
Under review as a conference paper at ICLR 2024

EDITABLE GRAPH NEURAL NETWORK FOR NODE
CLASSIFICATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Graph Neural Networks (GNNs) have achieved significant success in
various graph-based learning tasks, such as credit risk assessment in financial
networks and fake news detection in social networks, the trained GNNs can still
make errors. These errors can potentially have a severe negative impact on so-
ciety. Model editing, which corrects the model behaviour on wrongly predicted
target samples while leaving model predictions unchanged on unlated samples, has
garnered significant interest in the fields of computer vision and natural language
processing. However, model editing for graph neural networks (GNNs) is rarely
explored, despite GNNs’ widespread applicability. To fill the gap, we first observe
that existing model editing methods significantly deteriorate prediction accuracy
(up to 50% accuracy drop) in GNNs while a slight accuracy drop in multi-layer
perception (MLP). The rationale behind this observation is that the node aggre-
gation in GNNs will spread the editing effect throughout the whole graph. This
propagation pushes the node representation far from its original one. Motivated by
this observation, we propose Editable Graph Neural Networks (EGNN), a neighbor
propagation-free approach to correct the model prediction on misclassified nodes.
Specifically, EGNN simply stitches an MLP to the underlying GNNs, where the
weights of GNNs are frozen during model editing. In this way, EGNN disables the
propagation during editing while still utilizing the neighbor propagation scheme
for node prediction to obtain satisfactory results. Experiments demonstrate that
EGNN outperforms existing baselines in terms of effectiveness (correcting wrong
predictions with lower accuracy drop), generalizability (correcting wrong predic-
tions for other similar nodes), and efficiency (low training time and memory) on
various graph datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved prominent results in learning feature and topology
of graph data (Ying et al., 2018; Hamilton et al., 2017; Ling et al., 2023b; Zeng et al., 2020; Hu
et al., 2020; Zhou et al.; Jiang et al., 2022a; Han et al., 2022a; Ling et al., 2023a). Based on spatial
message passing, GNNs learn each node through aggregating representations of its neighbors and
the node itself recursively. Once trained, the model is typically deployed as static artifacts to make
decisions on a wide range of tasks, such as credit risk assessment in financial networks (Petrone &
Latora, 2018), fake news detection in social networks (Shu et al., 2017), or prediction of drug-target
interactions (Zhang et al., 2022). Although advanced GNN models can often deliver promising
overall performance (e.g., classification accuracy across all test cases) on such datasets, in reality,
one particular wrong output can be a lot more damaging than another; therefore, some special
interventions are required to ensure the outputs of certain high-stake instances to be correct or
favorable. For Computer Vision (CV) tasks, this can be to correctly identify a street-crossing child
in front of a self-driving car. In Natural Language Processing (NLP) tasks, this can be to ensure an
LLM-powered chatbot does not give out criminal advice. While graph data are often less intuitive
than text and images, given the prevalence of graph learning applications under the abovementioned
(and many more) high-stake scenarios, it would be irrefutably vital to ensure a drug discovery model
will not produce toxic products; or to prevent a fraud prevention system from losing focus on its most
vulnerable victim groups and cost them their life savings1

1According to FBI Internet Crime Report 2020, around 66% of the tech support fraud victims are over 60
years; yet, they are bearing at least 84% of the total losses (>$116 million). This suggests senior citizens are

1

Under review as a conference paper at ICLR 2024

Moreover, from a model maintenance perspective, high-profile failure cases often manifest in a
streaming manner after the initial model development (e.g., training), but during the actual user-
facing deployment. Model editing serves as a way to timely and efficiently deliver a guaranteed
patch for those post-hoc discovered errors, making it a practical tool for launching safer AI products.

Ideally, it is desirable to correct these serious errors (and generalize corrections to similar mistakes),
while preserving the model’s prediction accuracy on unrelated input samples. To obtain generalization
ability for similar samples, the most prevalent method is to fine-tune the model with a new label on
the single example to be corrected. However, this approach often spoils the model prediction on other
unrelated samples. To cope with the challenge, many model editing frameworks have been proposed
to adjust model behaviors by correcting errors as they appear (Sinitsin et al., 2020a; Mitchell et al.,
2021; 2022; De Cao et al., 2021). Specifically, these editors usually require an additional training
phase to help the model “prepare” for the editing process before applying any edits (Sinitsin et al.,
2020a; Mitchell et al., 2021; 2022; De Cao et al., 2021).

Although model editing has shown promise to modify vision and language models, to the
best of our knowledge, there is no existing work tackling the critical mistakes in graph data.
Despite the straightforward concept, it is challenging to efficiently change GNNs’ behaviors on the
massively connected nodes. First, due to the message-passing mechanism in GNNs, editing the model
behavior on a single node can propagate changes across the entire graph, significantly altering the
node’s original representation, which may destroy the prediction performance on the training dataset.
Therefore, compared to the neural networks for computer vision or natural language processing, it
is harder to maintain the model prediction on other input samples. Second, unlike other types of
neural networks, the input nodes are connected in the graph domain. Thus, when editing the model
prediction on a single node using gradient descent, the representation of each node in the whole graph
is required (Liu et al., 2022b; Han et al., 2023b; Hamilton et al., 2017). This distinction introduces
complexity and computational challenges when editing GNNs, especially on large graphs.

In this work, we delve into studying the graph model editing problem, which is more challenging than
the independent sample edits. We first observe the existing editors significantly harm the overall node
classification accuracy although the misclassified nodes are corrected. The test accuracy drop is up to
50%, which prevents GNNs from being practically deployed. We experimentally study the rationale
behind this observation from the lens of loss landscapes. Specifically, we visualize the loss landscape
of the Kullback-Leibler (KL) divergence between node embeddings obtained before and after the
model editing process in GNNs. We found that a slight weight perturbation can significantly enlarge
the KL divergence. In contrast, other types of neural networks, such as Multi-Layer Perceptrons
(MLPs), exhibit a much flatter region of the KL loss landscape and display greater robustness against
weight variations. Such observations align with our viewpoint that after editing on misclassified
samples, GNNs are prone to widely propagating the editing effect and affecting the remaining nodes.

Based on the sharp loss landscape, we propose Editable Graph Neural Network (EGNN), a neighbor
propagation-free approach to correct the model prediction on the graph data. Specifically, suppose
we have a well-trained GNN and we want to correct its prediction on some of the misclassified nodes.
EGNN stitches a randomly initialized MLP to the trained GNN. We then train the MLP for a few
iterations to ensure that it does not significantly alter the model’s prediction. When performing the
edit, we only update the parameter of the stitched MLP while freezing the parameter of GNNs during
the model editing process. In particular, the node embeddings from GNNs are first inferred offline.
Then MLP learns an additional representation, which is then combined with the fixed embeddings
inferred from GNNs to make the final prediction. When a misclassified node is received, the gradient
is back propagated to update the parameters of MLP instead of GNNs’. In this way, we decouple
the neighbor propagation process of learning the structure-aware node embeddings from the model
editing process of correcting the misclassified nodes. Thus, EGNN disables the propagation during
editing while still utilizing the neighbor propagation scheme for node prediction to obtain satisfactory
results. Compared to directly applying the existing model editing methods to GNNs:

• We can leverage the GNNs’ structure learning meanwhile avoiding the spreading edition errors to
guarantee the overall node classification task.

more likely to experience a severe financial setback due to being the victim of the said crime, making them a
prioritized focus for a proper fraud protection system. This real-world example perfectly illustrates the fact that
while predicting two different potential fraud victims is considered equal under some metrics valuing overall
performance, the difference in real-life impact can be drastic.

2

Under review as a conference paper at ICLR 2024

• The experimental results validate our solution which could address all the erroneous samples and
deliver up to 90% improvement in overall accuracy.

• Via freezing GNNs’ part, EGNN is scalable to address misclassified nodes in the million-size graphs.
We save more than 2× in terms of memory footprint and model editing time.

2 PRELIMINARY

Graph Neural Networks. Let G = (V, E) be an undirected graph with V = (v1, · · · , v|V|) and
E = (e1, · · · , e|E|) being the set of nodes and edges, respectively. Let X ∈ R|V|×d be the node
feature matrix. A ∈ R|V|×|V| is the graph adjacency matrix, where Ai,j = 1 if (vi, vj) ∈ E else
Ai,j = 0. Ã = D̃− 1

2 (A + I)D̃− 1
2 is the normalized adjacency matrix, where D̃ is the degree

matrix of A+ I . In this work, we are mostly interested in the task of node classification, where each
node v ∈ V is associated with a label yv, and the goal is to learn a representation hv from which
yv can be easily predicted. To obtain such a representation, GNNs follow a neural message passing
scheme (Kipf & Welling, 2017). Specifically, GNNs recursively update the representation of a node
by aggregating representations of its neighbors. For example, the lth Graph Convolutional Network
(GCN) layer (Kipf & Welling, 2017) can be defined as:

H(l+1) = ReLU(ÃH(l)Θ(l)), (1)

where H(l) is the node embedding matrix containing the hv for each node v at the lth layer and
H(0) = X . Θ(l) is the weight matrix of the lth layer.

