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Abstract

Causal reasoning, a core aspect of human cognition, is essential for advancing1

large language models (LLMs) towards artificial general intelligence (AGI) and2

reducing their propensity for generating hallucinations. However, existing datasets3

for evaluating causal reasoning in LLMs are limited by narrow domain coverage4

and a focus on cause-to-effect reasoning through textual problems, which does5

not comprehensively assess whether LLMs truly grasp causal relationships or6

merely guess correct answers. To address these shortcomings, we introduce a7

novel benchmark that spans textual, mathematical, and coding problem domains.8

Each problem is crafted to probe causal understanding from four perspectives:9

cause-to-effect, effect-to-cause, cause-to-effect with intervention, and effect-to-10

cause with intervention. This multi-dimensional evaluation method ensures that11

LLMs must exhibit a genuine understanding of causal structures by correctly12

answering questions across all four dimensions, mitigating the possibility of cor-13

rect responses by chance. Furthermore, our benchmark explores the relationship14

between an LLM’s causal reasoning performance and its tendency to produce15

hallucinations. We present evaluations of state-of-the-art LLMs using our bench-16

mark, providing valuable insights into their current causal reasoning capabili-17

ties across diverse domains. The dataset is publicly available for download at18

https://huggingface.co/datasets/CCLV/CausalBench.19

1 Introduction20

Causal reasoning, the ability to understand and infer causal relationships between variables, is a21

fundamental aspect of human cognition and plays a crucial role in decision-making, problem-solving,22

and learning [1]. For large language models (LLMs), causal reasoning refers to the ability to23

accurately identify, represent, and reason about causal relationships described in text, mathematical24

equations, or code snippets [1]. Developing strong causal reasoning abilities in LLMs is essential25

for progress toward artificial general intelligence (AGI), as it enables models to understand not just26

correlations but the underlying mechanisms driving outcomes [3]. This understanding is crucial for27

making accurate predictions, generating insightful explanations, and adapting to new situations, as28

core components of AGI.29

However, existing causal reasoning benchmarks have several limitations that hinder their ability to30

comprehensively evaluate the causal reasoning capabilities of LLMs. First, current benchmarks often31

focus on a single perspective of causal reasoning, such as cause-to-effect, lacking a multifaceted32

assessment that considers effect-to-cause reasoning and the impact of interventions. This narrow33

focus allows models to correctly answer causal questions by chance without truly understanding the34

underlying causal relationships [5]. Second, current benchmarks are primarily text-based, lacking35

diversity in problem types, such as mathematical and coding problems that can encapsulate causal36

dependencies. Incorporating these diverse problem formats would enable a more robust evaluation37
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of LLMs’ capacity to reason about causality across various modalities. Third, the limited scale of38

existing benchmarks may not provide a sufficiently comprehensive assessment of LLMs’ causal39

reasoning abilities due to the limited scale of the benchmark dataset.40

To address these limitations, we propose CausalBench, a comprehensive benchmark for evaluating the41

causal reasoning capabilities of LLMs. CausalBench comprises four perspectives of causal reasoning42

for each scenario: cause-to-effect, effect-to-cause, cause-to-effect with intervention, and effect-to-43

cause with intervention. This multi-perspective approach mitigates the potential for correct answers44

by chance and provides a more accurate evaluation of LLMs’ understanding of causal relationships.45

Moreover, CausalBench includes a diverse set of problem types spanning textual, mathematical, and46

coding domains, enabling a comprehensive assessment of causal reasoning abilities across different47

modalities. The benchmark consists of more than 60,000 problems and employs six evaluation48

metrics to measure LLMs’ causal reasoning performance.49

The major contributions of CausalBench are three-fold: (1) evaluating four causal reasoning perspec-50

tives per scenario to robustly assess causal understanding, (2) incorporating a diverse problem set51

spanning math, code, and natural language for cross-modal evaluation, and (3) implementing strict52

quality control measures, including a causal inference engine check and human expert review, to53

ensure the benchmark’s validity and reliability. By addressing the limitations of existing benchmarks,54

CausalBench aims to provide a more comprehensive and accurate evaluation of the causal reasoning55

capabilities of LLMs, facilitating progress towards AGI.56

2 Related Works57

Existing datasets and benchmarks for evaluating causal reasoning primarily focus on commonsense58

causality [9, 31, 32], which assesses the alignment between commonsense knowledge about causal59

relationships in humans and language models. These datasets, such as WikiWhy [9], CausalWorld60

