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Abstract

We introduce a novel framework for decentralized projection-free optimization, extending
projection-free methods to a broader class of upper-linearizable functions. Our approach
leverages decentralized optimization techniques with the flexibility of upper-linearizable func-
tion frameworks, effectively generalizing traditional DR-submodular function optimization.
We obtain the regret of O(T 1−θ/2) with communication complexity of O(T θ) and number
of linear optimization oracle calls of O(T 2θ) for decentralized upper-linearizable function
optimization, for any 0 ≤ θ ≤ 1. This approach allows for the first results for monotone
up-concave optimization with general convex constraints and non-monotone up-concave
optimization with general convex constraints. Further, the above results for first order
feedback are extended to zeroth order, semi-bandit, and bandit feedback.

1 Introduction

Modern machine-learning systems increasingly encounter streaming, non-convex objectives that evolve over
time and require decentralized optimization. One prominent challenge is handling adversarial continuous
γ-weakly up-concave functions, which includes Diminishing-Return-Submodular (or DR-submodular) and
concave functions. This problem can be formulated as an online interaction: at each time step, the learner
selects an action from a convex domain, after which a reward function, satisfying γ-weak up-concavity, is
revealed or partially observed. Depending on the feedback setting, the learner may observe full gradients,
only the function value at the selected point, or noisy bandit-style responses. An example is mean-field
variational inference on edge devices (Bian et al., 2019), where geographically dispersed sensors cooperatively
maximize the evidence lower bound (ELBO) without sharing raw data. The ELBO in this setting is
a continuous DR-submodular objective on the probability simplex, therefore γ-weakly up-concave, whose
curvature coefficients shift adversarially as fresh observations arrive, making a decentralized, online solution
essential. Such formulations also emerge in a wide array of other applications, including price optimization,
inventory management, recommendation systems, and power network reconfiguration (Aldrighetti et al., 2021;
Mishra et al., 2017; Ito & Fujimaki, 2016; Hassani et al., 2017; Mitra et al., 2021; Gu et al., 2023; Pedramfar
et al., 2023; 2024). Recently, Pedramfar & Aggarwal (2024a) introduced the concept of upper-linearizable
functions, which broadened the classical notions of concavity and DR-submodularity in various contexts.
They also proposed a meta-algorithm that transforms linear maximization methods into algorithms capable
of optimizing upper-linearizable functions. While the regret bounds of such algorithms have been studied in
centralized settings (Pedramfar & Aggarwal, 2024a), we extend this analysis to decentralized setting, which
is motivated by applications in multi-agent systems and sensor networks (Li et al., 2002; Xiao et al., 2007;
Mokhtari et al., 2018; Duchi et al., 2011).

The objective of this paper is to establish regret bounds for optimizing upper-linearizable functions under
different feedback types in a decentralized setup, where communication between agents is limited. In
decentralized optimization, each node in the network represents a local decision maker that must select its
own decision and subsequently receive a local reward function. The objective of each local decision maker is
to minimize its α-regret, which is determined by the average of local functions at each iteration. To achieve
this, nodes are permitted to communicate with their neighbors and exchange local information. Decentralized
optimization has been extensively studied in online convex optimization (Duchi et al., 2011; Sundhar Ram
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Table 1: Decentralized Projection-free up-concave maximization

F Set Feedback Reference Appx. logT (α-Regret) logT (Communication) logT (LOO calls) Range of θ

M
on

ot
on

e

0
∈

K ∇F
full information

(Zhu et al., 2021) 1 − e−1 1/2 5/2 5/2 -
(Zhang et al., 2023a) 1 − e−1 4/5 1 1 -

(Liao et al., 2023) 1 − e−1 3/4 1/2 1 -
Theorem 2 1 − e−γ 1 − θ/2 θ 2θ [0, 1]

semi-bandit Theorem 4 1 − e−γ 1 − θ/2 θ 2θ [0, 2/3]

F
full information Theorem 5 1 − e−γ 1 − θ/4 θ 2θ [0, 1]

bandit Theorem 6 1 − e−γ 1 − θ/4 θ 2θ [0, 4/5]

ge
n

er
al ∇F semi-bandit Theorem 2 γ2/(1 + γ2) 1 − θ/2 θ 2θ [0, 1]

F bandit Theorem 3 γ2/(1 + γ2) 1 − θ/4 θ 2θ [0, 1]

N
on

-M
on

o

ge
n

er
al ∇F

full information Theorem 2 (1 − h)/4 1 − θ/2 θ 2θ [0, 1]
semi-bandit Theorem 4 (1 − h)/4 1 − θ/2 θ 2θ [0, 2/3]

F
full information Theorem 5 (1 − h)/4 1 − θ/4 θ 2θ [0, 1]

bandit Theorem 6 (1 − h)/4 1 − θ/4 θ 2θ [0, 4/5]

This table compares the different results for the regret for up-concave maximization. Here h := minz∈K ∥z∥∞.
Communication refers to the communication complexity, and LOO calls refers to the number of calls to the Linear
Optimization Oracle. Further, the results hold for any θ in the range specified in the last column.

et al., 2010; Yan et al., 2012; Wang et al., 2022; Zhang et al., 2017; 2023b; Elgabli et al., 2020). Wan
et al. (2022) proposed a projection-free distributed algorithm for online convex optimization with sublinear
communication complexity. Recently, this problem has been explored within the scope of DR-submodular
optimization (Xie et al., 2019; Gao et al., 2021; Zhang et al., 2022; Liao et al., 2023). Specifically, for monotone
DR-submodular functions over constraint sets that include the origin, algorithms with regret guarantees
have been proposed. Notably, this is just one instance of an upper-linearizable function class proposed by
Pedramfar & Aggarwal (2024a), a broader class that encompasses several cases, including (i) monotone
γ-weakly up-concave functions (generalizing DR-submodular functions) over general convex sets, (ii) monotone
γ-weakly up-concave functions over convex sets containing the origin, and (iii) non-monotone up-concave
optimization over general convex sets. Therefore, in this work, we focus on decentralized algorithms for the
more general class of upper-linearizable functions and provide results applicable to all these cases.

Existing methods for minimizing α-regret in DR-submodular optimization typically fall into two broad
classes. One class (Chen et al., 2018b; Zhang et al., 2022) uses projection-based strategies which involve
computing projections onto the feasible set at each round, while the other class (Chen et al., 2018a;b; Zhang
et al., 2019; Liao et al., 2023) leverages projection-free techniques which replace the projection step with
linear optimization oracles to update decisions more efficiently. In certain machine learning tasks (Hazan
& Luo, 2016; Lacoste-Julien et al., 2013), the computational cost of projection onto a complex feasible set
can substantially exceed that of linear optimization. For example, in matrix completion over nuclear norm
balls (Chandrasekaran et al., 2009), computing a projection requires full singular value decomposition, which
is cubic in matrix size, whereas linear optimization only requires computing a leading singular vector pair.
Notably, many of these tasks involve objective functions that are either possess DR-submodular property or
admit concave surrogates, both of which fall within the broader class of upper-linearizable functions. This
connection motivates us to provide projection-free approaches to the more general upper-linearizable functions
under decentralized online setting.

In this paper, we present an algorithm for optimizing upper-linearizable functions in different setups, including
monotone functions over convex set containing the origin, monotone functions over general convex set and
non-monotone functions over general convex set with different types of feedback including full information
first order feedback, full information zeroth order feedback, semi-bandit feedback, and bandit feedback. In
particular, for optimizing monotone upper-linearizable functions over convex set containing the origin, the
proposed approach achieves a regret bound of O(T 1−θ/2) with a communication complexity of O(T θ) and
number of linear optimization oracle calls of O(T 2θ) , where θ ∈ [0, 1] is a trade-off parameter that controls
the blocking effect. When θ decreases, the total calls to the linear optimization oracle would decrease, while
regret and communication complexity would increase. We note that for θ = 1, this achieves the optimal regret
of O(

√
T ) while having the number of linear optimization oracle calls as O(T 2), while still improving the

results in Zhu et al. (2021) reducing the communication complexity and number of linear optimization oracle
calls in their special case. Further, for θ = 1, the result matches that by Liao et al. (2023) in their special case
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and improves all metrics as compared to the result by Zhang et al. (2023a). The result in this paper gives
a tradeoff between the metrics that shows that decreasing regret causes an increase in the communication
complexity and the number of linear optimization oracle calls.

The algorithm requires a querying function G, which corresponds to a semi-bandit query when dealing
with monotone γ-weakly up-concave functions over general convex sets (Appendix A.1), and a first-order
full-information query in another two cases: monotone γ-weakly up-concave functions over convex sets
containing the origin (Algorithm 6), and non-monotone up-concave optimization over general convex sets
(Algorithm 7). By obtaining results for these queries, we adapt the meta-algorithms by Pedramfar & Aggarwal
(2024a) to derive new results for different feedback types across various settings, including first-order full
information, zeroth-order full information, semi-bandit, and bandit feedback. A summary of the results across
these cases is provided in Table 1. It is important to note that prior work only addressed the case of monotone
1-weakly DR-submodular functions over convex sets containing the origin with first-order full-information
feedback, while the remaining results in the table are novel contributions to the literature.

We summarize the contributions and technical novelties of this work as follows.

Contributions:

1. First result for online monotone DR-submodular maximization over general convex sets and online non-
monotone DR-submodular maximization over general convex sets in decentralized setting. Further, the
result for monotone DR-submodular with 0 ∈ K has been extended to γ-weakly DR-submodular functions
while the previous work only considered 1-weakly DR-submodular functions (See Table 1 for the results).

2. Even in the 1-weakly DR-submodular functions with 0 ∈ K, there were results on multiple tradeoff
points on regret-communication complexity tradeofff. We combined these results demonstrating a tradeoff
between the two objectives (See Table 1 for such comparisons).

3. First results for the more general class of up-concave functions, which includes DR-submodular functions
as a subset. DR-submodular functions satisfy ∇f(x) ≤ ∇f(y) for all x ≥ y while up-concave functions
only satisfy ⟨∇f(x), x− y⟩ ≤ ⟨∇f(y), x− y⟩ for all x ≥ y.

4. First result for online decentralized optimization problem for upper-linearizable functions, a function class
much broader than monotone DR-submodular maximization over convex sets containing the origin, giving
opportunity to solve problems beyond submodular maximization.

5. A meta-algorithm extending the framework of Pedramfar & Aggarwal (2024a) from centralized to decen-
tralized setting, generating first results for other feedbacks. In total we proposed 10 algorithms, 9 of which
are the first in their respective settings, including trivial vs non-trivial queries, first vs zeroth order oracle,
which handles different function instances of our upper-linearizable function class. Indeed, the approach
allows us to come up with the first results on decentralized DR-submodular optimization with bandit
feedback in any of the classes.

Technical Novelty

1. We note that previous works on decentralized DR-submodular optimization assumed monotone 1-weakly
DR-submodular functions with 0 ∈ K. Thus, we needed a non-trivial approach to extend the setup
to include non-monotonicity of the function, γ-weakly DR-submodular functions, and general convex
set constraints. This is done using the notion of upper-linearizable functions, allowing us to obtain the
first results for (i) monotone γ-weakly up-concave functions over convex sets with 0 ∈ K, (ii) monotone
up-concave functions with general convex sets, and (iii) non-monotone up-concave functions with general
convex sets.

