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Abstract

We introduce HDP-Flow, a Bayesian nonparamet-
ric (BNP) model for unsupervised state discovery
in dynamic, non-stationary time series data. Un-
like prior work that assumes fixed states, HDP-
Flow models evolving datasets with unknown and
variable latent states. By integrating the adapt-
ability of BNP models with the expressive power
of normalizing flows, HDP-Flow effectively mod-
els dynamic, non-stationary patterns, while learn-
ing transferable states across datasets with well-
calibrated uncertainty. We propose a scalable vari-
ational algorithm to enable efficient inference, ad-
dressing the limitations of traditional sampling-
based BNP methods. HDP-Flow outperforms ex-
isting approaches in latent state identification and
provides probabilistic insight into state distribu-
tions and transition dynamics. Evaluating HDP-
Flow across two wearable datasets demonstrates
the transferability of states across diverse sub-
populations, validating its robustness and gener-
alizability. We demonstrate that HDP-Flow out-
performs existing nonparametric models in la-
tent state identification, particularly in the face
of non-stationary states. In most cases, it even
performs better than models that have prior infor-
mation about the number of states. Additionally,
we show that HDP-Flow’s variational inference
algorithm successfully scales to long time series,
where sampling-based inference fails, showcasing
the model’s practical utility for large-scale analy-
ses.

1 INTRODUCTION

Unsupervised modeling of latent states in time series can
reveal the underlying processes that generate the data. For

example, in healthcare, physiological metrics such as heart
rate and respiratory rate can be used to infer the underlying
health state of a patient, allowing the identification, predic-
tion or tracking of various health conditions [Pantelopoulos
and Bourbakis, 2009, Nazaret et al., 2023]. Unsupervised
representation learning methods have successfully encoded
time series data to capture underlying states [Franceschi
et al., 2019, Tonekaboni et al., 2020, Zhang et al., 2022, Yu
and Qin, 2022, Zhou et al., 2023]. However, these meth-
ods often require prior knowledge of the number of states
and cannot adapt to evolving conditions. In real-world sce-
narios, the number and distribution of states can change
over time. For instance, the emergence of a new disease
would increase the representation of a previously unrepre-
sented state. Models that can adapt to these changes and
accommodate a potentially unbounded number of states are
essential for many applications. Bayesian nonparametric
(BNP) models offer a solution to this problem [Orbanz and
Teh, 2010, Hjort et al., 2010, Lorek et al., 2022, Orbanz and
Teh, 2010], but often rely on overly simplistic assumptions
for real-world time series data. In particular, while allowing
for an unbounded number of states, these models assume
simple parametric state descriptions.

In this paper, we introduce a BNP sequence model called
HDP-Flow. HDP-Flow combines nonparametric modeling
of state dynamics with the expressivity of deep genera-
tive modeling, all while ensuring computational efficiency.
There are three main components to HDP-Flow: (1) To
model state dynamics, HDP-Flow builds on the hierarchical
Dirichlet process hidden Markov model (HDP-HMM) [Teh
et al., 2006]. Specifically, the sticky HDP-HMM [Fox et al.,
2011], a sequence model that enables the number of states
to adapt to the observed data and learns realistic transitions
by encouraging state persistence. (2) To capture the intricate
structure of real-world time series, HDP-Flow integrates
the sticky HDP-HMM with conditional normalizing flows
[Papamakarios et al., 2017], enabling modeling of com-
plex state-specific emissions. (3) To capture non-stationarity
within states, HDP-Flow introduces a time-conditioning



mechanism that tracks state duration and conditions the ob-
servation distribution on the number of time steps within the
state. This enables modeling trends, periodicity, and other
forms of non-stationarity. Traditional HDP-HMMs, with
their Markov assumption and static emission distributions,
fail to capture such non-stationary states.

Most BNP models rely on sampling-based methods for in-
ference, such as Markov chain Monte Carlo [Neal, 2000]
and Gibbs sampling [Teh et al., 2004], which can become
computationally intractable when analyzing long time se-
ries across large cohorts. To address this limitation, we
employ an efficient stochastic variational inference (SVI)
algorithm based on black-box variational inference (BBVI)
[Ranganath et al., 2014]. This approach enables effective
handling of the complex distributions and dependencies in-
herent in the generative process of HDP-Flow, making it
scalable for large-scale applications.

We evaluate HDP-Flow on both real and simulated datasets,
comparing the learned states to those of other nonparametric
and parametric models. HDP-Flow consistently outperforms
nonparametric models in identifying latent states, demon-
strating exceptional accuracy in settings with non-stationary
emissions. It also bests other models in approximating the
true data distribution within each state. Additionally, we
test the generalizability of HDP-Flow across two cohorts,
demonstrating its ability to adapt to new datasets and pro-
vide insights into physiological changes in humans. Finally,
when applied to long time series data of human activities,
we showcase the superior scalability of HDP-Flow’s SVI
algorithm compared to sampling-based inference methods.

2 BACKGROUND

Nonparametric HMM This work builds on and con-
tributes to the field of Bayesian nonparametric (BNP) se-
quence models. BNP models offer a flexible way to repre-
sent data where the number of underlying patterns is un-
known, achieving this by defining probability distributions
over infinite-dimensional spaces [Orbanz and Teh, 2010].
The hierarchical Dirichlet process (HDP) [Orbanz and Teh,
2010] is a prominent BNP approach that models grouped
data where the number of groups (or clusters) is unknown. It
uses a Dirichlet process (DP) to model the data within each
group k. Critically, the HDP links these DPs with a shared
base distribution G0, also governed by a DP, allowing the
discovery of patterns shared across groups [Teh et al., 2004]:

G0 ∼ DP (γ,Hλ) Gk ∼ DP (α,G0). (1)

The parameter γ controls how tightly data points cluster
around the DP mean, while α determines deviations from
the base distribution Hλ. Equation 2 reformulates the HDP

using the stick-breaking process [Sethuraman, 1994].

G0 =

∞∑
k=1

βkδθk , β ∼ GEM(γ) θk
iid∼ Hλ

Gk =

∞∑
j=1

πk,jδθj , πk ∼ DP (α, β).

(2)

Here, the variables {θk}∞k=1 and {βk}∞k=1 parameterize the
location and the corresponding probability mass of each
group. The indicator function δθk evaluates to zero every-
where, except for δθk(θk) = 1. The variables {βk}∞k=1

are sampled from the GEM distribution [Johnson et al.,
1997, Pitman and Yor, 1997], following a procedure re-
sembling the recursive breaking of a unit-length stick via
βk = β′ ∏k−1

i=1 (1− βi), where β′ ∼ Beta(1, γ).

The hierarchical Dirichlet process hidden Markov model
(HDP-HMM) [Teh et al., 2006] is a Bayesian nonparametric
extension of the hidden Markov model (HMM) that uses
an HDP to model its state distributions and state transitions.
The top level DP determines the global distribution of states,
while the draws Gk from the base distribution G0 determine
the transition probabilities from each state k. The parameters
πi,j of the stick-breaking process can be interpreted as the
probability of transitioning from state i to j. The sequence
of latent states zt ∈ {1, 2, · · · } and observations in the
HDP-HMM are then modelled as:

zt ∼ πzt−1 xt ∼ p(xt|θzt). (3)

To encourage self-transitions in HDP-HMM, the transition
distributions can be modeled as:

πk ∼ DP

(
α+ κ,

αβ + δκ

α+ κ

)
. (4)

The modifications of Equation 2 to Equation 4 (introduced
as the sticky HDP-HMM [Fox et al., 2011]) encourages
state persistence by an amount proportional to κ. HDP-
Flow inherits the scaffolding of its latent variables from this
model.

