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Abstract

Fraudulent activities have caused substantial negative social impacts and are ex-
hibiting emerging characteristics such as intelligence and industrialization, posing
challenges of high-order interactions, intricate dependencies, and the sparse yet
concealed nature of fraudulent entities. Existing graph fraud detectors are limited
by their narrow “receptive fields”, as they focus only on the relations between
an entity and its neighbors while neglecting longer-range structural associations
hidden between entities. To address this issue, we propose a novel fraud detector
based on Graph Path Aggregation (GPA). It operates through variable-length path
sampling, semantic-associated path encoding, path interaction and aggregation,
and aggregation-enhanced fraud detection. To further facilitate interpretable as-
sociation analysis, we synthesize G-Internet, the first benchmark dataset in the
field of internet fraud detection. Extensive experiments across datasets in multiple
fraud scenarios demonstrate that the proposed GPA outperforms mainstream fraud
detectors by up to +15% in Average Precision (AP). Additionally, GPA exhibits
enhanced robustness to noisy labels and provides excellent interpretability by un-
covering implicit fraudulent patterns across broader contexts. Code is available at
https://github.com/horrible-dong/GPA.

1 Introduction

With the evolution of information technology, there is a pronounced spillover of risks from cyberspace
into human society and the physical world. The sharp rise in fraudulent activities has made fraud
detection [1-4] an increasingly prominent research area. Fraud encompasses various domains such
as the internet, finance, social networks, and online reviews, bringing severe negative social impacts
including economic losses, trust damage, disruption of fair competition, and infringement of consumer
rights. Therefore, combating fraud and safeguarding public interests are of utmost importance.

As fraudulent activities become increasingly intelligent and industrialized, the main challenges
in fraud detection include: (1) high-order interactions often exist between fraudulent entities, (2)
dependencies among fraudulent entities are intricate, and (3) fraudulent entities are sparse and
highly concealed. Given the complex dependencies and topological structures among fraud entities,
researchers have employed Graph Neural Networks (GNNs) [5-7] for fraud detection. However,
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Figure 1: An illustration of the proposed fraud detector based on Graph Path Aggregation (GPA)
under the internet fraud scenario, which operates through variable-length path sampling, semantic-
associated path encoding, path interaction and aggregation, and aggregation-enhanced fraud detection.
Note that the proposed method is generally applicable to other fraud detection scenarios.

standard GNNs such as GCN [8] and GAT [9] are local-aware, unable to process graph structures with
long-range dependencies as they primarily focus on knowledge from one-hop neighbors with limited
utilization of global contexts. Graph Transformers [10—12] can capture global contexts. However,
they include all nodes for self-attention, facing computational challenges in large-scale fraud detection
graphs while overlooking the inherent structural associations among fraudulent entities.

In recent years, significant advancements have been made in graph-based fraud detection techniques,
which can be broadly categorized into spectral methods and spatial methods. Spectral methods
emphasize leveraging different frequency components of graph signals to enhance the ability to
capture and process fraudulent clues on graphs through strategies such as spectral energy distribution
analysis [13], label-aware edge indicators [14], and multi-frequency signal combinations [15, 16].
Spatial methods focus on spatial relations among nodes, employing techniques like context and
relation fusion [17], class balance and sampling optimization [18], reinforced relation-aware neighbor
selection [19], homogeneous and heterogeneous connection management [20], anomalous feature
recognition and constraint [21], implicit fairing-inspired layer-wise propagation rule [22], and low-
variance relation generating [23] to improve GNNs’ ability to detect and identify fraudulent activities.
Although these methods demonstrate excellent performance, their “receptive fields” remain limited,
as they primarily rely on information from low-hop neighbors. For more concealed and complex
fraud that involves long-range structural associations, they often struggle to respond effectively.

