
ReLax: An Efficient and Scalable Recourse
Explanation Benchmarking Library using JAX

Anonymous Author(s)
Affiliation
Address
email

Abstract

Despite the progress made in the field of algorithmic recourse, current research1

practices remain constrained, largely restricting benchmarking and evaluation2

of recourse methods to medium-sized datasets (approximately 50k data points)3

due to the severe runtime overhead of recourse generation. This constraint4

impedes the pace of research development in algorithmic recourse and raises5

concerns about the scalability of existing methods. To mitigate this problem,6

we propose ReLax, a JAX-based benchmarking library, designed for efficient7

and scalable recourse explanations. ReLax supports a wide range of recourse8

methods and datasets and offers performance improvements of at least two9

orders of magnitude over existing libraries. Notably, we demonstrate that10

ReLax is capable of benchmarking real-world datasets of up to 10M data points,11

roughly 200 times the scale of current practices, without imposing prohibitive12

computational costs. ReLax is fully open-sourced and can be accessed at13

https://github.com/BirkhoffG/jax-relax.14

1 Introduction15

The field of algorithmic recourse and counterfactual (CF) explanation1 [46, 43, 34, 25] gains16

increasing attention from the research community as recourse explanations are often favored by17

human end-users by providing a contrastive case to individuals adversely impacted by algorithm-18

driven decisions. For instance, recourse methods can provide suggestions for loan applicants19

who have been rejected by a bank’s ML algorithm, or provide actionable recommendations for20

teachers engaging with students teetering on the edge of school dropout.21

Numerous recourse explanation methods have been recently proposed [46, 34, 43, 42, 48, 19,22

24, 45, 40]. However, despite the progress made, current research practices often restrict23

the evaluation of recourse explanation methods on medium-sized datasets (with under 50k24

data points). This constraint primarily stems from the excessive runtime overhead of recourse25

generation by the existing open-source recourse libraries [36, 34, 27]. For instance, as shown26

in Figure 1, the CARLA library [36], a popular recourse explanation library, requires roughly27

30 minutes to benchmark the adult dataset containing ∼32,000 data points. At this speed, it28

would take CARLA approximately 15 hours to benchmark a dataset with one million samples,29

and nearly one week to benchmark a dataset with a scale of 10 million. As a result, this severe30

runtime overhead hinders the large-scale analysis of recourse explanations, impedes the pace31

of research development of new recourse methods, and raises concerns about the scalability of32

existing methods being deployed in data-intensive ML applications.33

1It is worth noting that counterfactual explanation [46], algorithmic recourse [43], and contrastive
explanation [12] share close connections [45, 40], which leads us to use these terms interchangeably.

Submitted to the Workshop “XAI in Action: Past, Present, and Future Applications” at the 37th
Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://github.com/BirkhoffG/jax-relax

VanillaCF (490.73×)

101

102

103

R
u

n
ti

m
e

(s
ec

on
d

s)

3.85
4.67

1890.35
ReLax-GPU

ReLax-CPU

CARLA

DiverseCF (654.48×)

101

102

103

3.38

6.47

2209.42
ReLax-GPU

ReLax-CPU

DiCE

ProtoCF (404319.54×)

101

102

103

104

105

106

2.51

11.36

1012899.63
ReLax-GPU

ReLax-CPU

alibi

Figure 1: Runtime comparison of benchmarking the adult dataset between ReLax and three
open-source recourse librarires (CARLA [36], DiCE [34], and alibi [27]). ReLax outperforms
existing libraries with at least two orders of magnitude speed-up in recourse generations.

Contributions In this paper, we present ReLax (Recourse Explanation Library using Jax), an34

efficient and scalable benchmarking library for recourse and counterfactual explanations. We show35

that by leveraging language primitives such as vectorization, parallelization, and JIT compilation36

in JAX [9, 16], ReLax achieves over two orders of magnitude speed up than existing libraries (as37

shown in Figure 1). Notably, we demonstrate that ReLax is capable of benchmarking real-world38

with 10 million data points, roughly 200 times the scale of current research practices, without39

imposing prohibitive computational costs. Our primary contributions are summarized as follows:40

• (Fast and Scalable System) We propose ReLax, the first JAX-based library for recourse41

explanation, enabling efficient and scalable recourse generation. ReLax is at least two order-42

of-magnitudes faster than the existing recourse explanation libraries (shown in Figure 1). We43

further demonstrate that ReLax can real-world datasets of up to 10M data points with a44

reasonable amount of computational cost.45

• (Comprehensive set of Methods) ReLax supports a diverse set of recourse methods and46

datasets. Notably, we implement eight recourse explanation methods in JAX ranging from47

non-parametric, semi-parametric, and parametric recourse explanation methods. In addition,48

we include 14 medium-sized datasets, and one large-scale dataset.49

• (Extensive Experiments) We perform comprehensive experiments on both medium-sized and50

large-sized datasets. Our experimental results present an open research challenge in optimally51

balancing the trade-off between cost and invalidity.52

• (Open-sourced System) We have made ReLax fully open-sourced at https://github.com/53

BirkhoffG/jax-relax, allowing for the reproduction of our experiments and facilitating54

rapid and scalable benchmarking for newly proposed recourse methods.55

2 ReLax: Towards Efficient and Scalable Recourse Benchmarking56

In this section, we provide an overview of ReLax’s design. First, We introduce the preliminaries57

of recourse explanations. Next, we delve into the design of ReLax to enable efficient and scalable58

recourse explanation benchmarking. Finally, We describe the complete benchmarking process.59

2.1 Preliminaries & Problem Formulation60

We consider an ML model denoted as f : Rd → [0, 1], which is trained on a set of N input61

data points represented as D = (x1, y1), ..., (xN , yN), and predict a binary label. Given an input62

instance x and the ML model f , a recourse explanation method finds a counterfactual example63

(or recourse) xcf that leads to the ML model providing the opposite prediction compared to the64

original instance x (i.e., f(xcf; θ) = 1− f(x; θ)), while ensuring a minimal cost of change (i.e.,65

the "distance" c(x, xcf) between x and xcf is minimized). To generate valid recourse explanations,66

existing methods can be broadly classified into three categories: non-parametric, semi-parametric,67

and parametric methods.68

2

https://github.com/BirkhoffG/jax-relax
https://github.com/BirkhoffG/jax-relax
https://github.com/BirkhoffG/jax-relax

Recourse
Generation

𝑥𝑥2

𝑥𝑥2cf

Recourse
Generation

𝑥𝑥1

𝑥𝑥1cf

… Recourse
Generation

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛cf

(a) Sequential recourse genera-
tion: Generate recourse explana-
tions one after another.

Recourse
Generation

𝑥𝑥2

𝑥𝑥2cf

Recourse
Generation

𝑥𝑥1

𝑥𝑥1cf

… Recourse
Generation

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛cf

(b) Vectorized recourse genera-
tion: Vectorization for efficiency
on a single device.

Recourse Generation

Recourse Generation

…

…

Recourse Generation

Recourse Generation

…

De
vi

ce
K

De
vi

ce
1

(c) Parallelized recourse genera-
tion: Utilizing multiple computing
devices (e.g., GPUs) at scale.