Normalizing Flows Normalizing flows (NFs) are power-
ful density estimation models that learn complex distribu-
tions using a series of invertible transformations. By stack-
ing multiple flow functions f(·) : RD → RD such that
x = f(u) and u = f−1(x), we can transform a simple
distribution pu(u) into a complex target distribution px(x)
[Kobyzev et al., 2021]. Using the change of variables for-
mula, we can compute the density px(x) as follows:

px(x) = pu(f
−1(x))×

∣∣∣∣det(∂f−1(x)

∂x

)∣∣∣∣ . (5)

Specifically, HDP-Flow employs conditional masked au-
toregressive flows (MAFs) [Papamakarios et al., 2017],



which are NFs with transformation layers built as an au-
toregressive neural network. MAF models the joint distribu-
tion of data dimensions as the product of the conditionals
p(x) =

∏
j p(xj |x0:j−1). The conditional distribution of

each dimension {j}Dj=1 is a transform of the latent distribu-
tion of u set to a unit-variance Gaussian, and is modelled
as: p(xj |x0:j−1) = N (µj , σ

2
j ). The transform parameters

µj and σj are estimated as a function of x0:j−1 using net-
works denoted as fµ and fσ . The flexibility of NFs and the
well-defined estimation of the density makes them an effi-
cient and suitable model for estimating the distribution of
observations in HDP-Flow.

Inference in Bayesian models The hierarchical structure
of HDP models complicates inference. While sampling
strategies exist [Teh et al., 2006, Van Gael et al., 2008,
Neal, 2003], variational inference (VI) offers a faster, de-
terministic alternative for approximating probabilities. VI
is particularly advantageous for large, high-dimensional
datasets where sampling methods become computationally
prohibitive [Blei and Jordan, 2004, 2006]. Previous VI meth-
ods exist for HMMs [Foti et al., 2014, Johnson and Willsky,
2014], but the HDP-HMM’s hierarchical structure requires
specialized approaches. Zhang et al. [2016] introduces a
VI algorithm specific to the dependencies of HDP-HMM.
However, it does not generalize to complex emissions like in
HDP-Flow. Alternatively, Black-box VI (BBVI) [Ranganath
et al., 2014, Archer et al., 2015] offers a more general so-
lution, avoiding model-specific calculations. We employ a
stochastic extension of BBVI to handle HDP-Flow’s com-
plex dependencies while ensuring scalability.

3 HDP-FLOW

3.1 HDP-FLOW GENERATIVE PROCESS

The generative process of HDP-Flow is illustrated in Figure
1. This graphical model shows a time series sample X(i) ∈
RT×D with i ∈ [0, N ], where N is the total number of
samples. Each xt represents a D-dimensional observation
at time t ∈ [0, T ], where the total number of time steps T
depends on the sample. 1

In this latent variable model constitutes of (1) local latent
variables Z = {zt,∀t ∈ [1, . . . , T ]} that indicate the un-
derlying state of a sample at each time step t, (2) A set
of global latent variables {β, πk, κk, θk} that represent the
characteristics of the states, with k = 1, 2, . . . indexing the
potentially infinite number of states. The variable β rep-
resents the overall density of each state k and πk is the
transition probability from state k to all possible infinite
states. The self-transition parameter κk is the added weight
to transition probabilities that prevents unrealistically fast

1For clarity, we omit the sample index i throughout the remain-
der of the paper.

Figure 1: Description of HDP-Flow generative process. The
variables {xt,∀t ∈ [1, . . . , T ]} are the observations and
the local latent variables {zt,∀t ∈ [1, . . . , T ]} are the un-
derlying state of the sample at all t. The global latent vari-
ables {β, πk, κk, θk} characterize the global properties of
the states, where k is the index for infinite states. The pa-
rameters {γ, α, ρ, λ} of the priors are visualized with dark
boxes, and dt is the deterministic variable measuring the
number of steps zt has persisted.

transitions among states. Similar to Fox et al. [2011], this
parameter is sampled from a distribution Beta(ρ1, ρ2), but
instead of using the same sticky parameter for all states,
HDP-Flow samples the parameter κk independently for each
state. This gives HDP-Flow the flexibility to model different
self-transition behaviors across different states. The parame-
ters θk determine the distribution of observations in state k
and are sampled from the base distribution Hλ of the top-
level DP. The variable dt is a deterministic function of latent
states which measures how many consecutive steps the sam-
ple has been in state zt. The distribution of observations
p(x|zt, dt) at any time t is conditioned on dt as well as the
underlying state, which enables modelling non-stationarity.
The generative process is summarized in Equations 6 to 12.

β ∼ GEM(γ) (6)
θk ∼ Hλ, (7)
κk ∼ Beta(ρ1, ρ2) (8)

πk ∼ DP (α+ κk,
αβ + κkδk
α+ κk

) (9)

zt ∼ πzt−1
(10)

dt =

{
dt−1 + 1 if zt = zt−1

1 else.
(11)

xt ∼ p(x|zt, dt) (12)

The joint likelihood of HDP-Flow variables is shown in
Equation 13. Here, the hyperparameters Θ = {α, γ, λ, ρ}



are the parameters of the priors over the latent variables
(dark squares in Figure 1).

p(X,Z, θ, π, β,κ) = p(β|γ)
∞∏
k

p(πk|β, α, κk)p(θk|λ)

× p(κk|ρ)
T∏

t=1

p(zt|zt−1, π)p(xt|zt, dt).

(13)

What distinguishes HDP-Flow is its approach to estimating
the data distribution at any time step t. It incorporates condi-
tional masked autoregressive flows (MAFs) [Papamakarios
et al., 2017] into the nonparametric process. When extend-
ing MAF to the HDP-Flow setting, each dimension j ∈ [D]
of a sample at time t is modeled conditionally on the pre-
ceding dimensions, i.e. p(xj,t|x0:j−1,t). MAFs transform
a standard Gaussian into a Normal distribution N (µj , σ

2
j )

to model the conditional as p(xj,t|x0:j−1,t) = N (µj , σ
2
j ).

The parameters µj and σj are functions of the preceding
observations x0:j−1,t and are estimated by neural networks
fµ and fσ . By chaining these conditionals, MAF can model
arbitrarily complex data distributions p(xt) as a product of
the Gaussian conditionals.

HDP-Flow uses state-specific MAF functions fµ(θzt ) and
fσ(θzt ) where the parameters of the transformation func-
tions are determined by the state zt at time t. In essence,
where zt = k, the function parameters are set as the param-
eters θk ∼ Hγ . This differs from traditional HDP-HMMs
where θk directly models the data distribution. To capture
non-stationarity, HDP-Flow additionally conditions the ob-
servation distribution p(xt|zt, dt) on dt. This is achieved
by incorporating dt as an input to the mapping transforms
within the conditional MAFs as:

xj,t ∼ N (µj , σ
2
j ), µj = fµ(θzt )(x1:j−1,t, g(dt))

σj = fσ(θzt )(x1:j−1,t, g(dt)).
(14)

To model various types of non-stationarities, HDP-Flow
applies a non-linear function g(·) to the duration variable
dt. Standard activation functions like ReLU can capture
trends within states. However, for datasets with periodic pat-
terns (like ECG or EEG), a specialized activation function
is needed. HDP-Flow incorporates the activation function
g(x) = sin(x)2 [Ziyin et al., 2020] for its periodic induc-
tive bias, enabling it to model cyclical patterns within states.