To address the aforementioned challenges in graph fraud detection, it is imperative to develop a
global-aware technique that can effectively capture long-range structural dependencies in graphs
to unveil hidden fraudulent patterns within massive data. Toward this goal, we propose a novel
fraud detector based on Graph Path Aggregation (GPA), as illustrated in Figure 1. GPA integrates
variable-length path sampling, semantic-associated path encoding, path interaction and aggregation,
and aggregation-enhanced fraud detection to effectively deal with the high-order interactions, intricate
dependencies, and the sparse yet concealed nature of fraudulent entities. This approach overcomes the
limitation of mainstream fraud detectors in handling graph structures with long-range associations.

Due to privacy restrictions, existing fraud datasets have been anonymized, making it impossible to
discern the specific meanings of entities, thereby hindering the analysis of model interpretability. To
further facilitate this line of research, we focus on the currently prevalent yet underexplored field
of internet fraud detection. Based on established fraud rules, we synthesize the first internet fraud
dataset, G-Internet, to support research on interpretable association analysis. Extensive experiments
across datasets in multiple fraud scenarios encompassing the internet, finance, social networks, and
online reviews demonstrate that the proposed GPA outperforms various mainstream fraud detectors
in Area Under the Curve (AUC) and Average Precision (AP). Meanwhile, GPA exhibits stronger
robustness to noisy labels. It also provides excellent interpretability that can uncover common patterns



within fraud-related paths through global pattern interaction and similarity computation, showcasing
a more comprehensive view of the associations among diverse fraudulent entities.

The main contribution of this paper is the proposal of a novel fraud detector based on Graph Path
Aggregation (GPA), which goes beyond the local view of neighbors and explores hidden and complex
fraud associations at the path level. To enrich research on interpretable associations, we synthesize
the first internet fraud dataset named G-Internet. Experimental results demonstrate that GPA exhibits
superior performance compared to mainstream fraud detectors across various fraud scenarios. Fur-
thermore, GPA presents enhanced robustness to noisy labels and excellent interpretability, providing
new insights for unveiling global association patterns in fraudulent activities.

2 Related Work

2.1 Graph Neural Networks

Given the topological structures and intricate dependencies among entities, researchers introduced
Graph Neural Networks (GNNs) [5-7] as a powerful tool for processing unstructured data. Built
upon message-passing, GNNs have been widely employed for various downstream tasks [24-26].

GCN [8] is among the earliest classical GNNs, which updates node representations by aggregating in-
formation from neighbor nodes through graph convolution. GAT [9] introduces attention mechanisms
[27] to learn interaction weights between neighbor nodes. Their common drawback is that they only
utilize knowledge from one-hop neighbors, making them inadequate for handling graph structures
with long-range dependencies. Graph Transformers [10—12] are designed to capture global context.
However, they perform self-attention across all nodes, which is not only computationally infeasible
for large-scale graphs in fraud detection but also neglects the structural associations inherent among
fraudulent entities. While some general approaches like PathNet [28] and RAW-GNN [29] claim
to incorporate path-level structures, their core design is in fact to address heterophily issues. Not
specifically resolving long-range dependency challenges, they employ short path lengths (2-7 hops)
that essentially maintain a local-aware framework. Additionally, these methods suffer from slow
encoding, lack path interaction, and are unable to uncover implicit fraud patterns.

2.2 Graph Fraud Detectors

Traditional graph fraud detectors [30—32] primarily rely on structural information to assess the node’s
contribution, commonly utilizing metrics such as centrality, PageRank [33], and HITS [34]. These
methods are effective in identifying behaviors similar to known fraudulent patterns, but exhibit
limitations in detecting unknown types of fraud. To address this issue, graph representation learning
like DeepWalk [35], LINE [36], and node2vec [37] has emerged as a promising solution.

