lin et al., 2024) of LoRA parameters for each module within the
same layer (left) and across different layers (right). It shows that different modules within the same
layer exhibit high entropy similarity, and this high similarity is also present across different layers.
This indicates that LoRA parameters have a significant degree of redundancy.

stantial memory, increasing latency when loading and switching between weights for various tasks.
Consequently, there is a pressing need to further reduce the trainable parameters of LoRA.

Several existing methods target reducing LoRA’s parameters through parameter-sharing strategies
(Mao et al., 2024; Sun et al., 2022a). Among these methods, inter-layer parameter sharing has proven
to be an effective technique for reducing redundancy across different layers. Several methods like
VeRA (Kopiczko et al., 2024) and VB-LoRA (Li et al., 2024) reduce the memory and compute re-
quirements by sharing parameters across layers, capturing global patterns that exist throughout the
model. However, these methods often overlook the local information and a critical source of redun-
dancy: the intra-layer redundancy present in the different submodules of the same layer (Lin et al.,
2024). For example, in Transformer models, the attention heads and feed-forward networks in the
same layer often process similar features, leading to redundant parameter usage. Therefore, there
is a need to design a new sharing technique that can capture both local and global features,
while ensuring the shared parameters can be adapted to all modules with different shapes.

In this paper, we first analyze LoRA parameters and identify a high degree of redundancy (Figure
1), and we conduct a preliminary study, as shown in Table 1, which demonstrates that sharing pa-
rameters within and between layers can achieve comparable performance with fewer parameters.
This indicates that we can eliminate high degree of redundancy in LoRA parameters by shar-
ing them to capture global information. Accordingly, we propose Bi-Share LoRA, a method that
combines intra-layer and inter-layer parameter sharing. We decompose the LoRA matrices into
three components: local parameters, which capture module-specific information, intra-layer shared
parameters, which are shared within the same layer to capture local consistent features, and inter-
layer shared parameters, which are shared across layers to capture global patterns. This enables
Bi-Share LoRA to learn both local and global information efficiently. Additionally, to tackle the
challenge of adapting shared parameters to all modules with different shapes, we present three shape
transformation methods: Slice Sharing, Gate Transformation, and Kronecker Extension. To validate
the effectiveness of Bi-Share LoRA, we conduct extensive experiments on the Llama model fam-
ily across multiple commonsense reasoning and MMLU benchmarks. Our results demonstrate that
Bi-Share LoRA achieves significant parameter savings of about 50% while maintaining or even im-
proving the model’s performance compared to standard LoRA and other existing methods. We also
conduct experiments to analyze the rank value benefits and contributions of different configurations
for local and shared weights.

In summary, our contributions are as follows:

• We propose Bi-Share LoRA, a unified sharing method that combines local parameters with
intra-layer and inter-layer shared parameters to effectively capture both local and global
information. This approach significantly reduces the number of trainable parameters while
maintaining performance.

• We introduce three shape transformation techniques to handle varying parameter shapes,
thus increasing the flexibility and effectiveness of parameter sharing.
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• We conduct extensive experiments on multiple tasks, demonstrating the effectiveness of
Bi-Share LoRA in reducing parameter redundancy and improving parameter efficiency.

2 BACKGROUND AND MOTIVATION

2.1 LOW-RANK ADAPTATION

LoRA fine-tuning is employed to recover performance with minimal parameter updates. For an
LLM consisting of l layers, the weight matrix of each layer W is adjusted using an update matrix
∆W ∈ Rm×n. This matrix is factorized into two low-rank matrices, A and B, where A ∈ Rr×m

and B ∈ Rn×r, with r being a hyperparameter shared by all layers. The effectiveness of fine-tuning
is highly dependent on rank selection. In this approach, the original weight matrix W remains
frozen, while only ∆W , represented by the product AB, is updated. The forward computation can
be expressed as:

f(x) = (W +∆W )x = Wx+BAx . (1)

Given that the rank r is typically much smaller than the dimension d, the computational cost is
significantly reduced from d2 to 2dr. This optimization can reduce the trainable parameters during
the learning process. Typically, the matrix A is initialized by a Gaussian distribution with a small
standard deviation, and B is initialized as a zero matrix. Hence, at the beginning of fine-tuning, the
model behaves identically to the pre-trained model.

2.2 MOTIVATION

In large language models (LLMs), parameter redundancy is a common issue, especially in multi-
task learning scenarios. Redundancy commonly occurs within the same transformer block where
the attention layer and MLP layer have overlapping functions or learn similar patterns (Lin et al.,
2024), and the parameters across different blocks where similar feature representations might be
learned in multiple layers (Li et al., 2024). We also plot the parameter similarity in Figure 1, which
shows the high similarity across different modules (details refer to Appendix A.2). Addressing both
scenarios of parameter redundancy remains an open problem. We wonder whether sharing these
superfluous parameters, both within a layer (intra-layer sharing) and across layers (inter-layer
sharing), can significantly reduce the number of parameters without sacrificing performance? To
this end, we conduct a simple experiment on intra-layer sharing, where all modules within the same
transformer layer share the same LoRA parameters, and inter-layer sharing, where modules across
different layers share the same LoRA fine-tuning parameters. From Table 1 (Individual), we find
that the simple sharing may result in some performance degradation. We hypothesize that it may
need module-specific parameters to learn the local features.

Table 1: Performance on instruction tuning with Alpaca 50K (Taori et al., 2023), evaluated with
MMLU (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021). Boldface indicates the best
performance.

Method rlocal rintra rinter # params ratio MMLU GSM8K

Individual

LoRA (no-share) 8 - - 4.19M 0.06% 35.12 10.84
LoRA (intra-share) - 8 - 2.10M 0.03% 34.23 10.54
LoRA (inter-share) - - 8 0.07M 0.01% 32.20 10.08

Joint

LoRA (share-intra) 4 4 - 3.14M 0.05% 34.63 10.92
LoRA (share-inter) 4 - 4 2.13M 0.03% 35.00 10.54
LoRA (share-intra-inter) 4 2 2 2.64M 0.04% 35.89 10.08

Therefore, we combine local parameters and shared parameters to fine-tune the model. Inspired by
Wang et al. (2023) and Tian et al. (2024), we employ multiple LoRA modules in parallel to combine
local parameters and shared parameters. This method can greatly expand the parameter search space,
and enhance the model’s adaptability and flexibility. Therefore, the entire set of LoRA parameters
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Figure 2: An overview of Bi-Share LoRA. The LoRA weights are decomposed into three sub-LoRA
weights: local learns module-specific information, intra capture the shared features within the same
transformer block, and inter learns the global information to interact with each module. The shape
transformation enables the shared weights adaptive to different shapes of modules. By combining
local, intra, and inter, the model can learn both local and global information during fine-tuning,
so that improves the performance and generalizability.

is decomposed into three smaller LoRA parameter blocks: the first part acts on individual modules,
the second part is shared among modules within the same layer, and the third part is shared by all
modules. We assign different ranks for each smaller LoRA, the configuration and results are shown
in Table 1 (Joint). The experimental results indicate that sharing parameters not only reduces the
number of parameters but also improves model performance.

3 METHOD

3.1 PARAMETER SHARING

Parameter sharing not only facilitates learning global information from the dataset but also signif-
icantly reduces the number of parameters in the model (Han et al., 2024). Leveraging this, we
apply parameter sharing to enhance parameter efficiency in LoRA fine-tuning. Our approach first
decomposes the LoRA module horizontally, expanding the optimization search space and allowing
for more efficient learning. We divide the LoRA matrix into three sub-LoRA modules: local, intra-
layer, and inter-layer which collectively contribute to the parameter updates of the target module.

Intra-Layer Module refers to the sharing of parameters within the same transformer layer, such
that all modules within a single layer (e.g., attention and MLP) share the same LoRA update matrix.
This enables the model to capture consistent patterns and correlations within the layer, thereby
improving the coherence of the information processed within each layer.