3.2 VARIATIONAL INFERENCE FOR HDP-FLOW

A key algorithmic challenge for HDP-Flow is performing
approximate inference, i.e. estimating the posterior over the
global and local variables given observations Xtrain. In
large datasets of long time series, most existing sampling-
based inference algorithms struggle with long time series
due to their repeated reliance on the memory-intensive
forward-backward (FB) algorithm.

To address this limitation, HDP-Flow employs stochastic
variational inference (SVI) for scalable posterior approx-
imation. While closed-form SVI exists for HDP-HMMs
[Zhang et al., 2016], it still relies on FB estimation, creating
a bottleneck for long sequences. Moreover, HDP-Flow’s
exact posterior is heavily conditioned, making closed-form
approximations difficult. We instead adopt black-box vari-
ational inference (BBVI) [Ranganath et al., 2014] with a
mean-field assumption, extending it to HDP-Flow’s hierar-
chical and temporal setting.

HDP-Flow’s mean-field factorized variational posterior over
all global and local latent variables W = {Z, θ, β, π, κ}
is shown in Equation 15. The variational posterior of each
variable is modeled independently with a family of distribu-
tions similar to the prior. The infinite number of states are
truncated to a large value K for the posteriors. Note that the
truncation is only for the variational approximation and not
the generative model. The set Θ∗ contains all variational
parameters of the factorized distributions: (1) the Dirichlet
concentration parameters for q(β) and q(πk), (2) the proba-
bilities of the categorical distribution of the states q(zt), (3)
the mean and variance for q(θk), and (4) the concentration
parameters of the Beta distribution of q(κk):

q(Z, θ, β, π, κ|Θ∗) = q(β)︸︷︷︸
Dirichlet

∏
t

q(z
(i)
t )︸ ︷︷ ︸

Categorical

∏
k

q(θk)︸ ︷︷ ︸
Gaussian

×
∏
k

q(πk)︸ ︷︷ ︸
Dirichlet

∏
k

q(κk)︸ ︷︷ ︸
Beta

.
(15)

We dynamically update the κ parameters during training to
enhance performance. The parameters are scaled by a factor
of 1 + 0.1 · epoch, allowing the model to adapt over time.
This approach enables the model to start with broader state
representations and refine them progressively, balancing
exploration and stability in non-stationary environments.

The VI objective is to find the variational parameters Θ∗

such that the posterior q(W ) closely approximates the true
posterior p(W |Xtrain) by maximizing the evidence lower
bound (ELBO), Eq(W )[log p(Xtrain,W )− log q(W )].

Algorithm 1 details the SVI approach we use for HDP-Flow.
We compute noisy gradients of the ELBO with the Rao-
Blackwellized estimator [Casella and Robert, 1996] and us-
ing Monte Carlo samples W [s] ∼ q(W ) for s ∈ [1, . . . , S].
The gradients ∇̂θ∗

i
Lwith respect to each parameter θ∗i ∈ Θ∗

of the variational posteriors is a function of all components
of the log joint (Eq. 13) that include terms from the ith

factor. See Equation 24 in Appendix 8 for derivations of the
gradients based on the hierarchical structure of the global
and local variables. To further enhance estimation, we incor-
porate control variates to reduce variance [Ranganath et al.,
2014]. Additionally, we employ an adaptive per-component
learning rate during parameter updates. This detail is crucial



for HDP-Flow as the parameterizations of its probability
distributions have varying scales.

Algorithm 1 Stochastic BBVI for HDP-Flow

Input: Xtrain, p(x,W ) (Eq. 13), q(W ) (Eq. 15)
repeat

for all X(i) ∈ Xtrain do
for s = 1 to S do
W [s] ∼ q(Z, θ, β, π, κ|Θ∗)

end for
for all θ∗ ∈ Θ∗ do

Estimate control variate aθ∗ [Ranganath et al.,
2014];
∇θ∗L = 1

S

∑S
s=1∇θ∗ log q(W [s]) ×

(log p(x,W [s])− aθ∗ log q(W [s])) (Eq. 24);
ρθ∗ ← Update adaptive learning rate
θ∗ ← θ∗ + ρθ∗∇θ∗

end for
end for

until ∇ELBO≤ ϵ

To compute the log joint probabilites p(β|γ) and
p(πk|α, β, κ) under the infinite states of the non-parametric
priors, we employ a degree-L weak-limit approximation.
This technique expresses a DP as the limit of finite-
dimensional Dirichlet distributions as the dimensions tend
to infinity [Ishwaran and Zarepour, 2002, Teh et al., 2006].
Using the weak-limit theorem, we impose a finite Dirichlet
prior over the variables β and πk as shown in Equation 16.
Importantly, the approximation order L can be different and
significantly larger than the posterior truncation value K.

p(β|γ) ≈ Dir(γ/L, . . . , γ/L)

p(πk|β, α) ≈ Dir(αβ1, . . . , αβL).
(16)

Finally, the NF allows us to estimate the log likelihood of
observations p(xt|zt, dt) in closed form,

log p(xt|zt, dt) = log pu(fθzt (xt, dt))− log

∣∣∣∣det(∂xt

∂ut

)∣∣∣∣
= log pu(fθzt (xt, dt)) +

∑
i

log σi,t.

(17)

Posterior predictive estimation The posterior predictive
distribution will help assess generalization. It is the distri-
bution of new, unseen samples Xtest given the data we’ve
already seen Xtrain. We can estimate the likelihood of a
new sample X̃ ∈ Xtest by integrating over the learned
posterior of the global variables as shown in Equation 18:

p(X̃|Xtrain) =

∫
β,π,κ,θ

p(X̃|β, π, κ, θ)p(β, π, κ, θ|Xtrain)

≈
∫
β,π,κ,θ

p(X̃|β, π, κ, θ)q(β, π, κ, θ)

≈ Eβ,π,κ,θ∼qp(X̃|β, π, κ, θ).
(18)

Knowing the global structure of the generative process of
HDP-Flow also enables us to estimate the most likely un-
derlying state Z̃ for a newly observed time series sample
X̃ ∈ Xtest using Equation 19.

p(Z̃|X̃,Xtrain) =

∫
β,π,κ,θ

p(Z̃|X̃, β, π, κ, θ)

× p(β, π, κ, θ|Xtrain)

≈ Eβ,π,κ,θ∼qp(Z̃|X̃, β, π, κ, θ).

(19)

To evaluate Equations 18 and 19, we employ the FB al-
gorithm. The kth forward message of the FB algorithm
ft(k) at time t measures p(X̃0:t, zt = k|β, π, κ, θ). Hence,
we can estimate the likelihood of a series of observations
p(X̃|β, π, κ, θ) as the marginal of the last time step, and
find the most likely sequence of underlying states for X̃
using the Viterbi algorithm (details in Appendix 9).

HDP-Flow’s state- and duration-dependent observations
p(xt|zt, dt) require us to modify the traditional FB algo-
rithm. We must explicitly account for the probability of a
state transition or persistence at each time step. This modi-
fication is expressed in Equation 20 and implemented effi-
ciently using matrix calculations.

ft(zt) =
∑

zt−1 ̸=zt

ft−1(zt−1)p(zt|zt−1)p(xt|zt, d = 1)+

ft−1(zt−1)p(zt|zt−1)p(xt|zt, d = dt−1 + 1).

(20)

During inference, we approximate the FB algorithm to ac-
commodate HDP-Flow’s state dynamics. At each step, the
state with the highest likelihood updates the duration vari-
able d. This modification, essential for batch inference, does
not affect training, while the standard FB algorithm remains
applicable in real-time streaming settings.