2. We proved that the framework proposed by Pedramfar & Aggarwal (2024a) which was proposed for and
examined in the centralized setting, can be extended to the decentralized setting with proper adaptations.
The notion of regret changes in the decentralized setting, where we have to consider the average of loss
function among all agents instead of just one function, as is the case in a the centralized setting. Note that
the changes in the definition of online optimization between centralized and decentralized optimization
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makes applications of meta-algorithms used in Pedramfar & Aggarwal (2024a) non-trivial. The centralized
version have no notion of communication between nodes and it requires nuance in how one goes about
applying meta-algorithms designed for centralized setting to base algorithms that are decentralized.

3. In the cases of monotone functions over convex sets containing the origin and non-monotone functions,
the main algorithm, i.e., DOLCO, requires first order full-information feedback. In the centralized setting,
the SFTT meta-algorithm, described in Pedramfar & Aggarwal (2024a), is designed to convert the such
algorithms into algorithms only requiring semi-bandit feedback. However, this algorithm does not directly
work in the decentralized setup. We design Algorithms 3 and 5 using the idea of SFTT meta-algorithm.
The challenge here is to ensure that the SFTT blocking mechanism interacts properly with the existing
blocking mechanism of the base algorithm.

2 Related Works

Upper-Linearizable Function: Pedramfar & Aggarwal (2024a) introduced the concept of upper-linearizable
functions, a class that generalizes concavity and DR-submodularity across various settings, including both
monotone and non-monotone cases over different convex sets. They also explored projection-free algorithms
in centralized settings for these setups. Additionally, they proposed several meta-algorithms that adapt
the feedback type, converting full-information queries to trivial queries and transitioning from first-order to
zeroth-order feedback.

Decentralized Online DR-Submodular Maximization: Zhu et al. (2021) introduced the first decen-
tralized online projection-free algorithm for monotone DR-submodular maximization with a constraint set
containing the origin, known as the Decentralized Meta-Frank-Wolfe (DMFW). This algorithm provides a
1− 1/e approximation guarantee and achieves an expected regret bound of O(

√
T ), where T denotes the time

horizon. However, in each round, DMFW requires T 3/2 stochastic gradient estimates for each local objective
function, followed by the transmission of these gradient messages across the network, resulting in significant
computational and communication overhead, especially for large T (with a total communication complex-
ity of O(T 5/2)). To address these limitations, Zhang et al. (2023a) proposed the One-shot Decentralized
Meta-Frank-Wolfe Algorithm, which achieves (1− 1/e)-regret of O(T 4/5) while lowering the communication
complexity and the number of linear optimization oracle (LOO) calls to O(T ). Additionally, Liao et al.
(2023) introduced a projection-free online boosting gradient ascent algorithm that achieves (1− 1/e)-regret
of O(T 3/4) with a communication complexity of O(T 1/2) and number of LOO calls as O(T ). On the other
hand, the projection-based Decentralized Online Boosting Gradient Ascent algorithm proposed in Zhang
et al. (2023a) obtains (1− 1/e)-regret of O(

√
T ) with a communication complexity of O(T ).

In this paper, we present algorithms for optimizing upper-linearizable functions, achieving a regret bound of
O(T 1−θ/2), in first order feedback case, and O(T 1−θ/4), in zeroth order feedback case, with a communication
complexity of O(T θ) and number of LOO calls of O(T 2θ). In first order full-information case, for θ = 1, we
show that the regret and the communication complexity matches the best known projection-based algorithm
in Zhang et al. (2023a) and for θ = 1/2, the results match that in Liao et al. (2023) in the special case of
monotone 1-weakly DR-submodular functions with the convex set containing the origin.

3 Preliminaries

Notations and Definitions This paper considers a decentralized setting involving N agents connected over
a network represented by an undirected graph G = (V, E), where V = {1, · · · , N} is the set of nodes, and
E ⊆ V × V is the set of edges. Each agent i ∈ V acts as a local decision maker and can communicate only
with its neighbors, defined as Ni = {j ∈ V | (i, j) ∈ E} ∪ {i}. To model the communication between agents,
we introduce a non-negative weight matrix A = [ai,j ] ∈ RN×N

+ , which is supported on the graph G. The
matrix A is symmetric and doubly stochastic, with ai,j > 0 only if (i, j) ∈ E or i = j. Since A⊤ = A and
A1 = 1, where 1 denotes the vector of all ones, 1 is an eigenvector of A with eigenvalue of 1.

A set K ∈ Rd is convex if ∀x, y ∈ K and ∀α ∈ [0, 1], we have αx + (1 − α)y ∈ K. For a constrained set
K, we denote the radius of the set as R ≜ max ∥x∥,∀x ∈ K. For two vectors x, y ∈ K, we say x ≤ y if
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every element in x is less than or equal to the corresponding element in y. Given a set K, we define a
function class F as a subset of all real-valued functions over K. For a set K ⊆ Rd, we define its affine hull
aff(D) to be the set of αx + (1 − α)y for all x, y ∈ K and α ∈ R. The relative interior of K is defined as
relint(D) := {x ∈ K | ∃r > 0,Br(x) ∩ aff(K) ⊆ K}.

Given 0 < γ ≤ 1, we say a differentiable function f : K → R is γ-weakly up-concave if it is γ-weakly concave
along positive directions. Specifically if, ∀x ≤ y in K, we have

γ (⟨∇f(y), y− x⟩) ≤ f(y)− f(x) ≤ 1
γ

(⟨∇f(x), y− x⟩) . (1)

We say ∇̃f : K → Rd is a γ-weakly up-super-gradient of f if for all x ≤ y in K, the above holds with ∇̃
instead of ∇. We say f is γ-weakly up-concave if it is continuous and it has a γ-weakly up-super-gradient.
When it is clear from the context, we simply refer to ∇̃f as an up-super-gradient for f . A differentiable
function f : K → R is called γ-weakly continuous DR-submodular if ∀x ≤ y, we have ∇f(x) ≥ γ∇f(y). It
follows that any γ-weakly continuous DR-submodular functions is γ-weakly up-concave.

Upper-Linearizable Functions Recently, Pedramfar & Aggarwal (2024a) proposed the notion of upper-
linearizable function, which generalizes the notion of up-concave and DR-submodular. The function class F
is upper-linearizable if there exists g : F ×K → Rd, h : K → K, and constant 0 < α ≤ 1 and β > 0 such that
∀x, y ∈ K,∀f ∈ F :

αf(y)− f(h(x)) ≤ β (⟨g(f, x), y− x⟩) . (2)

Pedramfar & Aggarwal (2024a) demonstrated the generality of this class of functions by showing that this
includes concave functions as well as up-concave functions in many scenarios. More precisely, this class
includes (i) monotone γ-weakly up-concave functions over general convex sets (Lemma 2, (ii) monotone
γ-weakly up-concave functions over convex sets containing the origin (Lemma 3), and (iii) non-monotone
up-concave optimization over general convex sets (Lemma 5). We note that h(·) takes identity function for
case (i) and (ii), while h(x) = x+x̄

2 for some constant x̄ ∈ K for case (iii). The details of these functions with
the corresponding query functions, h(·) mapping, α and β are provided in Appendix A for completeness.

Problem Formulation In a decentralized setting, in tth round, agent i chooses a point xi
t ∈ K, and plays

an action x̂i
t. The adversary then chooses an upper-linearizable objective function ft,i ∈ F and a query oracle

Qt,i for ft,i.

Agent i uses a query function G (possibly randomized) that takes, as input, a point xi
t and returns a point

wi
t ∈ K at which the agent wants to query and gain information about ft,i

1. The query function is defined
as the function which returns wi

t such that E[∇f(wi
t)] = g(ft,i, xi

t). We say the agent query function G is
trivial if G is an identity function (wi

t = xi
t), otherwise we say the agent query function is non-trivial. Note

that in the three up-concave functions we mention above and in Appendix A, G is trivial for case (i) and
non-trivial for case (ii) and (iii), with G given by Algorithm 6 for (ii) and Algorithm 7 for (iii), respectively.

The query oracle Qt,i, depending on the feedback type, returns a noisy response ot,i = q̃(wi
t) whose mean is

either the gradient (first order feedback) or the value (zeroth order feedback) of ft,i(wi
t). We denote q(wi

t) as
the expected value of Qt,i(wi

t). In other words, in the first order feedback case, q(wi
t) = ∇ft,i(wi

t), and in
the zeroth order feedback case q(wi

t) = ft,i(wi
t). For the first order oracle, we use g̃t,i(xi

t) = q̃(wi
t) to denote

the noisy, unbiased estimate of gt,i since E[g̃t,i(xi
t)] = E[q̃(wi

t)] = E[∇f(wi
t)] = g(ft,i, xi

t).

The goal for each agent i is to optimize the aggregate function over the network over time:
∑T

t=1

∑N

j=1 ft,j(xi
t)

(Zhu et al., 2021; Zhang et al., 2023a). Thus, with an approximation coefficient 0 < α ≤ 1, we define the
α-regret for agent i to be:

Ri
α := α max

u∈K

1
N

T∑
t=1

N∑
j=1

ft,j(u)− 1
N

T∑
t=1

N∑
j=1

ft,j(x̂i
t).

1In general, the agent may query more than one point. However, in all algorithms considered in this paper, agents only
require a single query.
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We note that the optimization problem is NP-hard even in the centralized offline setup. For example, when f
is a monotone continuous DR-submodular function and K ⊆ [0, 1]d contains the origin, finding a point x ∈ K
such that f(x) is optimal is NP-hard. More generally, for any ϵ > 0, finding any point x ∈ K such that f(x) is
at least (1− e−1 + ϵ) times the optimal value is NP-hard. (See Proposition 3 in Bian et al. (2017)). However,
there are polynomial times algorithms that achieve the ratio of 1 − e−1. The ratio with this property is
referred to as the optimal approximation ratio, in this case being 1− e−1. In the three settings considered in
this paper, (in the special case of γ = 1) the approximation ratios for monotone function over convex sets
containing the origin and non-monotone functions over general convex sets are known to be optimal.(See Bian
et al. (2017); Mualem & Feldman (2023)) In the case of monotone functions over general convex sets (when
γ = 1), the approximation ratio of 1/2 is the best known in the literature so far and it is conjectured to be
optimal (See Pedramfar et al. (2023)).

We say the agent takes semi-bandit feedback if the oracle is first-order gradient feedback on the function and
the agent query function is trivial. More formally, the query oracle returns a noisy response with mean of
∇ft,i(xi

t). Similarly, it takes bandit feedback if the oracle is zeroth-order and the agent query function is
trivial. If the agent query function is non-trivial, then we say the agent requires full-information feedback.
More formally, first-order full-information feedback returns a noisy response with mean of ∇ft,i(wi

t) and
similar for zeroth-order.

We now introduce following assumptions formally.
Assumption 1. We assume the action set K is convex and compact, of which the radius is bounded by R,
i.e., R = maxx∈K ∥x∥.
Assumption 2. We assume all functions f ∈ F : K → R are M1-Lipschitz continuous, differentiable and
upper-linearizable with α, β, g and h as described in Equation 2. We further assume the first order query
oracles for F are bounded by G, which implies that, ∥g̃t,i(x)∥ ≤ G.
Assumption 3. We assume that g(ft,i, x) is L1-Lipschitz with respect to the second argument, x.