[31], and UCLM [32], provide valuable insights into how well language models capture and reason61

about everyday causal relationships. However, they do not explicitly evaluate the models’ ability to62

perform formal causal reasoning based on well-defined rules and principles from the field of causal63

inference. Some recent works have started to explore more formal aspects of causal reasoning in64

language models. For example, CRASS [28] focuses specifically on counterfactual reasoning, which65

involves reasoning about alternative outcomes based on hypothetical changes to past events. While66

counterfactual reasoning is an important aspect of causal inference, CRASS does not cover the full67

spectrum of causal inference tasks, such as interventional and observational reasoning. Another68

concurrent work by Kiciman et al. [16] evaluates language models on various causality-related tasks,69

including causal sufficiency analysis, causal discovery, and counterfactual reasoning. However, their70

evaluation primarily relies on the conceptual knowledge accrued from the training data rather than71

formal causal inference, except for their causal sufficiency analysis. This means that the models’72

performance may be influenced by spurious correlations or memorization from the training data73

rather than a genuine understanding of causal principles.74

In contrast, our proposed dataset, CausalBench, is grounded in the principles of causal inference75

[11, 25, 26]. CausalBench provides a comprehensive and principled framework for assessing the76

causal reasoning capabilities of language models, ensuring that the models are evaluated on their77

ability to perform formal causal inference rather than relying on spurious correlations or memorization78

from training data. By encompassing a diverse set of causal scenarios (text, code, and math),79

four causal perspectives (cause to effect, effect to cause, cause to effect with intervention, and80

effect to cause with intervention), and explanations associated with ground truth for each test case,81

CausalBench offers a rigorous and systematic approach to benchmarking causal reasoning in LLMs.82

It is designed to test the models’ ability to reason about causal relationships in a variety of domains,83

including natural language, programming code, and mathematical equations. In summary, while84

existing datasets and benchmarks have made contributions to the study of causal reasoning in language85

models, CausalBench offers a more comprehensive, principled, and rigorous approach to evaluating86

formal causal inference capabilities across multiple domains. By grounding the evaluation in the87

principles of causal inference and providing a diverse set of test cases with associated explanations,88

CausalBench aims to set a new standard for benchmarking causal reasoning in LLMs.89
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3 Dataset Construction Process and Method90

The construction of CausalBench involves three key steps: manual generation of initial test cases,91

scaling up using LLM such as GPT-4 Turbo, and quality control through causal inference engines92

together with human verification. Initially, we manually create a set of test cases covering four aspects93

of causal inference: (a) cause to effect, (b) effect to cause, (c) cause to effect with intervention, and (d)94

effect to cause with intervention to ensure a comprehensive evaluation of causal reasoning capabilities95

from different perspective. To expand the dataset, we then use GPT-4 Turbo with few-shot prompting,96

leveraging the model’s ability to generate additional test cases that adhere to the desired format and97

cover the four causal inference aspects. The few-shot prompts are designed to guide GPT-4 Turbo98

in producing a diverse and extensive set of problems that maintain consistency with the manually99

generated cases. Afterward, we implement a quality control process involving validation through100

causal inference engines and review by human experts. The causal inference engines verify the101

logical consistency and correctness of the generated test cases, while human experts review and refine102

the dataset to maintain high standards of quality and relevance.103

3.1 Workflow Overview104

Figure 1: Workflow overview of the CausalBench dataset construction process.

3.2 Manual Analysis and Generation105

For the text problems of our Benchmark, we randomly selected 100 questions from the CLADDER106

dataset [10] and manually analyzed them to determine their category within (1) inference from107

cause to effect, (2) effect to cause, (3) cause to effect with intervention, or (4) effect to cause with108

intervention. These perspectives represent different dimensions of causal reasoning: (1) Cause to the109

effect: Given the cause, what is the likelihood of the effect? (2) Effect to cause: Given the effect,110

what is the likelihood of the cause? (3) Cause to effect with intervention: If an intervention is added111

to the causal relationship, given the cause, what is the likelihood of the effect? and (4) Effect to cause112

with intervention: If an intervention is added to the causal relationship, given the effect, what is the113

likelihood of the cause?114

After categorizing the selected cases from the CLADDER dataset, we expanded them by creating115

additional questions for the other three perspectives. For example, if a case was classified as “cause to116

effect”, we generated corresponding questions for “effect to cause”, “cause to effect with intervention”,117

and “effect to cause with intervention” manually.118

To correctly expand other perspective questions and their ground truths, we visualized the relationships119

between variables using causal diagrams and analyzed these relationships by calculating conditional120

probabilities. Causal diagrams represent variables as nodes and causal relationships as directed edges.121