Inter-Layer Module denotes global parameter sharing, where the same LoRA update matrix is
shared across different layers of the transformer. This facilitates better information flow and fea-
ture interaction between layers, which in turn enhance the overall expressiveness and depth of the
model’s representations

Local Module refers to the traditional LoRA configuration, where the LoRA update matrix is
applied only to the current module, allowing the model to learn highly specific local features. Dur-
ing training and inference, the parameters for each module are updated according to the following
equation:

f(x) = (W +∆W )x = Wx+ (BA)localx+ (BA)intrax+ (BA)interx , (2)
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where the distinct rank values of aforementioned three sub-LoRA matrices are denoted as rlocal,
rintra, and rinter, respectively. Specifically, Blocal ∈ Rn×rlocal , Alocal ∈ Rrlocal×m, Bintra ∈
Rn×rintra , Aintra ∈ Rrintra×m, Binter ∈ Rn×rinter , and Ainter ∈ Rrinter×m.

By introducing this novel decomposition, our Bi-Share LoRA fine-tuning approach is capable of
learning both localized features and global interactions, providing a balance between task-specific
adaptability and overall model robustness. Figure 2 presents an overview of our Bi-Share LoRA.
This design is particularly beneficial in multi-task scenarios, enhancing the model’s performance
and generalization while significantly reducing the computational resources required during training
and inference. By decomposing LoRA into multiple smaller LoRA modules, we can assign a higher
rank to the shared parameters, allowing the final parameters to achieve a greater overall rank, as
discussed further in Section 4.4.

3.2 SHAPE TRANSFORMATION

We initially followed the LoRA setup (Hu et al., 2022) by applying LoRA parameters to the q
and v modules in the attention layer, matching the shared parameter size to the qv module, which
yielded preliminary results (Table 1). Previous studies suggest that applying LoRA to more modules
improves performance (Dettmers et al., 2023), so we extended it to the FFN layers. However, this
caused a parameter shape mismatch. In the Transformer block (Vaswani et al., 2017), the qkvo mod-
ules in Llama’s attention layer have a consistent shape of (4096, 4096). Meanwhile, the FFN’s up-
and down-projection modules have dimensions of (4096, 11008) and (11008, 4096), respectively,
making it difficult to apply a single shared AB parameters across these varying shapes. Similarly,
in Llama3, the Grouped-Query Attention (GQA) changes the shape of k module, further compli-
cating the parameter sharing. To address this issue, we develop three transformation methods that
adjust shared parameters to size of target modules.

3.2.1 SLICE SHARING

The straightforward method is to slice a larger trainable parameter matrix and train only the sliced
portions (see Figure 3 (a)), which we refer to as the Slice Sharing (SS) method. Specifically, we
determine the maximum input dimension dim and output dimensions dom, among all fine-tuning
parameter modules. The shared matrices are then defined with dimensions As ∈ Rr×dim and
Bs ∈ Rdom×r. During forward computation, the shared matrix is automatically sliced to match the
parameter dimensions of the target module. The calculation is expressed as:

∆W = Bs[:, : do]As[: di, :] , (3)

where di and do represent the input and output dimensions of target moddule, Bs[:, : do] and As[:
di, :] represent the sliced parts of the shared weights of Bs and As. Algorithm 1 provides the
pseudocode for Slice Sharing.

3.2.2 GATE TRANSFORMATION

The simple slicing method enables parameter sharing, but only a subset of the shared parameters is
used by all modules, while the remaining parameters are only utilized by larger modules. This limits
the efficiency of parameter sharing. To address this, we propose matrix multiplication for dynamic
size transformation of shared parameters. By multiplying matrices Ma ∈ Rm×n and Mb ∈ Rn×p,
the resulting matrix Mc ∈ Rm×p transforms the shape. Based on this, we introduce the Gate
Transformation (GT), which applies an input gate Gi ∈ Rm×di and an output gate Go ∈ Rdo×n.
For an input x ∈ Rb×di , Gi transforms it to (b,m), and the shared matrix Ws ∈ Rn×m processes it
to produce an intermediate result (b, n). Finally, Go outputs the final shape (b, do).

However, defining these transformation matrices introduces many learnable parameters, leading to
high memory consumption for large inputs and outputs. To mitigate this, we apply one-rank decom-
position to the input and output gates, reducing them to the product of two small rank-one matrices
(see Figure 3 (b)). The final computation is as follows:

∆W = GoWsGi = (GouGod)(BsAs)(GiuGid) , (4)

where the Gid ∈ R1×di projects down the input dimension into low a dimensional space, and then
Giu ∈ Rm×1 scales it up into the dimension that is comparable to the input dimension of the share
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Figure 3: Three methods for shape transformation: (a) Slice Sharing, slices parameters from a large
shared trainable parameters; (b) Gate Transformation, an input gate and an output gate transforms
input dimension and output dimension to match the shape of shared parameters, and they are imple-
mented by one-rank decomposition; (c) Kronecker Extension, a module-specific kernel are used to
extend the shared weights into target shape through the Kronecker Product.

weights Ws. Similarly, God ∈ R1×n and Gou ∈ Rdo×1 are applied to the transform the output.
By setting the input and output gates, the size of our shared parameters can be flexibly changed.
Algorithm 2 provides the pseudocode for Gate Transformation.

3.2.3 KRONECKER EXTENSION

While utilizing Gate Transformation allows us to define shared parameters of arbitrary shapes, low-
rank decomposition may lead to information loss in both input and output transformations. Another
approach is to concatenate multiple small shared parameters from identical copies to form a larger
shared parameter (Wang et al., 2024; Edalati et al., 2022), but this limits the overall expressiveness.
To address this, inspired by Karimi Mahabadi et al. (2021), we apply Kronecker matrix multiplica-
tion to expand the dimensions of the shared matrix by integer multiples, a method we term Kronecker
Extension (KE). The Kronecker product between matrices X ∈ Rm×n and Y ∈ Rp×q , denoted as
X ⊗ Y ∈ Rmp×nq , is mathematically defined as:

X ⊗ Y =

 x11Y · · · x1fY
...

. . .
...

xm1Y · · · xmfY

 , (5)

where xij shows the element in the ith row and jth column of X .

We assign a module-specific kernel K ∈ Rd×r to each module in the model (see Figure 3(c)). By
applying the Kronecker product, we expand the shared parameter As ∈ Rr×m

k and Bs ∈ Rn
k ×r to

match the size At ∈ Rr×m and Bt ∈ Rn×r of the target module. Here, r is the rank value set for
the shared parameter. Finally, according to our Kronecker Extension, ∆W is calculated as:

∆W = (KB ⊗Bs)(KA ⊗As) , (6)
where KB ∈ Rk×1 and KA ∈ R1×k represent module-specific kernel for the B and A matrices in
the LoRA module. Algorithm 3 provides the pseudocode for Kronecker Extension.

4 EXPERIMENTS

4.1 SETTINGS

LLMs. To demonstrate how Bi-Share LoRA performed on different models, we conduct experi-
ments on Llama families (Touvron et al., 2023): Llama 1 and Llama 3. In particular, we fine-tune
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Table 2: Results of Zero-shot performance on Llama 1-7B, Llama 3-8B, and Llama 1-13B in Bi-
Share LoRA and baselines on Commonsense Reasoning benchmark. We report the number of train-
able parameters (# params) and the corresponding ratio for each method.