The Model Editing Problem. The goal of model editing is to alter a base model’s output for
misclassified sample xe as well as its similar samples via model finetuning only using a single pair of
input xe and desired output ye while leaving model behavior on unrelated inputs intact (Sinitsin et al.,
2020a; Mitchell et al., 2021; 2022). We are the first to propose the model editing problem in graph
data, where the decision faults on a small amount of critical nodes can lead to significant financial
loss and/or fairness concerns. For the node classification, suppose a well-trained GNN incorrectly
predicts a specific node. Model editing is used to correct the undesirable prediction behavior for
that node by using the node’s features and desired label to update the model. Ideally, the model
editing ensures that the updated model makes accurate predictions for the specific node and its similar
samples while maintaining the model’s original behavior for the remaining unrelated inputs. Some
model editors, such as the one presented in this paper, require a training phase before they can be
used for editing.

3 PROPOSED METHODS

In this section, we first empirically show vanilla model editing performs extremely worse for GNNs
compared with MLPs due to node propagation (Section 3.1). Intuitively, due to the message-passing
mechanism in GNNs, editing the model behavior on a single node can propagate changes across the
entire graph, significantly altering the node’s original representation. Then through visualizing the
loss landscape, we found that for GNNs, even a slight weight perturbation, the node representation
will be far away from the original one (Section 3.2). Based on the observation, we propose a
propagation-free GNN editing method called EGNN (Section 3.3).

3.1 MOTIVATION: MODEL EDITING MAY CRY IN GNNS

Setting: We train GCN, GraphSAGE, and MLP on Cora, Flickr, Reddit, and ogbn-arxiv, respectively,
following the training setup as described in Section 5. To evaluate the difficulty of editing, we ensured
that the node to be edited was not present during training, meaning that the models were trained
inductively. Specifically, we trained the model on a subgraph containing only the training node and
evaluated its performance on the validation and test set of nodes. Next, we selected a misclassified
node from the validation set and applied gradient descent only on that node until the model made a
correct prediction for it. Following previous work (Sinitsin et al., 2020a; Mitchell et al., 2022), we
perform 50 independent edits and report the averaged test accuracy before and after performing a
single edit.

3

Under review as a conference paper at ICLR 2024

Table 1: The test accuracy (%) before (“w./o. edit”) and after
editing (“w./ edit”) on one single data point. ∆ Acc is the
accuracy drop before and after performing the edit. All results
are averaged over 50 simultaneous model edits. The best result
is highlighted by bold faces.

GCN GraphSAGE MLP

Cora
w./o. edit 89.4 86.6 71.8
w./ edit 84.36 82.06 68.33
∆ Acc. 5.03↓ 4.53↓ 3.46 ↓

Flickr
w./o. edit 51.19 49.03 46.77
w./ edit 13.94 17.15 36.68
∆ Acc. 37.25↓ 31.88↓ 10.08 ↓

Reddit
w./o. edit 95.52 96.55 72.41
w./ edit 75.20 55.85 69.86
∆ Acc. 20.32↓ 40.70↓ 2.54 ↓

ogbn-arxiv
w./o. edit 70.20 68.38 52.65
w./ edit 23.70 19.06 45.15
∆ Acc. 46.49↓ 49.31↓ 7.52↓

Results: As shown in Table 1, we
observe that (1) GNNs consistently
outperform MLP on all the graph
datasets before editing. This is
consistent with the previous graph
analysis results, where the neural
message passing involved in GNNs
extracts the graph topology to ben-
efit the node representation learn-
ing and thereby the classification
accuracy. (2) After editing, the
accuracy drop of GNNs is signifi-
cantly larger than that of MLP. For
example, GraphSAGE has an al-
most 50% drop in test accuracy on
ogbn-arxiv after editing even a sin-
gle point. MLP with editing even
delivers higher overall accuracies
on Flickr and ogbn-arxiv compared
with GNN-based approaches. One
of the intuitive explanations is the slightly fine-tuned weights in MLP mainly affect the target node,
instead of other unrelated samples. However, due to the message-passing mechanism in GNNs, the
edited node representation can be propagated over the whole graph and thus change the decisions on
a large area of nodes. These comparison results reveal the unique challenge in editing the correlated
nodes with GNNs, compared with the conventional neural networks working on isolated samples. (3)
After editing, the test accuracy of GCN, GraphSAGE, and MLP become too low to be practically
deployed. This is quite different to the model editing problems in computer vision and natural
language processing, where the modified models only suffer an acceptable accuracy drop.

3.2 SHARP LOCALITY OF GNNS THROUGH LOSS LANDSCAPE

Intuitively, due to the message-passing mechanism in GNNs, editing the model behavior for a single
node can cause the editing effect to propagate across the entire graph. This propagation pushes the
node representation far from its original one. Thus, we hypothesized that the difficulty in editing
GNNs as being due to the neighbor propagation of GNNs. The model editing aims to correct
the prediction of the misclassified node using the cross-entropy loss of desired label. Intuitively, the
large accuracy drop can be interpreted as the low model prediction similarity before and after model
editing, named as the locality.

To quantitatively measure the locality, we use the metric of KL divergence between the node
representations learned before and after model editing. The higher KL divergence means after editing,
the node representation is far away from the original one. In other words, the higher KL divergence
implies poor model locality, which is undesirable in the context of model editing. Particularly, we
visualize the locality loss landscape for Cora dataset in Figure 1. We observe several insights:
(1) GNNs (e.g., GCN and GraphSAGE) suffer from a much sharper loss landscape. Even slightly
editing the weights, KL divergence loss is dramatically enhanced. That means GNNs are hard to be
fine-tuned while keeping the locality. (2) MLP shows a flatter loss landscape and demonstrates much
better locality to preserve overall node representations. This is consistent to the accuracy analysis in
Table 1, where the accuracy drop of MLP is smaller. To deeply understand why model editing fails to
work in GNNs, we also provide a pilot theoretical analysis on the KL locality difference between
before/after model editing for one-layer GCN and MLP in Appendix E. We theoretically show that
when model editing corrects the model predictions on misclassified nodes, GNNs are susceptible
to altering the predictions on other connected nodes. This phenomenon results in an increased
KL divergence difference.

Specifically, in Appendix E, we analyze KL locality loss via Talor expansion in model weight space,
where model weight variation is determined by cross-entropy loss of the target sample. We found
that KL locality loss is related to node feature similarity score. Consequently, we transform the node
feature similarity score as the distance between the node feature matrix X and the subspaceM where

4

Under review as a conference paper at ICLR 2024

GCN SAGE MLP GCN-MLP SAGE-MLP

KL Locality

Low

High

Figure 1: The loss landscape of various model architectures on Cora dataset. Similar results can be
found in Appendix D

all row vectors are equivalent. Based on the spectral theory of graph, we can derive that the distance
between aggregated node feature ÃX and spaceM is higher than that of the original feature X.

3.3 EGNN: NEIGHBOR PROPAGATION FREE GNN EDITING

In our previous analysis, we hypothesized that the difficulty in editing GNNs as being due to the
neighbor propagation. However, as Table 1 suggested, the neighbor propagation is necessary for
obtaining good performance on graph datasets. On the other hand, MLP could stabilize most of the
node representations during model editing although it has worse node classification capability. Thus,
we need to find a way to “disable” the propagation during editing while still utilizing the neighbor
propagation scheme for node prediction to obtain satisfactory results. Following the motivation,
we propose to combine a compact MLP to the well-trained GNN and only modify the MLP during
editing. In this way, we can correct the model’s predictions through this additional MLP while
freezing the neighbor propagation. Meanwhile during inference, both the GNN and MLP are used
together for prediction in tandem to harness the full potential of GNNs for prediction. The whole
algorithm is shown in Algorithm 1.

Algorithm 1: Proposed EGNN
procedure MLP TRAINING PROCEDURE:

Input: MLP gΦ, dataset D, the node embedding hv for each node v in D
for t = 1, · · · , T do

Sample xv , yv ∼ Dtrain

Lloc = KL(hv + gΦ(xv)||hv)
Ltask = − log pΦ(yv|hv + gΦ(xv))
L = Ltask + αLloc
Φ← Adam(Φ,∇L)

end
end
procedure EGNN EDIT PROCEDURE:

Input: data pair xe, ye to be edited, the node embedding he for node e
ŷ = argmaxy pΦ(y|xe,he)

while ŷ ̸= ye do
L = − log pΦ(y|xe,he)
Φ← Adam(Φ,∇L)

end
end

Before editing. We first stitch a randomly initialized compact MLP to the trained GNN. We freeze the
weights of GNN in this step. To mitigate the potential impact of random initialization on the model’s
prediction, we introduce a training procedure for the stitched MLP, as outlined in Algorithm 1 “MLP
TRAINING PROCEDURE”: we train the MLP for a few iterations to ensure that it does not significantly
alter the model’s prediction. By freezing GNN’s weights, we first get the node embedding hv at the
last layer of the trained GNN by running a single forward pass. We then stitch the MLP with the
trained GNNs. Mathematically, we denote the MLP as gΦ where Φ is the parameters of MLP. For
a given input sample xv,yv, the model output now becomes hv + gΦ(xv). We calculate two loss
based on the prediction, i.e., the task-specific loss Ltask and the locality loss Lloc. Namely,

Ltask = − log pΦ(yv|hv + gΦ(xv)),

Lloc = KL(Softmax(hv + gΦ(xv))||Softmax(hv)),

5

Under review as a conference paper at ICLR 2024

where hv + gΦ(xv) is the model prediction with the additional MLP and pΦ(yv|hv + gΦ(xv)) is the
probability of class yv given by the model. Ltask is the cross-entropy between the model prediction
and label. Lloc is the locality loss, which equals KL divergence between the original prediction hv and
the prediction with the additional MLP hv + gΦ(xv). The final loss L is the weighted combination
of two parts, i.e., L = Ltask + αLloc where α is the weight for the locality loss. L is used to guide the
MLP to fit the task while keep the model prediction unchanged. We present the ablation study on
the Ltask and Lloc in Appendix D.5.