Remarks: We note that the function g for the three cases of upper-linearizable functions we introduced above
is Lipschitz continuous if the up-concave function is Lipschitz smooth, which is a commonly used assumption
in the literature (Liao et al., 2023; Fazel & Sadeghi, 2023; Zhang et al., 2022; 2024). The details of the
up-concave functions with the corresponding query oracles is provided in the Supplementary for completeness.
Assumption 4. We assume that the second largest eigenvalue of the communication weight matrix A, λ2, is
strictly less than 1.

We also introduce a Lemma for the infeasible projection algorithm.
Lemma 1 (Lemma 1 in Liao et al. (2023)). Let B be the unit ball centered at the origin. There exists an
algorithm OIP referred to as infeasible projection oracle over any convex set K ⊆ RB (where RB means a ball
with radius R), which takes the set K, a pair of points (x0, y0) ∈ K ×Rn, and an error tolerance parameter ϵ
as the input, and can output

(x, ỹ) = OIP (K, x0, y0, ϵ)

such that (x, ỹ) ∈ K × RB, ∥x − ỹ∥2 ≤ 3ϵ, and ∀z ∈ K, ∥ỹ − z∥2 ≤ ∥y0 − z∥2. Moreover, such an oracle
OIP can be implemented with total LOO calls bounded by⌈

27R2

ϵ
− 2
⌉

max
(

1,
∥x0 − y0∥2(∥x0 − y0∥2 − ϵ)

4ϵ2 + 1
)

. (3)

4 Main Result

4.1 Algorithm

We introduce a DOCLO algorithm which is given in Algorithm 1. The algorithm uses the hyper-parameters K,
η, and ϵ, which will be described in the results. Each agent i in the network stores two variables, decision
variable xi ∈ K and an auxiliary infeasible variable ỹi to help with infeasible projection, initialized in line 2
as xi

1 and ỹi
1 to be some c ∈ K. We divide time T into T/K blocks, each of size K. Line 3 loops over the
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Algorithm 1 Decentralized Online Continuous Upper-Linearizable Optimization - DOCLO
1: Input: decision set K, horizon T , block size K, step size η, error tolerance ϵ, number of agents N , weight

matrix A = [aij ], query function G, transformation map h(·), first order oracle Q
2: Set xi

1 = ỹi
1 = c ∈ K for any i = 1, · · · , N

3: for m = 1, · · · , T/K do
4: for each agent i = 1, · · · , N in parallel do
5: for t = (m− 1)K + 1, . . . , mK do
6: Play x̂i

m = h(xi
m)

7: Query the oracle Q at wi
t = G(xi

t) and get response oi
t

8: end for
9: Communicate xi

m and ỹi
m with neighbors

10: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t

11: (xi
m+1, ỹi

m+1)← OIP (K,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ)

12: end for
13: end for

blocks, and we denote the set of all time steps in block m as Tm. In each time t inside block m, agent i plays
x̂i

t = h(xi
m) (line 6). Then each agent i uses G to select a point wi

t, at which it queries the first order oracle
Q and obtains response oi

t (line 7). At the end of each block, each agent i communicates xi
m and ỹi

m with
neighbors (line 9), which are combined with the weight matrix A. Thus, each agent i receives

∑
j∈Ni

aijỹj
m

and
∑

j∈Ni

aijxj
m, where Ni denotes the neighbors of agent i. Based on the information received, each agent

i computes yi
m+1 =

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t (line 10), then performs an infeasible projection to compute

(xi
m+1, ỹi

m+1) = OIP (K,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ) using the algorithm OIP described in Lemma 1 (line 11).

4.2 Result and Analysis

We will provide the key results for the proposed algorithm, including the regret, communication complexity,
and the number of total LOO calls used by the proposed algorithm. The result is given in Theorem 1.
Theorem 1. Algorithm 1 ensures that the α-regret for agent i is bounded as

E
[
Ri

α

]
≤ β

[
2R2

η
+ 18ϵT

ηK
+ 7ηT KG2 + 13T G

√
3ϵ

]
+ β

1 − λ2

(
12ϵT

ηK
+ 9ηT KG2 + 12T G

√
3ϵ

)
+ (G + 2L1R)(N1/2 + 1)β

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1 − λ2

)
.

Further, the communication complexity is O(T/K). Finally, the number of LOO calls are upper bounded as
27T R2

ϵK

(
8.5 + 5.5 K2η2G2

ϵ + K4η4G4

ϵ2

)
. In particular, if we set ϵ = K2η2G2, then we have

E
[
Ri

α

]
= O

(
1
η

+ ηTKG2
)

,

and the number of LOO calls is O( T
ϵK ).

Proof. The detailed proof of Theorem 1 is provided in the Appendix. For the completeness of argument, we
provide a high-level outline of proof for the regret bound and the communication complexity.

7
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Regret: Note that instead of a 1-weakly DR-submodular function which has the nice property of
∇f(x) ≥ f(y),∀x ≤ y, we are dealing with upper linearizable functions, a much more generalized function
class that includes any function that satisfies αf(y)− f(h(x)) ≤ β (⟨g(f, x), y− x⟩) for some functional g,
function h, and constants 0 < α ≤ 1 and β > 0 as previously described, of which 1-weakly DR-submodular
function is an instance.
As is common to bound regret of convex algorithm with first order linear approximation (Orabona, 2019), we
bound the regret using the inner product of the distance in action space and g function space to approximate
the function value, with the help of law of iterated expectation. Let x∗ ∈ argmaxu∈K

1
N

∑T
t=1
∑N

i=1 ft,i(u)
denote the optimal action, we have

E[Rj
α] = 1

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
αft,i(x∗) − ft,i(h(xj

m))
]

≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, g̃t,i(xj
m)⟩
]

Rearranging terms to better leverage the communication structure of the decentralized network, we have:

1
β
E[Rj

α] ≤ E

[
1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xi
m, g̃t,i(xi

m)⟩

]

+ E

[
1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨xi
m − xj

m, g̃t,i(xi
m)⟩

]
(4)

+ E

[
1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xj
m, g̃t,i(xj

m) − g̃t,i(xi
m)⟩

]

Let the three parts in Equation (4) be respectively P1, P2, P3. Through exploitation of properties of the
loss functions and domain, the update rule (line 10) and the infeasible projection operation (line 11) in
Algorithm 1, we obtain the upper bound of the expectation of each part:

E [P1] ≤ R2

η
+ 18ϵT

ηK
+ 7ηT KG2 + 13T G

√
3ϵ

+ 1
1 − λ2

(
12ϵT

ηK
+ 9ηT KG2 + 12T G

√
3ϵ

)
E [P2] ≤ G(N1/2 + 1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1 − λ2

)
E [P3] ≤ 2L1R(N1/2 + 1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1 − λ2

)
Adding P1, P2, P3, we obtain the upper bound for α-regret for agent i as given in the statement of the
Theorem.
LOO calls: Based on Lemma 1 for the infeasible projection oracle, we have the number of LOO calls for
agent i in block m as:

li
m = 27R2

ϵ
max

(
1

4ϵ2 (∥yi
m+1 −

∑
j∈Ni

aijxj
m∥2)

(∥yi
m+1 −

∑
j∈Ni

aijxj
m∥2 − ϵ) + 1, 1

)
(5)

8
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Through exploitation of the update rule (line 10) and the infeasible projection operation (line 11) in
Algorithm 1, we have ∥∥∥∥∥yi

m+1 −
∑
j∈Ni

aijxj
m

∥∥∥∥∥
2

≤ 2η2K2G2 + 6ϵ (6)

Substituting (6) to (5), we obtain the total LOO calls,
∑T/K

m=1 li
m, as in the statement of the Theorem.

With appropriate selection of parameters block size K, update step η, and infeasible projection error tolerance
ϵ, we have final results for the main Algorithm 1 in Theorem 2. Motivated by the trade-off between block size
and the time complexity, we introduce a hyper parameter θ, through which users adjust block size accordingly,
allowing resilience against practical communication limitations.
Theorem 2. Choosing K = T 1−θ, η = 1√

KT
, and ϵ = K2η2, we get that for each agent i the

E
[
Ri

α

]
= O(T 1−θ/2) (7)

Further, the communication complexity is O(T θ) and the number of LOO calls is O(T 2θ).

We note that in the special case of θ = 1, there will be no block effect, and we achieve a regret of O(
√

T ),
with a communication complexity of O(T ) and number of LOO calls of O(T 2). Further, in the special case of
θ = 1/2, we achieve a regret of O(T 3/4), with a communication complexity of O(

√
T ) and number of LOO

calls of O(T ).

5 Extension of the Result to Different Feedback Types for Up-Concave Optimization

In Theorem 1, we provided the result for a query function g. For the different cases of up-concave function
summarized in Table 1, the query oracle Q is a gradient oracle on the function. Further, the query function
G is trivial in the case of monotone γ-weakly up-concave functions over general convex sets, thus making
the feedback a semi-bandit feedback for the function gradient. In this section, we will consider different
extensions for the proposed results, that provide the regret guarantees for the different feedback settings,
following the meta-algorithms proposed by Pedramfar & Aggarwal (2024a).

5.1 Bandit Feedback for Trivial Query Function

Since with the trivial query oracle, we have the results for the semi-bandit feedback, we provide an algorithm
that uses the semi-bandit to bandit feedback meta-algorithm, STB, by Pedramfar & Aggarwal (2024b) to get
the results for bandit feedback. The algorithm designed to handle bandit feedback for upper-linearizable
functions with trivial query is described in Algorithm 2.

Before detailing steps in Algorithm 2, we introduce several mathematical notations that are being used by
the STB meta-algorithm. Recall we have defined affine hull and relative interior of set K in Section 3. We
choose a point c ∈ relint(K) and a real number r > 0 such that aff(K) ∩ Br(c) ⊆ K. Then, for any shrinking
parameter 0 ≤ δ < r, we define K̂δ := (1 − δ

r )K + δ
r c. For a function f : K → R defined on a convex set

K ⊆ Rd, its δ-smoothed version f̂δ : K̂δ → R is given as

f̂δ(x) := Ez∼aff(K)∩Bδ(x)[f(z)]
= Ev∼L0∩B1(0)[f(x + δv)],

where L0 = aff(K)− x, for any x ∈ K, is the linear space that is a translation of the affine hull of K and v is
sampled uniformly at random from the k = dim(L0)-dimensional ball L0 ∩ B1(0). Thus, the function value
f̂δ(x) is obtained by “averaging” f over a sliced ball of radius δ around x. For a function class F over K, we
use F̂δ to denote {f̂δ | f ∈ F}. We will drop the subscript δ when there is no ambiguity.

The important property of this notion is that it allows for construction of a one-point gradient estimator.

9
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Specifically, it is known2 that

∇f̂δ(x) = k

δ
Ev∼L0∩S1 [f(x + δv)].