For example, consider the following hypothetical scenario:122

Imagine a self-contained, hypothetical world with only the following conditions, and without any123

unmentioned factors or causal relationships: Parents’ intelligence has a direct positive effect on124

parents’ social status and child’s intelligence. Other unobserved factors has a positive direct effect125

on parents’ social status and child’s intelligence. If a child is intelligent, would it be more likely that126

this child had intelligent parents?127
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Parents’ intelligence Parents’ social status

Child’s intelligence

Other unobserved factors

Figure 2: Causal Graph Example

In this scenario, the causal diagram would have four nodes: Parents’ intelligence, Parents’ social128

status, Child’s intelligence, and Other unobserved factors. There would be directed edges from129

Parents’ intelligence to Parents’ social status and Child’s intelligence, from Other unobserved factors130

to Parents’ social status and Child’s intelligence, and from Parents’ social status to Child’s intelligence.131

Conditional probabilities can be estimated based on the causal graph.132

Using the causal graph and conditional probabilities, we can categorized the original questions as133

effect-to-cause. The probability of the child being intelligent given that the parents are intelligent is134

higher than the probability of the child being intelligent given that the parents are unintelligent, so the135

ground truth is yes. Then extend the questions to cover four perspectives by adjusting the questioning136

logic and incorporating interventions into the causal path diagram, and calculate ground truth for137

each questions.(examples are provided in the Appendix)138

Finally, we obtained 100 causal scenarios, with 400 causal questions. They serve as the foundation139

for our few-shot prompting approach, providing examples for GPT-4 Turbo on how to identify the140

type of the initial question and generate additional questions for the remaining perspectives. By141

using these examples in a few-shot prompting setting, we guide the model to generate additional142

perspective questions with answers for all other causal scenarios in the CLADDER dataset.143

For coding and mathematical problems, we manually created 100 code scenarios and 100 math144

scenarios, each containing causal relationships, and designed four perspective questions for each145

scenario. These questions addressed causal issues based on the relationships described in the scenarios146

(examples are provided in the Appendix). We then used causal graphs and conditional probabilities to147

manually generate the ground truths and employed few-shot prompts with GPT-4 Turbo to generate148

additional code, math scenarios and questions with corresponding answers.149

In summary, the manual analysis and generation process involved visualizing causal relationships150

using causal diagrams and calculating conditional probabilities for each scenario. We modified the151

questioning approach and added interventions to expand each problem into four forms, covering cause-152

to-effect, effect-to-cause, cause-to-effect with intervention, and effect-to-cause with intervention, and153

generated ground truths for each question. By the end of this section, we had created 100 sets of 400154

text-based questions with ground truths, 100 sets of 400 coding questions with ground truths, and155

100 sets of 400 math questions with ground truths. These manually generated samples serve as the156

foundation for our few-shot prompting approach, which utilizes GPT-4 Turbo to generate additional157

test cases.158

3.3 Scaling Up with LLMs159

After manually generating and verifying an initial set of questions, we employed GPT-4 Turbo to scale160

up the dataset. The scale-up process was divided into three parts: text problems, coding problems,161

and mathematical problems.162

For the text problems, we provided GPT-4 Turbo with original CLADDER dataset[10] questions with163

manually expanded questions along with their ground truths. By learning from these samples, GPT-4164
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Turbo was tasked with reading the remaining CLADDER scenarios (around 10,000 problems) and165

their corresponding questions, determining the question perspective, expanding the scenario into the166

other three perspectives, and generating the associated ground truths. This process ensures every text167

causal scenario has four dimension questions and corresponding ground truths.168

In the case of coding problems, we supplied GPT-4 Turbo with the 100 manually created code169

examples containing causal relationships. Using these examples as a foundation, GPT-4 Turbo170

generated an additional 2,000 code snippets, each incorporating causal relationships. For each171

newly generated code snippet, GPT-4 Turbo created four perspectives of questions and provided the172

corresponding ground truths, ensuring a comprehensive evaluation of causal reasoning in the context173

of programming.174

Similarly, for mathematical problems, GPT-4 Turbo was employed to generate 2,000 new mathemati-175

cal scenarios across various domains, such as probability theory, mathematical statistics, differential176

equations, and complex analysis. For each mathematical scenario, GPT-4 Turbo generated four types177

of questions and their associated ground truths, assessing the model’s ability to reason about causal178

relationships in mathematical contexts.179

By leveraging the capabilities of GPT-4 Turbo, we were able to create a dataset across all three180

problem categories. The text problems were augmented by automatically generating additional181

question perspectives and ground truths based on the existing CLADDER scenarios. The coding182