Methods # params ratio OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.
L

la
m

a
1-

7B

LoRAr=8 14.02M 0.21% 44.80 47.10 77.35 76.47 80.25 69.77 77.98 48.21 65.24
VeRAr=64 0.89M 0.01% 44.60 44.80 76.47 75.88 79.27 70.24 75.14 46.37 64.09
VB-LoRAr=4 2.49M 0.04% 46.00 47.35 77.28 77.44 79.98 70.48 76.79 48.77 65.51
Bi-Share-LoRA (SS) 7.03M 0.10% 46.20 46.93 77.23 76.77 80.52 69.85 78.13 49.39 65.63
Bi-Share-LoRA (GT) 8.22M 0.12% 45.20 47.27 77.47 77.06 80.14 70.17 78.93 48.93 65.64
Bi-Share-LoRA (KE) 3.66M 0.05% 45.40 47.87 77.32 77.57 80.20 70.24 77.52 48.62 65.59

L
la

m
a

3-
8B

LoRAr=8 14.16M 0.18% 46.20 57.34 80.04 82.95 81.88 73.72 82.32 48.67 72.42
VeRAr=64 0.80M 0.01% 45.00 54.01 79.27 80.51 81.23 73.32 81.07 47.34 70.96
VB-LoRAr=4 2.51M 0.03% 46.40 56.06 79.85 81.27 81.39 74.51 81.62 46.93 71.66
Bi-Share-LoRA (SS) 7.67M 0.10% 46.40 57.17 79.96 82.95 81.94 74.74 83.09 49.03 72.70
Bi-Share-LoRA (GT) 8.03M 0.10% 46.20 56.83 79.89 82.87 81.94 74.27 82.97 48.36 72.45
Bi-Share-LoRA (KE) 3.83M 0.05% 46.40 56.57 80.04 83.08 82.15 73.64 82.60 48.98 72.44

L
la

m
a

1-
13

B LoRAr=8 21.95M 0.17% 45.40 51.71 80.21 79.21 80.90 72.69 81.13 48.87 67.52
VeRAr=128 1.40M 0.01% 44.80 47.87 79.30 77.61 80.25 72.85 78.07 46.88 65.95
VB-LoRAr=8 3.88M 0.04% 47.20 51.11 80.91 78.66 80.58 72.38 80.18 49.49 67.56
Bi-Share-LoRA (SS) 10.13M 0.08% 45.80 51.28 80.11 79.21 80.74 72.69 81.59 49.13 67.57
Bi-Share-LoRA (GT) 12.14M 0.9% 46.00 51.02 80.11 79.04 80.90 72.53 80.95 48.72 67.41
Bi-Share-LoRA (KE) 5.94M 0.05% 45.00 51.79 80.32 79.21 80.74 72.85 80.83 48.93 67.46

the 7B and 13B models of Llama 1 and 8B model of Llama 3, with the specific versions detailed in
Appendix A.13.

Benchmark. We conduct experiments for these LLMs on two different benchmarks. The first
benchmark is Commonsense Reasoning, which includes BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy
(Clark et al., 2018), ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov et al., 2018), and
SIQA (Sap et al., 2019). The second benchmark is Massively Multitask Language Understanding
(MMLU) (Hendrycks et al., 2021). Dataset details are presented in Appendix A.14. We employed
lm-eval-harness (Gao et al., 2023) to create open prompts for the benchmarks and produce the re-
sults.

Baselines. We compare against several recently proposed LoRA-based PEFT methods: (1) LoRA
(Hu et al., 2022), we set the rank to 8 for the standard LoRA to fine-tune the model. (2) VeRA
(Kopiczko et al., 2024), we adopt the default setting where the rank is set as 64. (3) VB-LoRA Li
et al. (2024), we follow the setting of VB-LoRA, where the vector length is set to 256 and there are
90 vectors to be trained. Moreover, we set the k of the top-k to 2.

Fine-tuning Dataset. We utilized publicly available samples from the Alpaca dataset (Taori et al.,
2023) 1 to further fine-tune the LLM, which contains 52k instruction-following demonstrations gen-
erated by OpenAI’s text-davinci-003 engine.

Hyper-parameters and Training Details. We apply the LoRA weights to the Wq , Wk, Wv ,
Wup, and Wdown modules of each Transformer block. For each shape transformation method,
we set different rank configurations r = {rlocal, rintra, rinter}, We set r = {2, 4, 32} for Slice
Share (SS). We set the shape of shared weights for Gate Transformation (GT) to (1024, rshare)
and r = {2, 8, 16}. For the Kronecker Extension (KE), we set r = {2, 4, 16} to adapt the shared
weights’ shape of (256, rshare). We use the same training configurations to fine-tune the LLM
with Bi-Share LoRA and baseline methods. Specifically, we use AdamW (Loshchilov, 2017) as the
optimizer with 100 warm-up steps and a learning rate of 1× 10−4 and set the batch size to 64. For
all the experiments, we train for one epoch.

4.2 RESULTS ON COMMONSENSE REASONING

We evaluate the zero-shot performance of Bi-Share LoRA on Commonsense Reasoning tasks using
Llama 1-7B, Llama 3-8B, and Llama 1-13B models. In Table 2, the results show that Bi-Share
LoRA consistently outperforms the baselines in terms of average performance across these datasets.

1https://huggingface.co/datasets/yahma/alpaca-cleaned
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Table 3: Results of zero-shot and five-shot performance on Llama 1-7B, Llama 3-8B, and Llama
1-13B in Bi-Share LoRA and baselines on MMLU benchmark. We report the number of trainable
parameters (# params) and the corresponding ratio for each method.

Method # params ratio MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

L
la

m
a

1-
7B

LoRAr=8 14.02M 0.21% 34.67 31.24 37.21 39.36 35.62 34.86 32.57 40.36 40.81 37.15
VeRAr=64 0.89M 0.01% 32.22 28.32 32.40 36.72 32.42 33.58 31.27 38.58 38.85 35.57
VB-LoRAr=4 2.49M 0.04% 30.10 28.51 29.25 33.31 30.29 34.11 30.54 40.14 40.52 36.33
Bi-Share-LoRA (SS) 7.03M 0.10% 36.34 32.98 40.59 42.55 38.12 36.62 33.46 42.48 43.35 38.98
Bi-Share-LoRA (GT) 8.22M 0.12% 36.30 32.92 40.75 42.13 38.03 35.15 32.19 41.44 41.94 37.68
Bi-Share-LoRA (KE) 3.66M 0.05% 35.56 32.00 38.12 40.01 36.42 35.32 32.41 41.40 41.29 37.61

L
la

m
a

3-
8B

LoRAr=8 14.16M 0.18% 56.77 53.89 72.77 70.36 63.44 59.81 55.92 76.21 72.10 66.01
VeRAr=64 0.80M 0.01% 54.88 54.17 73.35 70.58 63.25 59.85 55.69 76.15 72.80 66.12
VB-LoRAr=4 2.51M 0.03% 55.83 52.74 71.86 71.00 62.86 59.11 55.22 74.68 72.26 65.32
Bi-Share-LoRA (SS) 7.67M 0.10% 58.53 54.61 73.35 71.29 64.45 59.57 56.26 75.95 72.35 66.04
Bi-Share-LoRA (GT) 8.03M 0.10% 58.30 54.39 73.29 71.48 64.37 59.68 56.23 76.31 72.48 66.18
Bi-Share-LoRA (KE) 3.83M 0.05% 57.98 54.49 73.35 70.84 64.16 59.38 55.98 76.08 72.16 65.90

L
la

m
a

1-
13

B LoRAr=8 21.95M 0.17% 43.66 38.31 54.44 53.33 47.43 45.06 37.46 55.64 55.42 48.39
VeRAr=128 1.40M 0.01% 41.66 36.50 48.75 48.73 43.91 44.23 37.08 53.92 53.59 47.20
VB-LoRAr=8 3.88M 0.04% 41.02 35.81 49.66 49.76 44.06 44.27 37.14 54.27 53.91 47.40
Bi-Share-LoRA (SS) 10.13M 0.08% 44.76 37.46 53.04 53.72 47.24 44.78 37.81 54.50 55.65 48.18
Bi-Share-LoRA (GT) 12.19M 0.09% 43.61 37.77 53.33 53.14 46.96 44.46 37.52 53.88 55.07 47.73
Bi-Share-LoRA (KE) 5.94M 0.05% 44.48 38.98 54.34 54.49 48.07 45.29 37.84 55.25 55.36 48.43

Specifically, the Kronecker Extension (KE) method introduces fewer trainable parameters while
achieving comparable performance to the SS and GT methods, indicating its superior parameter
efficiency. More detailed results can be found in Appendix A.5.1.