When editing. EGNN freezes the model parameters of GNN and only updates the parameters of
MLP. Specifically, as outlined in Algorithm 1 “EGNN EDIT PROCEDURE”, we update the parameters
of MLP until the model prediction for the misclassified sample is corrected. Since MLP only relies on
the node features, we can easily perform these updates in mini-batches, which enables us to edit GNNs
on large graphs. Lastly, we visualize the KL locality loss landscape of EGNN (including GCN-MLP
and SAGE-MLP) in Figure 1. It is seen that the proposed EGNN shows the most flattened loss
landscape than MLP and GNNs, which implied that EGNN can preserve overall node representations
better than other model architectures.

4 RELATED WORK AND DISCUSSION

Due to the page limit, below we discuss the related work on model editing. We also discuss the
limitation in Appendix B.

Model Editing. Many approaches have been proposed for model editing. The most straightforward
method adopts standard fine-tuning to update model parameters based on misclassified samples while
preserving model locality via constraining parameters travel distance in model weight space (Zhu
et al., 2020; Sotoudeh & Thakur, 2019). Work (Sinitsin et al., 2020b) introduces meta-learning to
find a pre-trained model with rapid and easy finetuned ability for model editing. Another way to
facilitate model editing relies on external learned editors to modify model editing considering several
constraints (Mitchell et al., 2021; Hase et al., 2021; De Cao et al., 2021; Mitchell et al., 2022). The
editing of the activation map is proposed to correct misclassified samples in (Dai et al., 2021; Meng
et al., 2022) due to the belief of knowledge attributed to model neurons. While existing approaches
either modify the base model parameters or introduce separate external modules to achieve desired
prediction changes, they assume data to be independent and identically distributed (i.i.d.). This
assumption might not hold well for graph data, given the fundamental node interactions that occur
during neighborhood propagation. In this paper, we propose EGNN, using a stitched MLP module to
edit the base GNN model, for node classification tasks. The key insight behind this solution is the
sharp locality of GNNs, i.e., the prediction of GNNs can be easily altered after model editing.

5 EXPERIMENTS

The experiments are designed to answer the following research questions. RQ1: Can EGNN correct
the wrong model prediction? Moreover, what is the difference in accuracy before and after editing
using EGNN ? RQ2: Can the edits generalize to correct the model prediction on other similar inputs?
RQ3: What is the time and memory requirement of EGNN to perform the edits?

5.1 EXPERIMENTAL SETUP

Datasets and Models. To evaluate EGNN , we adopt four small-scale and four large-scale graph
benchmarks from different domains. For small-scale datasets, we adopt Cora, A-computers (Shchur
et al., 2018), A-photo (Shchur et al., 2018), and Coauthor-CS (Shchur et al., 2018). For large-scale
datasets, we adopt Reddit (Hamilton et al., 2017), Flickr (Zeng et al., 2020), ogbn-arxiv (Hu et al.,
2020), and ogbn-products (Hu et al., 2020). We have incorporated EGNN with traditional GNN
models such as GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017), as well as
with GNNs that decouple propagation from the learning process, e.g., SGC (Wu et al., 2019) and
SIGN (Frasca et al., 2020). To avoid creating confusion, GCN and GraphSAGE are all trained with
the whole graph at each step. We evaluate EGNN under the inductive setting. Namely, we trained the
model on a subgraph containing only the training node and evaluated it on the whole graph. Details
about the hyperparameters and datasets are in Appendix A.

6

Under review as a conference paper at ICLR 2024

Compared Methods. We compare our EGNN editor with the following two baselines: the vanilla
gradient descent editor (GD) and Editable Neural Network editor (ENN) (Sinitsin et al., 2020a). GD
is the same editor we used in our preliminary analysis in Section 3. We note that for other model
editing, e.g., MEND (Mitchell et al., 2021), SERAC (Mitchell et al., 2022) are tailored for NLP
applications, which cannot be directly applied to the graph area. Specifically, GD applies the
gradient descent on the parameters of GNN until the GNN makes right prediction. ENN trains
the parameters of GNN for a few steps to make it prepare for the following edits. Then similar to
GD editor, it applies the gradient descent on the parameters of GNN until the GNN makes right
prediction. For EGNN , we only train the stitched MLP for a few steps. Then we only update weights
of MLP during edits. Detailed hyperparameters are listed in Appendix A.

Evaluation Metrics. Following previous work (Sinitsin et al., 2020a; Mitchell et al., 2022; 2021),
we evaluate the effectiveness of different methods by the following three metrics. DrawDown
(DD), which is the mean difference of test accuracy before and after performing an edit. A smaller
drawdown indicates a better editor locality. Success Rate (SR), which is defined as the rate of edits,
where the editor successfully corrects the model prediction. Edit Time, which is defined as the
wall-clock time of a single edit that corrects the model prediction.

5.2 THE EFFECTIVENESS OF EGNN IN EDITING GNNS

Table 2: The results on four small scale datasets after applying one single edit. The reported number
is averaged over 50 independent edits. SR is the edit success rate, Acc is the test accuracy after
editing, and DD are the test drawdown, respectively. “OOM” is the out-of-memory error.

Editor Cora A-computers A-photo Coauthor-CS
Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN
GD 84.37±5.84 5.03±6.40 1.0 44.78±22.41 43.09±22.32 1.0 28.70±21.26 65.08±20.13 1.0 91.07±3.23 3.30±2.22 1.0

ENN 37.16±3.80 52.24±4.76 1.0 15.51±10.99 72.36±10.87 1.0 16.71±14.81 77.07±15.20 1.0 4.94±3.78 89.43±3.34 1.0
EGNN 87.80±2.34 1.80±2.13 1.0 82.85±5.20 2.32±5.11 0.98 91.97±5.85 2.39±5.34 1.0 94.54±0.07 -0.17±0.07 1.0

Graph-
SAGE

GD 82.06±4.33 4.54±5.32 1.0 21.68±20.98 61.15±20.33 1.0 38.98±30.24 55.32±29.35 1.0 90.15±5.58 5.01±5.32 1.0
ENN 33.16±1.45 53.44±2.23 1.0 16.89±16.98 65.94±16.75 1.0 15.06±11.92 79.24±11.25 1.0 13.71±2.73 81.45±2.11 1.0
EGNN 85.65±2.23 0.55±1.26 1.0 84.34±4.84 2.72±5.03 0.94 92.53±2.90 1.83±3.22 1.0 95.27±0.08 -0.01±0.10 1.0

10 20 30 40
Number of sequential edits

25

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GCN (ogbn-arxiv)

EGNN
GD
ENN

10 20 30 40
Number of sequential edits

25

50

75

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GCN (Reddit)

EGNN
GD
ENN

10 20 30 40
Number of sequential edits

25

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GraphSAGE (ogbn-arxiv)

EGNN
GD
ENN

10 20 30 40
Number of sequential edits

25

50

75
Te

st
 A

cc
ur

ac
y

D
ra

w
do

w
n GraphSAGE (Reddit)

EGNN
GD
ENN

Figure 2: Sequential edit test drawdown of GCN and GraphSAGE on Reddit and ogbn-arxiv dataset.
Due to the page limit, more similar results can be found in Appendix D.2.

Cora Flickr ogbn-arxiv0

20

40

60

80

Su
bg

ro
up

 T
es

t A
cc

ur
ac

y
(%

)

GCN Subgroup Accuracy
w./o. edit
w./ edit

(a) GCN Subgroup Acc.

Cora Flickr ogbn-arxiv0

20

40

60

80

O
ve

ra
ll

Te
st

 A
cc

ur
ac

y
(%

)

GCN Overall Accuracy
w./o. edit
w./ edit

(b) GCN Overall Acc.

Cora Flickr ogbn-arxiv0

20

40

60

80

Su
bg

ro
up

 T
es

t A
cc

ur
ac

y
(%

)

SAGE Subgroup Accuracy
w./o. edit
w./ edit

(c) SAGE Subgroup Acc.

Cora Flickr ogbn-arxiv0

20

40

60

80

O
ve

ra
ll

Te
st

 A
cc

ur
ac

y
(%

)

SAGE Overall Accuracy
w./o. edit
w./ edit

(d) SAGE Overall Acc.