In recent years, advanced graph fraud detectors have been mainly categorized into spectral meth-
ods and spatial methods. Regarding spectral methods, AMNet [15] adaptively combines multiple
frequency signals to capture anomalies across different bands. BWGNN [13] employs Beta graph
wavelets for band-pass filtering in spectral and spatial domains. GHRN [14] addresses over-smoothing
[38] by calculating similarities with a label-aware edge indicator and pruning heterogeneous edges
based on this. AHFAN [16] builds a semantic fusion module based on Chebyshev polynomial filtering
to capture high- and low-frequency components of graph signals. CARE-GNN [39] leverages context
embeddings, neighborhood metrics, and relation attention to mitigate fraud inconsistencies. PC-
GNN [18] employs a label-balanced sampler and a neighborhood sampler to resolve feature dilution
from class imbalance. RioGNN [19] combines reinforced relation-aware neighbor selection with
label-aware similarity measures for more effective representation learning. H2-FDetector [20] tackles
fraudsters hiding in graphs by incorporating both homophilic and heterophilic connections, along
with a novel aggregation strategy guided by prototype priors to propagate similar and distinct signals.
GDN [21] identifies key anomalous features to mitigate the influence of heterogeneous neighbors
and uses prototype vectors to manage the distribution of anomalous features. GFCN [22] introduces
a layer-wise propagation rule motivated by the concept of implicit fairing in geometry processing.
HedGe [23] emphasizes reducing the high homophily variance between categories by generating new
low-variance relations rather than modifying the original ones. Due to reliance on low-hop neighbors,
these methods are also local-aware. Therefore, there remains an absence of methods that are both
global-aware and capable of effectively uncovering long-range structural fraudulent patterns.



3 Methodology

To address the challenges posed by high-order interactions, intricate dependencies, and the sparse yet
concealed nature of fraudulent entities, along with the limitations of GNN-based anti-fraud methods
in dealing with long-range dependencies in graph structures, we propose a novel fraud detector based
on Graph Path Aggregation (GPA), as illustrated in Figure 1. GPA works through variable-length
path sampling, semantic-associated path encoding, path interaction and aggregation, and finally the
aggregation-enhanced fraud detection. To facilitate an intuitive understanding, the methodology
is presented in the context of internet fraud detection. Note that the proposed method is generally
applicable to other fraud detection scenarios.

3.1 Problem Definition

Let @ = (V,E) be a graph in the context of an internet fraud scenario. Let V = {vy,v2,...,vx},
E={ei,ea,...,enmr}, X = {Xp;, Xupy ooy Xy }» a0 T = {te, , Tey, .-y tey, } denote the set of nodes,
edges, node features, and edge weights. The nodes include two types: users and websites. v,, € N
is the node index, among which V¥ = {v;,vs,...,vy} is the set of user nodes and V¥ =
{vr41, VU 42, ..., vn } is the set of website nodes. x,, € RY is the feature of node v,,, where D is
the dimension. e,, € N is the edge index, which includes two types of bidirectional relations: “user
visits website” and “user to user”. t., € NT represents the number of visits within the edge e,.
YU = { Yy Yoy, --s Yoy, } 18 the set of labels for the user nodes. The essence of graph-based internet
fraud detection is a binary classification task for user nodes, y,,, cyuer € {0, 1}, signifying the user
node v,, is benign or anomalous. Additionally, in alignment with realistic settings, the types and
labels of website nodes are treated as unknown, leaving the model to mine them.

3.2 Variable-Length Path Sampling

For a given user node, starting from itself, sample I paths R € N/*/ through random walk. Each
path R; € N7 starts from this user node and contains .J nodes (of any type) connected in sequence.
To further enrich the diversity of path lengths, the sampled paths are randomly masked. Define a
binary matrix M € 1%/, M = U — I, where U € 17> is an upper triangular matrix filled with
ones, and I € 17*7 is an identity matrix. Randomly and repeatably sample I rows from M and get
M € 17%7. Then, obtain variable-length paths R € R’*” as follows:

Ri,j = { Rij, if Mi’j =0

4 . 1
-1,  if My;=1 %

To enhance the quality of the sampled paths, an additional selection is sometimes necessary. The
importance of each path is evaluated by summing the degree centrality of its nodes. From the

randomly sampled I paths, the top-K most valuable paths R € R > are selected as follows:

R € RF*/ « Top-KHeeee(R e R™). )

3.3 Semantic-Associated Path Encoding

In order to facilitate subsequent path interaction, the sampled variable-length paths are uniformly
encoded into fixed-length embeddings based on atomic events. Additionally, a vector of behavior
feature is designed based on the global behavior of the node and integrated into the path encoding to
enrich the feature representation.