This allows us to convert Algorithm 1 to allow for zeroth order feedback. Specifically, we run Algorithm 1
on functions f̂t,i instead of ft,i and when it requires an unbiased estimate of the gradient of f̂t,i(x), we use
ft,i(x + δv) where v is sampled uniformly from L0 ∩ S1. More generally, if we have access to ot,i, an unbiased
estimate of ft,i(x + δv), then k

δ ot,i is an unbiased estimate of ∇f̂t,i(x). If the zeroth order oracle, from which
ot,i is sampled, is bounded by B0, then we see that this new one-point gradient estimator of ∇f̂t,i(x) is
bounded by G′ := k

δ B0. Therefore, if we set ϵ = K2η2(G′)2, we may use Theorem 1 to see that the regret is
bounded by O

(
1
η + ηTK(G′)2

)
, and the number of LOO calls is O( T

ϵK ). However, it should be noted that
the functions f̂t,i are defined over Kδ and this regret is computed against the best point in Kδ which can be
O(δ) away from the best point in K. Hence, we see that

E
[
Ri

α

]
= O

(
1
η

+ ηTK(G′)2 + δT

)
= O

(
1
η

+ ηTKδ−2 + δT

)
.

Putting these results together, we obtain the following result, with detailed discussion and proof in Appendix C.

Algorithm 2 Bandit Algorithm for Trivial Query
1: Input: decision set K, horizon T , block size K, step size η, error tolerance ϵ, number of agents N , weight

matrix A = [aij ], query function G, transformation map h(·), smoothing parameter δ ≤ α, shrunk set K̂δ,
linear space L0, zeroth order oracle Q

2: Let k = dim(L0)
3: Set xi

1 = ỹi
1 = c ∈ K̂δ for any i = 1, · · · , N

4: for m = 1, · · · , T/K do
5: for each node i = 1, · · · , N in parallel do
6: for t = (m− 1)K + 1, . . . , mK do
7: Sample vi

t ∈ S1 ∩ L0 uniformly
8: Play x̂i

t = h(xi
m) + δvi

t

9: Query the oracle Q at x̂i
t and get response oi

t

10: Let oi
t ← k

δ oi
tvi

t

11: end for
12: Communicate xi

m and ỹi
m with neighbors

13: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t

14: (xi
m+1, ỹi

m+1)← OIP

(
K̂δ,

∑
j∈Ni

aijxj
m, yi

m+1, ϵ

)
15: end for
16: end for

Theorem 3. If G is trivial, and the zeroth order oracle is bounded and we set ϵ = K2η2δ−2, then Algorithm
2 ensures a regret bound of

E
[
Ri

α

]
= O

(
1
η

+ ηTKδ−2 + δT

)
,

with at most O( T
ϵK ) LOO calls and O(T/K) communication complexity. In particular, if we set K = T 1−θ,

δ = T −θ/4 and η = δ√
KT

, we see that E
[
Ri

α

]
= O(T 1−θ/4) with at most O(T 2θ) LOO calls and O(T θ)

communication complexity.
2When k = d and therefore L0 = Rd, this equality is well known, e.g. see Nemirovskĭi & ÍÙdin (1983); Flaxman et al. (2005).

The more general case where k ≤ d may be found in Remark 4 in Pedramfar et al. (2023).
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5.2 Semi-Bandit Algorithm for Non-Trivial Query Function

When the query is non-trivial, Algorithm 1 has first order full-information feedback. To have the algorithm
with semi-bandit feedback, we use the idea used by the meta-algorithm “Stochastic Full-information To Trivial
query” SFTT, proposed by Pedramfar & Aggarwal (2024a) to convert Algorithm 1 to one that can work with
semi-bandit feedback. Note that SFTT itself uses a blocking mechanism and we must ensure that its blocking
mechanism interacts properly with both the DOLCO blocking mechanism and the inter-node communication.
The resulting algorithm, which is designed to handle semi-bandit feedback for upper-linearizable functions
with non-trivial query, is summarized in Algorithm 3.

Let L ≥ 1 be an integer. The main idea here is to consider the functions (f̄q,i)1≤q≤T/L,1≤i≤N where
f̄q,i = 1

L

∑qL
t=(q−1)L+1 ft,i. We want to run Algorithm 1 against this sequence of functions. To do this, we

need to construct unbiased estimates of the gradient of f̄q,i. This can be achieved by considering a random
permutation t′

1, · · · , t′
L of (q− 1)L + 1, · · · , qL and picking ft′

1,i. Since we want an algorithm with semi-bandit
feedback, at time-step t′

1 we select the point where the original algorithm, i.e., Algorithm 1, needed to query.
In the other L − 1 time-steps within this block, we pick the action that Algorithm 1 wants to take and
ignore the returned value of the query function. Thus, at one time-step per each block of length L, we
have no control over the regret, which adds O(T/L) to the total regret. In the remaining time-steps, the
behavior is similar to Algorithm 1, with each action repeated L − 1 times. We note that we are running
Algorithm 1 against f̄q,i with a horizon of T ′ := T/L. Hence, using the discussion above and Theorem 1, if
we set ϵ = K2η2G2, then we see that the regret is bounded by

E
[
Ri

α

]
= (L− 1)O

(
1
η

+ ηT ′KG2
)

+ O

(
T

L

)
= O

(
L

η
+ ηTKG2 + T

L

)
.

the number of LOO calls is O( T ′

ϵK ), and the communication complexity is bounded by O(T ′/K).

The key result is summarized in the following theorem, and the detailed discussion and proof can be found in
Appendix D.
Theorem 4. If G is non-trivial, and we set ϵ = K2η2G2, then Algorithm 3 ensures a regret bound of

E
[
Ri

α

]
= O

(
L

η
+ ηTKG2 + T

L

)
.

with at most O( T
ϵKL ) LOO calls and O( T

KL ) communication complexity. In particular, if 0 ≤ θ ≤ 2/3 and we
set K = T 1−3θ/2, L = T θ/2, and η = T θ−1, we see that E

[
Ri

α

]
= O(T 1−θ/2) with at most O(T 2θ) LOO calls

and O(T θ) communication complexity.

5.3 Zeroth Order Feedback for Non-Trivial Query

When the query is non-trivial, Algorithm 1 is a first order full-information feedback. To have the algorithm
with zeroth order feedback, we use the “First Order To Zeroth Order” meta-algorithm, FOTZO, proposed
by Pedramfar & Aggarwal (2024b) to obtain the result. The algorithm designed to handle zeroth-order
full-information feedback for upper-linearizable functions with non-trivial query is summarized in Algorithm 4.
The discussion and analysis of this meta-algorithm is quite similar to that of STB, and the details are provided
in Appendix E.
Theorem 5. If G is non-trivial, and the zeroth order oracle is bounded and we set ϵ = K2η2δ−2, then
Algorithm 4 ensures a regret bound of

E
[
Ri

α

]
= O

(
1
η

+ ηTKδ−2 + δT

)
,

with at most O( T
ϵK ) LOO calls and O(T/K) communication complexity. In particular, if we set K = T 1−θ,

δ = T −θ/4 and η = δ√
KT

, we see that E
[
Ri

α

]
= O(T 1−θ/4) with at most O(T 2θ) LOO calls and O(T θ)

communication complexity.

11
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Algorithm 3 Semi-Bandit Algorithm for Non-trivial Query
1: Input: decision set K, horizon T , DOCLO block size K, step size η, error tolerance ϵ, number of agents N ,

weight matrix A = [aij ], query function G, map h(·), SFTT block size L > 1, first order oracle Q
2: Set xi

1 = ỹi
1 = c ∈ K for any i = 1, · · · , N

3: for m = 1, · · · , T
LK do

4: for each node i = 1, · · · , N in parallel do
5: for q = (m− 1)K + 1, · · · , mK do
6: Play x̂i

q = h(xi
m)

7: Let wi
q be the point returned by G(xi

m)
8: Sample t′

q uniformly from {(q − 1)L + 1, . . . , qL}
9: for t = (q − 1)L + 1, . . . , qL do

10: if t = t′
q then

11: Play the action zi
t = wi

q

12: Query the oracle Q at wi
q and get response oi

q

13: else
14: Play the action zi

t = x̂i
q

15: end if
16: end for
17: end for
18: Communicate xi

m and ỹi
m with neighbors

19: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

mK∑
q=(m−1)K+1

oi
q

20: (xi
m+1, ỹi

m+1)← OIP (K,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ)

21: end for
22: end for

Algorithm 4 Zeroth Order Algorithm for Non-Trivial Query
1: Input: decision set K, horizon T , block size K, step size η, error tolerance ϵ, number of agents N , weight

matrix A = [aij ], query function G, transformation map h(·), smoothing parameter δ ≤ α, shrunk set K̂δ,
linear space L0, zeroth order oracle Q

2: Let k = dim(L0)
3: Set xi

1 = ỹi
1 = c ∈ K̂δ for any i = 1, · · · , N

4: for m = 1, · · · , T/K do
5: for each node i = 1, · · · , N in parallel do
6: for t = (m− 1)K + 1, . . . , mK do
7: Play h(xi

m)
8: Sample vi

t ∈ S1 ∩ L0 uniformly
9: Let wi

t be the point returned by G(xi
m)

10: Query the oracle Q at wi
t + δvi

t and get response oi
t

11: Let oi
t ← k

δ oi
tvi

t

12: end for
13: Communicate xi

m and ỹi
m with neighbors

14: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t

15: (xi
m+1, ỹi

m+1)← OIP (K̂δ,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ)

16: end for
17: end for

12
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5.4 Bandit Algorithm for Non-Trivial Query Functions

In this case, we apply the Stochastic Full-information To Trivial query meta-algorithm, SFTT, discussed
above, to convert Algorithm 4, w hich requires zeroth order full-information feedback, to an algorithm that
works with bandit feedback. The resulting algorithm, given in Algorithm 5, can handle bandit feedback for
upper-linearizable functions with non-trivial query.

Similar to the discussion in Section 5.2, we see that the regret bound is equal to O(T/L) plus L− 1 times
the regret bound of Algorithm 4 when applied over a horizon of T/L. In other words, if T ′ = T/L and
ϵ = K2η2δ−2, then we have

E
[
Ri

α

]
= (L− 1)O

(
1
η

+ ηT ′Kδ−2 + δT ′
)

+ O

(
T

L

)
= O

(
L

η
+ ηTKδ−2 + δT + T

L

)
.

Hence, we obtain the following result, with detailed discussion and proof in Appendix F.

Algorithm 5 Bandit Algorithm for Non-trivial Query
1: Input: decision set K, horizon T , DOCLO block size K, step size η, error tolerance ϵ, number of agents N ,

weight matrix A = [aij ], query function G, transformation map h(·), SFTT block size L > 1, smoothing
parameter δ ≤ α, shrunk set K̂δ, linear space L0, zeroth order oracle Q

2: Let k = dim(L0)
3: Set xi

1 = ỹi
1 = c ∈ K̂δ for any i = 1, · · · , N

4: for m = 1, · · · , T/LK do
5: for each node i = 1, · · · , N in parallel do
6: for q = 1, 2, . . . , K do
7: Let x̂i

q = h(xi
m)

8: Sample vi
q ∈ S1 ∩ L0 uniformly

9: Let wi
q be the point returned by G(xi

m)
10: Let ŵi

q = wi
q + δvi

q

11: Sample t
′

q uniformly from {(m− 1)KL + (q − 1)L + 1, . . . , (m− 1)KL + qL}
12: for t = (m− 1)KL + (q − 1)L + 1, . . . , (m− 1)KL + qL do
13: if t = t

′

q then
14: Play the action zt = ŵi

q

15: Query the oracle Q at ŵi
q and get response oi

q

16: Let oi
q ← k

δ oi
qvi

q

17: else
18: Play the action zt = x̂i

q

19: end if
20: end for
21: end for
22: Communicate xi

m and ỹi
m with neighbours

23: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

K∑
q=1

oi
q

24: (xi
m+1, ỹi

m+1)← OIP (K̂δ,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ)

25: end for
26: end for

Theorem 6. If G is non-trivial, and the zeroth order oracle is bounded and we set ϵ = K2η2δ−2, then
Algorithm 5 ensures a regret bound of

E
[
Ri

α

]
= O

(
L

η
+ ηTKδ−2 + δT + T

L

)
,

13
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with at most O( T
ϵKL ) LOO calls and O( T

KL ) communication complexity. In particular, if 0 ≤ θ ≤ 4/5 and
we set K = T 1−5θ/4, δ = T −θ/4, L = T θ/4, and η = T θ/2−1, we see that E

[
Ri

α

]
= O(T 1−θ/4) with at most

O(T 2θ) LOO calls and O(T θ) communication complexity.