4.3 RESULTS ON MMLU BENCHMARK

We evaluate the zero-shot and five-shot performance of Bi-Share LoRA on the MMLU benchmark
using Llama 1-7B, Llama 3-8B, and Llama 1-13B models. The results, as shown in Table 3, demon-
strate that Bi-Share LoRA consistently outperforms the baseline models in terms of average perfor-
mance across both zero-shot and five-shot settings. This highlights the effectiveness of our approach
in diverse scenarios (see more in Appendix A.5.2).

4.4 ANALYSIS

Rank Analysis. According to matrix rank theory, the rank of the sum of two matrices is given by
R(A + B) ≤ R(A) +R(B). This implies that decomposing a large LoRA matrix into multiple
sub-LoRAs does not increase the overall rank of the matrix. Consequently, the rank of the combined
LoRA matrices remains bounded by the sum of their individual ranks. We validate the actual rank
of each module and calculate the average ranks across layers for each Shape Transformation method
using rank configurations of r = {2, 4, 16}. The results, shown in Figure 4(a), indicate that the Slice
Sharing (SS) method achieves a combined rank equal to the sum of local and shared ranks (22), while
the Kronecker Extension (KE) reaches approximately 21.53. In contrast, the Gate Transformation
(GT) method yields rank value equivalent to the local rank plus 2, likely due to one-rank gates
causing some information loss.

Contribution Analysis. We conduct further experiments to explore the contribution of each sub-
LoRA matrix. By setting the rank of one sub-LoRA matrix to 8 and the others to 0, we examine
the individual impact of each component. The Kronecker Extension method is used to reshape the
shared parameters. In Figure 4(b), the results reveal the performance preferences of each component
across datasets. Specifically, the local component of LoRA performs best on HellaSwag, ARC-e,
BoolQ, and SIQA, while the intra-layer shared component excels on PIQA and ARC-c. Overall,
the combination of local, intra-layer, and inter-layer shared parameters yields the best performance
across all datasets.

Extension Analysis. We further analyze the scalability of the Kronecker Extension method. The
shared matrix W ∈ Rn×r can be obtained by applying the Kronecker product to M ∈ Rn

k ×r and
K ∈ Rk×1. By adjusting their shapes to M ∈ Rn

k ×1 and K ∈ Rk×r, the same matrix shape for W
can be achieved. Furthermore, since one dimension is a constant 1, the resulting matrix rank equals
r. To explore its effect, we modify this constant to 2 to test whether it enhances the rank of W . We
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denote configurations as a b, where r 1 means the shared matrix has a dimension r and a module-
specific dimension of 1, while 2 r has a shared dimension of 2 and a module-specific dimension of
r. The results in Figure 4(c) show that modifying the constant improves both expressiveness and
information content. Comparing r 1 and 1 r, we observe that each configuration excels in different
metrics, with r 1 performing better overall while introducing fewer trainable parameters.

(a) Rank Anlysis (b) Contribution Analysis (c) Extension Analysis

Figure 4: Analysis. (a) Rank Analysis: the final rank benefit from different Shape Transformation
methods. (b) Contribution Analysis: the different contribution across the sharing weights and local
weights. (c) Extension Analysis: the rank extension analysis for different shape of share weights’
size and kernel size.

4.5 ABLATION STUDY

We conduct ablation studies to examine the impact of individual components of our method. All sub-
sequent experiments focus on the MMLU (zero-shot) (Hendrycks et al., 2021) and GSM8K (5-shot)
(Cobbe et al., 2021) benchmarks, utilizing the Llama 1-7B model. We also conduct experiments to
examine the impact of different rank allocation in Appendix A.10.

Slicing Method. We evaluate three slicing methods for the shared matrix: top-left slice, bottom-
right slice, and center slice. We adopt the rank configuration of r = {2, 4, 8}. The results are shown
in Table 4. It indicates that the center slice outperforms the other two slice methods both on MMLU
and GSM8K benchmark.

Gate Initialization. We initialize the input and output gates of the Gate Transformation using
three schemes: Kaiming normal, Kaiming uniform, and constant one initialization. The rank config-
urations for different sub-LoRA weights are set for r = {2, 8, 16}. As shown in Table 5, Kaiming
uniform outperforms Kaiming normal initialization. Additionally, the constant ones initialization
leads to gradient explosion or vanishing issues, making it unsuitable for gate initialization.

Initialization of Kronecker Kernel. We apply Kaiming normal, Kaiming uniform, and constant
ones initialization to the Kronecker kernel to examine the impact of different initialization schemes.
We set the ranks of {2, 4, 16} for local, intra, and inter sub-LoRA matrices, respectively. From Table
6, the constant ones initialization performs better on the MMLU benchmark, while the Kaiming
normal initialization outperforms the other two methods on the GSM8K benchmark. Overall, the
Kaiming normal initialization performs best.

Table 4: Split Position
Method MMLU GSM8K

Top-Left 36.27 10.69
Right-Down 35.84 10.92
Center 36.58 11.14

Table 5: Gate Initialization
Matrix Init. MMLU GSM8K

Kaiming Unif. 36.36 11.90
Kaiming Norm. 36.09 10.31
Ones NAN NAN

Table 6: Kernel Initialization
Matrix Init. MMLU GSM8K

Kaiming Unif. 35.34 11.14
Kaiming Norm. 35.15 12.05
Ones 35.84 11.14

Shared Size of Gate and Kronecker kernel. The Gate Transformation (GT) and Kronecker Ex-
tension (KE) methods can flexibly adapt the shared weights to arbitrary shapes for different modules.
We examine various sizes of the shared matrix, setting the rank r = {2, 8, 16}. For the GT, we test

9
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shared matrix sizes of [512, 1024, 2048], while for the KE, we test sizes of [64, 128, 256]. The re-
sults are presented in Table 7 and Table 8. We found that the parameters introduced by GT increase
with the growth of the shared parameter size, which also leads to an improvement in performance
on the MMLU benchmark. However, we observe a decrease in performance on the GSM8K dataset
as the shared parameter size increases. In contrast, the parameters introduced by the KE method
decrease with increasing shared parameter size, while the average performance improves. Overall,
we select the shared parameter size of 1024 for the GT method and 256 for the KE method.

Table 7: Size of Shared weights of GT

Shared Size # params raito MMLU GSM8K

512 7.62M 0.11% 36.03 10.54
1,024 8.22M 0.12% 35.61 10.77
2,048 9.44M 0.13% 34.70 11.90

Table 8: Size of Shared weights of KE

Shared Size # params raito MMLU GSM8K

64 4.07M 0.06% 36.47 10.84
128 3.82M 0.05% 35.34 11.98
256 3.72M 0.05% 37.01 11.22

5 RELATED WORK

5.1 MULTI-LORA ARCHITECTURE

LoRA has demonstrated exceptional resource efficiency and performance in adapting LLMs for
specific tasks, driving the demand for a single model capable of handling multiple tasks (Agiza et al.,
2024). Several approaches have been proposed to improve their multi-task adaptability. In particular,
LoraHub (Huang et al., 2023) assembles LoRA modules trained on different tasks to eliminate the
need for human expertise and assumptions, enabling effective cross-task generalization. Similarly,
MultiLoRA (Wang et al., 2023) improves adaptability by horizontally expanding LoRA modules and
reducing the dominance of top singular vectors observed in LoRA. Building on these advancements,
HydraLoRA (Tian et al., 2024) introduces an asymmetric architecture that shares a common matrix
across tasks while using task-specific matrices for different sub-domains, further enhancing both
fine-tuning and inference efficiency.