For the k-th path Ry, the set of node features it contains is {xﬁk 7»} 3-]:1. The variable-length paths
sampled in §3.2 are padded at the tail with nodes indexed as —1, and the feature x corresponding to
the “—1” node is filled with zeros. Each link in the dataset can be viewed as an event. Taking the link
“user visits website” as an example, this event consists of three elements: user (node), website (node),
and the number of visits (edge weight). To produce the representation for this event, operate by
adding the user feature with the product of the website feature and the number of visits. For all events

in the path, the same operation is applied successively, and then get the path feature hy, € RPY:

. i i i o J
hy, = U{ka,j + tRk,j%Rk,j+1 XRk,j+1}j:1’ &)



where | denotes the multi-element “concatenate” operation, f{k’ = flk} j+1 1s the edge between
nodes Rk, j and Rk, j+1, and Xy yia is a padding feature filled with zeros. The length of the path
feature after concatenating is D - J. For other datasets with the meaning of relations/events unknown,
just simply concatenate the node features along the path and get hy, = U{Xfiw }J_1. After that, a
linear projection is applied to the path feature to obtain the path embedding hy, € R¢:

hy = hy, - W + b, )
where W € RP7XC and b € R are learnable weight and bias respectively.

For a further enhanced path feature, the behavior feature xbehav £41 each node is introduced. For user
nodes, the behavior feature includes the number of visited websites, the total number of website visits,
and the number of connected users. For website nodes, no behavior feature is set, and instead, a zero
vector with the same length as the user behavior feature is used. The variable-length paths sampled in
§3.2 are padded at the tail with nodes indexed as —1, and the behavior feature x**"®" corresponding

to the “—1” node is filled with zeros. The behavior features of all nodes are denoted as {X%:hav 3]:1,
kg

where x%:hav € RS and S is the length of the feature. Then, normalize the behavior features. Next,
k.

string together the behavior features for all nodes within a path as follows and get flzehav € R?57:

BZehav _ U {Xt{eha\./ U Xb;hav }L_I:17 5)
Ry, ; J

Ry, j11
where U and | denote two-element and multi-element “concatenate” operations respectively, and

x‘%:‘;a; is a padding behavior feature filled with zeros. The length of the behavior feature after
o, J+1

concatenating is 2S5 - J. For different scenarios, unique behavior feature can be designed on a
case-by-case basis. After that, a linear projection is applied to the concatenated behavior feature to
obtain the behavior embedding h?" € R®":

hZehav — BZehav . Wbehav + bbehav’ (6)
where Whehav ¢ R257XC apd pbehav ¢ RC are Jearnable weight and bias respectively.

Finally, integrate the behavior embedding into the original path embedding and get z;, € R
z), = hy, + hi, @)

3.4 Path Interaction and Aggregation

Interaction will be conducted between the paths of a user node to uncover common fraudulent patterns.
For a given user node, stack all the path embeddings starting from this node and get Z € RX*:

Z = [Zl; Zy; ... ZK]. (8)
Then, self-attention between paths is employed to produce the updated embeddings 7 € REXC.
Q=7 W K = Z'Wkey,V: Z_VVvalue7 )

7 = softmax(Q - K") - V, (10)
where W {duery key, value} & RCXC are Jearnable weights. softmax(Q - KT) can yield the attention
scores of each path to itself and to other paths. With increasing training data, the model can identify
fraudulent and benign path patterns more clearly. Additionally, compared to local-aware models such
as GCN and GAT, the “receptive field” of path interaction is much larger, making it more suitable for
detecting fraudulent associations that are concealed through all sorts of means.