6 Conclusions

In this paper, we presented a decentralized, projection-free approach to optimizing upper-linearizable functions,
which extends the analysis of classical DR-submodular and concave functions. By incorporating projection-free
methods, our framework provides efficient regret bounds of O(T 1−θ/2), in first order feedback case, O(T 1−θ/4),
in zeroth order feedback case, with a communication complexity of O(T θ) and number of linear optimization
oracle calls of O(T 2θ) for suitable choices of 0 ≤ θ ≤ 1, making it scalable for large decentralized networks.
This illustrates a tradeoff between the regret and the communication complexity. The versatility of our
approach allows it to handle a variety of feedback models, including full information, semi-bandit, and
bandit settings. This is the first known result that provides such generalized guarantees for monotone and
non-monotone up-concave functions over general convex sets.
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A Up-concave Functions are Linearizable

In this section, we provide for completeness that three cases of common up-concave functions can be formulated
as upper-linearizable functions, and we give the exact query algorithm to obtain estimates of g functions. We
further show that g given by these algorithms is Lipschitz-continuous, if f is L-smooth.

A.1 Monotone Up-concave optimization over general convex set

Following Lemma 1 by Pedramfar & Aggarwal (2024a), we note that monotone up-concave optimization over
general convex set can be formulated as an online maximization by quantization algorithm with trivial query
G(x) = x.
Lemma 2 (Pedramfar & Aggarwal (2024a)). Let f : [0, 1]d → R be a a non-negative monotone γ-weakly
up-concave function with curvature bounded by c. Then, for all x, y ∈ [0, 1]d, we have

γ2

1 + cγ2 f(y)− f(x) ≤ γ

1 + cγ2 (⟨∇̃f(x), y− x⟩),

where ∇̃f is an up-super-gradient for f .

A.2 Monotone up-concave optimization over convex set containing the origin

Following Lemma 2 by Pedramfar & Aggarwal (2024a), we note that monotone up-concave optimization over
convex set containing the origin can be formulated as an online maximization by quantization algorithm with
non-trivial query G = BQM0, which is described in Algorithm 6.
Lemma 3 (Pedramfar & Aggarwal (2024a)). Let f : [0, 1]d → R be a non-negative monotone γ-weakly
up-concave differentiable function and let F : [0, 1]d → R be the function defined by

F (x) :=
∫ 1

0

γeγ(z−1)

(1− e−γ)z (f(z ∗ x)− f(0))dz.

Then F is differentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =
∫ z

0

γeγ(u−1)

1− e−γ
du, (8)

then we have E [∇f(Z ∗ x)] = ∇F (x). Moreover, we have

(1− e−γ)f(y)− f(x) ≤ 1− e−γ

γ
⟨∇F (x), y− x⟩.

Algorithm 6 Boosted Query Algorithm for Monotone up-concave functions over convex sets containing the origin –
BQM0

1: Input: point x
2: Sample z ∈ [0, 1] according to Equation (8) in Lemma 3
3: Return: z ∗ x

In this case, g = ∇F (x), h(x) = Id. Further, if f is smooth, g is Lipschitz continuous, as shown in the
following Lemma.
Lemma 4 (Theorem 2(iii), Zhang et al. (2022)). If f is L-smooth and satisfies other assumptions of Lemma
3, F is L′-smooth, where L′ = L γ+e−γ −1

γ(1−e−γ ) , i.e., ∇F (x) is L′-Lipschitz continuous.
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A.3 Non-monotone up-concave optimization over general convex set

Following Lemma 3 by Pedramfar & Aggarwal (2024a), we note that Non-monotone up-concave optimization
over general convex set can be formulated as an online maximization by quantization algorithm with non-trivial
query G = BQN, as described in Algorithm ??.

Lemma 5 (Pedramfar & Aggarwal (2024a)). Let f : [0, 1]d → R be a non-negative continuous up-concave
differentiable function and let x ∈ K. Define F : [0, 1]d → R as the function

F (x) :=
∫ 1

0

2
3z(1− z

2 )3

(
f
(z

2 ∗ (x− x) + x
)
− f(x)

)
dz,

Then F is differentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =
∫ z

0

1
3(1− u

2 )3 du, (9)

then we have E
[
∇f

(Z
2 ∗ (x− x) + x

)]
= ∇F (x). Moreover, we have

1− ∥x∥∞

4 f(y)− f

(
x + x

2

)
≤ 3

8 ⟨∇F (x), y− x⟩.

Algorithm 7 Boosted Query oracle for non-monotone up-concave functions over general convex sets – BQN
1: Input: point x
2: Sample z ∈ [0, 1] according to Equation 9
3: Return: z

2 ∗ (x− x) + x

In this case, g = ∇F (x), h(x) : x 7→ xt+x
2 . Further, if f is L-smooth, g is Lipschitz continuous, as given in

the following Lemma.

Lemma 6 (Theorem 18, Zhang et al. (2024)). If f is L-smooth, L1-Lipschitz and f satisfies assumptions in
Lemma 5, ∇F (x) is 1

8 L-smooth and 3
8 L1-Lipschitz continuous.
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B Proof of Theorem 1

Let x∗ = argmaxu∈K
1
N

∑T
t=1
∑N

i=1 ft,i(u), Tm = {(m− 1)K + 1, · · · , mK}. By the definition of α-regret for
agent j, we have

E[Rj
α] = 1

N

T∑
t=1

N∑
i=1

E
[
αft,i(x∗)− ft,i(h(xj

t ))
]

= 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
αft,i(x∗)− ft,i(h(xj

m))
]

(a)
≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, gt,i(xj
m)⟩
]

(b)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m,E
[
g̃t,i(xj

m)|xj
m

]
⟩
]

(c)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
E
[
⟨x∗ − xj

m, g̃t,i(xj
m)⟩|xj

m

]]
(d)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, g̃t,i(xj
m)⟩
]

(e)= E

 β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xi
m, g̃t,i(xi

m)⟩︸ ︷︷ ︸
:=P1

+ E

 β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨xi
m − xj

m, g̃t,i(xi
m)⟩︸ ︷︷ ︸

:=P2



+ E

 β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xj
m, g̃t,i(xj

m)− g̃t,i(xi
m)⟩︸ ︷︷ ︸

:=P3

 (10)

where step (a) is because ft,i’s are upper linearizable, step (b)is because g̃t,i(·) is unbiased, step (c) is due to
the linearity of conditional expectation, step (d) is due to law of iterated expectation, and step (e) rewrites
(x∗ − xj

m) as [(x∗ − xi
m) + (xi

m − xj
m)] and g̃t,i(xj

m) as [(g̃t,i(xj
m)− g̃t,i(xi

m)) + g̃t,i(xi
m)].

As illustrated in step (e) in Equation 10, total regret can be divided into three parts, P1, P2, P3, and we provide
upper bound for each of these three parts with proof in the following sections, B.2, B.3, B.4, respectively. In
Section B.1, we introduce some auxiliary variables and lemmas that are useful to the following proof.

B.1 Auxiliary variables and lemmas

In this section, we introduce some auxiliary variables and lemmas to better present the proof of bound for
each of the three parts of the total regret presented in Equation 10.

Let yi
1 = ỹi

m = c, for any i ∈ [N ], since Algorithm 1 would only generate yi
m for m = 2, · · · , T/K. Let

ri
m = ỹi

m − yi
m for any i ∈ [N ] and m ∈ [T/K]. For any m ∈ [T/K], we denote the averages by:

x̄m =
∑N

i=1 xi
m

N
, ȳm =

∑N
i=1 yi

m

N
, ŷm =

∑N
i=1 ỹi

m

N
, and r̄m =

∑N
i=1 ri

m

N
.

There are two lemmas that would be useful to the proofs, and we provide proof of each of these in the
following appendices.
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Lemma 7. For any i ∈ [N ] and m ∈ [T/K], Algorithm 1 ensures

∥ri
m∥ ≤ 2

√
3ϵ + 2ηKG.

Proof. See Appendix B.7 for complete proof for Lemma 7.

Lemma 8. For any i ∈ [N ] and m ∈ [T/K], Algorithm 1 ensures√√√√ N∑
i=1
∥ŷm − ỹi

m∥2 ≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

, (11)√√√√ N∑
i=1
∥ŷm − yi

m+1∥2 ≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

, and (12)

N∑
i=1
∥xi

m − xj
m∥ ≤

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)
(N3/2 + N). (13)

Proof. See Appendix B.8 for complete proof of Lemma 8.

B.2 Bound of P1

By replacing (x∗ − xi
m) with [(x∗ − ŷm) + (ŷm − ỹi

m) + (ỹi
m − xi

m)], P1 can be decomposed as:

1
β
¶1 = 1

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨ŷm − ỹi
m, g̃t,i(xi

m))⟩+ 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨ỹi
m − xi

m, g̃t,i(xi
m)⟩

+ 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − ŷm, g̃t,i(xi
m)⟩︸ ︷︷ ︸

:=P4

(a)
≤ G

N

 N∑
i=1

T/K∑
m=1

∑
t∈Tm

∥ŷm − ỹi
m∥+

N∑
i=1

T/K∑
m=1

∑
t∈Tm

∥ỹi
m − xi

m∥

+ P4

(b)
≤G

T/K∑
m=1

∑
t∈Tm

√√√√ 1
N

N∑
i=1
∥ŷm − ỹi

m∥2 + T
√

3ϵ

+R4

(c)
≤TG

(
3ηKG + 2

√
3ϵ

1− λ2
+
√

3ϵ

)
+R4 (14)

where step (a) follows from Cauchy-Schwartz inequality and the bound of g̃t,i(·) function, step (b) follows
from Arithmetic Mean-Quadratic Mean inequality and Lemma 1, and step (c) follows from Equation (11) in
Lemma 8.

To attain upper bound on P4, we notice that,

ȳm+1 = 1
N

N∑
i=1

yi
m+1 = 1

N

N∑
i=1

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

g̃t,i(xi
m)


(a)= 1

N

N∑
i=1

N∑
j=1

aijỹj
m + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)

(b)= ŷm + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m) (15)
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where step (a) is because aij = 0 for any agent j /∈ Ni, and step (b) is because A1 = 1.