and mathematical problems were scaled up by having GPT-4 Turbo create new scenarios containing183

causal relationships and generate the corresponding questions and ground truths. This scale-up184

process resulted in a more comprehensive and diverse dataset, enabling a thorough evaluation of185

causal reasoning abilities in large language models across various domains.186

3.4 Quality Control187

3.4.1 Causal Inference Engine Design188

To ensure the accuracy and consistency of the generated questions and answers, we developed a189

causal inference engine. This engine utilizes causal diagrams and conditional probabilities associated190

with each question to compute the answers for all questions. The causal inference engine serves as a191

verification layer, comparing the answers generated by the language model. If the answer generated192

by the language model differs from the answer generated by the causal inference engine, the case193

will be manually inspected, and the ground truth will be generated by human experts. Here are the194

Causal Inference Engine design details:195

Input196

• A causal scenario described in natural language, code, or mathematical equations, including197

causal relationships among variables, known conditions, etc.198

• A causal query, which is a question based on causal scenario199

Steps200

1. Causal Graph Extraction:201

(a) For natural language scenarios, we identify variables and causal relationships, and202

construct causal graphs (G := (V, E)) by implementing a pipeline consisting of semantic203

parsing and coreference resolution modules. The semantic parsing module first uses204

the Stanford Parser [12] to perform syntactic parsing and obtain the sentence structure.205

Then, it applies Compositional Semantics [13] to recursively map the syntactic parse206

tree to a logical form, based on the principle of compositionality. The coreference207

resolution module uses techniques such as the mention-pair model [14] to determine208

which mentions refer to the same entity, and merges the variables corresponding209

to coreferent mentions. From the outputs of the semantic parsing and coreference210

resolution modules, the pipeline automatically extracts variables from nouns and211

noun phrases, and identifies causal relationships indicated by verbs and conjunctions212

expressing causality [15]. Finally, the causal graph construction module takes the213

extracted variables as nodes (V) and causal relationships as directed edges (E) to214

automatically build the causal graph [1].215
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(b) For code scenarios, we identify variables and their dependencies, and construct causal216

graphs by implementing a pipeline that analyzes the code structure, control flow, and217

data flow. The pipeline first uses a code parser, such as the ast module [17] in Python, to218

generate an abstract syntax tree (AST). It then performs control flow analysis using tech-219

niques like control flow graphs (CFGs) [18] and program dependence graphs (PDGs)220

[21], and data flow analysis using def-use chains [19] and static single assignment221

(SSA) form [20], to identify execution paths, dependencies between statements, and222

variable dependencies. These analyses help automatically extract variables and their223

relationships from the code structure. Finally, the causal graph construction module224

takes the extracted variables as nodes (V) and their dependencies as edges (E) to build225

the causal graph based on the code semantics [1], capturing the causal relationships226

between variables and enabling further reasoning and analysis.227

(c) For math scenarios, we identify variables and their functional relationships, and con-228

struct causal graphs by implementing a pipeline that parses and analyzes the mathe-229

matical equations. The pipeline first uses a math expression parser, such as the SymPy230

library [22] in Python, to convert the equations into an abstract syntax tree (AST)231

representation. It then traverses the AST to identify variables and their functional232

relationships, such as dependencies and algebraic operations, using techniques like233

symbolic differentiation [23] and expression simplification [24]. These analyses help234

automatically extract variables and their relationships from the equation structure.235

Finally, the causal graph construction module takes the extracted variables as nodes (V)236

and their functional relationships as directed edges (E) to build the causal graph based237

on the equation semantics, similar to the approach in [1]. The resulting causal graph238

captures the causal relationships between variables in the mathematical equations,239

enabling further reasoning and analysis.240

2. Query Classification: Classify the causal query into one of the three levels of the Ladder241

of Causation (Association, Intervention, Counterfactuals). Formalize the query into the242

corresponding causal language, as discussed in [4].243

3. Estimand Derivation:244

(a) For text and math scenarios, we construct a module that uses causal inference algorithms245

(e.g., do-calculus [25], counterfactual inference formulas [26]) to derive the estimand246

based on the causal graph and query type.247

(b) For code scenarios, we use program analysis techniques (e.g., symbolic execution, data248

dependency analysis, control flow analysis) to derive the estimand based on the code249

structure and query type. This involve simulating interventions on code variables and250

analyzing the resulting program behavior.251

4. Data Matching: Match the terms in the estimand with the available data or constraints252

in the scenario to obtain a computable estimand expression. Check the completeness and253

consistency of the data. Raise warnings or errors if critical data is missing. For code254

scenarios, this involve executing the code with specific inputs and observing the outputs.255