Figure 2: Illustration of three recourse generation processes supported in ReLax. (a) Sequential
generation strategy generates each recourse explanation one after another, which can be pro-
hibitively slow. (b) Vectorized generation strategy enables modern hardware to perform SIMD,
which considerably reduces the runtime overhead for large datasets. (c) Parallelized generation
strategy distributes data to multiple devices (e.g., multiple GPUs) for benchmarking at scale.

Non-parametric methods [46, 43, 34, 44, 25, 42] generate recourse explanations xcf by69

independently solving the underlying optimization problem for every single input instance x:70

xcf = argminxcf L
(
f(xcf), 1− f(x)

)
+ λ · c(x, xcf) (1)

where the first part of Eq. 1 maximizes the validity to ensure that the generated recourse xcf71

gets an opposite prediction to x. The second part of Eq. 1 minimizes the cost of change (or72

distance) between x and xcf. Finally, λ balances the trade-off between the two objective terms.73

Parametric methods [31, 19, 48, 35, 18] aim to train a parametric model g : Rd → Rd74

parametrized by θg to generate recourse explanations in an amortized manner (i.e., xcf = g(x; θg)).75

Parametric methods optimize the parameter θg of a global model via a learning problem:76

argminθg
L

(
f(g(x; θg)), 1− f(x)

)
+ λ · c(x, g(x; θg)) (2)

Importantly, the parametric methods generate the recourse explanation without the need to solve77

computationally intensive optimization problems during the inference stage.78

Semi-parametric methods [44, 37, 22, 2] employ a similar approach to parametric methods by79

training a parametric model g(·; θg). However, they incorporate an additional step to optimize80

for recourse explanations, akin to non-parametric methods. Typically, semi-parametric methods81

involve two stages: (i) First, they train a data model to fit the distribution of the training data,82

and (ii) subsequently search for recourse explanations xcf utilizing the learned data model.83

Remark Regardless of recourse methods, the generation of recourse explanations is sample-84

independent, i.e., xcf
(i)|fθ, x(i) ⊥⊥ {xcf

(1)|fθ, x(1), ..., xcf
(n)|fθ, x(n)}. This implies that generating a85

specific recourse xcf
(i) is independent of the generation process for other recourses xcf \ xcf

(i). As a86

result, it is feasible (and advantageous) to generate recourse explanations in parallel.87

2.2 Efficiency and Scalability in ReLax88

ReLax natively supports three recourse generation strategies, namely sequential, vectorized, and89

parallelized strategy, as illustrated in Figure 2. In addition, ReLax further enhances its performance90

by fusing inner recourse generation steps via the Just-In-Time (JIT) compilation. Together,91

ReLax ensures efficient and scalable performance across diverse data scales and complexities.92

Sequential Recourse Generation. The sequential recourse generation strategy involves gener-93

ating recourse explanations one after another, as illustrated in Figure 2a. Unfortunately, while94

widely used in existing recourse libraries [36, 34, 27] due to its simplicity in implementation, this95

strategy becomes computational inefficiency when generating recourse explanations for large-scale96

datasets (as we show in Table 4 in Section 3). In fact, applying the inefficient sequential strategy97

is one of the reasons for the slowdown observed in existing recourse libraries.98

Vectorized Recourse Generation. To efficiently generate recourse explanations, ReLax imple-99

ments the vectorized strategy; it takes advantage of modern hardware by applying the recourse100

3

generation operations to the entire dataset at once (rather than in an element-wise manner as101

used by the sequential generation strategy, shown in Figure 2b). This vectorized strategy can102

considerably accelerate recourse generation by enabling the ability of modern hardware (e.g.,103

CPU, GPU) to perform Single Instruction on Multiple Data (SIMD) in parallel. As a result, the104

vectorized strategy enhances ReLax’s ability to efficiently process large datasets.105

Parallelized Recourse Generation. In addition, ReLax supports parallelized strategy for106

benchmarking recourse explanation methods at scale. The parallelized strategy takes advantage107

of utilizing multiple computing devices (e.g., multiple GPUs) by splitting a dataset into multiple108

sub-datasets; each sub-dataset is simultaneously executed in different devices (illustrated in109

Figure 2c). This strategy allows for even larger-scale datasets to be efficiently processed.110

Just-In-Time Compilation. Finally, ReLax fuses the inner recourse generation steps as fast111

low-level kernels via the just-in-time (JIT) compilation to hardware accelerators. The use of112

JIT compilation significantly improves computational speed and optimizes for reduced memory113

allocation, thereby ensuring an efficient and scalable recourse generation.114

2.3 Benchmarking Details115

Recourse Methods. ReLax implements eight state-of-the-art recourse methods using JAX116

including (i) three non-parametric methods (VanillaCF [46], DiverseCF [34], GrowingSphere117

[30]); (ii) two semi-parametric methods (ProtoCF [44], C-CHVAE [37], CLUE [2]); and (iii) two118

parametric methods (VAE-CF [31], CounterNet [19]). We provide more details in Appendix D.119

Medium-Sized Datasets. In ReLax, we gather 14 binary-classification tabular datasets, as120

summarized in Table 1. fall within the category of medium-sized datasets (i.e., N < 200, 000),121

covering a wide range of application domains, including financial, education, healthcare, sociology,122

etc. Further information on each dataset can be found in Appendix C.123

Large-Scale Datasets. In addition to 14 medium-sized datasets, we further benchmark over124

the forktable dataset [13] for predicting individuals’ annual income. This US censuring dataset125

contains ∼10 million data points. To our knowledge, this is the first attempt to benchmark a126

dataset at the scale of 10 million data points in the recourse explanation community.127

Evaluation Metrics. We employ three metrics to evaluate recourse explanations: (i) Validity,128

which measures the fraction of valid recourse explanations xcf with respect to the predictive129

model f(·; θ). (ii) Proximity, which computes the l1 distance between the input instance x and130

its corresponding recourse explanation xcf. (iii) Runtime, which represents the total processing131

time required for generating recourse explanations on the entire testset. Additionally, we include132

two supplementary metrics, namely sparsity and manifold distance, and provide the flexibility for133

users to define their own evaluation metrics. For more details, please refer to Appendix E.134

3 Results135

Counterfactual Validity. Figure 3a compares the validity achieved by eight parametric methods136

on 14 medium-sized datasets. Among those eight methods, CounterNet and Growing Sphere137

achieve the best validity score with a near-perfect validity score on average. On the other hand,138

C-CHVAE, CLUE, and VAECF show either an unstable validity performance (i.e., a large variation139

of validity occurs in C-CHVAE), or fail to generate recourse with high validity (i.e., CLUE and140

VAECF achieve below 50% validity score). The unstable and deteriorated performance of these141

three methods might be attributed to the training of base VAE models, as these methods rely142

on a VAE model to generate recourse explanations. Without careful hyper-parameter tuning143

of the VAE model for each dataset, recourse methods that rely on a VAE model might lead to144

sub-optimal performance.145

Proximity. Table 3b compares the proximity score achieved by all recourse explanation methods146

on 14 medium-sized datasets. Notably, C-CHVAE outperforms others by achieving the lowest147

proximity score, approximately 22% and 25% lower than the next best methods - Growing Sphere148

and CounterNet, respectively. Conversely, DiverseCF and VAECF lag behind in achieving the149

worst proximity, with their proximity scores standing ∼96% and ∼78% higher than C-CHVAE.150

4

Van
ill

aC
F

D
iv
er

se
C
F

G
ro

w
in

g
Sp

he
re

Pro
to

C
F

C
-C

H
VA

E

C
LU

E

VA
EC

F

C
ou

nt
er

N
et

0.0

0.2

0.4

0.6

0.8

1.0

V
a
li

d
it

y

(a) Boxplot of validity on medium-
size datasets. High validity is de-
sirable.