Substituting ȳm+1 using Equation (14), we have for any m ∈ [T/K],

ŷm+1 =ŷm+1 − ȳm+1 + ȳm+1

(15)= r̄m+1 + ŷm + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m) (16)

because r̄m+1 = ŷm+1 − ȳm+1.

By replacing ŷm+1 with Equation (16) and then expand the equation, we have

∥ŷm+1 − x∗∥2 (16)=

∥∥∥∥∥r̄m+1 + ŷm + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)− x∗

∥∥∥∥∥
2

=∥ŷm − x∗∥2 + 2
〈

ŷm − x∗,
η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)
〉

+ 2⟨ŷm − x∗, r̄m+1⟩+

∥∥∥∥∥r̄m+1 + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)

∥∥∥∥∥
2

. (17)

Following Lemma 1, we deduce that for any m ∈ [T/K],

∥ỹi
m+1 − x∗∥2 ≤ ∥yi

m+1 − x∗∥2 = ∥yi
m+1 − ỹi

m+1 + ỹi
m+1 − x∗∥2

= ∥yi
m+1 − ỹi

m+1∥2 + 2⟨yi
m+1 − ỹi

m+1, ỹi
m+1 − x∗⟩+ ∥ỹi

m+1 − x∗∥2

= ∥ri
m+1∥2 − 2⟨ri

m+1, ỹi
m+1 − x∗⟩+ ∥ỹi

m+1 − x∗∥2

where the last equality is due to the definition of ri
m+1.

Omitting ∥ỹi
m+1 − x∗∥2 on both sides and moving ⟨ỹi

m+1 − x∗, ri
m+1⟩ to the left, we have

⟨ỹi
m+1 − x∗, ri

m+1⟩ ≤
1
2∥r

i
m+1∥2. (18)

Thus, we can bound the term ⟨ŷm − x∗, r̄m+1⟩ in Equation (17) as follows

⟨ŷm − x∗, r̄m+1⟩ = 1
N

N∑
i=1
⟨ŷm − x∗, ri

m+1⟩

(a)
≤ 1

N

N∑
i=1
⟨ŷm − yi

m+1, ri
m+1⟩+ 1

N

N∑
i=1
⟨ỹi

m+1 − x∗, ri
m+1⟩

(b)
≤ 1

N

N∑
i=1
∥ŷm − yi

m+1∥∥ri
m+1∥+ 1

2N

N∑
i=1
∥ri

m+1∥2

(c)
≤ 2ηKG + 2

√
3ϵ√

N

√√√√ N∑
i=1
∥ŷm − yi

m+1∥2 + 1
2N

N∑
i=1
∥ri

m+1∥2

(d)
≤ 1

1− λ2

(
6η2K2G2 + 10ηKG

√
3ϵ + 12ϵ

)
+ 2

(
η2K2G2 + 2ηKG

√
3ϵ + 3ϵ

)
(19)

where step (a) replaces ŷm−x∗ as (ŷm−yi
m+1)+(yi

m+1−ỹi
m+1)+(ỹi

m+1−x∗) and omits ⟨yi
m+1−ỹi

m+1, ri
m+1⟩ ≤

0, step (b) is due to Cauchy-Schwartz inequality and Equation (18), step (c) comes from Lemma 7 and
Arithmetic Mean-Quadratic Mean inequality, and step (d) follows from Equation 11 in Lemma 8.
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Also, we can bound the last term in Equation (17) as follows∥∥∥∥∥r̄m+1 + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)

∥∥∥∥∥
2

(a)
≤2∥r̄m+1∥2 + 2

∥∥∥∥∥ η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)

∥∥∥∥∥
2

(b)
≤ 2

N

N∑
i=1
∥ri

m+1∥2 + 2Kη2

N

N∑
i=1

∑
t∈Tm

∥g̃t,i(xi
m)∥2

(c)
≤8
(√

3ϵ + ηKG
)2

+ 2η2K2G2

=24ϵ + 10η2K2G2 + 16ηKG
√

3ϵ (20)

where both step (a) and step (b) utilize Cauchy-Schwartz inequality and step (c) is due to Lemma 7 and the
bound of g̃t,i(·) functions.

Substitute Equation (19) and Equation (20) into Equation (17) and taking expectation on both sides, we
have

E
[
∥x∗ − ŷm+1∥2] ≤ E

[
∥x∗ − ŷm∥2]− 2η

N

N∑
i=1

∑
t∈Tm

E
[
⟨x∗ − ŷm, g̃t,i(xi

m)⟩
]

+ 1
1− λ2

(
12η2K2G2 + 20ηKG

√
3ϵ + 24ϵ

)
+
(

14η2K2G2 + 24ηKG
√

3ϵ + 36ϵ
)

.

(21)

Moving terms to different sides in Equation (21), we have

E [P4] = 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − ŷm, g̃t,i(xi

m)⟩
]

(21)
≤

T/K∑
m=1

[
E
[
∥ŷm − x∗∥2]− E

[
∥ŷm+1 − x∗∥2]

2η

]

+ T

K

[
18ϵ

η
+ 7ηK2G2 + 12KG

√
3ϵ

]
+ T

K

[
1

1− λ2

(
6ηK2G2 + 10KG

√
3ϵ + 12ϵ

η

)]
(a)
≤ 2R2

η
+ 18ϵT

ηK
+ 7ηTKG2 + 12TG

√
3ϵ

+ 1
1− λ2

(
12ϵT

ηK
+ 6ηTKG2 + 10TG

√
3ϵ

)
(22)

where the last inequality is due to E
[
∥ŷT/K+1 − x∗∥2] ≥ 0 and ∥ŷ1 − x∗∥2 ≤ 4R2, which is derived by

combining ŷ1 = c ∈ K, x∗ ∈ K, and R = maxx∈K ∥x∥, and Cauchy-Schwarz Inequality.

Therefore, plugging the result for term E [P4] from Equation (22) into Equation (14), we have

E [P1] ≤ TGβ

(
3ηKG + 2

√
3ϵ

1− λ2
+
√

3ϵ

)
(23)

+ 2βR2

η
+ 18βϵT

ηK
+ 7βηTKG2 + 12TGβ

√
3ϵ

+ β

1− λ2

(
12ϵT

ηK
+ 6ηTKG2 + 10TG

√
3ϵ

)
(24)
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B.3 Bound of P2

Next, we bound P2 in (10)

¶2
(10)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨xi
m − xj

m, g̃t,i(xi
m)⟩

(a)
≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

∥xi
m − xj

m∥∥g̃t,i(xi
m)∥

(b)
≤ Gβ

N

T/K∑
m=1

∑
t∈Tm

N∑
i=1
∥xi

m − xj
m∥

(c)
≤ Gβ(N1/2 −+1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1− λ2

)
. (25)

where step (a) is due to Cauchy-Schwartz inequality, step (b) follows from the bound of g̃t,i(·) functions, and
step (c) uses the inequality (13) in Lemma 8.

B.4 Bound of P3

Recall that gt,i(·) are L1-Lipschitz continuous, i.e.,

∥gt,i(xj
m)− gt,i(xi

m)∥ ≤ L1∥xi
m − xj

m∥.

Thus, we have

E [P3] (10)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E⟨x∗ − xj
m, g̃t,i(xj

m)− g̃t,i(xi
m)⟩

(a)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[〈

x∗ − xj
m,E

[
g̃t,i(xj

m)|xj
m

]
− E

[
g̃t,i(xi

m)|xi
m

]〉]
(b)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, gt,i(xj
m)− gt,i(xi

m)⟩
]

(c)
≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
∥x∗ − xj

m∥∥gt,i(xj
m)− gt,i(xi

m)∥
]

(d)
≤ L1β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
∥x∗ − xj

m∥∥xi
m − xj

m∥
]

(e)
≤ 2L1Rβ

N
E

T/K∑
m=1

∑
t∈Tm

N∑
i=1
∥xi

m − xj
m∥


(f)
≤ 2L1Rβ(N1/2 + 1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1− λ2

)
(26)

where step (a) and (b) is due to the law of iterated expectations, step (c) comes from Cauchy-Schwartz
inequality, step (d) follows from continuity of gt,i(·) functions, step (e) follows from the bound on K and
Cauchy-Schwartz inequality, and step (f) is due to Equation (13) in Lemma 8.
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B.5 Final Regret Bound

Plugging Equation (23), Equation (25) and Equation (26) into Equation (10), for any j ∈ [N ], we have

E
[
Rj

T,α

]
≤ 2βR2

η
+ 18ϵβT

ηK
+ 7ηβTKG2 + 13TGβ

√
3ϵ

+ β

1− λ2

(
12ϵT

ηK
+ 9ηTKG2 + 12TG

√
3ϵ

)
+ Gβ(N1/2 + 1)

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)
+ 2L1RTβ(N1/2 + 1)

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)

B.6 Number of Linear Optimization Oracle Calls

Finally, we analyze the total number of linear optimization oracle calls for each agent i. In Lemma 1, the
term R5 =

∥∥∥yi
m+1 −

∑
j∈Ni

aijxj
m

∥∥∥2
can be bounded as follows

R5 =

∥∥∥∥∥∥yi
m+1 −

∑
j∈Ni

aijxj
m

∥∥∥∥∥∥
2

(a)
≤ 2

∥∥∥∥∥∥yi
m+1 −

∑
j∈Ni

aijỹj
m

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∑

j∈Ni

aijỹj
m −

∑
j∈Ni

aijxj
m

∥∥∥∥∥∥
2

(b)
≤ 2

∥∥∥∥∥η
∑

t∈Tm

g̃t,i(xi
m)

∥∥∥∥∥
2

+ 2
∑

j∈Ni

aij

∥∥ỹj
m − xj

m

∥∥2

(c)
≤ 2η2K2G2 + 6ϵ (27)

where both step (a) follows from Cauchy-Schwartz inequality, step (b) follows from Cauchy-Schwartz inequality
and Line (10) in Algorithm 1

From Equation (3) in Lemma 1, in each block m, each agent i in Algorithm 1 at most utilizes

li
m = 27R2

ϵ
max

(
∥yi

m+1 −
∑

j∈Ni
aijxj

m∥2(∥yi
m+1 −

∑
j∈Ni

aijxj
m∥2 − ϵ)

4ϵ2 + 1, 1
)

= 27R2

ϵ
max

(
R5(R5 − ϵ)

4ϵ2 + 1, 1
)

(27)
≤ 27R2

ϵ
max

(
(2η2K2G2 + 6ϵ)(2η2K2G2 + 6ϵ− ϵ)

4ϵ2 + 1, 1
)

= 27R2

ϵ

(2η2K2G2 + 6ϵ)(2η2K2G2 + 5ϵ) + 4ϵ2

4ϵ2 (28)

linear optimization oracle calls, where the last equality is due to the fact that (2η2K2G2 +6ϵ)(2η2K2G2 +5ϵ) ≥
0.