4 EVALUATION

We evaluate the performance of HDP-Flow in identifying
the underlying state of various time series datasets against
Bayesian and non-Bayesian benchmark models. 2

4.1 BASELINES

We benchmark HDP-Flow against three categories of mod-
els (More details on implementation in Appendix 11):

2Code available at https://github.com/
sanatonek/HDP-Flow.git

https://github.com/sanatonek/HDP-Flow.git
https://github.com/sanatonek/HDP-Flow.git


Sim Hard

Underlying state inference 
Global state 
distribution

Generated samples

Ground truth underline state

HDPFlow

DS-HDP

S-HDP

HDPFlow

DS-HDP

S-HDP

Figure 2: The ground truth vs. BNP model inferences on simulated data III. The first row presents the ground truth underlying
state for a test sample (left), and the distribution of states in the training data (middle). Each subsequent row presents
results from a different BNP model. The left column shows the inferred state sequences. The middle column shows each
model’s estimated global state distribution. The right column depicts samples generated by the BNP models, with states as
background colors and state duration reflecting their estimated probabilities.

1. Nonparametric HMMs: The sticky HDP-HMM (S-HDP)
[Fox et al., 2011] and the disentangled sticky HDP-HMM
(DS-HDP) [Zhou et al., 2020]. For both baselines, We
use the augmented autoregressive HMM (ARHMM) im-
plementation that models within-state dynamics by esti-
mating the emission distribution p(xt|zt,xt−1).

2. Unsupervised parametric sequential models: A flow-
based continuous HMM (HMM-Flow) [Lorek et al.,
2022] that uses NF to estimate emission probabilities,
and a recurrent neural network (RNN) to learn repre-
sentations that are then clustered to find the states. Both
models need the number of states to be specified a priori.

3. Supervised model: An RNN (RNN sup.) trained with
all state labels. This model shows the best achievable
performance on all datasets.

4.2 DATASETS

We studied datasets with varying degrees of complexity for
a thorough comparison (more details are in Appendix 10):
Simulated dataset I (static): This dataset consists of 3-
dimensional time series samples with 4 different underlying
states. The state transitions are governed by an HMM with
fixed transition probabilities, and in each state, observations
are drawn from a Gaussian p(xt) ∼ N (µzt , I), where µk is
fixed for each state.
Simulated dataset II (dynamic): For a more complex
setup, the sequence of states in this dataset are generated
from a sticky HDP-HMM, with 6 states and different self-
transitions. The states are non-stationary with emission for
each state k defined as xt = akt + bk + ϵt. State-specific

parameter ak determines the non-stationary trend for each
state and ϵt is Gaussian noise.
Simulated dataset III (dynamic): Samples for this
dataset are directly sampled from the HDP-Flow prior.

CPAP: The CPAP Pressure and Flow Dataset [Guy et al.,
2022] that measures differential pressure measurements
from a CPAP breathing mask. Participants were instructed
to breathe at varying rates, from slow to very fast breathing.
The time series consists of 4 signals, and we concatenate
different breathing levels for each subject.
Human Activity Recognition (HAR): The UCI HAR
dataset [Reyes Ortiz et al., 2012] consists of wearable data
from 30 individuals performing six basic activities. These
activities and the postural transitions create 12 underlying
states. The signals have 6 features, collected at a rate of
50Hz that we down-sample to get on average 1K time steps.

4.3 RESULTS

Our results demonstrate HDP-Flow’s strength to accurately
identify latent states, learn the global distribution of states,
and accurately model the data distribution of each state.

Learning latent states We assess the performance of all
models in learning the underlying states in time series. This
is measured by the Hamming distance between the true
and estimated state sequences, equivalent to the normalized
count of mismatches between the predictions and ground
truths. To find the one-to-one mapping between predicted
and ground truth states for all baselines, we use the Hun-
garian algorithm [Kuhn, 1955] that maps the indices of the



Simulated data I Simulated data II Simulated data III HAR CPAP
Hamming NLL Hamming NLL Hamming NLL Hamming NLL Hamming NLL

HDP-Flow 0.14±0.04 270.8±13.9 0.25±0.05 224.8±69.7 0.38±0.07 245.7±100.4 0.59±0.04 433.7±107.2 0.72±0.17 1722.0±1647.2

DS-HDP 0.17±0.04 283.6±15.0 0.42±0.12 165.3±42.8 0.58±0.09 332.5±18.7 0.59±0.06 -4327.8±598.1 0.84±0.12 -31.18±1427.6

S-HDP 0.25±0.10 327.6±25.6 0.65±0.16 217.3±27.7 0.58±0.09 395.6±20.0 0.66±0.04 -4163.4±575.9 0.74±0.07 671.9±1881.4

RNN 0.76±0.16 N/A 0.86±0.11 N/A 0.83±0.08 N/A 0.92±0.05 N/A 0.53±0.25 N/A
HMM-Flow 0.57±0.10 5057±1561 0.24±0.08 3480±1176 0.46±0.08 2133±290 0.62±0.05 1779±251 0.54±0.08 26782±57225

RNN Sup. 0.001±0.00 N/A 0.18±0.00 N/A 0.32±0.07 N/A 0.43±0.14 N/A 0.51±0.22 N/A

Table 1: Performance on simulated datasets, measured by the Hamming distance and the posterior predictive likelihood.
Standard deviations are reported across samples, and best results with statistical significance are highlighted.

estimated state sequence to the set of indices that maximize
the overlap with the true sequence. We present all results
on learning the latent states in Table 1. The RNN Sup. base-
line provides a measure of the difficulty of inferring the
underlying states, serving as a proxy for the best achievable
performance assuming access to all state labels.

HDP-Flow consistently outperforms all BNP baselines in
learning the latent states on different datasets. Also, it outper-
forms parametric baselines like HMM-Flow in all datasets
except for CPAP. This is notable because the parametric
baselines are given the number of states, which BNP mod-
els learn on their own. The HAR70+ dataset is an example
of a large real dataset with approximately 6K time steps
per sample, that highlights the importance of scalability in
time series settings. BNP baselines with sampling-based
inference fail to train on this dataset, since every sampling
step requires approximation of the FB algorithm for long
samples. The SVI algorithm of HDP-Flow allows it to scale
well to this setting and perform close to a supervised setup
(Results in Appendix 15). The left column of Figure 2 shows
how the BNP baselines estimate the latent states in the sim-
ulated dataset III. The first row shows a sample with the
ground truth underlying states and the rest show the es-
timated state by all BNP models. States are indicated by
the background colors, matched such that the same color
indicates the same state across all models. Plots for other
datasets are in Appendix 16.

We also show that the estimated posterior over the states
provide a calibrated probabilistic estimate of states. Figure
3 illustrates the calibration error (ECE) [Naeini et al., 2015]
for posterior state probabilities and true states in 2 simu-
lated datasets. These results highlight the model’s ability to
capture state uncertainty across varying data distributions.

Learning the global posterior Population-level state
characteristics are described by the global variables. The
posterior distribution q(β) reflects the prevalence of each
state, allowing us to identify the emergence of new states.
The posterior distribution q(θk) defines the data distribu-
tion in each state and can be used to generate state-specific
samples. The right column of Figure 2 shows time series
samples generated from each of the BNP models for simu-
lated dataset III. Each line is one of the time series features

Figure 3: Reliability plots and Expected Calibration Error
(ECE) for Simulated Data I and II. Bars closer to the diago-
nal dotted line indicate better calibration.

and the underlying state is the background color. The length
of each generated state is based on the estimated global prob-
ability of that state (determined by βk). Similar to before,
the colors are matched to the same state across all baselines.
The samples generated by HDP-Flow accurately match the
data distribution of each state, apparent by comparing the
generated sample to the test samples under each state. It indi-
cates that the posterior has learned the underlying structure
effectively. In contrast, generated samples from other BNP
baselines are not accurate representations for the states.