Van
ill

aC
F

D
iv
er

se
C
F

G
ro

w
in

g
Sp

he
re

Pro
to

C
F

C
-C

H
VA

E

C
LU

E

VA
EC

F

C
ou

nt
er

N
et

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

x
im

it
y

(b) Boxplot of normalized proxim-
ity on medium-size datasets. Low
proximity is preferable.

Van
ill

aC
F

D
iv
er

se
C
F

G
ro

w
in

g
Sp

he
re

Pro
to

C
F

C
-C

H
VA

E

C
LU

E

VA
EC

F

C
ou

nt
er

N
et

0

1

2

3

4

5

6

7

8

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(c) Barplot of runtime on medium-
size datasets for each recourse
method. Low runtime is desirable.

Figure 3: Comparison of recourse method performance across 14 medium-sized datasets. It is
desirable to achieve high validity, low proximity, and low runtime.

0.1 0.2 0.3 0.4 0.5 0.6

Invalidity

0.14

0.16

0.18

0.20

0.22

0.24

P
ro

x
im

it
y

Methods

VanillaCF

DiverseCF

Growing Sphere

ProtoCF

C-CHVAE

CLUE

VAECF

CounterNet

Figure 4: Illustration of the cost-invalidity
trade-off across medium-sized datasets for
each recourse method. Methods positioned
at the bottom left are better.

Cost-Invalidity Trade-off. We further analyze the151

counterfactual validity and proximity through the152

lens of the cost-invalidity tradeoff for 14 medium-153

size datasets. It is vital to ensure that the recourse154

explanation balances the trade-off between the cost155

of change (i.e., proximity) and the invalidation per-156

centage (or invalidity, which is computed as 1 -157

validity). This trade-off is illustrated in Figure 4,158

which plots the average values of proximity against159

invalidity. We observe that there is no definitive160

winner in optimally balancing this cost-invalidity161

trade-off, as none of the recourse methods are posi-162

tioned at the bottom left of the figure. For instance,163

while CounterNet exhibits the lowest invalidity, it164

only achieves a second-tier proximity value, paired165

with Growing Sphere and ProtoCF. In contrast,166

C-CHVAE achieves the lowest proximity score but167

only secures a third-tier invalidity score, on par with168

VanillaCF and ProtoCF. This analysis underscores169

the importance of considering both proximity and170

invalidity in recourse explanations, and presents an171

open challenge to the research community to devise172

methods that optimally balance this trade-off.173

Running Time. Figure 3c presents the average runtime (in seconds) required by different methods174

to generate recourse explanations for the entire testset for 14 medium-size datasets. Notably,175

CounterNet and VAECF, two parametric methods, outperform other methods by maintaining176

an average runtime of under 2 seconds. Furthermore, all recourse methods complete the entire177

recourse generation process within 10 seconds. This result underscores the high efficiency of178

ReLax in benchmarking recourse explanations.179

Scaling to Large Datasets. We benchmark recourse explanation methods on the forktable180

dataset, which consists of ∼10 million data points. This benchmarking is conducted using both181

the vectorized strategy on one Nvidia V100 GPU, and the parallelized strategy on four V100 GPUs.182

Figure 6 shows the runtime for each recourse explanation method in benchmarking the forktable183

dataset by adopting the vectorized and parallelized strategies. First, ReLax is highly efficient in184

5

VanillaCF DiverseCF Growing Sphere ProtoCF C-CHVAE CLUE VAECF CounterNet
0

200

400

600

800

1000

1200

R
u

n
ti

m
e

(s
)

252.53

341.91

1075.44

557.64

231.68

128.84

5.69 1.71

69.03
110.58

277.30

116.83
50.54 38.50

4.68 1.87

Strategy

Vectorize

Parallelize

Figure 5: Runtime comparison of different recourse generation strategies on the forktable dataset.

0 1 2

Number of Samples ×106

20

40

60

80

100

VanillaCF

0 1 2

Number of Samples ×106

0

50

100

150

200

250

300
DiverseCF

0 1 2

Number of Samples ×106

0

200

400

600

800

Growing Sphere

0 1 2

Number of Samples ×106

0

50

100

150

200

ProtoCF

0 1 2

Number of Samples ×106

0

25

50

75

100

125

150

175

C-CHVAE

0 1 2

Number of Samples ×106

10

20

30

40

50

60

CLUE

0 1 2

Number of Samples ×106

2.0

2.5

3.0

3.5

4.0

4.5

VAECF

0 1 2

Number of Samples ×106

2.2

2.4

2.6

2.8

3.0

3.2

CounterNet

Figure 6: Scalability plot of recourse methods in ReLax on the forktable dataset. With an
increasing number of samples, the runtime of each method increases linearly.

benchmarking the large-scale dataset, with the maximum runtime being under 30 minutes. On185

average, it takes non-parametric methods ∼556.7 seconds, semi-parametric methods ∼306.1186

seconds, and parametric methods ∼3.7 seconds on a single GPU machine. In addition, the187

parallelized strategy cuts the runtime by roughly 4X, which demonstrates that ReLax’s potential188

in benchmarking even larger datasets. This result demonstrates that ReLax is the first recourse189

explanation library in benchmarking datasets with 10 million samples within a practical runtime.190

Scalability Analysis. We assess the scalability of ReLax across varieties of dataset sizes. Figure 6191

plots the runtime of eight recourse methods on the forktable dataset, with sample sizes ranging192

from 25,000 to 2,500,000. Importantly, the recourse methods in ReLax exhibit linear time193

complexity, demonstrating the capability of processing million-sample datasets in less than half194

an hour. To the best of our knowledge, none of the recourse libraries at present are capable of195

efficiently handling datasets with over a million samples within a reasonable amount of time.196

4 Conclusion & Future Work197

In this paper, we present ReLax, an efficient and scalable recourse benchmarking system. Impor-198

tantly, by leveraging the vectorized and parallelized generation strategies, and JIT compilation,199

ReLax achieves over two orders-of-magnitude speed-up in benchmarking recourse explanation200

than existing libraries. Through extensive experiments, we showcase the efficiency and scalability201

of the system by benchmarking across 14 medium-sized datasets and a ten-million-sized dataset.202