5.2 PARAMETER SHARING OF LORA

Recent advances in LoRA-based fine-tuning methods have explored various strategies for sharing
LoRA weights to enhance parameter efficiency across multiple tasks. VeRA (Kopiczko et al., 2024)
proposes sharing random matrices across all layers, reducing the number of parameters, but it results
in some performance trade-offs and increased inference latency due to its high-rank requirements.
In addition, Tied-LoRA (Renduchintala et al., 2024) takes a different approach by sharing LoRA
matrices specifically across query, key, and value projection layers, using additional scaling vectors
to differentiate the modules. However, its requirement for identical matrix shapes limits flexibility.
In contrast, PRoLoRA (Wang et al., 2024) employs an intra-layer sharing mechanism with learn-
able parameters, but it only reduces parameters without capturing global features. Additionally,
VB-LoRA (Li et al., 2024) introduces a “divide-and-share” approach that partitions shared vectors
into a vector bank, addressing the limitations of traditional low-rank decomposition across matrix
dimensions, modules, and layers. However, this approach selects vectors uniformly without ac-
counting for the internal structure of the model, leading to suboptimal utilization of the model’s
internal information

6 CONCLUSION

This paper presents Bi-Share LoRA, a method that enhances the parameter efficiency of large lan-
guage models (LLMs) by combining shared intra-layer, inter-layer parameters, and local parameters.
This approach reduces the number of trainable parameters while boosting model efficiency. Experi-
ments on various Llama models demonstrate that Bi-Share LoRA significantly cuts down parameter
usage by 56.40% and improves average performance by 0.33% on commonsense reasoning tasks
and 2.08% on MMLU benchmark. Overall, Bi-Share LoRA effectively reduces redundancy and
enhances model adaptability across diverse tasks. In the future, we will explore more intelligent pa-
rameter sharing modes that can selectively select different modules or different layers for parameter
sharing, ultimately further improving the performance of the model.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 ETHICS STATEMENT

This paper is built upon pre-trained large language models (e.g., Llama1 and Llama3) and existing
datasets for instruct fine-tuning (e.g., Alpaca). We do not introduce any new data and thus do not
involve human annotation. This paper has no additional ethical concerns beyond a large corpus of
research in LLMs.

8 REPRODUCIBILITY STATEMENT

We have thoroughly elucidated our design and training details throughout the paper to provide a
comprehensive understanding of our methodology. Specifically, the overall sharing architecture is
described in Section 3.1, where we outline how parameters are effectively shared across different
layers and modules. The Shape Transformation methods are detailed in Section 3.2, illustrating
the various techniques employed to adapt shared weights to different configurations. Additionally,
we provide the corresponding pseudocode for these methods in Appendix A.3, allowing readers
to easily follow the implementation details. Furthermore, the hardware and environment used for
our experiments are specified in Appendix A.13, including the specifications of the computing re-
sources and software versions that facilitated our experiments. We also list the specific versions of
the large language models (LLMs) utilized in Appendix A.12, ensuring clarity regarding the mod-
els’ configurations. The training datasets and evaluation benchmarks, crucial for assessing model
performance, are detailed in Section 4.1 and Appendix A.14. This includes a thorough description
of the datasets employed for both training and evaluation phases. Finally, we outline the hyper-
parameters and configurations in Section 4.1, providing insight into the settings that governed the
training process. By compiling these details, we aim to enhance the reproducibility of our work and
assist other researchers in understanding and applying our methods effectively.

REFERENCES

Ahmed Agiza, Marina Neseem, and Sherief Reda. Mtlora: Low-rank adaptation approach for effi-
cient multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16196–16205, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. Proceedings of Machine Learning and Systems, 6:1–13, 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models, 2022.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetun-
ing of quantized llms. In Proceedings of Advances in Neural Information Processing Systems,
volume 36, pp. 10088–10115, 2023.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi Reza-
gholizadeh. Krona: Parameter efficient tuning with kronecker adapter, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 2023.

Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin Chen, Di He, and Xing Xie. Towards a deep
and unified understanding of deep neural models in NLP. In Proceedings of the International
Conference on Machine Learning, volume 97, pp. 2454–2463, 2019.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the International Conference on Machine Learning, volume 97, pp.
2790–2799, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Proceedings of
International Conference on Learning Representations, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Chao Du, Tianyu Pang, and Min Lin. Lo-
rahub: Efficient cross-task generalization via dynamic loRA composition. In Proceedings of
R0-FoMo:Robustness of Few-shot and Zero-shot Learning in Large Foundation Models, 2023.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating
for parameter-efficient fine-tuning, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural Information Processing Systems, volume 34,
pp. 1022–1035, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing loRA using linear combination of random basis. In The Twelfth
International Conference on Learning Representations, 2024.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In Proceedings of International Conference on Learning Representations, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics and the
International Joint Conference on Natural Language Processing, pp. 4582–4597, 2021.

Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
banks, 2024.

Sihao Lin, Pumeng Lyu, Dongrui Liu, Tao Tang, Xiaodan Liang, Andy Song, and Xiaojun Chang.
Mlp can be a good transformer learner. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19489–19498, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on lora of large language models. arXiv preprint arXiv:2407.11046, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Openai. Gpt-4 technical report. 2023. URL https://cdn.openai.com/papers/gpt-4.
pdf.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten Rijke, Zhumin
Chen, and Jiahuan Pei. MELoRA: Mini-ensemble low-rank adapters for parameter-efficient fine-
tuning. In Proceedings of the Annual Meeting of the Association for Computational Linguistics,
pp. 3052–3064, 2024.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter effi-
ciency of lora with weight tying, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense reasoning about social interactions. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, pp. 4463–4473, 2019.

Shuhua Shi, Shaohan Huang, Minghui Song, Zhoujun Li, Zihan Zhang, Haizhen Huang, Furu Wei,
Weiwei Deng, Feng Sun, and Qi Zhang. Reslora: Identity residual mapping in low-rank adaption,
2024.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law of
large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Zehua Sun, Huanqi Yang, Kai Liu, Zhimeng Yin, Zhenjiang Li, and Weitao Xu. Recent advances in
lora: A comprehensive survey. ACM Transactions on Sensor Networks, 18(4):1–44, 2022a.

13

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhenhong Sun, Ce Ge, Junyan Wang, Ming Lin, Hesen Chen, Hao Li, and Xiuyu Sun. Entropy-
driven mixed-precision quantization for deep network design. In Proceedings of Advances in
Neural Information Processing Systems, volume 35, pp. 21508–21520, 2022b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.
URL https://github.com/tatsu-lab/stanford_alpaca.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of Advances
in Neural Information Processing Systems, volume 30, 2017.

Sheng Wang, Boyang Xue, Jiacheng Ye, Jiyue Jiang, Liheng Chen, Lingpeng Kong, and Chuan Wu.
Prolora: Partial rotation empowers more parameter-efficient lora, 2024.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning, 2023.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting large language model for machine
translation: A case study. In Proceedings of International Conference on Machine Learning, pp.
41092–41110, 2023.

14

https://github.com/tatsu-lab/stanford_alpaca


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) is crucial for large language models (LLMs) as it re-
duces computational costs while preserving performance (Ding et al., 2023). Specifically, Adapters
(Houlsby et al., 2019), inserted between layers, allow task-specific fine-tuning with minimal train-
able parameters while keeping most weights fixed. Similarly, Prefix Tuning (Li & Liang, 2021)
adds learnable tokens at each transformer layer to guide task-specific behavior without modifying
core parameters. In contrast, Prompt Tuning (Lester et al., 2021) optimizes a small set of prompts
attached to the input, leaving the model’s architecture unchanged. LoRA (Hu et al., 2022) repa-
rameterizes weight matrices into low-rank forms, significantly reducing trainable parameters while
maintaining performance. Some studies build upon LoRA to further improve and optimize its per-
formance (Shi et al., 2024; Ren et al., 2024; Jiang et al., 2024; yang Liu et al., 2024; Koohpayegani
et al., 2024). Likewise, we propose Bi-Share LoRA, building on LoRA, which shares parameters
both within and across layers to further enhance efficiency and adaptability.