Thus, by summing Equation (28) over T
K blocks, we have that the total number of linear optimization steps

required by each agent i of Algorithm 1 is at most

T/K∑
m=1

li
m ≤

27TR2

ϵK

(
8.5 + 5.5K2η2G2

ϵ
+ K4η4G4

ϵ2

)
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B.7 Proof of Lemma 7

∥ri
m+1∥ = ∥ỹi

m+1 − yi
m+1∥

(a)
≤

∥∥∥∥∥∥ỹi
m+1 −

∑
j∈Ni

aijxj
m

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

j∈Ni

aijxj
m − yi

m+1

∥∥∥∥∥∥
(b)
≤ 2

∥∥∥∥∥∥
∑

j∈Ni

aijxj
m − yi

m+1

∥∥∥∥∥∥ (c)= 2

∥∥∥∥∥∥
∑

j∈Ni

aijxj
m −

∑
j∈Ni

aijỹj
m − η

mK∑
t=(m−1)K+1

g̃t,i(xi
m)

∥∥∥∥∥∥
(d)
≤ 2

∑
j∈Ni

aij∥xj
m − ỹj

m∥+ 2ηKG

(e)
≤ 2
√

3ϵ + 2ηKG

where step (a) comes from triangle inequality, step (b) follows by Lemma 1, step (c) replaces yi
m+1 with

update rule described in Algorithm 1, step (d) comes from triangle inequality, and step (e) follows by Lemma
1.

Moreover, if m = 1, we can verify that

∥ri
1∥ = ∥0∥ ≤ 2

√
3ϵ + 2ηKG.

B.8 Proof of Lemma 8

To prove Lemma 8, we introduce additional auxiliary variables as follows:

x′
m = [x1

m; · · · ; xN
m] ∈ RNd, y′

m = [y1
m; · · · ; yN

m] ∈ RNd, ỹ′
m = [ỹ1

m; · · · ; ỹN
m] ∈ RNd

and

r′
m = [r1

m; · · · ; rN
m] ∈ RNd, g′

m =
mK∑

t=(m−1)K+1

[g̃t,1(x1
m); · · · ; g̃t,N (xN

m)] ∈ RNd.

According to step 10 in Algorithm 1, for any m ∈ {2, . . . , T/K}, we have

y′
m+1 = (A⊗ I)ỹ′

m + ηg′
m =

m−1∑
k=1

(A⊗ I)m−kr′
k+1 +

m∑
k=1

(A⊗ I)m−kηg′
k (29)

where the notation ⊗ indicates the Kronecker product and I denotes the identity matrix of size n× n.

In the same manner, for any m ∈ [T/K], we have

ỹ′
m+1 = r′

m+1 + y′
m+1 = r′

m+1 + (A⊗ I)ỹ′
m + ηg′

m

=
m∑

k=1
(A⊗ I)m−kr′

k+1 +
m∑

k=1
(A⊗ I)m−kηg′

k (30)

where the second equality follows the fact that r′
1 = ỹ′

1 − y′
1 = 0.

By the definition of ŷm+1, for any m ∈ [T/K], we have

[ŷm+1; · · · ; ŷm+1] =
(

11T

N
⊗ I
)

ỹ′
m+1 (31)

where the second equality comes from 1⊤A = 1⊤.
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B.8.1 Proof of Equation (11)

For any m ∈ [T/K], we have√√√√ N∑
i=1
∥ŷm+1 − ỹi

m+1∥2 (31)=
∥∥∥∥(11T

N
⊗ I
)

ỹ′
m+1 − ỹ′

m+1

∥∥∥∥
(30)=

∥∥∥∥∥
m∑

k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1 +

m∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k

∥∥∥∥∥
(a)
≤

∥∥∥∥∥
m∑

k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1

∥∥∥∥∥+

∥∥∥∥∥
m∑

k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k

∥∥∥∥∥
(b)
≤

m∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥ ∥∥r′
k+1
∥∥+

m∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥ ∥ηg′
k∥

(c)
≤
√

N
m∑

k=1
λm−k

2 (3ηKG + 2
√

3ϵ)
(d)
≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

,

where step (a) is due to triangle inequality, and step (b) is due to Cauchy-Schwartz inequality and triangle
inequality, step (c) comes from Lemma 7 and the fact that ∀k ∈ [m], ∥11T

N −Am−k∥ ≤ λm−k
2 (see Mokhtari

et al. (2018) for details), and step (d) is due to the property of geometric series.

By noticing ŷ1 = ỹ1 = c, we complete the proof of Equation (11) in Lemma 8.

B.8.2 Proof of Equation (12)

Similarly, for any m ∈ {2, · · · , T/K}, we have√√√√ N∑
i=1
∥ŷm − yi

m+1∥2 (31)=
∥∥∥∥(11T

N
⊗ I
)

ỹ′
m − y′

m+1

∥∥∥∥
(29)=

∥∥∥∥∥
m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1 +

m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k − ηg′

m

∥∥∥∥∥
(a)
≤

∥∥∥∥∥
m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1

∥∥∥∥∥+

∥∥∥∥∥
m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k

∥∥∥∥∥+ ∥ηg′
m∥

(b)
≤

m−1∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥∥∥r′
k+1
∥∥+

m−1∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥ ∥ηg′
k∥+ ∥ηg′

m∥

(c)
≤
√

N

m∑
k=1

λm−k
2 (3ηKG + 2

√
3ϵ)

(d)
≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

,

where step (a) is due to triangle inequality, and step (b) is due to Cauchy-Schwartz inequality and triangle
inequality, step (c) comes from Lemma 7 and the fact that ∀k ∈ [m], ∥11T

N −Am−k∥ ≤ λm−k
2 (see Mokhtari

et al. (2018) for details), and step (d) is due to the property of geometric series.

When m = 1, ŷ1 = ỹi
1 =

∑
j∈Ni

aijỹj
1 = c. Due to Line (10) in Algorithm 1, we have√√√√ N∑

i=1
∥ŷ1 − yi

2∥2 =

√√√√√ N∑
i=1

∥∥∥∥∥∥
∑

j∈Ni

aijỹj
1 − yi

2

∥∥∥∥∥∥
2

=

√√√√ N∑
i=1

∥∥∥∥∥∑
t∈Tm

g̃t,i(xi
m)

∥∥∥∥∥
2

≤
√

NηKG.

By noticing that
√

NηKG <
√

N(3ηKG+2
√

3ϵ)
1−λ2

, we complete the proof of Equation (12).
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B.8.3 Proof of Equation (13)

For any m ∈ [T/K], we notice that

N∑
i=1
∥xi

m − xj
m∥ ≤

N∑
i=1
∥xi

m − x̄m + x̄m − xj
m∥ ≤

N∑
i=1
∥xi

m − x̄m∥+ N∥x̄m − xj
m∥

≤
(√

N + N
)√√√√ N∑

i=1
∥xi

m − x̄m∥2. (32)

Moreover, for any i ∈ [N ] and m ∈ {2, . . . , T/K}, we have

∥x̄m − xi
m∥2 ≤ ∥x̄m − ŷm + ŷm − ỹi

m + ỹi
m − xi

m∥2

(a)
≤ 3∥x̄m − ŷm∥2 + 3∥ŷm − ỹi

m∥2 + 3∥ỹi
m − xi

m∥2

(b)
≤ 3

N

N∑
j=1
∥xj

m − ỹj
m∥2 + 3∥ŷm − ỹi

m∥2 + 3∥ỹi
m − xi

m∥2

(c)
≤ 18ϵ + 3∥ŷm − ỹi

m∥2,

where step (a) utilizes Cauchy-Schwarz inequality, step (b) utilizes Cauchy-Schwarz inequality and the
definition of ŷm and x̄m, and step (c) comes from Lemma 1. When m = 1, ∥x̄1−xi

1∥2 = 0 ≤ 18ϵ+3∥ŷm−ỹi
m∥2,

which leads us to conclude that for any m ∈ [T/K],

∥x̄m − xi
m∥2 ≤ 18ϵ + 3∥ŷm − ỹi

m∥2.

Thus, for any m ∈ [T/K], we have√√√√ N∑
i=1
∥x̄m − xi

m∥2 ≤

√√√√ N∑
i=1

(18ϵ + 3∥ŷm − ỹi
m∥2)

(a)
≤ 3
√

2Nϵ +

√√√√3
N∑

i=1
∥ŷm − ỹi

m∥2

(b)
≤ 3
√

2Nϵ +
√

3N(3ηKG + 2
√

3ϵ)
1− λ2

(33)

where step (a) is due to triangle inequality and step (b) follows by Equation (11) in Lemma 8.

Finally, by substituting Equation (33) into Equation (32), for any m ∈ [T/K], we have

N∑
i=1
∥xi

m − xj
m∥ ≤ (

√
N + N)

√√√√ N∑
i=1
∥xi

m − x̄m∥2

≤
(

3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)
(N3/2 + N).

C Bandit Feedback for Trivial Query Functions

In this section, we describe and discuss the variation of DOCLO to handle bandit feedback for functions with
trivial query oracle. The detailed implementation is given in the Algorithm 2, followed by proof of Theorem 3.
This algorithm requires additional input from the user: smoothing parameter δ ≤ α, shrunk set K̂δ, linear
space L0. Since queries are trivial, h(x) = x.
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Proof. Let A′ denote Algorithm 2 and A denote Algorithm 1. Let f̂t,j denote a δ-smoothed version of ft,i.
Let x∗ ∈ argmaxx∈K

∑T
t=1
∑N

j=1 ft,j(x) and x̂∗ ∈ argmaxx∈K̂δ

∑T
t=1
∑N

j=1 f̂t,j(x). Following our description
in Section 5.1, Algorithm 2 is equivalent to running Algorithm 1 on f̂t,i, a δ smoothed version of ft,i over a
shrunk set K̂δ.

By the definition of regret, we have

E
[
Ri,A′

α

]
− E

[
Ri,A

α

]
= 1

N
E

α

T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

ft,j(h(xi
t) + δvi

t)


− 1

N
E

α

T∑
t=1

N∑
j=1

f̂t,j(x̂∗)−
T∑

t=1

N∑
j=1

f̂t,j(h(xi
t))


= 1

N
E

 T∑
t=1

N∑
j=1

f̂t,j(h(xi
t))−

T∑
t=1

N∑
j=1

ft,j(h(xi
t) + δvi

t)


+α

 T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

f̂t,j(x̂∗)

 . (34)

Based on Lemma 3 proved by Pedramfar et al. (2023), we have |f̂t,j(h(xi
t))− ft,j(h(xi

t))| ≤ δM1, and f̂t,j is
M1-Lipschitz continuous as well. Thus, we have

|ft,j(h(xi
t) + δvi

t)− f̂t,j(h(xi
t))| ≤ |ft,j(h(xi

t) + δvi
t)− ft,j(h(xi

t))|+ |ft,j(h(xi
t))− f̂t,j(h(xi

t))| ≤ 2δM1.
(35)

Meanwhile, for the second part of Equation 34, we have

T∑
t=1

N∑
j=1

f̂t,j(x̂∗) = max
x̂∈K̂α

T∑
t=1

N∑
j=1

f̂t,j(x̂)

(a)
≥ −NδM1T + max

x̂∈K̂α

T∑
t=1

N∑
j=1

ft,j(x̂)

(b)= −NδM1T + max
x∈K

T∑
t=1

N∑
j=1

ft,j

((
1− δ

r

)
x + δ

r
c
)

= −NδM1T + max
x∈K

T∑
t=1

N∑
j=1

ft,j

(
x + δ

r
(c− x)

)
(c)
≥ −NδM1T + max

x∈K

T∑
t=1

N∑
j=1

(
ft,j(x)− 4δM1R

r

)

= −
(

1 + 4R

r

)
NδM1T +

T∑
t=1

N∑
j=1

ft,j(x∗)

where step (a) follows from Lemma 3 by Pedramfar et al. (2023), step (b) follows from the definition of K̂δ,
and step (c) is due to the M1-Lipschitz continuity of ft,i’s.