This step is similar to the data matching phase in [4].256

5. Causal Effect Estimation:257

(a) Calculate the causal effect value based on the estimand expression and the available258

data, yielding the answer to the query.259

(b) For scenarios with unobserved confounders, use instrumental variable estimation [27]260

or front-door adjustment [25].261

(c) For code scenarios, this involve comparing program behaviors under different interven-262

tions.263

This step is inspired by causal effect estimation phase in [4].264
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Output265

• Answer to the causal query, including the estimated causal effect, confidence interval, and266

key assumptions.267

In a summary, our Causal Inference Engine extends the original design presented in [4] by incorporat-268

ing domain-specific graph extraction and estimand derivation techniques to handle causal inference269

problems in text, code, and math scenarios. The overall pipeline remains consistent with the one270

described in [4], but the internal methods are adapted to the specific structures and semantics of each271

domain.272

3.4.2 Quality Control Process273

After expansion with GPT4-Turbo, we obtained around 10000 x 4 text-based questions, 2000 x 4274

math questions, and 2000 x 4 coding questions, along with their GPT-4 Turbo generated answers.275

To ensure the accuracy of the ground truth of each questions, we employed a strict quality control276

process as showing below:277

We used the causal inference engine introduced above to independently solve the problems and278

generate its own set of answers. We compared the answers generated by GPT-4 Turbo and the causal279

inference engine. If two answers were the same, we updated the answer as ground truth. If any of the280

answers were inconsistent, we conducted a manual analysis of the question and answers to determine281

the correct answer and update ground truth accordingly.282

This multi-step quality control process, involving the use of causal inference engine and human283

expert check, ensures that the final dataset contains accurate and reliable questions and answers. The284

manual review of inconsistent answers further enhances the quality of the dataset by addressing any285

discrepancies or edge cases that the models may encounter.286

4 Benchmark Results287

4.1 Baseline of Mainstream LLMs288

We tested several state-of-the-art large language models, including GPT-4, Claude-3, LLAMA-3, and289

others, on our CausalBench. The evaluation metrics included: Four-Type Questions Group Correction290

Rate, Overall Correction Rate (Ignore Question Type), From Cause to Effect without Intervention291

Correction Rate, From Effect to Cause without Intervention Correction Rate, From Cause to Effect292

with Intervention Correction Rate, and From Effect to Cause with Intervention Correction Rate. For293

each causal scenario, there are four questions: cause-to-effect without intervention, effect-to-cause294

without intervention, cause-to-effect with intervention, and effect-to-cause with intervention. The295

Four-Type Questions Group Correction Rate represents the proportion of scenario cases where all296

four types of questions of one scenario are all answered correctly by the large language models.297

If any of the four questions of a scenario is answered incorrectly, the scenario is considered to be298

answered incorrectly by the LLM. The Overall Correction Rate (Ignore Question Type) is calculated299

by dividing the total number of correctly answered questions by the total number of questions, without300

categorizing the questions by type and scenario. The From Cause to Effect without Intervention301

Correction Rate is calculated by dividing the number of correctly answered ”From Cause to Effect302

without Intervention” type questions by the total number of this type of questions. Similarly, the303

From Effect to Cause without Intervention Correction Rate is calculated by dividing the number of304

correctly answered ”From Effect to Cause without Intervention” type questions by the total number of305

this type of questions. The remaining two metrics, From Cause to Effect with Intervention Correction306

Rate and From Effect to Cause with Intervention Correction Rate, follow the same calculation method307

as the previous two metrics, focusing on their respective question types.308

Here are the tables showing LLMs’ performance on text, math, and code problems.309
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Table 1: LLM Performance on Text Problems

Table 2: LLM Performance on Math Problems

Table 3: LLM Performance on Code Problems

4.2 Test Result Summary310

The evaluation results of state-of-the-art large language models on CausalBench provide valuable311

insights into their causal reasoning capabilities across textual, mathematical, and coding problem312

domains:313

Overall, the models achieved higher correction rates on mathematical problems compared to textual314

and coding problems. For instance, GPT-4 achieved an 88.7% overall correction rate on math315
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problems, while scoring 73.3% and 71.0% on text and code problems, respectively. This suggests316

that causal reasoning in mathematical contexts is relatively easier for LLMs compared to natural317

language and programming domains.318

The Four-Type Questions Group Correction Rate, which measures the proportion of scenarios where319

all four reasoning perspectives are correctly answered, was consistently lower than the Overall320

Correction Rate (Ignore Question Type) across all problem types. For example, GPT-4 achieved a321