A.2 PARAMETER SIMILARITY

A.2.1 ENTROPY QUANTIFICATION

Information entropy is a key concept in information theory, used to quantify the uncertainty or
randomness within a dataset or signal. It provides a measure of the average information content per
symbol or event in a message or sequence of messages. As defined by Guan et al. (2019), entropy
can be employed to assess the information capacity of a network. Consequently, the entropy of a
given layer can be calculated based on the probability distribution of its features:

H(F ) = −
∫

p(f)logp(f)df, f ∈ F . (7)

Nonetheless, it is difficult to directly measure the probability distribution of a feature map: p(f), f ∈
F . Following (Sirignano & Spiliopoulos, 2020; Sun et al., 2022b), we use the Gaussian distribution
as the probability distribution of the intermediate feature in a layer. Therefore, the entropy of a
certain layer is approximated as the mathematical expectation of F ∼ N (µ, σ2):

H(F ) = −E
[
logN

(
µ, σ2

)]
= −E

[
log

[(
2πσ2

)−1/2
exp

(
− 1

2σ2
(f − µ)2

)]]
= log(σ) +

1

2
log(2π) +

1

2
,

(8)

where σ is the standard deviation of the feature set f ∈ F .

A.2.2 ENTROPY SIMILARITY

The information content of LoRA weight matrices can be measured by their entropy. Two matri-
ces with similar entropy values typically contain similar amounts of information, indicating a high
degree of redundancy. We assess the correlation between different weight matrices by calculating
mutual information, which quantifies the relationship between them and can be computed using the
following formula:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) , (9)
Here, H(X,Y ) represents the entropy of the joint distribution of matrix X and matrix Y . To
compute this, we flatten the matrices X and Y , concatenate them, and then calculate the entropy of
the resulting joint distribution. A large mutual information between two weight matrices indicates
significant overlap in their information, implying redundancy. The calculated mutual information
I(X;Y ) is an absolute value, which needs to be converted into a relative value. Therefore, we
use Relative Mutual Information (RMI) to represent the similarity between matrices, calculated as
follows:

RMI =
I(X;Y )

min(H(X), H(Y ))
(10)
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If RMI > 0.8, the mutual information is considered high, indicating significant redundancy be-
tween the two matrices. If 0.5 < RMI ≤ 0.8, the mutual information is moderate, suggesting
notable shared information but with some degree of independence. If RMI ≤ 0.5, the mutual
information is low, indicating minimal redundancy between the two matrices.

Figure 5: The entropy similarity of LoRA parameters for each module within the same layer (left)
and across different layers (right). It shows that different modules within the same layer exhibit high
entropy similarity, and this high similarity is also present across different layers. This indicates that
LoRA parameters have a significant degree of redundancy.

We fine-tuned the LLaMA-7B model using LoRA with a rank r = 64, isolating the LoRA matrices
and calculating ∆W . The information entropy of ∆W for each module was computed based on
Equation 8, and the Relative Mutual Information (RMI) between modules was calculated as a mea-
sure of similarity using Equations 9 and 10. We obtained the RMI values both within the same layer
and across different layers, with the results shown in Figure 1. We observed that different modules
within the same layer exhibit high entropy similarity, and this similarity also extends across lay-
ers. Additionally, following the method in Lin et al. (2024), we calculated the entropy similarity of
the activation values for each module. As illustrated in Figure 5, the ∆W of different parameter
modules also show high similarity in terms of activation values, further indicating the significant
redundancy in the parameters used in LoRA fine-tuning.

A.3 SHAPE TRANSFORMATION ALGORITHMS

We provide detailed pseudocode for each of the Shape Transformation methods used in Bi-Share
LoRA. Specifically, Algorithm 1 outlines the steps for the Slice Sharing method, which slices larger
matrices to adapt to different parameter dimensions. Algorithm 2 demonstrates the Gate Trans-
formation method, which utilizes input and output gates to dynamically adjust shared parameters
for varying module shapes. Finally, Algorithm 3 explains the Kronecker Extension method, which
expands shared matrices using Kronecker products to maintain consistency across modules with di-
verse dimensions. These algorithms collectively contribute to enhancing parameter efficiency and
flexibility in model fine-tuning.

A.4 PARAMETER COUNT ANALYSIS

In this section, we compare the number of parameters of Bi-Share LoRA with the standard LoRA.
Considering an LLM with L layers, where each layer contains M modules with hidden dimension
d, the number of trainable parameters is equal to the model size (i.e., LMd2) in full fine-tuning.
LoRA reduces this number to 2LMdr, where r is the rank of two low-rank decomposed matrices.
In Bi-Share LoRA, the trainable parameters consist of two parts: local parameters L, computed
as 2LMdrlocal, and shared parameters, which include intra-parameter sharing Sintra and inter-
parameter sharing Sinter. Therefore, the stored parameters can be represented by a triplet Θ =
{L,Sintra,Sinter}. Note that the different Shape Transformation methods would result in different
parameters of Sintra and Sinter.
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Algorithm 1 Pseudocode of Slice Sharing.
Input: The rank of shared weights r and the input x;
Output: The output calculated by shared weights;

1: # Initialize the Shared weights:
2: mdin, mdout← Find max InFeatures and OutFeatures across all modules;
3: A ∈ Rr×mdin ← Normal Randomly Initialization;
4: B ∈ Rmdout×r ← Zero Initialization;
5:
6: # Training and Inference Stage:
7: din, dout← InFeatures and OutFeatures of current module;
8: ∆W ←B[: dout, :]A[:, : din]
9: result← ∆Wx

10:
11: return result

Algorithm 2 Pseudocode of Gate Transformation.
Input: The rank of shared weights r and the input x;
Output: The output calculated by shared Weights;

1: # Initialize the Shared Weights:
2: dins, douts← InFeatures and OutFeatures of shared weights;
3: As ∈ Rr×dins ← Normal Randomly Initialization;
4: Bs ∈ Rdouts×r ← Zero Initialization;
5:
6: # Initialize Gate weights:
7: din, dout← InFeatures and OutFeatures of current module;
8: Gid ∈ R1×din ← Uniform Randomly Initialization;
9: Giu ∈ Rdins×1 ← Uniform Randomly Initialization;

10: God ∈ R1×douts ← Uniform Randomly Initialization;
11: Gou ∈ Rdout×1 ← Uniform Randomly Initialization;
12:
13: # Training and Inference Stage:
14: Gi ∈ Rdins×din ← GiuGid;
15: Go ∈ Rdout×douts ←GouGod;
16: ∆W ← GoBsAsGi

17: result← ∆Wx
18:
19: return result

Slice Sharing. The parameters of S in Slice Sharing are shared across all modules. Specifically,
the parameters of intra-sharing Sintra = 2Ldrintra, and the parameters of inter-sharing Sintra =
2drinter.

Gate Transformation. Different modules within and between layers share the parameters with the
hidden dimension of ds. Besides, each module contains an input gate and an output gate to transform
the dimensions. Specifically, the parameters of intra-sharing Sintra = 2(Ldsrintra +M(d+ ds))),
and the parameters of inter-sharing Sintra = 2(dsrinter +ML(d+ ds)).

Kronecker Extension. Different modules within and between layers share the parameters with the
hidden dimension of ds. Besides, each module contains a Kronecker kernel K ∈ R1×k to transform
the dimensions. Specifically, the parameters of intra-sharing Sintra = 2L(dsrintra +Mk), and the
parameters of inter-sharing Sintra = 2(dsrinter + 2MLk).
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Algorithm 3 Pseudocode of Kronecker Extension.
Input: The rank of shared weights r and the input x;
Output: The output calculated by shared weights;

1: # Initialize the Shared Weights:
2: dins, douts← InFeatures and OutFeatures of shared weights;
3: As ∈ Rr×dins← Normal Randomly Initialization;
4: Bs ∈ Rdouts×r ← Zero Initialization;
5:
6: # Initialize Kernel weights:
7: din, dout← InFeatures and OutFeatures of current module;
8: ka← dins // r;
9: kb← douts // r;

10: KA ∈ R1×ka ← Uniform Randomly Initialization;
11: KB ∈ Rkb×1← Uniform Randomly Initialization;
12:
13: # Training and Inference Stage:
14: A ∈ Rr×di ←KA ⊗As;
15: B ∈ Rdo×r ←KB ⊗Bs;
16: ∆W ← BA
17: result← ∆Wx
18:
19: return result