Figure 3: The subgroup and overall test accuracy before and after one single edit. The results are
averaged over 50 independent edits.
In many real-world applications, it is common to encounter situations where our trained model
produces incorrect predictions on unseen data. It is crucial to address these errors as soon as they are
identified. To assess the usage of editors in real-world applications (RQ1), we select misclassified
nodes from the validation set, which is not seen during the training process. Then we employ the
editor to correct the model’s predictions for those misclassified nodes, and measure the drawdown
and edit success rate on the test set. The results after editing on a single node are shown in Table 2,
Table 17, and Table 3. We observe:

❶ Unlike editing Transformers on text data (Mitchell et al., 2021; 2022; Huang et al., 2023), all
editors can successfully correct the model prediction in graph domain. As shown in Table 3, all

7

Under review as a conference paper at ICLR 2024

editors have 100% success rate when edit GNNs. In contrast, for transformers, the edit success rate is
often less than 50% and drawdown is much smaller than GNNs (Mitchell et al., 2021; 2022; Huang
et al., 2023). This observation suggests that unlike transformers, GNNs can be easily perturbed to
produce correct predictions. However, at the cost of huge drawdown on other unrelated nodes.
Thus, the main challenge lies in maintaining the locality between predictions for unrelated
nodes before and after editing. This observation aligns with our initial analysis, which highlighted
the edit on a single node may propagate throughout the entire graph.

❷ Even when the propagation is separated from the learning process, GNNs still face editing
challenges arising from node mixing. Some GNNs, such as SGC (Wu et al., 2019) and SIGN (Frasca
et al., 2020), explicitly decouple neighbor propagation from the learning process, treating it as a
preprocessing step. Intuitively, decoupling-based GNNs only take processed node features as inputs,
eliminating the need for propagation. This raises an intriguing question: Do these GNNs still face the
same editing challenges? Due to the page limit, we present the results in Appendix Table 17. Table
17 shows that decoupling-based GNNs still suffer. These results can be explained by the fact that the
node features have been mixed due to the propagation-based preprocessing step. In this case, it is
still hard to maintain the original representation after editing. To verify our hypothesis, we fed two
different sets of features to the stitched MLP in EGNN . The first set comprised raw features without
preprocessing, termed "EGNN (raw feat)" in Table 17 while the second incorporated processed
features, labeled "EGNN (prop. feat.)". Our observations reveal that “EGNN (raw feat)” considerably
outperforms its counterpart which utilizes propagated features in terms of drawdown. This ablation
study firmly supports our claim that node propagation is a key factor for the graph editing challenge.
Additionally, the experiments for various model architectures with different neighborhood aggregation
strengths can be found in Appendix D.3. We also discuss the difference between our method and the
adapter (Houlsby et al., 2019) in Appendix D.4.
Table 3: The results on four large scale datasets after applying one single edit. “OOM” is the
out-of-memory error.

Editor Flickr Reddit ogbn-
arxiv

ogbn-
products

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN
GD 13.95±11.0 37.25±10.2 1.0 75.20±12.3 20.32±11.3 1.0 23.71±16.9 46.50±14.9 1.0 OOM OOM 0

ENN 25.82±14.9 25.38±16.9 1.0 11.16±5.1 84.36±3.1 1.0 16.59±7.7 53.62±6.7 1.0 OOM OOM 0
EGNN 44.91±12.2 6.34±10.3 1.0 94.46±0.4 1.03±0.6 1.0 67.34±8.7 2.67±4.4 1.0 74.19±3.4 0.81±0.23 1.0

Graph-
SAGE

GD 17.16±12.2 31.88±12.2 1.0 55.85±22.5 40.71±20.3 1.0 19.07±14.1 36.68±10.1 1.0 OOM OOM 0
ENN 28.73±5.6 20.31±5.6 1.0 5.88±3.9 90.68±4.3 1.0 8.14±8.6 47.61±7.6 1.0 OOM OOM 0
EGNN 43.52±10.8 5.12±10.8 1.0 96.50±0.1 0.05±0.1 1.0 67.91±2.9 0.64±2.3 1.0 76.27±0.6 0.17±0.10 1.0

❸ EGNN significantly outperforms both GD and ENN in terms of the test drawdown. This is mainly
because both GD and ENN try to correct the model’s predictions by updating the parameters of
Graph Neural Networks (GNNs). This process inevitably relies on neighbor propagation. In contrast,
EGNN has much better test accuracy after editing. Notably, for Reddit, the accuracy drop decreases
from roughly 80% to ≈ 1%, which is significantly better than the baseline. This is because EGNN
decouples the neighbor propagation with the editing process. Interestingly, ENN is significantly
worse than the vanilla editor, i.e., GD, when applied to GNNs. As shown in Appendix D, we found
that this discrepancy arises from the ENN training procedure, which significantly compromises the
model’s performance to prepare it for editing.

In Figure 6, 7, and 2 we present the ablation study under the sequential setting. This is a more
challenging scenario where the model is edited sequentially as errors arise. In particular, we plot the
test accuracy drawdown against the number of sequential edits for GraphSAGE on the ogbn-arxiv
dataset. We observe that ❹ EGNN consistently surpasses both GD and ENN in the sequential setting.
However, the drawdown is considerably greater than that in the single edit setting. For instance,
EGNN exhibits a 0.64% drawdown for GraphSAGE on the ogbn-arxiv dataset in the single edit setting,
which escalates up to a 20% drawdown in the sequential edit setting. These results also highlight the
hardness of maintaining the locality of GNN prediction after editing.

5.3 THE GENERALIZATION OF THE EDITS OF EGNN

Ideally, we aim for the edit applied to a specific node to generalize to similar nodes while preserving
the model’s initial behavior for unrelated nodes. To evaluate the generalization of the EGNN edits, we
conduct the following experiment:

(1) We first select a particular group (i.e., class) of nodes based on their labels. (2) Next, we randomly
flip the labels of 10% of the training nodes within this group and train a GNN on the modified training

8

Under review as a conference paper at ICLR 2024

Table 4: The edit time and memory required for editing.

Editor Flickr Reddit ogbn-
arxiv

ogbn-
products

Edit
Time (ms)

Peak
Memory (MB)

Edit
Time (ms)

Peak
Memory (MB)

Edit
Time (ms)

Peak
Memory (MB)

Edit
Time (ms)

Peak
Memory (MB)

GCN GD 379.86 707 1835.24 3429 663.17 967 OOM OOM
EGNN 246.63 315 765.15 2089 299.71 248 5122.53 5747

Graph-
SAGE

GD 712.07 986 4781.92 5057 668.77 1109 OOM OOM
EGNN 389.37 328 1516.68 2252 174.82 260 5889.59 6223

set. (3) For each flipped training node, we correct the trained model’s prediction for that node back to
its original class and assess whether the model’s predictions for other nodes in the same group are
also corrected. If the model’s predictions for other nodes in the same class are also corrected after
modifying a single flipped node, it indicates that the EGNN edits can effectively generalize to address
similar erroneous behavior in the model.

Outliers

(a) Before Edit

30 20 10 0 10 20 30

30

20

10

0

10

20

30

0

1

2

3

4

5

6

C
la

ss
 L

ab
el

s

(b) After Edit

Figure 4: T-SNE visualizations of GNN embeddings
before and after edits on the Cora dataset. The flipped
nodes are all from class 0, which is marked in red color.

To answer RQ2, we conduct the above ex-
periments and report the subgroup and
overall test accuracy after performing a
single edit on the flipped training node. The
results are shown in Figure 3. We observe
that: ❺ From Figure 3a and Figure 3c,
EGNN significantly improves the subgroup
accuracy after performing even a single
edit. Notably, the subgroup accuracy is
significantly lower than the overall accu-
racy. For example, on Flickr dataset, both
GCN and GraphSAGE have a subgroup ac-
curacy of less than 5% before editing. This
is mainly because the GNN is trained on
the graph where 10% labels of the training node in the subgroup are flipped. However, even after
editing on a single node, the subgroup accuracy is significantly boosted. These results indicate that
the EGNN edits can effectively generalize to address the wrong prediction on other nodes in the same
group. In Figure 4, we also visualize the node embeddings before and after editing by EGNN on the
Cora dataset. We note that all of the flipped nodes are from class 0, which is marked in red color in
Figure 4. Before editing, the red cluster has many outliers that lie in the embedding space of other
classes. This is mainly because the labels of some of the nodes in this class are flipped. In contrast,
after editing, the nodes in the red cluster become significantly closer to each other, with a substantial
reduction in the number of outliers.

5.4 THE EFFICIENCY OF EGNN

We want to patch the model as soon as possible to correct errors as they appear. Thus ideally, the
editor should be efficient and scalable to large graphs. Here we summarize the edit time and memory
required for performing the edits in Table 4. We observe that EGNN is about 2 ∼ 5× faster than the
GD editor in terms of the wall-clock edit time. This is because EGNN only updates the parameters
of MLP, and totally gets rid of the expensive graph-based sparse operations (Liu et al., 2022b;a;
Han et al., 2023b). Also, updating the parameters of GNNs requires storing the node embeddings in
memory, which is directly proportional to the number of nodes in the graph and can be exceedingly
expensive for large graphs However, with EGNN , we only use node features for updating MLPs,
meaning that memory consumption is not dependent on the graph size. Consequently, EGNN can
efficiently scale up to handle graphs with millions of nodes, e.g., ogbn-products, whereas the vanilla
editor raises an OOM error.