Furthermore, our experimental results present open research challenges in optimally balancing the203

trade-off between cost and invalidity. Our work lays a foundation for standardized benchmarking204

in the field of recourse explanations with special consideration on efficiency and scalability. We205

envision ReLax becoming an invaluable tool for researchers and ML practitioners aiming to206

develop, evaluate, compare, and analyze new recourse explanation methods.207

Despite the notable advantages of ReLax, we acknowledge that there are still limitations that208

need to be addressed in future developments. Firstly, as JAX is a relatively new library, its209

ecosystem is still evolving, which may restrict the implementation of certain recourse methods.210

For instance, we were unable to implement the actionable recourse method [43] due to the211

absence of a linear programming solver in JAX. Additionally, the causal recourse method [25] is212

incompatible due to the lack of support for causal graphical models in JAX. Additionally, given the213

rapid progress in the field of recourse explanation, it is impractical to incorporate every existing214

recourse method into ReLax. Therefore, we take initiatives to open-source ReLax to engage with215

a wider open-source community to contribute new recourse methods. By collaborating with the216

open-source community, we aim to continue to grow ReLax to stay at the forefront of recourse217

explanation research and development.218

6

References219

[1] Altmeyer, P. (2022). CounterfactualExplanations.jl - a Julia package for Counterfactual220

Explanations and Algorithmic Recourse.221

[2] Antoran, J., Bhatt, U., Adel, T., Weller, A., and Hernández-Lobato, J. M. (2021). Getting a222

{clue}: A method for explaining uncertainty estimates. In International Conference on Learning223

Representations.224

[3] Asuncion, A. and Newman, D. (2007). Uci machine learning repository.225

[4] Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden, D.,226

Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones, C., Hemsley, R.,227

Hennigan, T., Hessel, M., Hou, S., Kapturowski, S., Keck, T., Kemaev, I., King, M., Kunesch,228

M., Martens, L., Merzic, H., Mikulik, V., Norman, T., Papamakarios, G., Quan, J., Ring, R.,229

Ruiz, F., Sanchez, A., Schneider, R., Sezener, E., Spencer, S., Srinivasan, S., Stokowiec, W.,230

Wang, L., Zhou, G., and Viola, F. (2020). The DeepMind JAX Ecosystem.231

[5] Ben Hamner, dcthompson, J. (2012). Predicting a biological response.232

[6] Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J.233

M. F., and Eckersley, P. (2020). Explainable machine learning in deployment. In Proceedings of234

the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, page 648–657,235

New York, NY, USA. Association for Computing Machinery.236

[7] Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., and Shadbolt, N. (2018). ’it’s237

reducing a human being to a percentage’ perceptions of justice in algorithmic decisions. In238

Proceedings of the 2018 Chi conference on human factors in computing systems, pages 1–14.239

[8] BlastChar (2019). Telco customer churn.240

[9] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,241

Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable242

transformations of Python+NumPy programs.243

[10] Cortez, P. and Silva, A. M. G. (2008). Using data mining to predict secondary school244

student performance.245

[11] Dehghani, M., Gritsenko, A., Arnab, A., Minderer, M., and Tay, Y. (2022). Scenic: A jax246

library for computer vision research and beyond. In Proceedings of the IEEE/CVF Conference247

on Computer Vision and Pattern Recognition, pages 21393–21398.248

[12] Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P., Shanmugam, K., and Das, P.249

(2018). Explanations based on the missing: Towards contrastive explanations with pertinent250

negatives. In Proceedings of the 32nd International Conference on Neural Information Processing251

Systems, NIPS’18, page 590–601, Red Hook, NY, USA. Curran Associates Inc.252

[13] Ding, F., Hardt, M., Miller, J., and Schmidt, L. (2021). Retiring adult: New datasets for253

fair machine learning. Advances in Neural Information Processing Systems, 34.254

[14] Dua, D. and Graff, C. (2017). UCI machine learning repository.255

[15] FICO (2018). Explainable machine learning challenge. https://community.fico.com/s/256

explainable-machine-learning-challenge.257

[16] Frostig, R., Johnson, M. J., and Leary, C. (2018). Compiling machine learning programs via258

high-level tracing. Systems for Machine Learning, 4(9).259

[17] Grin, L. (2023). Road safety data.260

[18] Guo, H., Jia, F., Chen, J., Squicciarini, A., and Yadav, A. (2022). Rocoursenet: Distribu-261

tionally robust training of a prediction aware recourse model. arXiv preprint arXiv:2206.00700.262

[19] Guo, H., Nguyen, T., and Yadav, A. (2023). Counternet: End-to-end training of prediction263

aware counterfactual explanation. In Proceedings of the 29th ACM SIGKDD Conference on264

Knowledge Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA.265

7

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

[20] Hopkins, M., Reeber, E., Forman, G., and Suermondt, J. (1999). Spambase data set.266

Hewlett-Packard Labs, 1(7).267

[21] Jagerman, R., Wang, X., Zhuang, H., Qin, Z., Bendersky, M., and Najork, M. (2022). Rax:268

Composable learning-to-rank using jax. In Proceedings of the 28th ACM SIGKDD Conference269

on Knowledge Discovery and Data Mining, page 3051–3060.270

[22] Joshi, S., Koyejo, O., Vijitbenjaronk, W., Kim, B., and Ghosh, J. (2019). Towards realistic271

individual recourse and actionable explanations in black-box decision making systems. arXiv272

preprint arXiv:1907.09615.273

[23] Kaggle (2018). Titanic - machine learning from disaster. https://www.kaggle.com/c/274

titanic/overview.275

[24] Karimi, A.-H., Barthe, G., Schölkopf, B., and Valera, I. (2020). A survey of algorithmic276

recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050.277

[25] Karimi, A.-H., Schölkopf, B., and Valera, I. (2021). Algorithmic recourse: from counterfactual278

explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness,279

Accountability, and Transparency, pages 353–362.280

[26] Kidger, P. (2021). On Neural Differential Equations. PhD thesis, University of Oxford.281

[27] Klaise, J., Looveren, A. V., Vacanti, G., and Coca, A. (2021). Alibi explain: Algorithms for282

explaining machine learning models. Journal of Machine Learning Research, 22(181):1–7.283

[28] Kohavi, R. and Becker, B. (1996). Uci machine learning repository: Adult data set.284

[29] Kuzilek, J., Hlosta, M., and Zdrahal, Z. (2017). Open university learning analytics dataset.285

Scientific data, 4:170171.286

[30] Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., and Detyniecki, M. (2017). In-287

verse classification for comparison-based interpretability in machine learning. arXiv preprint288

arXiv:1712.08443.289

[31] Mahajan, D., Tan, C., and Sharma, A. (2019). Preserving causal constraints in counterfactual290

explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277.291

[32] Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R., and Consonni, V. (2013). Quanti-292

tative structure–activity relationship models for ready biodegradability of chemicals. Journal293

of chemical information and modeling, 53(4):867–878.294

[33] Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.295

Artificial Intelligence, 267:1–38.296

[34] Mothilal, R. K., Sharma, A., and Tan, C. (2020). Explaining machine learning classifiers297

through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,298

Accountability, and Transparency, pages 607–617.299

[35] Nemirovsky, D., Thiebaut, N., Xu, Y., and Gupta, A. (2022). Countergan: Generating300

counterfactuals for real-time recourse and interpretability using residual gans. In Uncertainty301

in Artificial Intelligence, pages 1488–1497. PMLR.302

[36] Pawelczyk, M., Bielawski, S., van den Heuvel, J., Richter, T., and Kasneci, G. (2021). Carla:303