A.5 EXPERIMENTS

A.5.1 RESULTS ON COMMONSENSE REASONING

We evaluate Bi-Share LoRA for zero-shot performance on Commonsense Reasoning tasks using
Llama 1-7B, Llama 1-13B, and Llama 3-8B. The results are shown in Table 2. We observe that
Bi-Share LoRA consistently outperforms the baselines in terms of the average performance of
Commonsense Reasoning datasets. Specifically, the Gate Transformation (GT) method of Bi-Share
LoRA achieves the best average performance on the Llama 1-7B, while the Slice Sharing (SS)
method achieves the best average performance on the Llama 3-8B. Furthermore, Bi-Share LoRA
outperforms the baselines on 7 out of 8 datasets on Llama 1-7B, and 5 out of 8 datasets on Llama
3-8B. It is worth noting that large improvements are achieved on ARC-e, PIQA, BoolQ, and SIQA
datasets. Bi-Share LoRA also achieves decent performance on the remaining datasets, including
OBQA, HellaSwag, and WinG, which proves that Bi-Share LoRA is stable and reliable across differ-
ent datasets. Compared to the standard LoRA with a rank of 8, Bi-Share LoRA can save about 50%
trainable parameters and achieve better performance. Specifically, the Kronecker Extension (KE)
method introduces fewer trainable parameters, meanwhile outperforms the baselines, and achieves
on-par performance with tha SS and GT methods, indicating the more parameter-efficient method.

A.5.2 RESULTS ON MMLU BENCHMARK

We evaluate Bi-Share LoRA for zero-short and five-shot performance of MMLU tasks based on
Llama 1-7B, Llama 1-13B, and Llama 3-8B. We demonstrate the results in Table 3. From the result,
We observe that Bi-Share LoRA consistently outperforms the baselines in terms of the average
performance of MMLU datasets both on zero-shot and five-shot. Specifically, the Slice Sharing (SS)
method of Bi-Share LoRA achieves the best average performance on the Llama 1-7B, while the Gate
Transformation (GT) method achieves the best average performance on the Llama 3-8B. Notice that,
the SS method on Llama 1-7B achieves the best performance on 9 out of 10 metrics and achieves
the second-best performance for the remaining one. Furthermore, the GT and Kronecker Extension
(KE) Bi-Share LoRA achieve the second-best performance than SS and consistently outperform
the baselines. Compared to the standard LoRA with a rank of 8, Bi-Share LoRA can save about
50% trainable parameters and achieve better performance. Specifically, the KE method outperforms
the baselines and achieves on-par performance with the SS and GT methods, indicating the most
parameter-efficient method.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 EXPERIMENTS ON QWEN MODEL

To further demonstrate the effectiveness of Bi-Share LoRA, we also conduct experiments on QWen
2.5-7B (Yang et al., 2024)with the specific versions detailed in Appendix A.12. We fine-tune the
QWen 2.5-7B model on the Alpaca dataset, and evaluation its performance on the Common Reason-
ing task datasets, the experiment results are shown in Table 9.

Table 9: Results of Zero-shot performance on Qwen 2.5-7B, in Bi-Share LoRA and baselines on the
Commonsense Reasoning benchmark. We report the number of trainable parameters (# params) and
the corresponding ratio for each method.

Methods # params ratio OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

Q
W

en
2.

5-
7B

LoRAr=8 14.16M 0.18% 44.00 47.27 71.34 76.68 77.09 67.48 84.83 49.54 64.78
VeRAr=64 0.80M 0.01% 48.20 51.45 79.54 79.59 78.45 68.82 85.90 50.36 67.79
VB-LoRAr=4 2.51M 0.03% 48.20 52.30 79.57 79.38 78.45 70.24 85.69 50.56 68.05
Bi-Share-LoRA (SS) 7.67M 0.10% 45.60 55.55 79.09 80.98 79.16 70.17 86.39 51.02 68.49
Bi-Share-LoRA (GT) 8.03M 0.10% 45.00 51.45 73.96 80.22 78.18 70.24 85.47 50.67 66.90
Bi-Share-LoRA (KE) 3.83M 0.05% 47.00 53.67 77.68 79.88 79.82 69.85 86.18 50.15 68.03

A.7 EXPERIMENTS ON FLAN V2 DATASET

To further demonstrate the effectiveness of Bi-Share LoRA, we also conduct experiments on Llama
3-8B on the FLAN V2 instruction dataset Chung et al. (2022) 2, which is an another dataset for
instruction tuning. We conduct eperiments on the Chain Of Thought task and evaluation its per-
formance on the Common Reasoning task datasets, the experiment results are shown in Table 10.

Table 10: Results of Zero-shot performance on Llama 3-8B, in Bi-Share LoRA and baselines on
Commonsense Reasoning benchmark. We report the number of trainable parameters (# params) and
the corresponding ratio for each method.

Methods # params ratio OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

L
la

m
a

3-
8B

LoRAr=8 14.16M 0.18% 45.40 53.41 79.20 80.43 79.82 74.35 83.27 47.39 67.91
VeRAr=64 0.80M 0.01% 44.80 53.92 79.14 79.92 79.54 72.69 80.95 47.03 67.25
VB-LoRAr=4 2.51M 0.03% 44.00 54.01 78.72 80.26 78.62 74.66 81.19 46.01 67.18
Bi-Share-LoRA (SS) 7.67M 0.10% 46.60 56.23 79.00 81.14 80.79 74.27 83.52 48.77 68.79
Bi-Share-LoRA (GT) 8.03M 0.10% 45.20 55.38 79.22 81.99 81.28 74.98 83.21 48.52 68.72
Bi-Share-LoRA (KE) 3.83M 0.05% 44.40 55.03 79.11 82.41 81.18 74.90 84.10 49.54 68.83

A.8 ANALYSIS

A.9 CONTRIBUTION ANALYSIS

We further investigate how performance is affected when intra-layer and inter-layer parameter shar-
ing are applied independently under different rank settings. Using the LLaMA 1-7B model fine-
tuned on the Alpaca dataset, we configured various shared rank settings for different shape transfor-
mation modalities and evaluated the results on the CommonSense task. The findings, presented in
Tabke 11, demonstrate that intra-layer sharing alone outperforms inter-layer sharing alone in terms
of performance. However, inter-layer sharing is significantly more parameter-efficient, achieving
comparable results with fewer parameters. This trade-off underscores the complementary benefits
of combining both strategies.

Additionally, we observed that using the GT approach to increase the rank for either intra-layer
or inter-layer sharing alone does not lead to significant performance improvements and may even
degrade performance. In contrast, for the SS and KE methods, increasing the rank consistently
enhances model performance, further emphasizing the benefits of tailored sharing strategies.

A.10 RANK ALLOCATION

We designed comparative experiments to explore the impact of adjusting different rank ratios on
fine-tuning performance. Specifically, we varied the rank value of one sub-LoRA module while

2https://huggingface.co/datasets/BEE-spoke-data/flan-v2-hf
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Table 11: Different configurations of ranks for our Bi-Share LoRA. Boldface denotes the best results
in terms of the corresponding metrics, and underline means the second-best performance.