6 CONCLUSION

We explore a and important problem, i.g., GNNs model editing for node classification. We empirically
and theoretically show that the vanilla model editing method may not perform well due to node
aggregation. Furthermore, we propose EGNN to correct misclassified samples while preserving other
intact nodes, via stitching a trainable MLP. In this way, the power of GNNs for prediction and the
editing-friendly MLP can be integrated together in EGNN.

9

Under review as a conference paper at ICLR 2024

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4750–4759, 2022.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural networks with
limited sensitive attribute information. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pp. 680–688, 2021.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv
preprint arXiv:2104.08164, 2021.

Qizhang Feng, Zhimeng Jiang, Ruiquan Li, Yicheng Wang, Na Zou, Jiang Bian, and Xia Hu. Fair
graph distillation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=xW0ayZxPWs.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025–1035, 2017.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. In International Conference on Machine Learning, pp. 8230–8248. PMLR,
2022a.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn
training acceleration with mlp initialization. arXiv preprint arXiv:2210.00102, 2022b.

Xiaotian Han, Zhimeng Jiang, Hongye Jin, Zirui Liu, Na Zou, Qifan Wang, and Xia Hu. Retiring
∆DP: New distribution-level metrics for demographic parity. arXiv preprint arXiv:2301.13443,
2023a.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. MLPInit: Embarrassingly sim-
ple GNN training acceleration with MLP initialization. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https://openreview.net/forum?id=
P8YIphWNEGO.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-
patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=4oYUGeGBPm.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, and Xia Hu. Fmp:
Toward fair graph message passing against topology bias. arXiv preprint arXiv:2202.04187, 2022a.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Fan Yang, Ali Mostafavi, and Xia Hu. Generalized
demographic parity for group fairness. In International Conference on Learning Representations,
2022b.

10

https://openreview.net/forum?id=xW0ayZxPWs
https://openreview.net/forum?id=P8YIphWNEGO
https://openreview.net/forum?id=P8YIphWNEGO
https://openreview.net/forum?id=4oYUGeGBPm

Under review as a conference paper at ICLR 2024

Zhimeng Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Rui Chen, Na Zou, and Xia Hu. Chasing
fairness under distribution shift: a model weight perturbation approach. 2023.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft alignments.
In International Conference on Machine Learning. PMLR, 2023a.

Hongyi Ling, Zhimeng Jiang, Youzhi Luo, Shuiwang Ji, and Na Zou. Learning fair graph representa-
tions via automated data augmentations. In International Conference on Learning Representations,
2023b.

Zirui Liu, Qingquan Song, Kaixiong Zhou, Ting-Hsiang Wang, Ying Shan, and Xia Hu. Towards
interaction detection using topological analysis on neural networks. CoRR, abs/2010.13015, 2020.
URL https://arxiv.org/abs/2010.13015.

Zirui Liu, Shengyuan Chen, Kaixiong Zhou, Daochen Zha, Xiao Huang, and Xia Hu. Rsc: Ac-
celerating graph neural networks training via randomized sparse computations. arXiv preprint
arXiv:2210.10737, 2022a.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2022b. URL https://openreview.net/forum?id=vkaMaq95_rX.

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150–1170, 2011.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–15831.
PMLR, 2022.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Daniele Petrone and Vito Latora. A dynamic approach merging network theory and credit risk
techniques to assess systemic risk in financial networks. Scientific Reports, 8(1):5561, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news detection on social media:
A data mining perspective. ACM SIGKDD explorations newsletter, 19(1):22–36, 2017.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2010.13015
https://openreview.net/forum?id=vkaMaq95_rX

Under review as a conference paper at ICLR 2024

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, and Artem Babenko. Editable
neural networks. arXiv preprint arXiv:2004.00345, 2020a.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, and Artem Babenko. Editable
neural networks. arXiv preprint arXiv:2004.00345, 2020b.

Matthew Sotoudeh and A Thakur. Correcting deep neural networks with small, generalizing patches.
In Workshop on safety and robustness in decision making, 2019.

Ruixiang Tang, Mengnan Du, Yuening Li, Zirui Liu, and Xia Hu. Mitigating gender bias in captioning
systems. CoRR, abs/2006.08315, 2020. URL https://arxiv.org/abs/2006.08315.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Zehong Zhang, Lifan Chen, Feisheng Zhong, Dingyan Wang, Jiaxin Jiang, Sulin Zhang, Hualiang
Jiang, Mingyue Zheng, and Xutong Li. Graph neural network approaches for drug-target
interactions. Current Opinion in Structural Biology, 73:102327, 2022. ISSN 0959-440X.
doi: https://doi.org/10.1016/j.sbi.2021.102327. URL https://www.sciencedirect.com/
science/article/pii/S0959440X2100169X.

Elena Zheleva and Lise Getoor. Preserving the privacy of sensitive relationships in graph data. In
Privacy, Security, and Trust in KDD: First ACM SIGKDD International Workshop, PinKDD 2007,
San Jose, CA, USA, August 12, 2007, Revised Selected Papers, pp. 153–171. Springer, 2008.

Kaixiong Zhou, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Table2graph: Transforming
tabular data to unified weighted graph.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv
Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363, 2020.

12

https://arxiv.org/abs/2006.08315
https://openreview.net/forum?id=BJe8pkHFwS
https://www.sciencedirect.com/science/article/pii/S0959440X2100169X
https://www.sciencedirect.com/science/article/pii/S0959440X2100169X

Under review as a conference paper at ICLR 2024

A EXPERIMENTAL SETTING

A.1 DATASETS FOR NODE CLASSIFICATION

The details of datasets used for node classification are listed as follows:

• Cora (Sen et al., 2008) is the citation network. The dataset contains 2,708 publications
with 5,429 links, and each publication is described by a 1,433-dimensional binary vector,
indicating the presence or absence of corresponding words from a fixed vocabulary.

• A-computers (Shchur et al., 2018) is the segment of the Amazon co-purchase graph, where
nodes represent goods, edges indicate that two goods are frequently bought together, node
features are bag-of-words encoded product reviews.

• A-photo (Shchur et al., 2018) is similar to A-computers, which is also the segment of the
Amazon co-purchase graph, where nodes represent goods, edges indicate that two goods are
frequently bought together, node features are bag-of-words encoded product reviews.

• Coauthor-CS (Shchur et al., 2018) is the co-authorship graph based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge 3. Here, nodes are authors, that are
connected by an edge if they co-authored a paper; node features represent paper keywords
for each author’s papers, and class labels indicate most active fields of study for each author.

• Reddit (Hamilton et al., 2017) is constructed by Reddit posts. The node in this dataset is a
post belonging to different communities.

• ogbn-arxiv (Hu et al., 2020) is the citation network between all arXiv papers. Each node
denotes a paper and each edge denotes citation between two papers. The node features are
the average 128-dimensional word vector of its title and abstract.

• ogbn-prducts (Hu et al., 2020) is Amazon product co-purchasing network. Nodes rep-
resent products in Amazon, and edges between two products indicate that the products
are purchased together. Node features are low-dimensional representations of the product
description text.

Table 5: Statistics for datasets used for node classification.

Dataset # Nodes. # Edges # Classes # Feat Density

Cora 2,485 5,069 7 1433 0.72‰
A-computers 13,381 245,778 10 767 2.6‰

A-photo 7,487 119, 8 745 4.07‰
Coauthor-CS 18,333 81,894 15 6805 0.49‰

Flickr 89,250 899,756 7 500 0.11‰
Reddit 232,965 23,213,838 41 602 0.43‰

ogbn-arxiv 169,343 1,166,243 40 128 0.04‰
ogbn-products 2,449,029 61,859,140 47 218 0.01‰

A.2 BASELINES FOR NODE CLASSIFICATION

We present the details of the hyperparameters of GCN, GraphSAGE, and the stitched MLP modules
in Table 6. We use the Adam optimizer for all these models.

A.3 HARDWARE AND SOFTWARE CONFIGURATION

All experiments are executed on a server with 500GB main memory, two AMD EPYC 7513 CPUs.
All experiments are done with a single NVIDIA RTX A5000 (24GB). The software and package
version is specified in Table 7:

13

Under review as a conference paper at ICLR 2024

Table 6: Training configuration for employed models

Model Dataset #Layers #Hidden Learning rate Dropout Epoch

G
ra

ph
SA

G
E

Cora 2 32 0.01 0.1 200
A-computers 2 32 0.01 0.1 400

A-photo 2 32 0.01 0.1 400
Coauthor-CS 2 32 0.01 0.1 400

Flickr 2 256 0.01 0.3 400
Reddit 2 256 0.01 0.5 400

ogbn-arxiv 3 128 0.01 0.5 500
ogbn-products 3 256 0.002 0.5 500

G
C

N

Cora 2 32 0.01 0.1 200
A-computers 2 32 0.01 0.1 400

A-photo 2 32 0.01 0.1 400
Coauthor-CS 4 32 0.01 0.1 400

Flickr 2 256 0.01 0.3 400
Reddit 2 256 0.01 0.5 400

ogbn-arxiv 3 128 0.01 0.5 500
ogbn-products 3 256 0.002 0.5 500

M
L

P

Cora 2 32 0.01 0.1 200
A-computers 2 32 0.01 0.1 400

A-photo 2 32 0.01 0.1 400
Coauthor-CS 4 32 0.01 0.1 400

Flickr 2 256 0.01 0.3 400
Reddit 2 256 0.01 0.5 400

ogbn-arxiv 3 128 0.01 0.5 500
ogbn-products 3 256 0.002 0.5 500

Table 7: Package configurations of our experiments.