A python library to benchmark algorithmic recourse and counterfactual explanation algorithms.304

Advances in Neural Information Processing Systems Track on Datasets and Benchmarks.305

[37] Pawelczyk, M., Broelemann, K., and Kasneci, G. (2020). Learning model-agnostic coun-306

terfactual explanations for tabular data. In Proceedings of The Web Conference 2020, pages307

3126–3132.308

[38] Phan, D., Pradhan, N., and Jankowiak, M. (2019). Composable effects for flexible and309

accelerated probabilistic programming in numpyro. arXiv preprint arXiv:1912.11554.310

8

https://www.kaggle.com/c/titanic/overview
https://www.kaggle.com/c/titanic/overview
https://www.kaggle.com/c/titanic/overview

[39] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).311

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine312

learning research, 15(1):1929–1958.313

[40] Stepin, I., Alonso, J. M., Catala, A., and Pereira-Fariña, M. (2021). A survey of contrastive314

and counterfactual explanation generation methods for explainable artificial intelligence. IEEE315

Access, 9:11974–12001.316

[41] Subramani, P., Vadivelu, N., and Kamath, G. (2021). Enabling fast differentially private317

sgd via just-in-time compilation and vectorization. Advances in Neural Information Processing318

Systems, 34:26409–26421.319

[42] Upadhyay, S., Joshi, S., and Lakkaraju, H. (2021). Towards robust and reliable algorithmic320

recourse. arXiv preprint arXiv:2102.13620.321

[43] Ustun, B., Spangher, A., and Liu, Y. (2019). Actionable recourse in linear classification. In322

Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 10–19.323

[44] Van Looveren, A. and Klaise, J. (2019). Interpretable counterfactual explanations guided by324

prototypes. arXiv preprint arXiv:1907.02584.325

[45] Verma, S., Dickerson, J., and Hines, K. (2020). Counterfactual explanations for machine326

learning: A review. arXiv preprint arXiv:2010.10596.327

[46] Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual explanations without328

opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841.329

[47] Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified activations330

in convolutional network. arXiv preprint arXiv:1505.00853.331

[48] Yang, F., Alva, S. S., Chen, J., and Hu, X. (2021). Model-based counterfactual synthesizer332

for interpretation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge333

Discovery and Data Mining, KDD ’21, page 1964–1974, New York, NY, USA. Association for334

Computing Machinery.335

[49] Yeh, I.-C. and Lien, C.-h. (2009). The comparisons of data mining techniques for the336

predictive accuracy of probability of default of credit card clients. Expert Systems with337

Applications, 36(2):2473–2480.338

[50] Zhang, K. and Fan, W. (2008). Forecasting skewed biased stochastic ozone days: analyses,339

solutions and beyond. Knowledge and Information Systems, 14:299–326.340

9

A Relatex Work341

Recourse Explanation Methods Recourse and counterfactual explanation methods concentrate342

on the generation of new instances that lead to contrastive predicted outcomes [46, 45, 24, 40].343

Given their ability to provide actionable recourse, these explanations are often favored by human344

end-users [7, 33, 6]. We categorize prior work on recourse methods into non-parametric methods345

[46, 43, 34, 25, 42], which aim to find recourse explanations without involving parameterized346

models, semi-parametric methods [44, 37, 22, 2], which indirectly utilize parametric models to347

find recourse explanations, and parametric methods [48, 35, 31, 19, 18], which amortizedly apply348

parametric models (e.g., a neural network model) for recourse explanation generation. ReLax349

contains a diverse set of recourse explanation methods for comprehensive benchmarking.350

Recourse Explanation Libraries To our knowledge, there exists several notable implementations351

and benchmarks for recourse explanation methods, including CARLA [36], DiCE [34], alibi [27],352

and CounterfactualExplanations.jl [1]. In particular, CARLA benchmarks 11 recourse explanation353

methods (mostly based on the implementations from the corresponding research labs) on two354

medium-size datasets. However, CARLA, along with other libraries, falls short when tasked with355

benchmarking larger datasets, as it imposes prohibitive computational costs due to ineffective356

hardware utilization. On the other hand, ReLax represents a more efficient and scalable alternative,357

which can benchmark large-scale datasets.358

JAX Finally, we briefly review JAX as it is a central component of ReLax. JAX offers language359

primitives for automatic differentiation, JIT compilation to hardware accelerators, and function360

vectorization [9, 16]. JAX provides an ease-of-use API to compose computing systems while361

leveraging accelerators for performance. Due to its ease of use, JAX has been used in computer362

vision [11], probabilistic programming [38], differential equation [26], differential privacy [41],363

reinforcement learning [4], learning-to-rank [21], and many other fields. However, the adoption364

of JAX in recourse explanation, or explainable AI more generally, is absent. To address this gap,365

we introduce the first recourse explanation benchmarking library in the JAX ecosystem.366

B API367

The primary objective of ReLax is to facilitate the benchmarking of state-of-the-art recourse368

explanation methods on a large scale. We have meticulously designed the API of ReLax to369

prioritize ease of use and extensibility. Figure 7 illustrates the software design of ReLax, where the370

colored boxes represent the main modules, and the gray box represents the high-level functional371

APIs designed for benchmarking recourse explanations.372

Tabular Data Module (i.e., DataModule) loads the tabular datasets and prepares the data for ML373

model training and recourse generation. Users can define features as continuous or categorical374

features. In addition, users can specify immutable features such that the recourse explanation375

methods will avoid modifying them during the process of recourse generation. Figure 8 shows an376

example of customizing the data loading process.377

Furthermore, ReLax offers the flexibility to customize how recourse constraints are handled, includ-378

ing those introduced by categorical feature preprocessing and immutable features. Users can easily379

customize recourse constraints by overriding the TabularDataModule.apply_constraints380

method. Figure 9 provides a pseudo-implementation example for customizing recourse constraints.381

This design allows for recourse generation that satisfies user-defined constraints, such as causal382

constraints [25] or any other desired constraints.383

10

Figure 7: Overview of ReLax’s design and APIs. The colored boxes represent the main modules,
and the gray box represents the high-level functional APIs designed for loading data, training ML
models, and benchmarking recourse explanations. The dashed arrows denote the inputs of the
function, and the solid arrows denote the outputs of the function.

1 from relax import DataModuleConfig , DataModule
2
3 data_config = DataModuleConfig (
4 # The name of the dataset
5 data_name =" custom ",
6 # The directory of the data
7 data_dir =".../ custom .csv",
8 # List all continuous variables
9 continous_cols =[...] ,

10 # List all categorical (discrete) variables
11 discret_cols =[...] ,
12 # List all immutable features that we do not wish to change
13 imutable_cols =[...]
14)
15
16 # Load the Data Module
17 datamodule = DataModule . from_config (data_config)

Figure 8: An example of customized data loading.