Putting it together with Equation 34 and Equation 35, we have

Ri,A′

α −Ri,A
α ≤ 1

N

(
2NδM1T +

(
1 + 4R

r

)
NδM1T

)
=
(

3 + 4R

r

)
δM1T.
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Thus we have

Ri,A′

α ≤ Ri,A
α +

(
3 + 4R

r

)
δM1T.

Assuming the zeroth order oracle is bounded by B0, from Line 10 of Algorithm 2 we see that the gradient
sample that is being passed to A is bounded by G = k

δ B0 = O(δ−1). Substituting results from Theorem 1,
we see that

E
[
Ri,A′

α

]
= O

(
Ri,A

α + δT
)

= O

(
1
η

+ ηTKδ−2 + δT

)
.

Since we are doing same amount of infeasible projection operation and communication operation in Algorithm
2, LOO calls and communication complexity for Algorithm 2 remains the same as Algorithm 1.

D Semi-Bandit Feedback for Non-Trivial Query Functions

To transform DOCLO into an algorithm that can handle semi-bandit feedback when we are dealing with
functions with non-trivial queries, we pass T

L as time horizon to DOCLO. In each of those T
L blocks, we consider

functions
(

f̂q,i

)
1≤q≤T/L,1≤i≤N

, where f̂q,i = 1
L

∑qL
t=(q−1)L+1 ft,i. We note that in Algorithm 3, for any x ∈ K

and 1 ≤ q ≤ T/L, we have E[ft′
q
(x)] = f̂q(x), and if ft are differentiable, E[∇ft′

q
(x)] = ∇f̂q(x). This way, the

transformed algorithm only queries once at the point of action per block, thus semi-bandit.

Proof of Theorem 4. Let A′ denote Algorithm 3 and A denote Algorithm 1. Following our description in
Section 5.2, Algorithm 3 is equivalent to running Algorithm 1 on f̂q,i(x) = 1

L

∑qL
t=(q−1)L+1 ft,i(x), an average

of ft,i over block q. In consistence with Algorithm 3 description, we let zi
t denote the action taken by agent i

at time-step t, whether it be x̂q, point of action selected by DOCLO, or ŷq, point of query selected by DOCLO.
Thus, the regret of Algorithm 3 over horizon T is

E
[
Ri,A

′

α,T

]
= 1

N
E

α max
u∈K

T∑
t=1

N∑
j=1

ft,j(u)−
T∑

t=1

N∑
j=1

ft,j(zi
t)


= L

N
E

α max
u∈K

1
L

T∑
t=1

N∑
j=1

ft,j(u)− 1
L

T∑
t=1

N∑
j=1

ft,j(zi
t)


= L

N
E

α max
u∈K

1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

ft,j(u)− 1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

ft,j(zi
t)


= 1

N
E

 N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

(
ft,j(x̂i

q)− ft,j(zi
t)
)

+ L

α max
u∈K

N∑
j=1

T/L∑
q=1

f̂q,j(u)−
N∑

j=1

T/L∑
q=1

f̂q,j(x̂i
q)


(36)

Algorithm 3 ensures that in each block with a given q, there is only 1 iteration where zi
t ̸= x̂i

q, otherwise
zi

t = x̂i
q. Since ft,j are M1-Lipschitz continuous, we have |ft,j(x̂i

q)− ft,j(ŷi
t)| ≤M1|x̂i

q − ŷi
t| ≤ 2M1R where

the second equation comes from the restraint on K. Since K̂δ ⊆ K, we have maxx∈K̂δ
∥x∥ ≤ maxx∈K ∥x∥ = R.

Thus, we have

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

∣∣ft,j(x̂i
q)− ft,j(xi

t)
∣∣ ≤ N∑

j=1

T/L∑
q=1

(0 ∗ (L− 1) + 2M1R ∗ 1) = 2NTM1R

L
(37)
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The second part of Equation 36 can be seen as the regret of running Algorithm 1 against
(

f̂q,i

)
1≤q≤T/L,1≤i≤N

,

over horizon T/L instead of T . We denote it with Ri,A
α,T/L. Applying Theorem 1, we have

E
[
Ri,A

α,T/L

]
= O

(
1
η

+ ηTKG2

L

)
.

Putting together with Equation 36 and Equation 37, we have

E
[
Ri,A

′

α,T

]
≤ 2TM1R

L
+ LE

[
Ri,A

α,T/L

]
which means

E
[
Ri

α

]
= O

(
L

η
+ ηTKG2 + T

L

)
.

Based on the implementation described in Algorithm 3, it queries oracle every L iterations, and communicate
and make updates with infeasible projection operation every KL iteration. Thus, communication complexity
for Algorithm 3 is O( T

KL ), while LOO calls are O( T
ϵKL ).

E Zeroth Order Full-Information Feedback for Non-Trivial Query Functions

In this section, we describe and discuss the variation of DOCLO to handle zeroth-order full-information feedback
for functions with non-trivial query oracle. The detailed implementation is given in the Algorithm 4 table,
followed by proof of Theorem 5. Per request of FOTZO, Algorithm 4 requires additional input from the user:
smoothing parameter δ ≤ α, shrunk set K̂δ, linear space L0. In the case of non-trivial query oracle, h(·) is
not necessarily an identity function. In the following, we give proof of Theorem 5.

Proof of Theorem 5. Let A′ denote Algorithm 4 and A denote Algorithm 1. Let f̂t,j denote a δ-smoothed
version of ft,i. Let x∗ ∈ argmaxx∈K

∑T
t=1
∑N

j=1 ft,j(x) and x̂∗ ∈ argmaxx∈K̂δ

∑T
t=1
∑N

j=1 f̂t,j(x). Following
our description in Section 5.3, Algorithm 4 is equivalent to running Algorithm 1 on f̂t,i, a δ smoothed version
of ft,i over a shrunk set K̂δ.

By the definition of regret, we have

E
[
Ri,A′

α

]
− E

[
Ri,A

α

]
= 1

N
E

α

T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

ft,j(h(xi
t))


− 1

N
E

α

T∑
t=1

N∑
j=1

f̂t,j(x̂∗)−
T∑

t=1

N∑
j=1

f̂t,j(h(xi
t))


= 1

N
E

 T∑
t=1

N∑
j=1

f̂t,j(h(xi
t))−

T∑
t=1

N∑
j=1

ft,j(h(xi
t))


+α

 T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

f̂t,j(x̂∗)

 . (38)

Based on Lemma 3 proved by Pedramfar et al. (2023), we have |f̂t,j(h(xi
t))− ft,j(h(xi

t))| ≤ δM1 < 2δM1.

It can be shown that the second part of Equation 38 follows the same upper bound as Equation 35.

Thus, putting it together, we have for Algorithm 2, the regret
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Ri,A′

α ≤ Ri,A
α + 1

N

(
2NδM1T +

(
1 + 4R

r

)
NδM1T

)
= Ri,A

α +
(

3 + 4R

r

)
δM1T

Assuming the zeroth order oracle is bounded by B0, from Line 10 of Algorithm 4 we see that the gradient
sample that is being passed to A is bounded by G = k

δ B0 = O(δ−1). Substituting results from Theorem 1,
we see that

E
[
Ri

α

]
= O

(
1
η

+ ηTKδ−2 + δT

)
.

Since we are doing same amount of infeasible projection operation and communication operation in Algorithm 4,
LOO calls and communication complexity for Algorithm 4 remains the same as Algorithm 1.

F Bandit Feedback for Nontrivial Query Function

In this section, we extend DOCLO over functions with nontrivial query oracle to handle bandit feedback, i.e.,
trivial query and zero-order feedback. We achieve this by applying FOTZO to handle zero-order full-information
feedback, then applying SFTT to transform the algorithm into trivial queries. In the following, we provide
proof of Theorem 6.

Proof of Theorem 6. Let A′ denote Algorithm 5 and A denote Algorithm 4. Following our description in
Section 5.4, Algorithm 5 is equivalent to running Algorithm 4 on f̂q,i(x) = 1

L

∑qL
t=(q−1)L+1 f̂t,i(x), an average

of f̂t,i over block q, where f̂t,i is a δ-smoothed version of ft,i. In consistence with Algorithm 5 description, we
let xi

t denote the action taken by agent i at iteration t, whether it be x̂q, point of action selected by DOCLO,
or ŷq, point of query selected by DOCLO. Thus, the regret of Algorithm 5 over horizon T:

E
[
Ri,A

′

α

]
= 1

N
E

α max
u∈K

T∑
t=1

N∑
j=1

f̂t,j(u)−
T∑

t=1

N∑
j=1

f̂t,j(zi
t)


= L

N
E

α max
u∈K

1
L

T∑
t=1

N∑
j=1

f̂t,j(u)− 1
L

T∑
t=1

N∑
j=1

f̂t,j(zi
t)


= L

N
E

α max
u∈K

1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

f̂t,j(u)− 1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

f̂t,j(zi
t)


= 1

N
E

 N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

(
f̂t,j(x̂i

q)− f̂t,j(zi
t)
)

+L

α max
u∈K

N∑
j=1

T/L∑
q=1

f̂q,j(u)−
N∑

j=1

T/L∑
q=1

f̂q,j(x̂i
q)

 (39)

Algorithm 3 ensures that in each block q, there is only 1 iteration where zi
t = ŷi

t ̸= x̂i
t, otherwise xi

t = x̂i
t.

Based on Lemma 3 proposed by Pedramfar et al. (2023), f̂t,j is M1-Lipscitz continuous if ft,i is M1-Lipscitz
continuous, i.e., |ft,j(x̂i

q) − ft,j(ŷi
t)| ≤ M1|x̂i

q − ŷi
t| ≤ 2M1R where the second equation comes from the

restraint on K. Since K̂δ ⊆ K, we have maxx∈K̂δ
∥x∥ ≤ maxx∈K ∥x∥ = R. Thus, we have

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

(
f̂t,j(x̂i

q)− f̂t,j(xi
t)
)

=
N∑

j=1

T/L∑
q=1

(0 ∗ (L− 1) + 2M1R ∗ 1) = 2NTM1R

L
(40)
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The second part of Equation 39 can be seen as the regret of running Algorithm 4 against
(

f̂q,i

)
1≤q≤T/L,1≤i≤N

,

over horizon T/L instead of T . We denote it with Ri,A
α,T/L. Applying Theorem 5, we have

E
[
Ri,A

α,T/L

]
= O

(
1
η

+ ηTKδ−2

L
+ δT

L

)
.

Putting it together with Equation 36 and Equation 37, we have

E
[
Ri,A

′

α

]
≤ 2TM1R

L
+ LE

[
Ri,A

α,T/L

]
,

which means that

E
[
Ri

α

]
= O

(
L

η
+ ηTKδ−2 + δT + T

L

)
.

Based on the implementation described in Algorithm 3, it queries oracle every L iterations, and communicate
and make updates with infeasible projection operation every KL iteration. Thus, communication complexity
for Algorithm 3 is O( T

KL ), while LOO calls are O( T
ϵKL ).
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