Package Version
CUDA 11.3
pytorch 1.10.2

torch-geometric 1.7.2
torch-scatter 2.0.8
torch-sparse 0.6.12

B LIMITATIONS

Despite that EGNN is effective, generalized, and efficient, its main limitation is that currently, it will
incur a larger inference latency, due to the extra MLP module. However, we note that this inference
overhead is negligible. This is mainly because the computation of MLP only involve dense matrix
operation, which is way more faster than the graph-based sparse operations Liu et al. (2022b;a); Han
et al. (2023b).

C FUTURE WORK

There are abundant directions on top of our work, including (1) Enhancing the efficiency of editable
graph neural networks training through various perspectives (Wang et al., 2018; Cazenavette et al.,
2022; Jin et al., 2021; Feng et al., 2023; Han et al., 2022b) (e.g., model initialization, data, and
gradient); (2) understanding why vanilla editable graph neural networks training fails from other
perspectives (e.g., interpretation and information bottleneck) (Lundberg & Lee, 2017; Tishby et al.,
2000; Liu et al., 2020); (3) Advancing the scalability, speed, and memory efficiency of editable graph
neural networks training (Liu et al., 2022b;a; Han et al., 2023b); (4) Expanding the scope of editable
training for other tasks (e.g., link prediction, and knowledge graph) (Lü & Zhou, 2011; Wang et al.,
2014); (5) Investigating the potential issue concerning privacy, robustness, and fairness in the context

14

Under review as a conference paper at ICLR 2024

of editable graph neural networks training (Zheleva & Getoor, 2008; Jiang et al., 2023; Jin et al.,
2020; Dai & Wang, 2021; Jiang et al., 2022b; Han et al., 2023a; Tang et al., 2020).

D MORE EXPERIMENTAL RESULTS

D.1 MORE LOSS LANDSCAPE RESULTS

We visualize the locality loss landscape for Flickr dataset in Figure 5. Similarly, Z axis denotes the KL
divergence, X-Y axis is centered on the original model weights before editing and quantifies the weight
perturbation scale after model editing. We observe similar observations: (1) GNNs architectures (e.g.,
GCN and GraphSAGE) suffer from a much sharper loss landscape at the convergence of original
model weights. KL divergence locality loss is dramatically enhanced even for slight weights editing.
(2) MLP shows a flatter loss landscape and demonstrates mild locality to preserve overall node
representations, which is consistent with the accuracy analysis in Table 1. (3) The proposed EGNN
shows the most flattened loss landscape than MLP and GNNs, which implied that EGNN can preserve
overall node representations better than other model architectures.

We also provide an intuitive justification on loss landscape results. Firstly, both MLP and GCN-MLP
are flat because they’re exempt from neighborhood propagation. As for flatness comparison between
MLP and GCN-MLP, we would like to note that the final output of GCN-MLP consists two parts:
hv from GCN, and gΦ(xv) from MLP, where GCN part is fixed during editing the MLP parameters.
In contrast, when perturbing the MLP model, the entire model is affected. Thus intuitively, when
only editing the MLP parameters, the GCN-MLP model is flatter because it’s harder to alter its final
results when only a subpart (the MLP part) is perturbed, while in the case of the MLP, the whole
model is susceptible to changes.

GCN SAGE MLP GCN-MLP SAGE-MLP

KL Locality

Low

High

Figure 5: The loss landscape of various GNNs architectures on Flickr dataset.

D.2 MORE SEQUENTIEL EDITING REUSLTS

10 20 30 40
Number of sequential edits

0

20

40

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GCN (Cora)
EGNN
GD
ENN

10 20 30 40
Number of sequential edits

0

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GCN (Coathor-CS)

EGNN
GD
ENN

10 20 30 40
Number of sequential edits

0

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GCN (A-Computers)
EGNN
GD
ENN

10 20 30 40
Number of sequential edits

25

50

75

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GCN (A-photo)
EGNN
GD
ENN

Figure 6: Sequential edit drawdown of GCN on four small scale datasets.

10 20 30 40
Number of sequential edits

0

20

40

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GraphSAGE (Cora)
EGNN
GD
ENN

10 20 30 40
Number of sequential edits

0

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GraphSAGE (Coathor-CS)

EGNN
GD
ENN

10 20 30 40
Number of sequential edits

0

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GraphSAGE (A-Computers)

EGNN
GD
ENN

10 20 30 40
Number of sequential edits

0

50

Te
st

 A
cc

ur
ac

y
D

ra
w

do
w

n GraphSAGE (A-photo)

EGNN
GD
ENN

Figure 7: Sequential edit drawdown of GraphSAGE on four small scale datasets.

D.3 EXPERIMENTS FOR MODEL ARCHITECTURES WITH DIFFERENT NEIGHBORHOOD
PROPAGATION STRENGTHS

To investigate whether neighborhood propagation is the main difficulty in editing GNNs, we con-
duct experiments on various model architectures with different neighborhood propagation strengths.

15

Under review as a conference paper at ICLR 2024

Table 8: Test DrawDown (%) of different model architectures on five datasets.

Dataset GCN GraphSAGE SGC SIGN MLP

Cora 5.03 4.53 3.73 4.80 3.46
Flickr 37.25 31.88 29.91 14.98 10.08
A-computers 43.09 61.15 60.97 27.27 6.98
A-photo 65.08 55.32 68.53 27.53 9.08
Coauthor-CS 3.30 5.01 3.13 1.42 0.57

Specifically, we choose the architectures conducting propagation in each layer (e.g., GCN, Graph-
SAGE), conducting propagation only once (e.g., SGC and SIGN), and without propagation (i.e.,
MLP). The test drawdown (DD) for many architectures on various graph datasets is shown in Table 8.
It is seen that SGC and SIGN are better than popular GNN models such as GCN and GraphSAGE.
Yet, they significantly underperform compared to pure MLPs. This is mainly because the neighbor
propagation in the preprocessing step still correlates to different input nodes. In a nutshell, model
architectures with extensive neighborhood aggregation suffer more in model editing and demonstrate
high test drawdown.

D.4 ABLATION STUDY ON COMPARING EGNN WITH ADAPTER

Here we discuss the difference between EGNN and Adapter Houlsby et al. (2019). In Table 9 we
compare EGNN against Adapter in terms of test drawdown using GCN. Below we list three key
difference between them:

• The problems are different. Adapter tuning aims to adapt a pre-trained model to a new task
with fewer parameters updated. Suppose we view correcting a GNN’s wrong predictions
as the new task, then adapter tuning does not try to maintain the GNN’s predictions on
unrelated inputs — even though this is one of the key goals for model editing.

• The architectures are different, and such difference matters in GNN editing.While both use
MLP as the medium, adapter tuning inserts MLP modules between layers, where EGNN
employs a single MLP parallel to the GNN. So in a GNN context, node features fed to
such between-layer adapters are already mixed due to neighbor propagations, which is not
ideal for edit robustness. The ‘GCN + adapter‘ results below indicate a direct application of
adapter tuning to GCN edit problem has a drawdown up to 80%, which is meaningless to
the editing task.

• -The weight-update strategies are different, and again it matters. Since adapter tuning aims to
adapt a model to a new task, it only employs one holistic fine-tuning process. In EGNN, we
consider both task-specific and locality loss, designing a two-step approach. This design is
noteworthy under model edit, as if we apply adapter tuning with Ltask and Lloc as guidance,
we can witness an improvement up to 60%. Though, such modified adapter tuning approach
still significantly fell short of EGNN due to its reliance on neighbor propagation.

Table 9: Test DrawDown (the lower the better) comparison between EGNN and Adapter.

GCN GCN+Adapter GCN+Adapter w./ Ltask and Ltask EGNN

Cora 5.03 74.9 25.1 1.80
Flickr 37.25 37.6 29.4 6.34

A-computers 43.09 73.2 24.7 2.32
A-photo 65.08 85.4 24.8 2.39

Coauthor-CS 3.30 84.0 20.9 -0.17

16

Under review as a conference paper at ICLR 2024

D.5 ABLATION STUDY ON FINE-TUNING MLP

In Table 10, we present the ablation study on the effect of Ltask and Lloc. Specifically, we observe
that after removing them, the test drawdown is significantly larger, which justify our design.

Table 10: Ablation study on the impact of MLP training procedure on editing GCN with EGNN in
terms of test drawdown (the lower the better), here the MLP is randomly initialized.

Cora Flickr A-computers A-photots Coauthor-CS
Both 1.8 6.34 2.32 2.39 -0.17

Only task loss Ltask 2.34 8.44 2.88 7.08 -0.87
Only locality loss Lloc 2.57 10.92 4.63 4.62 1.01
Without Ltask and Lloc 2.14 36.98 3.02 4.92 0.02

Here in Table 11, we also present the ablation study on the effect of initialization of MLP. Specifically,
instead of random initialization, we initialize all parameters in MLP as zero. Similarly, we observe
(1) after removing them, the test drawdown is significantly larger, which justify our design. (2)
after fine-tuning the MLP with both loss, the zero-initialized MLP performs significantly worse than
randomly initialized MLP in terms of test drawdown.