1
2 class CustomizedDataModule (DataModule):
3 def apply_constraints (
4 self ,
5 x: jax.Array ,
6 cf: jax.Array ,
7 hard: bool
8):
9 # Override the method to apply customized constraints

10 ...

Figure 9: Pseudo-implementation of customizing the recourse constraints.

In the Predictive Training Module, users can define the model structure and the optimization384

procedure. With the number of epochs and batch size defined, users can train the ML model385

by simply calling train_model(). In the Counterfactual Explanation module, users can choose386

implemented recourse methods and define the hyperparameters for the recourse explanation.387

With the predictive function and data as input, users can generate a counterfactual for each data388

instance by calling generate_cf_explanations(). Finally, users can use benchmark_cfs()389

to evaluate the quality of the recourse explanations with the standardized metrics. Figure 10390

provides an example implementation of generating and benchmarking recourse explanations.391

11

Table 1: Summary of the 14 medium-sized datasets used in ReLax.
Dataset # Samples # Continuous # Categorical # Immutable Category
Adult [28] 32561 2 6 2 Sociology
HELOC [15] 10459 21 2 0 Finance
Credit [49] 30000 20 3 1 Finance
OULAD [29] 32593 23 8 2 Education
Student [10] 649 2 14 0 Education
Titanic [23] 891 2 25 2 Document
Cancer [14] 569 30 0 0 Healthcare
German [3] 1000 7 13 0 Finance
Spam [20] 4601 57 0 0 Computer
Ozone [50] 2534 72 0 0 Physical
QSAR [32] 1055 37 3 0 Life
Bioresponse [5] 3751 1776 0 0 Life
Churn [8] 7043 3 16 1 Business
Road [17] 111762 30 3 0 Sociology

1 from relax. methods import VanillaCF
2 from relax import generate_cf_explanations
3
4 cf_exp = generate_cf_explanations (
5 # Define the recourse method for generating recourses
6 VanillaCF (),
7 # Define the data module
8 datamodule ,
9 # The predict function

10 pred_fn ,
11 # The auxiliary prediction function
12 pred_fn_args ={ ... }
13)
14
15 # Benchmark the recourse methods by returning metrics results
16 results = benchmark_cfs ([cf_exp])

Figure 10: Pseudo-implementation of generating and benchmarking recourse explanations.

C Datasets392

In ReLax, we gather 14 binary-classification tabular datasets that fall within the category of393

medium-sized datasets (i.e., N < 200, 000), covering a wide range of application domains (as394

summarized in Table 1). Here, we provide further information on each medium-sized dataset:395

• Adult [28] was extracted from the census bureau database from 1994, consisting of 32,561396

instances. The classifier aims to determine whether an individual makes over 50K USD a year397

(Y=1) or not (Y=0) using demographic data.398

• Credit [49] was obtained from real cardholders’ credit risk data in Taiwan, consisting of 30,000399

instances. The classifier uses historical payments to predict the default of payment (Y=1) or400

not (Y=0).401

• HELOC [15] is an anonymized dataset of Home Equity Line of Credit (HELOC) applications402

made by real homeowners, with 10,459 instances. A HELOC is a line of credit typically offered403

by a bank as a percentage of home equity. The classifier uses information of the applicants to404

determine whether they will repay their HELOC account within 2 years (Y=1) or not (Y=0).405

• OULAD [29] comprises 32,593 instances and is a subset of the 2013 and 2014 OU student406

data. It includes both demographic data and interaction data of the students. The classifier407

determines whether MOOC students drop out (Y=1) or not (Y=0), based on their online408

learning logs.409

12

• Student [10] is a dataset of 649 instances compiled from two Portuguese secondary schools,410

encompassing reports of marks as well as social and school-related attributes for predicting411

whether a student will pass (Y=1) or fail (Y=0) the exam.412

• Titanic [23] comprises passenger information from the Titanic accident. The classifier utilizes413

passenger information to determine whether a passenger survived the Titanic shipwreck (Y=1)414

or not (Y=0).415

• Cancer [14] is collected from the Breast Cancer Wisconsin (Diagnostic) dataset comprises416

diagnostic information obtained from digitized images of fine needle aspirate (FNA) of breast417

mass tumors, with a total of 569 instances available for analysis. The classifier uses the418

description of characteristics of the cell nuclei to determine whether the tumor is malignant419

(Y=1) or benign (Y=0).420

• German [3] contains information about credit applications from German banks, with a total421

of 1,000 instances. The classifier uses information of the applicants to predict whether an422

applicant is a good (Y=1) or bad (Y=0) credit risk.423

• Spam [20] was created by Mark Hopkins, Erik Reeber, George Forman, and Jaap Suermondt424

at Hewlett-Packard Labs. The classifier uses frequency of words or characters in an Email to425

determine whether the Email is a spam (Y=1) or not (Y=0).426

• Ozone [50] comprises meteorology and ozone data collected from 1998 to 2004 at the Houston,427

Galveston, and Brazoria (HGB) area. The classifier uses the meteorology data to predict428

whether a day is an high ozone day (Y=1) or not (Y=0).429

• QSAR [32] was built in the Milano Chemometrics and QSAR Research Group. The classifier430

uses molecular descriptors to determine whether a chemical is ready (Y=1) or not ready (Y=0)431

biodegradable.432

• Bioresponse [5] consists of molecular descriptors of molecules. The classifier aims to predict433

whether a molecule was seen to elicit a biological response (Y=1) or not (Y=0)434

• Churn [8] contains information about a fictional telco company that provided home phone435

and Internet services to 7043 customers in California in Q3. The classifier aims to predict436

whether a customer left within the last month (Y=1) or not (Y=0) using multiple important437

demographics, as well as a Satisfaction Score, Churn Score, and Customer Lifetime Value438

(CLTV) index.439

• Road [17] comprises detailed road safety data about the circumstances of personal injury road440

collisions in Great Britain from 1979, including the types of vehicles involved and the resulting441

casualties. The classifier uses the collision information to predict the sex of the involved driver,442

whether male (Y=1) or female (Y=0).443

D Recourse Methods444

As discussed in Section 2.3, ReLax implements eight state-of-the-art recourse methods. Here, we445

provide more details about each implemented method.446

• VanillaCF [46] is a non-parametric post-hoc method that generates recourse explanations by447

optimizing counterfactual validity and proximity.448

• DiverseCF [34] is a non-parametric method that optimizes counterfactual validity, proximity,449

and diversity.450

• Growing Spheres [30] is a non-parametric method that applies a random search algorithm to451

generate valid recourses by generating samples around the input point x.452

• ProtoCF [44] is a semi-parametric method that first trains an auto-encoder model to fit the453

training data distribution. Next, for each data point, it optimizes for validity, proximity, and454

data manifold with the support of the auto-encoder model.455

• C-CHVAE [37] is a semi-parametric method that first trains a variational auto-encoder model456

to fit the training data distribution. Next, for each data point, it randomly perturbs the latent457

variables of the VAE model to find a valid recourse explanation.458

13

• CLUE [2] is a semi-parametric method that first trains a variational auto-encoder model using459

the training dataset, then for each data point, it uses the gradient descent to find the latent460

variables that lead to the VAE model to output a valid recourse explanation.461

• VAECF [31] is a parametric method that trains a VAE model to directly generate recourse462

explanations.463

• CounterNet [19] is a parametric method that jointly trains a predictive network and counter-464

factual generator. The CF generator is optimized for counterfactual validity and proximity.465