61.4% Four-Type Questions Group Correction Rate on math problems, compared to an 88.7% Overall322

Correction Rate. This indicates that LLMs often struggle to maintain a comprehensive understanding323

of causal relationships when questioned from multiple perspectives.324

The introduction of interventions in the causal scenarios led to mixed results in correction rates across325

models and problem types. In the text domain, the correction rates slightly decreased for most models326

when interventions were introduced. However, in the math domain, the correction rates generally327

improved with interventions. For instance, GPT-4’s performance increased from 78.6% to 91.7% on328

cause-to-effect questions with intervention in math problems. In the coding domain, the impact of329

interventions varied across models, with some showing improvements and others exhibiting a decline330

in performance.331

Among the tested models, GPT-4 and Claude-3 consistently outperformed other large language models332

(LLMs) across most problem types and reasoning dimensions, achieving the highest correction rates.333

Mistral demonstrated strong performance in mathematical problems but exhibited shortcomings in334

code-related tasks. Conversely, LLAMA-3 showed robust performance in code-related problems but335

faced challenges with text and mathematical tasks.336

5 Correlation with Hallucination337

To analyze the correlation between LLMs’ causal reasoning ability and their hallucination rate, we338

referred to the LLMs’ performance on hallucination datasets. The hallucination evaluation results339

were obtained from the Hallucination Leaderboard, developed by Vectara [30]. This leaderboard340

provides a comparison of LLM performance in maintaining a low hallucination rate and ensuring341

factual consistency when summarizing a set of facts.342

Table 4: Performance of LLMs on the Hallucination Dataset

The hallucination evaluation process involves measuring the hallucination rate, factual consistency343

rate, answer rate, and average summary length. These metrics provide a comprehensive understanding344

of each model’s tendency to hallucinate and its ability to maintain factual accuracy [30].345

After comparing the LLMs’ performance on CausalBench with their performance on the Hallucination346

evaluation leaderboard provided by Vectara on Huggingface [30], we found that models with stronger347

causal reasoning abilities tend to exhibit lower hallucination rates. For instance, GPT-4 Turbo,348

LLAMA-3-70B, and Mistral-7B, which demonstrated superior performance on causal reasoning349

tasks, also had low hallucination rates. In contrast, models like Google Gemma-7b-it and LLAMA-2-350

7B, which showed weaker performance on our CausalBench, had higher hallucination rates of 7.5%351

and 5.6%, respectively.352

This trend indicates a potential link between a model’s ability to understand and reason about causal353

relationships and its likelihood of not producing hallucinations. Further research is required to explore354

this correlation in more depth and to understand the underlying mechanisms driving this relationship.355

9



6 Impact and Limitations356

6.1 Impact357

For the first time, we innovatively propose four types of questioning approaches for the same causal358

scenario: cause-to-effect, effect-to-cause, cause-to-effect with intervention, and effect-to-cause with359

intervention. We also calculate the proportion of cases where large language models correctly answer360

all four types of questions for a given causal scenario. This effectively avoids the situation where361

large language models coincidentally answer causal questions correctly without understanding the362

causal relationships embedded in the causal scenario, thereby improving the accuracy of the dataset’s363

test results. By providing causal reasoning problems spanning multiple domains(text, code, math), it364

addresses the limitations of existing causal datasets and offers a more comprehensive and robust tool365

for assessing the causal reasoning abilities of language models. The findings in this paper suggest that366

models with stronger causal reasoning capabilities tend to exhibit lower hallucination rates, providing367

a new perspective on exploring the relationship between causal reasoning and reducing hallucinations.368

CausalBench has the potential to become a benchmark for driving progress in causal reasoning in369

artificial intelligence.370

6.2 Limitations371

CausalBench has several limitations that need to be addressed in future work. These include the need372

for further expanding the domain coverage, increasing the scale of the dataset, incorporating causal373

discovery tasks and exploring the intrinsic mechanisms between causal reasoning and hallucinations374

through more empirical studies.375

7 Conclusion376

In this paper, we present CausalBench, a comprehensive benchmark dataset for evaluating the causal377

reasoning capabilities of large language models. CausalBench innovatively proposes four types of378

questioning approaches for each causal scenario: cause-to-effect, effect-to-cause, cause-to-effect with379

intervention, and effect-to-cause with intervention. By calculating the proportion of cases where380

models correctly answer all four question types, CausalBench effectively assesses whether LLMs381

truly understand the underlying causal relationships, mitigating the impact of models coincidentally382

providing correct answers without causal comprehension.383

The dataset encompasses a diverse set of problems spanning textual, mathematical, and coding384

domains, addressing the limitations of existing causal reasoning benchmarks. Evaluated on Causal-385