Table 11: Ablation study on the impact of MLP training procedure on editing GCN with EGNN in
terms of test drawdown (the lower the better), here the MLP is zero-initialized.

Cora Flickr A-computers A-photots Coauthor-CS
Both 3.70 9.07 2.37 3.98 1.45

Only task loss Ltask 4.98 11.3 3.19 4.71 1.22
Only locality loss Lloc 6.20 9.41 4.63 4.62 1.01
Without Ltask and Lloc 6.20 9.79 4.63 4.62 1.01

D.6 WHY ENN PERFORMS SO BAD

Below we experimentally analyze why ENN performs so bad on the graph dataset. The key idea of
ENN is to fine-tune the model a few steps to make it prepare for editing. Specifically, it is explicitly
designed to make every sample closer to the decision boundary. In this way, the wrongly predicted
samples are easier to be perturbed across the boundary. However, we found that this extra fine-tuning
process significantly hurts the model performance. As shown in Table 12, we report the test accuracy
for the baseline (i.e., before editing), the accuracy after fine-tuned by ENN, and the accuracy after
editing. We summarize that there was a significantly accuracy drop after fine-tuned by ENN, which
significantly compromises the model’s performance to prepare it for editing

Table 12: The test accuracy (%) for detailed ENN performance analysis

Model Method Cora A-computers A-photo Coauthor-CS

GCN
Baseline 89.4 87.88 93.77 94.37

After ENN
fine-tune 32.0 52.97 9.70 1.92

After Edits 37.16 15.51 16.71 4.94

GraphSAGE
Baseline 86.6 82.83 94.30 95.17

After ENN
fine-tune 32.00 7.00 4.60 13.06

After Edits 33.16 16.89 15.06 13.71

D.7 TRANSDUCTIVE SETTING EVALUATION

While most of our experiments are done in an inductive setting — which is specified in Section 5
— as it is often considered a harder setting than transductive, requiring the model to learn with less

17

Under review as a conference paper at ICLR 2024

information and be capable of predicting unseen nodes (Hamilton et al., 2017; Zeng et al., 2020). Our
EGNN also work under a transductive setting, as shown in the below tables. We observe that GNNs
under transductive settings also suffer catastrophic accuracy drop upon editing due to their neighbor
propagation mechanism, and EGNN can effectively reduce it. This indicates EGNN is applicable and
performant under the transductive setting.

Table 13: Single edit of GCN via EGNN under both inductive and transductive settings. We report the
results in the format of Post-edit Test Accuracy (Test Drawdown).

GCN Cora A-computers A-photo Coauthor-CS
GD (inductive) 84.37 (5.03) 44.78 (43.09) 28.70 (65.08) 91.07 (3.30)
EGNN (inductive) 87.80 (1.80) 82.85 (2.32) 91.97 (2.39) 94.54 (-0.17)
GD (transductive) 86.24 (3.36) 51.09 (36.11) 41.49 (51.30) 83.83 (9.13)
EGNN (transductive) 87.92 (1.68) 85.61 (1.90) 90.68 (2.24) 93.71 (-0.73)

Table 14: Single edit of GraphSAGE via EGNN under both inductive and transductive settings. We
report the results in the format of Post-edit Test Accuracy (Test Drawdown).

GraphSAGE Cora A-computers A-photo Coauthor-CS
GD (inductive) 82.06 (4.53) 21.68 (61.15) 38.98 (55.32) 90.15 (5.01)
EGNN (inductive) 85.65 (0.55) 84.34 (2.72) 92.53 (1.83) 95.27 (-0.01)
GD (transductive) 86.06 (3.74) 31.15 (49.66) 31.23 (61.17) 88.62 (5.71)
EGNN (transductive) 87.97 (1.83) 80.81 (2.85) 93.39 (0.81) 94.50 (-0.23)

D.8 GNN ERROR PATTERN ANALYSIS

Here, we focus on analyzing the error pattern of 1-hop neighbors of wrongly predicted nodes (a.k.a.
editing targets). We find that in most cases, although the target node is wrongly predicted, most
of its close neighbors are still classified correctly, as indicated by the “bef. edit 1-hop acc” in the
table below (e.g., 78.93% average 1-hop accuracy in Cora). However, if we directly edit the model
to correct the prediction with vanilla gradient descent (GD), then the average accuracy of its 1-hop
neighbor decreases significantly, in some cases even more than 50%.

As we analyzed before, this is mainly due to the neighbor propagation effect. In contrast, ‘EGNN‘
has a much better 1-hop drawdown due to its propagation-free nature. Surprisingly, we found that
EGNN may even greatly increase the 1-hop neighbor classification accuracy (e.g., a -7.54 drawdown
on Cora). We hypothesize that this improvement occurs because the incorrectly predicted node and
several of its neighbors exhibit a similar error pattern. This shared pattern can be effectively rectified
through the node features alone, without the need for extensive neighborhood propagation.

Table 15: Error pattern analysis of GCN. Here “bef. edit 1-hop acc.” is the average test accuracy
of the 1-hop neighbors of the editing target. “GD 1-hop drawdown” and “EGNN 1-hop drawdown”
are the drawdown for the 1-hop neighbors of the editing target, as influenced by the vanilla gradient
descent and EGNN methods, respectively.

GCN Cora A-computers A-photo Coauthor-CS
bef. edit 1-hop acc. 78.93 58.10 83.27 85.58

GD 1-hop drawdown 25.37 33.63 52.02 33.87
EGNN 1-hop drawdown -2.14 0.00 2.45 -1.90

D.9 SGC AND SIGN EVALUATION

E THEORETICAL ANALYSIS ON WHY MODEL EDITING MAY CRY

To deeply understand why model editing may cry in GNNs, we provide a pilot theoretical analysis
on one-layer GCN and one-layer MLP for binary node classification task. Specifically, we consider
the model prediction be defined as fGCN

Θ (X) = σ(ÃXΘ) and fMLP
Θ (X) = σ(XΘ), where σ(·)

18

Under review as a conference paper at ICLR 2024

Table 16: Error pattern analysis of GraphSAGE. Here “bef. edit 1-hop acc.” is the average test
accuracy of the 1-hop neighbors of the editing target. “GD 1-hop drawdown” and “EGNN 1-hop
drawdown” are the drawdown for the 1-hop neighbors of the editing target, as influenced by the
vanilla gradient descent and EGNN methods, respectively.

GraphSAGE Cora A-computers A-photo Coauthor-CS
bef. edit 1-hop acc. 82.55 64.53 74.40 90.51

GD 1-hop drawdown 17.92 27.68 45.65 27.57
EGNN 1-hop drawdown -7.54 -3.15 9.46 -2.61

Table 17: The results on four small scale datasets after applying one single edit for SGC and SIGN.
“EGNN (raw feat.)” means the stitched MLP only take raw input features as inputs. “EGNN (prop.
feat.)” means the MLP takes the propagated features as inputs where the node features are already
mixed by the preprocessing step.

Editor
Cora A-computers A-photo Coauthor-CS

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

SGC

GD 83.87±4.50 3.73±2.50 1.0 26.17±24.29 60.97±26.06 1.0 24.68±15.53 68.53±8.44 1.0 91.75±2.47 3.13±1.03 1.0
EGNN

(prop. feat) 80.01±12.06 7.59±8.43 1.0 83.38±8.76 3.76±4.55 1.0 89.49±7.54 3.72±5.46 1.0 94.42±1.82 0.46±0.10 1.0

EGNN
(raw feat.) 82.12±10.36 5.48±11.22 1.0 84.46±9.68 2.68±6.48 1.0 90.87±7.28 2.34±3.08 1.0 94.42±2.67 0.46±0.16 1.0

SIGN

GD 82.40±3.79 4.80±1.52 1.0 58.33±15.05 27.27±12.22 1.0 66.11±16.71 27.53±12.00 1.0 93.98±1.26 1.42±0.53 1.0
EGNN

(prop. feat) 83.45±1.92 4.15±2.04 1.0 69.22±9.33 14.62±8.85 1.0 72.18±16.31 21.46±4.03 1.0 93.35±1.42 2.32±0.14 1.0

EGNN
(raw feat.) 85.36±3.23 2.24±0.44 1.0 83.61±1.61 0.22±0.13 1.0 93.08±1.22 0.57±0.10 1.0 95.38±0.05 -0.03±0.01 1.0

is sigmoid activation function, X ∈ Rn×d, and Θ ∈ Rd×1. Then we have the following informal
statement:

Theorem E.1. For well-trained one-layer GCN fGCN
Θ1

and one-layer MLP fMLP
Θ2

for binary node
classification task, suppose GCN has sharp locality loss landscape than MLP, model editing (parame-
ters fine-tuning) incurs higher KL divergence locality loss for fGCN

Θ1
than fMLP

Θ2
.

Remark: Theorem E.1 represents that model editing in GNNs leads to higher prediction differences
than that of MLPs. Note that such analysis is only based on one-layer model with a binary node
classification task, we leave the analysis for more complicated cases (e.g., multi-layer models, and
multi-class classification) for future work.