E Evaluation Metrics466

Here, we provide formal definitions of the evaluation metrics used in ReLax.467

Predictive Accuracy measures the accuracy of the predictive model defined as the fraction of468

correct predictive labels.469

Predictive-Accuracy = #|f(x) = y|
n

(3)

Validity refers to the proportion of input instances x for which CF explanation methods generate470

valid CF examples xcf.471

Validity = #|f(xcf) = 1− y|
n

(4)

Proximity is measured by calculating the L1 norm distance between x and xcf and dividing it by472

the number of features.473

Proximity = 1
nd

n∑
i=1

d∑
j=1
∥x(j)

i − x
cf(j)
i ∥1 (5)

Sparsity is defined by calculating the ratio of the number of feature changes between x and xcf474

to the total number of features.475

Sparsity = 1
nd

n∑
i=1

d∑
j=1
∥x(j)

i − x
cf(j)
i ∥0 (6)

Manifold distance is the L1 distance between xcf and its nearest neighbor (with k = 1) in the476

dataset.477

Manifold distance = 1
n

n∑
i=1
∥KNN(xcf

i ,D)− xcf
i ∥1 (7)

F Additional Experimental Evaluations478

F.1 Feature Processing479

Handling Continuous & Categorical Features. To ensure fair benchmarking, ReLax employs480

consistent data preprocessing methods for each dataset and method, unless otherwise specified.481

First, ReLax normalizes all continuous features to the range of [0, 1] prior to training. Additionally,482

ReLax transforms all categorical features in each dataset into numeric features using one-hot483

encoding. During the optimization/training of recourse generation, ReLax applies a softmax484

function to each categorical feature. This softmax function guarantees that each categorical485

feature in the generated recourse explanations adheres to the one-hot encoding format, as the486

softmax output will sum up to 1. ReLax adopts this categorical normalization to all recourse487

explanation methods, unless explicitly specified (e.g., in the case of DiverseCF [34], which488

incorporates a penalty term to enforce adherence to the one-hot encoding format for categorical489

features).490

Handling Immutable Features. To ensure the feasibility of generated recourse explanations,491

ReLax incorporates a mechanism to enforce immutable features, which are features that cannot492

14

be altered, to remain unchanged. This is achieved by projecting the corresponding features of493

each recourse explanation onto the feasible space. During the optimization or training of recourse494

generation, ReLax applies this projection to ensure that the generated recourse remains within495

the feasible space (i.e., xcf ← P(xcf)). During inference, ReLax enforces the immutability of496

features by ensuring that the set of immutable features remains unchanged. It is important to497

note that ReLax has the capability to handle and enforce user-defined constraints as well (See498

Section B for further details).499

F.2 Experimental Settings500

Datasets & Hyperparameter Settings As outlined in Section 2.3, ReLax contains 14 medium-501

sized datasets, and one large-size dataset. We split the dataset into a 75%:25% train-test split.502

The training set is used to train the predictive model and (semi-)parametric recourse methods.503

We use the test dataset to benchmark recourse explanations. For all the methods in ReLax, we504

use the default hyperparameters in the original paper for a fair comparison. See Appendix F for505

detailed settings.506

Predictive Model For each dataset, we train a neural network model and use it as the target507

predictive model for all baselines. The predictive network contains multiple feed-forward layers;508

each feed-forward layer uses LeakyRelu activation functions [47] followed by a dropout layer [39].509

Details about the model architecture and training for each dataset can be found in Appendix F.510

Computational Recourses As described in Section 3, the main results of ReLax are obtained511

on either a single V100 GPU, or a machine with four GPUs. In addition, the runtime results of512

CARLA, DiCE, alibi, and ReLax-CPU in Figure 1 are obtained on a 16-core Intel CPU with 64513

GB memory.514

Hyperparameters of the Predictive Models Table 2 outlines the learning rate, batch size,515

and the model architecture to train the predictive model, which is a multi-layer perception. For516

each model, we train for 10 epochs and select the best model with the lowest validation loss.517

Hyperparameters of Recourse Methods Here, we outline the hyperparameters used for518

recourse methods. For more details, please check our code base.519

• VanillaCF [46]. We set the λ weight to 0.01 to balance the trade-off between proximity and520

validity. For the target loss, we use binary cross entropy with a learning rate of 0.001. To521

ensure convergence and avoid overfitting, we set the maximum number of steps to 1000.522

• DiverseCF [34]. We set the λ1 weight to 0.01 for proximity. DiverseCF supports finding523

multiple recourses for an input instance, so we choose to generate 5 recourses, and return the524

optimal one. We set the learning rate to 0.01 and maximum number of steps to 1000 similar525

to VanillaCF.526

• Growing Spheres [30]. We set the maximum number of steps to 100, the number of generated527

candidate counterfactuals to 1000, and the step size to 0.05.528

• ProtoCF [44]. For training the auto-encoder model, we set the dimensions of the encoding529

layer to [50, 10] and the dimensions of the decoding layer to [10, 50] with a learning rate of530

0.03 and dropout rate of 0.3.531

• C-CHVAE [37]. We train the VAE model for 10 epochs using a batch size of 128. The532

encoding layers of the VAE model are set to [20, 16, 14, 12], and the decoding layer to [12,533

14, 16, 20]. During the inference stage, we set the maximum number of steps to 100, the534

number of generated candidate counterfactuals to 300, and the step size to 0.1.535

• CLUE [2]. We train the VAE model for 10 epochs using a batch size of 128 and a learning536

rate of 0.001. The encoding layers of the VAE model are set to [20, 16, 14, 12], and the537

decoding layer to [12, 14, 16, 20]. During the inference stage, we set the maximum number538

of steps to 500, and the step size to 0.01.539

• VAECF [31]. We train the VAE model for 10 epochs using a batch size of 128 and a learning540

rate of 0.001. The encoding layers of the VAE model are set to [20, 16, 14, 12], and the541

15

decoding layer to [12, 14, 16, 20]. We set the dropout rate to 0.1. Finally, the number of542

samples is set to 50, and regularization for validity is set to 42.0.543

• CounterNet [19]. We set the λ1 = 1.0, λ2 = 0.2, λ3 = 0.1 for balancing the L1, L2, L3.544

We set the dropout rate to 0.3, and the learning rate to 0.003.545

F.3 Additional Results546

In Table 2, we show the predictive accuracy of the predictive model for each dataset. In Table 3,547

we present the full performance results of recourse methods on 14 medium-sized datasets.548

Table 2: Hyperparameters, architectures, and predictive accuracy of the predictive models for
each dataset.