We also measure the posterior predictive likelihood of un-
seen samples under the learned global distribution. We re-
port the negative log likelihood of the posterior predictive
in Table 1 as NLL. Despite not learning the posterior over
the observations accurately (as shown in Figure 2), S-HDP
and DS-HDP achieve better NLL values than HDP-Flow
on some datasets. The reason for this is their autoregressive
(AR) structure, which allows them to approximate the emis-
sion distribution p(xt|zt, xt−1) conditioned on the previous
observation. These models learns to set the emission dis-
tribution at time t to a value very similar to observation at
t−1. As a result, NLL values will be very low. This strategy
works well in time series where features have very small
changes over time, like the HAR dataset (Figure 16.7), how-
ever, in datasets where signal changes are more significant,
like the case of Simulated data I, the AR model no longer
has this advantage.



Crohn's Crohn's BumpBump

Figure 4: Plot of Beta distribution matching for the Sleep-Related Impairment subjective labels against other features and
their state transitions. The Sleep Impairment responses in the two left and two right paired datasets are statistically similar
within each pair but significantly different between the pairs based on beta distribution Bayes testing.

In nonparametric models, the parameter β represents an
estimate of the global state distribution. The pie charts on
Figure 2 compares the estimated posteriors for each model
to the ground-truth distribution (top row). Among baselines,
S-HDP is more conservative in introducing new states. DS-
HDP identifies the existing states but also adds additional
states with low probability. HDP-Flow learns fewer addi-
tional states, and matches the distribution of existing states
closest to the ground truth global distribution. The addi-
tional states do not hinder the performance of HDP-Flow
because its mean-field assumption models the global state
distribution and transitions independently. Finally, the non-
parametric nature of BNP models allows them to identify
new states which highlights their flexibility to adapt and
assign increasing probability to emerging states as more
data becomes available.

5 CLINICAL CASE-STUDY

Wearable devices capture rich, longitudinal health data in
real-world settings, offering insights into patient well-being
beyond the clinic. However, high variability, sensor noise,
and scarce annotations make interpretation challenging, and
many physiological patterns and signal variations remain
poorly understood. The ability of HDP-Flow to identify la-
tent states in time series data without much prior information
on the distribution or number of states makes it particularly
valuable for wearable healthcare applications. It provides a
principled way to discover and adaptively refine latent states.
Here, we show that HDP-Flow extracts meaningful states
from wearable data and that these states generalize across
datasets, enabling the creation of a growing repository for
interpretable health monitoring across studies.

Datasets: The Stress in Crohn’s dataset tracked 112 pa-
tients using Oura ring data to assess stress monitoring for
symptom prediction, alongside surveys on flare-ups, med-
ical history, and treatments3. Similarly, the BUMP study
[Goodday et al., 2022] monitored 431 pregnant participants,
of which we use 256 (see Appendix 10.1 for inclusion crite-

3https://clinicaltrials.gov/study/NCT04809194

ria), capturing physiological and psychological changes.

Experiments: Unlike wearable datasets for HAR, which
are collected in controlled environments with well-defined
states, wearable data for these studies capture complex, un-
controlled dynamics with many underlying factors and no
clear state definitions. Here, we demonstrate an exploratory
analysis of learned latent states in this real-world dataset.

Figure 5: State-wise Distribution of Paired Bump and
Crohn’s Data. a) Heatmap showing the ratio of paired in-
dividuals with similar beta distributions for Sleep Related
Impairment, Pain Interference, and Feeling in Control across
states. b) The distribution of predicted states of Crohn’s data.

We first train HDP-Flow on the Crohn’s disease popula-
tion and analyze the distribution of states it identifies (Fig-
ure 5.b). To interpret these states and assess whether they
capture similar concepts across populations, we leverage
subjective measures from survey data. To quantify the con-
sistency of state distributions across Crohn’s and BUMP
populations, we perform a Beta-distribution Bayes Factor
analysis (detailed in Supplementary Section 14). Figure 5.a
illustrates the proportion of paired individuals between the
two datasets exhibiting similar beta distributions, where
higher values indicate greater cross-population alignment.
This analysis also helps characterize state-specific patterns;
state 5 predominantly captures pain, while state 7 aligns
with feelings of control, a key indicator of stress.

This is further evident in Figure 4, where the dominant
states for each individual (across both cohorts) correspond



to patterns in sleep impairment subjective measures. This
suggests that the learned states capture structured relation-
ships between subjective assessments and that this structure
transfers effectively to a different population with a distinct
distribution of observations. As shown in the bottom panel,
wearable data can be highly noisy, making it challenging
to extract meaningful signals. In Appendix 15.1, we further
show the correlation between input features and probabilis-
tic states, highlighting the consistency of wearable signals.
These findings highlight the potential of HDP-Flow in un-
covering latent patterns in complex, real-world scenarios.

6 CONCLUSION

We present HDP-Flow, a Bayesian nonparametric model for
unsupervised latent state modeling in time series. By unify-
ing the adaptability of Bayesian nonparametrics with the ex-
pressive power of conditional normalizing flows, HDP-Flow
captures non-stationary and evolving states in uncontrolled
environments with minimal prior knowledge all while main-
taining an efficient variational inference for modeling com-
plex real-world time series dynamics. Our results demon-
strate superior performance in learning latent states and high-
light the transferability of the states across sub-populations.
However, this flexibility also presents a common challenge
in Bayesian nonparametrics: determining the optimal state
granularity for structured tasks. Careful tuning of priors
is crucial to balance model growth and avoid unnecessary
complexity. Although HDP-Flow is computationally more
intensive than standard deterministic neural networks, its
Bayesian framework provides a structured representation
of latent states, uncertainty estimates, and a generative un-
derstanding of observations; making it a powerful tool for
inference and modeling in evolving time series.
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7 HDP-FLOW VARIATIONAL POSTERIOR DISTRIBUTION

The mean-field factorized variational posterior of HDP-Flow over the global and local latent variables W = {Z, θ, β, π, κ}
is shown below, where the posterior on each variable is modelled independently, and with a family of distribution similar to
the prior. The infinite number of states are truncated to k ∈ [1, · · · , L] to simplify the variational posterior.

q(Z, θ, β, π, κ|Θ∗) = q(β)︸︷︷︸
Dirichlet

∏
t

q(z
(i)
t )︸ ︷︷ ︸

Categorical

∏
k

q(θk)︸ ︷︷ ︸
Gaussian

×
∏
k

q(πk)︸ ︷︷ ︸
Dirichlet

∏
k

q(κk)︸ ︷︷ ︸
Beta

(21)

The distribution of the global state probabilities and the transition probability for each state is modelled with a Dirichlet
distribution with L categories. The variational distribution over each latent state zt is a categorical distribution, following
the mean-field assumption.

8 STOCHASTIC BBVI GRADIENT ESTIMATIONS

BBVI uses the Rao-Blackwell estimator for the gradients, which under the mean field assumption becomes:

∇θ∗L = Eq1 . . .Eqi [

i∑
j=1

∇θ∗ log qj(zj |θ∗j )(log p(x, z)

−
i∑

j=1

log qj(zj |θ∗j ))]

(22)

∇θ∗L as the gradient of the ELBO with respect to θ∗i , pi are the components of the log joint that include terms form the ith
factor, and Eqi is the expectation with respect to the set of latent variables that appear in the complete conditional for zi. Let
pi be the components of the joint that does not include terms from the i-th factor respectively. We can write the gradient
with respect to the i-th factor’s variational parameters as:

∇θ∗
i
L = Eqi [∇θ∗ log qi(zi|θ∗i )(log pi(x, zi)− log qi(zi|θ∗i ))] (23)



Using this derivation, the joint distribution defined in Equation 13 and the factorized variation posterior (21), the gradient of
each of the variational parameters Θ∗

β ,Θ
∗
θ,Θ

∗
π,Θ

∗
κ,Θ

∗
Z that are the parameters of q(β), q(θ), q(π), q(κ), q(Z) respectively is

calculated in Equation 24. Note that these estimations take into account the unique sequential and hierarchical dependencies
of HDP-Flow distribution.