Bench, state-of-the-art LLMs demonstrate stronger performance on mathematical problems compared386

to textual and coding tasks. Notably, models with superior causal reasoning abilities tend to exhibit387

lower hallucination rates, suggesting a potential link between the two capabilities.388

Despite its contributions, CausalBench has several limitations, including the need for expanded389

domain coverage and deeper exploration of the intrinsic mechanisms connecting causal reasoning and390

hallucination reduction. Future work will focus on addressing these limitations, further refining the391

evaluation metrics, and providing insights to advance the development of causal reasoning abilities in392

large language models. CausalBench serves as a robust tool and an important step towards achieving393

artificial general intelligence.394
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8 Appendix A: CausalBench Dataset Link540

https://huggingface.co/datasets/CCLV/CausalBench541

9 Appendix B: Text Question Example542

Causal Scenario:543

Imagine a self-contained, hypothetical world with only the following conditions, and without any544

unmentioned factors or causal relationships: Parents’ intelligence has a direct positive effect on545

parents’ social status and child’s intelligence. Other unobserved factors has a positive direct effect on546

parents’ social status and child’s intelligence.547

Question 1:548

If a child is intelligent, would it be more likely that this child had intelligent parents?549

Question Type:550

Inference from Effect to Cause without Intervention551

Ground Truth:552

Yes553

Explanation: The probability of the child being intelligent given that the parents are intelligent is554

higher than the probability of the child being intelligent given that the parents are unintelligent, so555

the ground truth is yes.556

Question 2:557

If the parents are intelligent, is the child more likely to be intelligent?558

Question Type:559

Inference from Cause to Effect without Intervention560

Ground Truth:561

Yes562

Explanation: The probability of the child being intelligent given that the parents are intelligent is563

higher than the probability of the child not being intelligent given that the parents are intelligent,564

since parent’s intelligence has positive effect on child’s intelligence.565

Question 3:566

If we intervene to make the parents intelligent (e.g., through education or training), is the child more567

likely to be intelligent?568

Question Type:569

Inference from Cause to Effect with Intervention570

Ground Truth:571

Yes572

Explanation: By intervening to increase the parents’ intelligence, the child’s intelligence is more573

likely to increase due to the causal chain. Although other unobserved factors also affect the child’s574

intelligence, the direct positive effect of parents’ intelligence still exists.575

Question 4:576

If we observe a child is intelligent, and then intervene to make the child unintelligent (e.g., through577

some kind of impairment), does this make it less likely that the child’s parents are intelligent?578

Question Type:579

Inference from Effect to Cause with Intervention580

Ground Truth:581
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No582

Explanation:583

The child’s intelligence is the result of the combined effects of parents’ intelligence and other factors.584

Even if we intervene to decrease the child’s intelligence, it does not change the parents’ level of585

intelligence. Therefore, in this case, the change in the child’s intelligence does not affect our judgment586

of whether the parents are intelligent or not.587

10 Appendix C: Code Question Example588

Causal Scenario:589

c l a s s S a l e s D a t a {590

i n t t o t a l S a l e s , n e w S u b s c r i p t i o n s ;591

do ub l e p r i c e P e r S u b s c r i p t i o n ;592

593

p u b l i c S a l e s D a t a ( i n t n e w S u b s c r i b e r s , dou b l e p r i c e ) {594

t h i s . n e w S u b s c r i p t i o n s = n e w S u b s c r i b e r s ;595

t h i s . p r i c e P e r S u b s c r i p t i o n = p r i c e ;596

u p d a t e S a l e s ( ) ;597

}598

599

p u b l i c vo id u p d a t e P r i c e ( dou b l e newPr ice ) {600

t h i s . p r i c e P e r S u b s c r i p t i o n = newPr ice ;601

u p d a t e S a l e s ( ) ;602

}603

604

p u b l i c vo id a d d S u b s c r i p t i o n s ( i n t a d d i t i o n a l S u b s ) {605

t h i s . n e w S u b s c r i p t i o n s += a d d i t i o n a l S u b s ;606

u p d a t e S a l e s ( ) ;607

}608

609

p r i v a t e vo id u p d a t e S a l e s ( ) {610

t o t a l S a l e s = ( i n t ) ( n e w S u b s c r i p t i o n s * p r i c e P e r S u b s c r i p t i o n ) ;611