Dataset Learning Rate Batch Size Dims. Accuracy

Adult .003 256 [29, 50, 10] .824
HELOC .003 256 [35,50,10] .703
OULAD .001 256 [127,50,10] .927
Credit .003 256 [33,50,10] .813
Cancer .003 32 [30,50,10] .909
Student .003 32 [85,50,10] .902
Titanic .003 64 [57,50,10] .816
German .004 64 [61,50,10] .756
Spam .003 256 [57,50,10] .934
Ozone .003 256 [72,50,10] .934
QSAR .004 128 [44,50,10] .848
Bioresponse .005 256 [1776,50,10] .788
Churn .003 256 [46,50,10] .806
Road .004 128 [35,50,10] .751

Table 3: Evaluation of recourse methods on 14 medium-sized datasets.
Dataset VanillaCF DiverseCF ProtoCF CounterNet C-CHVAE CLUE Growing Sphere VAE-CF

Val. Prox. Val. Prox. Val. Prox. Val. Prox. Val. Prox. Val. Prox. Val. Prox. Val. Prox.

Adult .897 6.730 .658 3.414 .764 6.547 .996 5.383 .182 .889 .182 4.704 1.0 5.630 .182 7.951
HELOC .711 3.309 .826 2.947 .848 3.703 1.0 4.852 1.0 4.145 .787 4.870 1.0 4.655 .617 8.981
OULAD .707 5.436 .882 14.65 .767 3.367 .999 9.388 1.0 8.258 .540 9.462 1.0 11.35 .506 11.23
Credit .907 3.908 .974 .959 .876 3.557 1.0 3.864 .155 .505 .418 3.750 1.0 4.376 .155 5.173
Cancer .965 2.734 .923 9.661 .972 2.059 .993 3.516 1.0 9.433 .608 9.973 1.0 5.396 .608 7.926
Student .865 21.23 .258 15.40 .798 17.11 1.0 17.89 1.0 15.08 .252 21.05 1.0 14.98 .252 22.60
Titanic .910 23.69 .139 4.820 .919 17.87 .565 7.176 .996 9.091 .220 16.57 1.0 19.16 .251 18.17
German .900 21.44 .836 1.55 .848 19.49 .996 13.23 1.0 14.22 .148 2.64 1.0 14.84 .164 21.69
Spam .986 1.018 .915 1.769 .992 1.682 1.0 3.322 1.0 3.143 .365 2.048 .998 3.449 .365 1.660
Ozone .112 31.91 1.0 77.36 .033 23.15 1.0 33.95 0.0 0.0 0.0 15.15 0.0 0.0 0.0 8.616
QSAR .784 15.14 .731 18.67 .739 7.552 1.0 5.350 1.0 7.430 .261 13.90 .985 12.26 .261 12.75
Bioresponse .998 34.01 .735 944.6 .978 48.61 .994 20.3 1.0 21.7 .566 465.1 .371 36.26 .566 132.6
Churn .804 17.90 .825 12.67 .889 18.34 .933 14.09 .893 11.81 .571 12.12 1.0 17.43 .199 21.58
Road .534 1.483 .428 3.087 .767 2.861 .979 4.875 .584 2.862 .509 2.962 1.0 2.898 .584 7.984

F.4 Empirical Findings on the Large-Scale Dataset549

In this section, we benchmark recourse explanation methods on the forktable dataset, which550

consists of ∼10 million data points. This benchmarking is conducted using both the vectorized551

strategy on one Nvidia V100 GPU, and the parallelized strategy on four V100 GPUs. To our552

knowledge, ReLax is the first to benchmark datasets with 10 million samples within a practical553

runtime.554

Cost-Invalidity Trade-Off We analyze the validity and proximity of the large dataset by plotting555

the cost-invalidity tradeoff. Figure 11 plots the proximity against the invalidity of the forktable556

dataset. We observe a similar pattern as to the result in benchmarking the medium-sized datasets.557

Similar to Figure 4, we observe that there is no definitive winner in optimally balancing this558

cost-invalidity trade-off. This result reiterates the difficulty of balancing both proximity and559

validity in recourse explanations.560

16

0.0 0.2 0.4 0.6

Invalidity

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

x
im

it
y

Method

VanillaCF

DiverseCF

Growing Sphere

ProtoCF

C-CHVAE

CLUE

VAECF

CounterNet

Figure 11: Illustration of the cost-invalidity trade-off on the forktable dataset. Methods at the
bottom right are preferable.

Table 4: Ablation study on the adult dataset assessing the impact of JIT compilation and
vectorized strategy within ReLax. OOM indicates out-of-memory with the same setting. Missing
entries represent bugs or runtime crashes. Both JIT compilation and the vectorized strategy are
highly effective to reduce the runtime, with an average reduction of ∼84.1X and ∼4,754.2X,
respectively.

Methods

JIT Vectorization VanillaCF DiverseCF ProtoCF Sphere C-CHVAE CLUE VAE-CF CounterNet

✓ 200.01 847.08 388.80 OOM 40.02 191.91 8.04 3.46
✓ 15791.77 19956.06 22467.60 9.69 4291.98
✓ ✓ 3.85 3.38 2.51 10.04 3.42 3.39 1.62 1.79

F.5 Ablation Study561

We conduct two ablation studies to underscore the importance of JIT compilation and the562

vectorized strategy in accelerating recourse generation. First, we first disable the JIT compilation563

to evaluate its impact. Moreover, we highlight the significance of the vectorized strategy by564

running the sequential generation strategy. Table 4 presents the runtime comparison of eight565

recourse methods in ReLax with these two ablations on the adult datasets. Crucially, disabling566

JIT compilation results in an average slowdown of ∼84.1X slower on average, which in turn,567

underscores the importance of JIT compilation. Furthermore, running the sequential generation568

strategy leads to a dramatic increase in runtime in an average slowdown of ∼4754.2X. This569

result emphasizes the limitations of sequential generation strategies (commonly used in existing570

recourse libraries), and the importance of vectorization in speeding up the recourse generation.571

F.6 Comparison with CARLA572

We conducted an experiment with VanillaCF on the adult dataset using the CARLA library [36].573

Table 5 presents the validity and proximity results for the adult dataset. However, it is crucial574

to note that the results of ReLax and CARLA cannot be directly compared due to CARLA’s575

limitations in handling multi-class categorical features. CARLA only supports binary categorical576

features, whereas ReLax is capable of handling multi-valued categorical features (see Section F.1).577

17

Table 5: Results of VanillaCF on the adult dataset from CARLA.
Dataset VanillaCF

Val. Prox.
Adult 0.7893 1.149

18

	Introduction
	ReLax: Towards Efficient and Scalable Recourse Benchmarking
	Preliminaries & Problem Formulation
	Efficiency and Scalability in ReLax
	Benchmarking Details

	Results
	Conclusion & Future Work
	Relatex Work
	API
	Datasets
	Recourse Methods
	Evaluation Metrics
	Additional Experimental Evaluations
	Feature Processing
	Experimental Settings
	Additional Results
	Empirical Findings on the Large-Scale Dataset
	Ablation Study
	Comparison with CARLA