∇̂Θ∗
β
L =

1

S

S∑
s=1

∇ log q(βs)
(
log p(βs)+

L∑
k=1

log p(πk,s|βs)− log q(βs)
)

∇̂Θ∗
θk
L =

1

S

S∑
s=1

∇ log q(θk,s)
(
log p(θk,s)+

T∑
t=1

log p(xt|zt,s, θs)δ(zt,s=k) − log q(θk,s)
)

∇̂Θ∗
πk
L =

1

S

S∑
s=1

∇ log q(πk,s)
(
log p(πk,s)+

T∑
t=1

log p(zt,s|θs, πs, κs)δ(zt−1=k) − log q(πk,s)
)

∇̂Θ∗
κk
L =

1

S

S∑
s=1

∇ log q(κk,s)
(
log p(κk,s)+

L∑
k=1

log p(πk,s|βs)− log q(κk,s)
)

∇̂Θ∗
zt
L =

1

S

S∑
s=1

∇ log q(zt,s)
(
log p(zt,s|πs, κs)+

log p(xt|zt,s, θs)− log q(zt,s)
)
.

(24)

9 POSTERIOR PREDICTIVE ESTIMATION

In order to measure the posterior likelihood of new samples and to estimate the underlying states for these sample, we use
the forward meassages of FB algorithm. The kth forward message of the FB algorithm at time t, ft(k), estimates the joint
likelihood of the observations upto time t, and the state zt:

ft(k) = p(x̃0:t, zt = k|β, π, κ, θ) (25)

Therefore, the likelihood of a series of observations p(X̃|β, π, κ, θ,X) is the marginal of the last time step.

ft(k) =p(xt|zt = k)

k∑
zt−1=0

ft−1(zt−1)p(zt|zt−1)

ft(k) =p(x1, x2, . . . , xt, zt = k)

(26)

Typically, the forward probability vectors at each step are normalized so that the entries sum to 1. A scaling factor is thus
introduced, and as a result, the product of the scaling factors is the total probability for observing the given events irrespective
of the final states:



f̂t(k) = c−1
t p(xt|zt = k)

k∑
zt−1=0

f̂t−1(zt−1)p(zt|zt−1)

p(X̃0:T ) = p(x1, x2, . . . , xT ) =

T∏
t=1

ct

(27)

To estimate the negative log likelihood of an unobserved time series sample x̃, we need to estimate the posterior likelihood
as follows:

NLL =− log(p(X̃|X))

=− log

∫
β,π,κ,θ

(p(X̃|β, π, κ, θ)p(β, π, κ, θ|X)

=− log

∫
β,π,κ,θ

p(X̃|β, π, κ, θ)q(β, π, κ, θ)

=− logEβ,π,κ,θ∼qp(X̃|β, π, κ, θ)

(28)

10 DATASETS

Simulated dataset I This dataset consists of 3-dimensional time series samples with 4 underlying states. The state
transitions are governed by an HMM with the following fixed transition probabilities:

π =


0.8 0.1 0.05 0.05
0.1 0.8 0.1 0.
0.05 0.1 0.8 0.05
0.05 0.05 0.0 0.9


Here the ij’th element is the probability of moving from state i to state j. The emission probability of each state is a Normal

Gaussian N (µzt , I), where µzt is fixed for each state and defined as


0 1 2
5 6 1
5 5 5
9 12 11

, where the the i’th row is the mean

vector for state i. The observations are drawn iid from the distribution and don’t depend on time.

Simulated dataset II This dataset consists of 4-dimensional time series samples with 6 underlying states. The sequence of
states for each sample are determined by a sticky HDP-HMM, with a fixed global state distribution, transition probabilities,
and self-transition parameters. This dataset is designed to have a non-stationary emission where within each state k, the data
distribution is xt = akt+ bk + ϵ, with ϵ Gaussian noise. The matrix of all ak and bk are as follows:

A =


0 0 0 0.2
0.3 0 0 0
0 0 0 0
0 0 0 0
0 0.2 −0.1 0
0 0.5 0 0

B =


8 8 8 8
−3 −3 −5 −5
5 0 2 0
2 0 2 0
0 2 −3 0
−4 −4 −4 −4


Simulated dataset III To increase complexity in the experiments, we used a second simulated dataset with additional
temporal dynamics. This dataset is generated from a generative model with a similar structrue to HDP-Flow, where the
number of states are finite (set to 6) and all latent variables are fixed. The code to generate this dataset is included as part of
the supplementary material.

Human Activity Recognition (HAR 70+): This dataset contains 18 fit-to-frail older-adult subjects (70-95 years old)
wearing wearable sensors during a semi-structured free-living protocol [Logacjov and Ustad, 2023]. With 6 features and an
average of 5K time steps per sample, it is a good example of long time series found in real-world applications.



10.1 BUMP AND CROHNS’ DATASETS

The inclusion criteria for both Bump and Crohn’s datasets require participants to have less than 60% missing data during
their participation and at least 35 recorded data points. Additionally, participants from the Bump dataset with missing
information were excluded. The Crohn’s dataset consists of a 62% female population, with the demographic distribution
shown in Figure 10.1.

Figure 10.1: Age and BMI distribution of Crohn’s data

Physiological wearable input features include Nighttime Mean Heart Rate and Heart Rate Variability (HRV), calculated
using RMSSD, which provide insights into cardiovascular function. Sleep metrics, including the duration of deep sleep, REM
sleep, and awake time, help assess overall sleep structure and efficiency. Body Temperature Shift, representing deviations
from an individual’s baseline, offers insights into physiological changes. The Midpoint of Sleep Period, measured in seconds
from sleep onset to its midpoint, helps identify patterns and potential disruptions in sleep timing. Sleep Onset Latency,
which quantifies the time taken to transition from wakefulness to sleep, serves as a key indicator of sleep efficiency and
potential disorders. Lastly, the Sleep Score provides a comprehensive evaluation of sleep quality and quantity by analyzing
factors such as sleep stages, restfulness, and timing.

Subjective features that HDP-Flowis not trained on were analyzed to check whether changes in the distribution of input
physiological signals relate to the distribution of subjective measures. To identify overlapping survey questions between the
Bump and Crohn’s datasets, we used TF-IDF Salton and Buckley [1988] vectorization and cosine similarity. First, both
sets were transformed into numerical TF-IDF vectors, capturing word importance while minimizing the impact of common
terms. Then, cosine similarity was computed between each pair of questions from the two datasets. A similarity threshold of
0.7 was applied to identify closely related question pairs. Based on this analysis, we selected the following set of features:

• Feeling in Control: A daily feature based on the question, "Right now, do you feel in control?" Responses range from 0
to 100, normalized to 0-1 for analysis.

• Weekly Sleep Impairment: Assessed through 9 questions, e.g. "I had problems during the day because of poor sleep.",
with responses ranging from "Not at all" (0) to "Very much" (4), capturing the extent of sleep-related difficulties.

• Pain Interference: Evaluates how pain impacts daily life, including participation in social activities, day-to-day tasks,
work, and household chores.