}612

613

p u b l i c i n t g e t T o t a l S a l e s ( ) {614

r e t u r n t o t a l S a l e s ;615

}616

}617

618

S a l e s D a t a mon th lyRepo r t = new S a l e s D a t a ( 1 0 0 , 1 0 . 0 ) ;619

month lyRepor t . a d d S u b s c r i p t i o n s ( 5 0 ) ;620

month lyRepor t . u p d a t e P r i c e ( 1 5 . 0 ) ;621

Question 1:622

If the number of new subscriptions increases, will total sales also increase, assuming no other623

changes?624

Question Type:625

From cause to effect without intervention626

Ground Truth:627

Yes628

Explanation:629

The method ’addSubscriptions’ adds new subscriptions and then immediately calls ’updateSales’,630

which recalculates total sales based on the new number of subscriptions and the current price per631
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subscription. Therefore, with no other changes, increasing the number of new subscriptions directly632

leads to an increase in total sales.633

Question 2:634

Does an increase in total sales imply an increase in the price per subscription?635

Question Type:636

From effect to cause without intervention637

Ground Truth:638

No639

Explanation:640

An increase in total sales can occur either from an increase in the price per subscription or from641

an increase in the number of new subscriptions due to the calculation in ’updateSales’. Hence, an642

increase in total sales does not necessarily imply that the price per subscription has increased; it could643

also be due to an increase in the number of subscriptions.644

Question 3:645

If we manually increase the price per subscription, will this result in an increase in total sales?646

Question Type:647

From cause to effect with intervention648

Ground Truth:649

Yes650

Explanation:651

Increasing the price per subscription using ’updatePrice’ method causes ’updateSales’ to be called,652

calculating the new total sales using the increased price. Assuming the number of subscriptions653

remains constant, this intervention in price directly causes an increase in total sales.654

Question 4:655

If total sales decrease after an intervention, does this mean we decreased the number of new subscrip-656

tions?657

Question Type:658

From effect to cause with intervention659

Ground Truth:660

No661

Explanation:662

A decrease in total sales after an intervention could be due to either a decrease in the number of new663

subscriptions or a decrease in the price per subscription. As these two factors multiply to compute664

total sales, the decrease could be attributed to either factor independently or both. Thus, a decrease in665

total sales does not definitively determine that the intervention was a decrease in the number of new666

subscriptions.667

11 Appendix D: Math Question Example668

Causal Scenario:669

Investigate the influence of a linear operator transformation z = L(x) on a vector field x governed by670
d
dtx = Mx, where M is a constant matrix. The transformation L represents another linear operator671

with a constant matrix.672

Question 1:673
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If the transformation z = L(x) is applied immediately at t = 0 to a vector x0, followed by evolution674

under d
dtx = Mx without further intervention, does the state z(t) at t = T exactly replicate the result675

of evolving x0 directly under d
dtx = Mx until t = T ?676

Question Type:677

From cause to effect without intervention678

Ground Truth:679

No680

Explanation:681

Applying the transformation z = L(x) modifies the initial conditions. The trajectory of z(t) and x(t)682

would differ unless L commutes with the exponential of M , which generally is not the case. Hence,683

the state transformations under L can produce a distinct evolutionary path in comparison to the direct684

evolution of x0.685

Question 2:686

Can the original vector x0 be reliably determined at t = 0 after observing the vector z(t) at t = T ,687

without knowing if the transformation L was applied?688

Question Type:689

From effect to cause without intervention690

Ground Truth:691

No692

Explanation:693

Without information on the application of L, reconstructing the exact initial state x0 from z(t) is694

not straightforward. The application of L can alter the vector in ways that are not easily reversible,695

especially if L and M are not designed to reveal their effects straightforwardly.696

Question 3:697

If an additional linear transformation H is applied at time t1 as an intervention, will the final state698

z(T ) at T > t1 be independent of the initial transformation L and solely determined by M and H?699

Question Type:700

From cause to effect with intervention701

Ground Truth:702

No703

Explanation:704

The final state z(T ) will depend on L, M , and H . The transformations imposed by L initially, and705

H later, both play critical roles. These factors, combined with the dynamics driven by M , contribute706

to a state at T that relies on all three matrices, affected by their interaction and properties.707

Question 4:708

Based on knowing only the vector z(T ) at time T , is it feasible to precisely identify the transforma-709

tions (L, H, or both) that were previously applied?710

Question Type:711

From effect to cause with intervention712

Ground Truth:713

No714

Explanation:715

Determining which transformations were applied based on the final vector z(T ) alone is challenging716

due to the overlapping effects matrices may have in transforming the state space. The interactions of L717

17



and H with the matrix exponential of M can result in equivalent states from different transformation718

sequences.719
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