Method Mode Ranks OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

Adjust intra

SS 0,8,0 45.00 47.70 77.32 76.64 80.25 70.01 78.10 48.41 65.43
SS 0,16,0 45.20 47.10 77.31 77.02 80.14 70.09 78.01 48.82 65.46
SS 0,32,0 45.40 47.35 77.18 76.47 80.09 69.69 78.50 49.18 65.48
GT 0,8,0 43.20 45.99 76.52 75.63 79.11 69.85 74.98 46.16 63.93
GT 0,16,0 43.80 45.48 75.71 75.55 79.38 69.53 74.16 45.70 63.66
GT 0,32,0 43.60 44.88 76.03 75.34 79.00 70.01 73.00 46.11 63.50

KE 0,8,0 45.40 48.04 77.16 76.35 80.20 70.72 75.90 46.78 65.07
KE 0,16,0 45.80 46.93 77.48 76.73 80.03 70.56 75.93 47.44 65.11
KE 0,32,0 45.20 47.10 77.53 76.39 79.82 70.24 75.96 47.13 64.92

Adjust inter

SS 0,0,8 44.60 48.29 77.23 77.02 80.20 69.85 77.74 48.31 65.40
SS 0,0,16 44.40 48.72 77.35 76.64 80.09 70.32 78.23 47.95 65.46
SS 0,0,32 44.40 47.78 77.36 76.94 80.03 70.80 78.75 48.21 65.53
GT 0,0,8 44.40 45.56 76.41 75.67 79.38 69.85 75.84 45.75 64.11
GT 0,0,16 44.00 46.33 76.87 76.14 79.11 69.30 74.40 46.93 64.13
GT 0,0,32 44.40 44.97 76.00 72.73 79.11 69.38 75.11 45.75 63.43

KE 0,0,8 43.80 45.65 75.70 75.63 79.38 70.01 75.66 46.47 64.04
KE 0,0,16 45.80 46.93 76.59 76.77 79.16 70.64 76.57 47.75 65.03
KE 0,0,32 46.00 45.56 76.17 76.30 79.16 70.01 76.79 47.80 64.72

keeping the ranks of the other two fixed. We conducted experiments on the rank configurations for
local, intra-sharing, and inter-sharing. The results are shown in Table 12. Assigning a lower rank to
the local component and a higher rank to the shared parameters yielded better performance, further
illustrating the redundancy in the standard LoRA parameters.

Table 12: Different configuration of ranks for our Bi-Share LoRA (KE). Boldface denotes the best
results in terms of the corresponding metrics, and underline means the second-best performance.

Method Ranks OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

Adjust local

2,4,16 45.00 47.78 77.45 76.85 79.92 69.69 78.07 48.57 65.42
4,4,16 44.80 47.61 77.35 77.02 80.30 69.50 77.74 48.31 65.33
8,4,16 44.80 47.70 77.33 77.19 80.30 69.53 77.80 48.82 65.43
16,4,16 44.60 47.18 77.38 76.68 80.20 69.69 78.16 48.52 65.30

Adjust intra

2,2,16 45.40 46.93 77.43 76.56 80.14 69.77 78.20 48.93 65.42
2,4,16 45.00 47.78 77.45 76.85 79.92 69.69 78.07 48.57 65.42
2,8,16 44.80 47.44 77.36 77.06 79.43 70.24 77.43 48.52 65.29
2,16,16 45.20 46.84 77.38 76.52 80.41 69.61 78.38 48.77 65.39

Adjust inter

2,4,8 45.40 47.01 77.32 76.73 80.09 70.17 78.17 48.41 65.41
2,4,16 45.00 47.78 77.45 76.85 79.92 69.69 78.07 48.57 65.42
2,4,32 44.20 47.35 77.28 76.94 79.92 70.48 77.86 48.31 65.29
2,4,64 44.80 46.67 77.31 76.89 80.30 69.93 77.77 48.36 65.26

A.11 MULTI-LORA SERVING ANALYSIS.
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Figure 6: Memory usage comparison of
LoRA and Bi-Share LoRA (GE) for serving
different numbers of tasks.

In a multi-LoRA deployment, tasks share a common
pre-trained model, adapted to each task by loading
specific LoRA parameters. Typically, all LoRA pa-
rameters are preloaded into GPU memory to mini-
mize task-switching latency and maximize GPU uti-
lization. However, with many tasks, only frequently
used parameters remain in GPU memory, while oth-
ers are stored on the CPU, causing delays during fre-
quent task switching. To mitigate this, we reduce
the parameter size through sharing, allowing more
parameters to fit in GPU memory.

We conducted a comparative experiment to ana-
lyze the GPU memory footprint of deploying differ-
ent numbers of downstream tasks using the Llama
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model. Specifically, we deployed a Llama 1-7B base model on an A100 80G GPU and measured
the memory usage for 100 to 1500 LoRA parameters and Bi-Share LoRA (GE) parameters during
inference. The results, shown in Fig 6, indicate that Bi-Share LoRA reduces memory usage by ap-
proximately 60% compared to standard LoRA under the same number of parameters. Furthermore,
when deploying more than 1200 LoRA parameters, the memory usage exceeds the GPU’s capacity.
Furthermore, to determine the maximum deployment capacity, we incrementally added parameters
until the memory limit was reached. Our findings reveal that standard LoRA can load up to 1207 pa-
rameters, while Bi-Share LoRA supports up to 3878, significantly enhancing deployment efficiency.

A.12 LLM VERSIONS.

We provide the Hugging Face link of LLMs used in the experiment: Llama 1-7B:
https://huggingface.co/baffo32/decapoda-research-llama-7B-hf; Llama
3-8B: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B. Llama 1-
13B: https://huggingface.co/yahma/llama-13b-hf. Qwen2.5-7B: https://
huggingface.co/Qwen/Qwen2.5-7B-Instruct

A.13 SOFTWARE AND HARDWARE CONFIGURATION.

Our implementation utilizes the following configurations: PyTorch version 2.1.2, Transformers li-
brary version 4.41.0, PEFT (Parameter-Efficient Fine-Tuning) library version 0.11.1, CUDA version
12.4, GPU: NVIDIA V100 GPU with 32GB of memory, NVIDIA A100 GPU with 80GB, Operating
System: Ubuntu.

A.14 DATASETS AND BENCHMARKS

BoolQ (Clark et al., 2019) is a dataset for yes/no question answering. It consists of naturally
occurring questions paired with passages extracted from Wikipedia. It is part of the SuperGLUE
benchmark, a suite of challenging NLP tasks. It is used to assess a model’s ability to perform
reading comprehension and binary classification based on the context provided.

PIQA (Bisk et al., 2020) is a dataset designed to evaluate commonsense reasoning about physical
interactions. It contains multiple-choice questions related to everyday physical tasks, asking models
to choose the most plausible way of completing or describing an action. It is used as a benchmark
for evaluating the commonsense reasoning abilities of language models, particularly in the context
of tasks requiring physical understanding.

HellaSwag (Zellers et al., 2019) is a large-scale dataset for evaluating commonsense reasoning
and natural language inference. The task involves selecting the most plausible continuation of a
given story or event description from multiple choices. It is used to benchmark models on their
ability to perform commonsense reasoning, particularly in cases where the correct answer requires
understanding context, sequencing, and implications.

WinoGrande (Sakaguchi et al., 2021) is a large-scale dataset for commonsense reasoning, specif-
ically designed to address the limitations of the Winograd Schema Challenge. The task involves
resolving pronoun references in sentences, where the correct interpretation requires commonsense
knowledge. It is used as a benchmark for evaluating models on their ability to perform pronoun
resolution and commonsense reasoning.

ARC-easy (Clark et al., 2018) and ARC-challenge (Clark et al., 2018) are part of the AI2 Rea-
soning Challenge, designed to evaluate a model’s ability to answer multiple-choice questions that
require complex reasoning and background knowledge. They are used as a benchmark for testing ad-
vanced question-answering systems, especially those requiring sophisticated reasoning, knowledge
integration, and inference capabilities.

OpenbookQA (Mihaylov et al., 2018) is a multiple-choice question-answering dataset that focuses
on elementary science questions. The dataset comes with an ”open book” of scientific facts, and
models must combine this knowledge with reasoning to answer the questions correctly. It is used
as a benchmark for evaluating a model’s ability to perform open-domain question answering, where
success requires not just knowledge retrieval but also reasoning and application of that knowledge.
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Social QA (Sap et al., 2019) , often abbreviated as SIQA, is composed of question-answer pairs that
simulate real-world information-seeking dialogues. This dataset is designed to assess the capability
of models to engage in information-seeking conversations, where the model must ask clarifying
questions to a human user to gather information and then provide an answer to the original query.

MMLU (Hendrycks et al., 2021) is a benchmark designed to assess a model’s world knowledge and
problem-solving abilities across a wide range of subjects. It evaluates models in both zero-shot and
few-shot settings, making the tasks more challenging and aligned with human evaluation methods.
The benchmark spans 57 subjects, including STEM, humanities, social sciences, and other fields,
with difficulty levels ranging from elementary to advanced professional. Each question presents four
answer choices, and the task is to predict the correct one based on the given instruction.
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