11 BASELINES

11.1 HDP-FLOW

We use the pytorch-ts implementation of MAF 1 in HDP-Flow. The models are all trained on CPU machines, and with a
8 hour limit for the training. For evaluation, data is split into train, validation and test cohort. All results in the paper are

1https://github.com/zalandoresearch/pytorch-ts



Dataset α γ ρ1 ρ2 H MADE size

Simulated I 4 4 1 3 N (0, 3I) 2
Simulated II 4 2 0.2 0.6 N (0, 2I) 1
Simulated III 6 2 0.5 1 N (0, 4I) 2
HAR 6 4 1 3 N (0, 3I) 2
CPAP 2 2 0.01 0.3 N (0, 4I) 2
HAR70 6 2 0.2 0.6 N (0, 3I) 2
Crohns’ data 4 2 0.8 0.2 N (0, I) 2

Table 2: Optimal hyper parameters selected for HDP-Flow for each dataset

reported for the test set, and the validation set is used to choose the parameters of the prior distribution Θ = {α, γ, ρ, λ}.
We estimate the posterior predictive over the unobserved samples in the validation set for tuning the parameters of our prior.

Variation inference algorithm can potentially converge to local optima, as a result not yielding the best estimate of the
posterior. To overcome this, we use the estimated ELBO to pick the best converged posterior out of 5 runs for each
experiment.

The final parameters used for each set of experiments are shown in Table 2

As discussed in 3, we use a MAF to model the data distribution. 2 This method utilizes Masked Autoencoders for Density
Estimation (MADE) blocks. Our generative model uses 1 MADE block, with 1 hidden layer, and we treat the size of the
hidden layer as one of our parameters.

11.2 S-HDP-HMM AND DS-HDP-HMM

We use implementations of both the S-HDP-HMM and DS-HDP-HMM from Zhou et al. [2020], including the gibbs
sampling routine. For S-HDP-HMM, a gamma(1, 1) prior is placed on γ (the concentration parameter on the higher level
DP). A value x is sampled from gamma(αa, 1/αb) and a value y is sampled from beta(c1, c2). These define the initial
value of κ (self transition weight) and α (lower level DP concentration parameter) as follows: κ = x ∗ y, α = x − κ.
For the DS-HDP-HMM model, we place a beta(ρ0, ρ1) prior on the κ values, where ρ0 = v0

v3
1

and ρ1 = (1−v0)ρ0

v0
, where

v0 ∼ Unif(0, 1) and v1 ∼ Unif(0, 1). γ is initialized the same way as above described for the S-HDP-HMM, and
α ∼ gamma(1, 10). In both DS-HDP-HMM and S-HDP-HMM, we use the implementation from Zhou et al. [2020] for the
AR-HMM emission, which models the emission distribution as follows: yt ∼ N (Aztyt−1,Σzt) where yt is the observed
vector at time t, and A and Σ matrices are learned for each state. A Matrix Normal prior is placed on Aj given Σj as follows:

p(Aj |Σj) =
1

(2π)
d2

2 |V |d/2|Σ|d/2
×

exp

(
− 1

2
tr[(Aj −M)⊤)Σ−1

j (Aj −M)V −1]

) (29)

and an Inverse Wishart prior is placed on Σj as follows:

p(Σj) =
|S0|n0/2

2n0/2Γd(n0/2)
|Σj |−(n0+d+1)/2

exp

(
− 1

2
tr(Σ−1

j S0)

) (30)

where Γd() is the multivariate gamma function, d is the dimension of the data, M is a d × d 0 matrix and n0 = d + 2.
V = v ∗ Id×d and S0 = s ∗ Σ̄ (where Σ̄ is the emperical covariance matrix of the train data). The final choice of hyper
parameters chosen for S-HDP-HMM for all datasetes can be found in Table 3, and for DS-HDP-HMM in Table 4

2We use the implementation of MAF provided on



Dataset αa αb c1 c2 v s

Simulated I 2 1 1 1 0.1 0.75
Simulated II 2 1 2 1 1 0.75
Simulated III 2 1 2 1 0.1 1.0
HAR 2 1 2 1 1 0.75
HAR70 N/A N/A N/A N/A N/A N/A
CPAP 1 1 1 1 1 1

Table 3: Best set of hyper parameters (based on validation loss) for each dataset for S-HDP-HMM

Dataset v s

Simulated I 0.1 0.75
Simulated II 0.1 0.75
Simulated III 0.1 1
HAR 1 0.75
HAR70 N/A N/A
CPAP 1 0.75

Table 4: Best set of hyper parameters (based on validation loss) for each dataset for DS-HDP-HMM

11.3 HMM-FLOW

We use the implementation3 provided by Lorek et al. [2022]. For all datasets, we train for 100 epochs, using Q training
(see Lorek et al. [2022] for more details), learning rate of 0.01. The number of hidden states for the HMM is set to the true
number of hidden states for each dataset.

11.4 SUPERVISED RNN

This architecture consists of an LSTM along with a linear classifier which takes in the LSTM’s hidden state and predicts the
state class. The model is trained end to end. Each model is trained for 100 epochs, with a dropout rate of 0.50 in the LSTM.
We vary learning rate and the number of layers in the LSTM, and report the best choice for each dataset (chosen according
to the lowest validation loss).

Dataset LR # Layers

Simulated I 0.01 4
Simulated II 0.01 4
Simulated III 0.005 2
HAR 0.005 2
HAR70 0.01 4
CPAP 0.01 4

Table 5: Best set of hyper parameters (based on validation loss) for each dataset for Supervised RNN

12 COMPUTATIONAL ANALYSIS

Gibbs sampling is indeed a major computational bottleneck in Bayesian nonparametric models, particularly when applied to
long sequences. The inference complexity of HDP-HMM variants is O(N(TK2 + TL2) +NK) (see Zhou et al. [2020]
for more details), and addressing this challenge was a key motivation for adopting variational inference in our approach.
By using a mean-field approximation within the black-box variational inference (BBVI) framework, we reduce the overall

3https://github.com/tooploox/flowhmm



complexity to O(NS(TL+ TdL)), where the first term accounts for the variational posterior updates, and the second term
reflects the cost of evaluating the MAF-based emission likelihood. This reduction translates into significant efficiency gains
in practice. To ensure a fair comparison, we allocated a maximum training time of 20 hours for all Gibbs-based models or
until convergence. In practice, these models consistently reached the time limit without converging. In contrast, our model
typically converges well within this time frame. Table 6 shows runtime of HDPFlow on different datasets.

Dataset Sim I Sim II Sim III HAR CPAP

Runtime 4 4.5 6 2.5 8

Table 6: HDPFlow train time until convergence (measured by hours) on CPU for different datasets

13 UNCERTAINTY MEASURES

Our interpretable probabilistic model enables uncertainty estimation, providing insights into model reliability for new
samples and states. Distinguishing different types of uncertainty is crucial, especially in clinical applications Hüllermeier
and Waegeman [2021], Valdettaro and Faisal [2024], Gawlikowski et al. [2023].We compute multiple uncertainty metrics
based on the inferred state probabilities γ and posterior sample likelihood, capturing epistemic (model-related), aleatoric
(data-related), and robustness-based (perturbation-based) uncertainties.

Aleatoric Uncertainty (Variance of Log-Likelihood): Aleatoric uncertainty represents inherent data noise. It is estimated
by the variance of posterior likelihoods across MC samples:

log_like_var = Var(posterior_like, across MC samples)

A higher variance suggests greater ambiguity in the data, limiting confidence in inferred states. Based on log_like_var, we
identified 4 patients in the Crohn’s dataset and 3 participants in the Bump dataset with high aleatoric uncertainty. These
individuals were excluded from the analysis.