We only consider well-trained one-layer GCN and MLP for binary classification task, defined as
fGCN
Θ1

(X) = σ(ÃXΘ1) and fMLP
Θ2

(X) = σ(XΘ2), where σ(·) is sigmoid activation function,
X ∈ Rn×d, and Θ1,Θ2 ∈ Rd×1. Define the training nodes index set as Vtrain and the misclassified
node index as j, where j /∈ Vtrain. We use ŷi to represent the model prediction of node vi for GCN
or MLP models, and add superscript to indicate a specific model. We use cross-entropy loss for
misclassified node vj in model editing and use gradient descent to update model parameters, i.e.,

Θ′ = Θ− α
∂LCE(yj , ŷj)

∂Θ
, (2)

where α is step size, cross-entropy loss is LCE(yi, ŷi) = −yi log ŷi− (1−yi) log(1− ŷi). We define
ŷ′i to represent the model prediction of node vi after model editing. We adopt the KL divergence
between after and before model editing to measure the locality of the well-trained model, i.e.,

LKL =
1

|Vtrain|
∑

i∈Vtrain

LKL(ŷ
′
i, ŷi) =

1

|Vtrain|
∑

i∈Vtrain

ŷ′i log
ŷ′i
ŷi

+ (1− ŷ′i) log
(1− ŷ′i)

(1− ŷi)
, (3)

The main goal is to compare the KL locality LGCN
KL and LGCN

KL for GCN and MLP model resulting
from model editing with parameters update. Note that the model parameters update is relatively small,
the KL locality can be effectively approximated using one-order Taylor expansion.

19

Under review as a conference paper at ICLR 2024

Note that LKL = 0 if Θ′ = Θ and model editing only leads to small model parameters perturbations,
we can expand LKL as follows:

LKL =
1

|Vtrain|
∑

i∈Vtrain

∂LKL(ŷ
′
i, ŷi)

∂Θ′

∥∥
Θ′=Θ

(Θ′−Θ)+(Θ′−Θ)⊤H
∥∥
Θ′=Θ

(Θ′−Θ)+o(∥Θ′−Θ∥2F)

(4)
where Hessian matrix H

∥∥
Θ′=Θ

=
∂2LKL(ŷ′

i,ŷi)
∂(Θ′)2

∥∥
Θ′=Θ′ . We omit the term o(∥Θ′ −Θ∥F) due small

model parameter perturbations in the following analysis. Notice that the derivative of sigmoid
function is ∂σ(x)

x = σ(x)
(
1− σ(x)

)
, the first derivative of KL locality for the individual sample can

be given as

∂LKL(ŷ
′
i, ŷi)

∂Θ′

∥∥
Θ′=Θ

=
∂LKL(ŷ

′
i, ŷi)

∂ŷ′i

∥∥
ŷ′
i=ŷi

∂ŷ′i
∂Θ′

∥∥
Θ′=Θ

=
(
log

ŷ′i
ŷi
− log

(1− ŷ′i)

(1− ŷi)

)∥∥
ŷ′
i=ŷi

∂ŷ′i
∂Θ′

∥∥
Θ′=Θ

= 0. (5)

Therefore, the main part to analyze locality loss LKL is Hessian matrix H
∥∥
Θ′=Θ

. For simplicity, we
first consider MLP model, and the first derivative of KL locality for the individual sample can be
given as

∂LKL(ŷ
′
i, ŷi)

∂Θ′ =
(
log

ŷ′i
ŷi
− log

(1− ŷ′i)

(1− ŷi)

)
ŷ′i(1− ŷ′i)X

⊤
i,: ≜ g(ŷ′i)X

⊤
i,: (6)

It is easy to obtain that

∂g(ŷ′i)

∂ŷ′i

∥∥
ŷ′
i=ŷi

= (
1

ŷ′i
+

1

1− ŷ′i
)ŷ′i(1− ŷ′i) +

(
log

ŷ′i
ŷi
− log

(1− ŷ′i)

(1− ŷi)

)
(1− 2ŷ′i)

∥∥
ŷ′
i=ŷi

= 1 (7)

Therefore, we have Hessian matrix

HMLP
∥∥
Θ′=Θ

=
∂2LMLP

KL (ŷ′i, ŷi)

∂(Θ′)2
∥∥
Θ′=Θ′ =

∂g(ŷ′i)

∂ŷ′i
ŷ′i(1− ŷ′i)X

⊤
i,:Xi,:

= ŷ′i(1− ŷ′i)X
⊤
i,:Xi,: (8)

The locality of the well-trained MLP model for individual node vi is approximately given by

LKL(ŷ
′
i, ŷi) = (Θ′ −Θ)⊤H

∥∥
Θ′=Θ

(Θ′ −Θ) = ŷ′i(1− ŷ′i)∥Xi,:(Θ
′ −Θ)∥2. (9)

Note that cross-entropy loss for misclassified node vj is adopted in model editing and model parame-
ters update via gradient descent, ground-truth yj is given by yj = −u(ŷj − 0.5), where u(·) is a step
function, and ∂LCE(yj ,ŷj)

∂ŷj
= −yj

ŷj
+

1−yj

1−ŷj
=

u(ŷj−0.5)
min{ŷj ,1−ŷj} , the model editing gradient is given by

∂LCE(yj , ŷj)

∂Θ
=

u(ŷj − 0.5)

min{ŷj , 1− ŷj}
ŷj(1− ŷj)X

⊤
j,:

= u(ŷj − 0.5)max{ŷj , 1− ŷj}X⊤
j,: (10)

The locality of the well-trained MLP model for individual node vi can be simplified as

LMLP
KL (ŷ′i, ŷi) = ŷ′i(1− ŷ′i)max{ŷj , 1− ŷj}⟨Xi,:,Xj,:⟩ (11)

The average locality of the well-trained MLP model for training nodes is

LMLP
KL =

1

|Vtrain|
∑

i∈Vtrain

ŷ′i(1− ŷ′i)max{ŷj , 1− ŷj}⟨Xi,:,Xj,:⟩ (12)

As for GCN model, the only difference from MLP is node feature aggregation. The average locality
of the well-trained GCN model for training nodes can be obtained by replacing X with ÃX, i.e.,

LGCN
KL =

1

|Vtrain|
∑

i∈Vtrain

ŷ′i(1− ŷ′i)max{ŷj , 1− ŷj}⟨[ÃX]i,:, [ÃX]j,:⟩ (13)

20

Under review as a conference paper at ICLR 2024

On the other hand, neighborhood aggregation leads node features more similar. According to (Oono
& Suzuki, 2020, Proposition 1), suppose graph data has M connected components and λ1 ≤ · · · ≤
λn is the eigenvalue of Ã sorted in ascending order, then we have −1 < λ1, λn−M < 1, and
λn−M+1 = · · · = λn = 1. We mainly focus on the largest less-than-one eigenvalue defined as
λ ≜ max

k=1,··· ,n−M
|λk| < 1. Additionally, define subspaceM⊆ Rn×d be the linear subspace where

all row vectors are equivalent, the over-smoothing issue can be measured using the distance between
node feature matrix X and subspaceM by dM(X) ≜ inf{∥X−Y∥F |Y ∈M}. Based on (Oono
& Suzuki, 2020, Theorem 2) and λ < 1, we have

dM(ÃX) ≤ λdM(X) < dM(X), (14)

Note that if the raw vector of Y is the average row vector of X, the distance between node feature
matrix X and subspaceM is given by

dM(X) =

n∑
i=1

∥Xi,: −
1

n

n∑
i=1

Xi,:∥F =

n∑
i=1

∥ 1
n
(Xi,: −

∑
k ̸=i

Xk,:)∥F

=
1

n2

(n∑
i=1

∥Xi,:∥F −
∑
i̸=j

⟨Xi,:,X
⊤
j,:⟩

)
, (15)

Note that the adjacency matrix is normalized and the scale of the node features matrix is the same,
i.e., ∥X∥F ≈ ∥ÃX∥F . Therefore, the distance between node feature matrix X and subspaceM
is inversely related to node feature inner products. Based on Eqs (12), (13), and (14), we have
LMLP
KL < LGCN

KL , i.e., editable training in one-layer GCN leads to higher prediction differences than
that of one-layer MLP.

21

	Introduction
	Preliminary
	Proposed Methods
	Motivation: Model Editing may Cry in GNNs
	Sharp Locality of GNNs through Loss Landscape
	EGNN : Neighbor Propagation Free GNN Editing

	Related Work and Discussion
	Experiments
	Experimental Setup
	The Effectiveness of EGNN in Editing GNNs
	The Generalization of the Edits of EGNN
	The Efficiency of EGNN

	Conclusion
	Experimental Setting
	Datasets for node classification
	Baselines for node classification
	Hardware and software configuration

	Limitations
	Future Work
	More Experimental Results
	More Loss Landscape Results
	More Sequentiel Editing Reuslts
	Experiments for Model Architectures with Different Neighborhood Propagation Strengths
	Ablation Study on comparing EGNN with Adapter
	Ablation Study on Fine-tuning MLP
	Why ENN performs so bad
	Transductive Setting Evaluation
	GNN Error Pattern Analysis
	SGC and SIGN Evaluation

	Theoretical Analysis on Why Model editing may Cry