State Uncertainty (Variance of γ): We quantify state uncertainty following Blei et al. [2017]:

gamma_var = Var(γ, across MC samples)

This metric reflects the variance of inferred state probabilities γ across Monte Carlo (MC) samples. Higher variance indicates
greater disagreement in state assignments, suggesting increased uncertainty in state estimation.

Credible Interval Width (Bayesian Uncertainty): This Bayesian uncertainty measure Gelman et al. [1995] provides
interval-based state probability estimates U − L, where U,L are the 97.5th and 2.5th percentile bounds of the posterior
distribution. A wider interval indicates higher uncertainty in state estimates.

Incorporating gamma_var and credible interval uncertainty estimates to exclude uncertain detected states reduced the
Hamming distance by an average of 2-3%.

Uncertainty via Perturbation (Robustness Test): To assess the model’s robustness to input noise, we introduce Gaussian
perturbations to input features X and compute the variance in inferred states:

perturbation_variance = Var(γperturbed, dim = 0)

Higher variance indicates that state assignments are sensitive to small input changes, suggesting reduced robustness.

Feature Dropout Robustness (Effect of Missing Features): following Dolezal et al. [2022], we evaluate robustness by
randomly setting features to zero (dropout) and measuring the variance in inferred states:

feature_dropout_variance = Var(γdropout, dim = 0)

A high variance suggests that the model strongly depends on specific features, making it more dependent to missing data.



Both dropout sensitivity (≈ 0.003) and noise sensitivity (≈ 0.004) are relatively small, indicating that HDP-Flowis fairly
robust to input perturbations. As expected, the perturbation sensitivity for the Bump data, when the model is trained on
Crohn’s data, is higher, with dropout sensitivity (≈ 0.005) and noise sensitivity (≈ 0.007). Without sleep features, both
sensitivities increased to 0.01.

14 BETA BAYES FACTOR ANALYSIS

To assess whether two independent samples originate from the same Beta distribution, we approximate the Bayes Factor
(BF) Kass and Raftery [1995] using the Bayesian Information Criterion (BIC) Neath and Cavanaugh [2012]. This approach
efficiently estimates distributional differences by balancing model complexity and goodness of fit. Unlike the commonly
used Gaussian distribution, we adopt the Beta distribution as it better captures the bounded nature of subjective symptom
responses and accommodates a wide range of distribution shapes. This is particularly beneficial when sample sizes are
limited and the assumptions of the Central Limit Theorem may not hold. Given two independent samples, X1 and X2

(normalized by the maximum value of questionnaire responses), we define the Null hypothesis H0 as both samples being
drawn from a single Beta distribution.

To test these hypotheses, we fit Beta distributions to the combined dataset, yielding parameters (αcomb, βcomb) and each
sample separately, yielding parameters (α1, β1) and (α2, β2). The fitting procedure is performed using maximum likelihood
estimation (MLE), constrained to the interval [0, 1].

The log-likelihood of a Beta-distributed sample S with shape parameters α and b is given by:

logP (X|α, β) =
∑
i

logBeta(Xi|α, β), (31)

where Beta(Xi|α, β) denotes the probability density function (PDF) of the Beta distribution. We compute logLcomb:
Log-likelihood of the combined dataset and logLsep which is sum of log-likelihoods for the separate distributions.

To balance model complexity and fit, we compute the BIC for each model using:

BIC = k log(n)− 2 logL, (32)

where k is the number of parameters in the model, n is the sample size, and logL is the log-likelihood of the fitted model.
The BIC values are computed as:

BICcomb = 2 log(|X1|+ |X2|)− 2 logLcomb, (33)

BICsep = 4 log(|X1|+ |X2|)− 2 logLsep. (34)

Since direct computation of the Bayes Factor requires marginal likelihood estimation, which is computationally expensive,
we approximate it using the difference in BIC values:

BF ≈ e(BICcomb−BICsep)/2. (35)

The computed Bayes Factor provides a quantitative measure of evidence for model selection:

• If BF > 10: Strong evidence against H0, suggesting that S1 and S2 are drawn from distinct Beta distributions.

• If BF ≤ 10: Insufficient evidence to reject H0.

This implementation enables efficient hypothesis testing while preserving the interpretability of Bayesian model selection.

15 SUPPLEMENTARY RESULTS

15.1 BUMP AND CROHN’S CROSS COHORT ANALYSIS

Figure 16.3 illustrates the consistency in wearable signal distributions and their correlation with states across the Bump and
Crohn’s datasets. While the z-score correlation of Awake Time remains nearly identical between the two datasets, relative



HAR 70+

Hamming NLL

HDP-Flow 0.28±0.06 5219.0±1106.6
DS-HDP –– ––
S-HDP –– ––

RNN 0.56 ± 0.14l N/A
HMM-Flow 0.28±0.07 40121.6±4341.1

RNN Sup. 0.27 ± 0.08 N/A

Table 7: Performance on real-world datasets, measured by the Hamming distance, and the posterior predictive likelihood.
Standard deviation are reported across samples, and best results with statistical significance are highlighted.

differences emerge in specific correlations: Body Temperature varies in states 0, 2, 3, 4, and 7, HRV differs in states 4 and 5,
and Heart Rate shows variation in states 3 and 9. These features are particularly important as they exhibit distinct behavior
in pregnant women, a pattern that is reflected in the Bump data in this figure. As a result, HDP-Flow serves as a powerful
framework for tracking and interpreting wearable data across cohorts, identifying new states or shifts in state distribution,
and detecting significant changes in physiological signals.

16 SUPPLEMENTARY FIGURES

This section provides similar visualizations as the ones present in the paper for all datasets. In Figure 16.1, compared to
the simulated datasets I and II (3), this dataset is more complex. However, calibration (ECE = 0.2328) remains reasonable,
though some confidence bins show larger deviations from perfect calibration.

Figure 16.1: Reliability Plot of Simulated data III

In the rest of the figures, the first row presents the ground truth underlying state for a test sample (left), and distribution of
states in the training data (middle). Each subsequent row presents corresponding results from a different model (HDP-Flow



and baselines). The left column shows the inferred state sequences for a test sample, indicated by the background color.
The middle column shows each model’s estimated global state distribution. The right column depicts samples generated by
the BNP models, with states as background colors and state duration reflecting their estimated probabilities. All colors are
matched for each state.
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Figure 16.2: Ground Truth vs. BNP models inference on Simulated Data I.

Figure 16.3: Z-scored mean values of physiological features across predicted states in both the Crohn’s and Bump datasets.
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Figure 16.4: Ground Truth vs. BNP models inference on Simulated Data II.
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Figure 16.5: Ground Truth vs. BNP models inference on Simulated data III.
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Figure 16.6: Ground Truth vs. BNP models inference on CPAP dataset.
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Figure 16.7: Ground Truth vs. BNP models inference on HAR dataset.
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Figure 16.8: Ground Truth vs. BNP models inference on HAR70 dataset.
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Figure 16.9: Transition probabilities learned for the Simu-
lated dataset I by HDP-Flow. The states are ordered from
high to low probability determined by β.
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Figure 16.10: Transition probabilities learned for the Simu-
lated dataset II by HDP-Flow. The states are ordered from
high to low probability determined by β.
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Figure 16.11: Transition probabilities learned for the Simu-
lated dataset III by HDP-Flow. The states are ordered from
high to low probability determined by β.
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Figure 16.12: Transition probabilities learned for the HAR
by HDP-Flow. The states are ordered from high to low prob-
ability determined by β.
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