After path interaction, path aggregation is performed. Unlike traditional GNNs that aggregate features
from neighbor nodes, the proposed GPA aggregates features from high-order paths. Specifically,

aggregate the embeddings Z € R¥*C of all paths as follows to produce z € R

2= (2, (1)

where (] denotes the multi-element “aggregate” operation. In this paper, the average aggregation is
adopted, and the aggregated embedding z serves as the updated embedding of the central user node.



3.5 Aggregation-Enhanced Fraud Detection

The updated user embedding Z from path aggregation is fed into a Multi-Layer Perceptron (MLP)
and subsequently a sigmoid predictor to yield a prediction p € [0, 1]:

p = sigmoid(MLP(%)), (12)

representing the probability that the central user node is predicted to be anomalous. Then, together
with the label y computes the binary cross-entropy loss L:

L=y-logp+(1-y)-log(l—p). (13)

Finally, optimize the model through standard backward propagation and gradient descent.

4 Dataset Construction

Existing fraud datasets are typically anonymized, which obscures the specific meanings of entities
and consequently hinders interpretability analysis. Moreover, emerging internet fraud is rapidly
evolving and widespread with concealed tactics, and research on internet fraud detection remains
limited. Considering these gaps, we construct G-Internet, the first benchmark dataset for internet
fraud detection, featuring a transparent structure. Due to privacy restrictions, real-world data is not
available. Therefore, we synthesize the dataset through simulation. The anomaly rate in G-Internet
is only 2.96%, the lowest among existing fraud datasets. This section provides an overview of the
construction process for G-Internet, with more detailed descriptions available in Appendix §A.1.

Fraud rules. Types of internet fraud are varied, and the user behaviors regarding website visits
exhibit specific patterns within each type. To more accurately simulate anomalous activities, we have
designed 12 common rules as shown in Table 5 & 6, which are based on real cases and account for
the diversity and complexity of user behaviors.

User nodes. A total of 9 attributes have been generated for users. Based on existing references, we
determine the attribute distribution for each user category and sample the attribute accordingly. Since
our primary focus is to detect fraud based on the behavior of users visiting websites rather than on
the users’ inherent characteristics, we intentionally minimize the distinction between benign and
anomalous users when constructing user attributes.

Website nodes. In total, we have included 11 types of fraud-related websites and 27 types of normal
websites in the dataset. We employ large language models to generate keywords for each website, then
derive the corresponding website description from these keywords, and finally encode the description
into the website feature.

“User visits website” relation. For an anomalous user, randomly select one of the designed fraud
rules and generate connections between the user and websites that meet the rule. Anomalous users
may also visit a large number of normal websites while visiting the websites involved in the fraud
rules. These connections are also taken into account and randomly generated. For benign users, they
visit more normal websites, but they may also visit fraud-related websites as long as they do not meet
any of the fraud rules.

“User to user” relation. There may be relations between users, such as phone calls or other
interactions. Since our primary focus is to detect fraud based on the behavior of users visiting
websites rather than on the connections between users, we set both benign users and anomalous users
to maintain a closer connection with benign users, so as to minimize the difference in communication
behaviors between these two types of users.

In summary, the constructed G-Internet aligns with practical situations and has a clear and transparent
structure. This interpretable dataset facilitates the demonstration of the interpretable GPA method
(§3), which in turn enables the interpretable association analysis of fraud-related entities (§5.4).

5 Experimental Study

Datasets. We adopt our released G-Internet dataset for internet fraud detection. Additionally, we
adopt the well-known Elliptic [40] and T-Finance [13] datasets for finance fraud detection, T-Social
[13] dataset for social networks fraud detection, YelpChi [41] and Amazon [42] datasets for online



reviews fraud detection. Table | provides a brief
overview of the datasets’ statistics. For datasets
except Elliptic, the split ratio for training, val-  Scenario| Dataset | #Nodes #Edges #Feats. Anomaly
idation, and testing is 4:2:4. Detailed dataset  Internet |G-Internet| 160655 1972292 106  2.96%
descriptions are pI‘OVided in Appendix §A2 Elliptic 46564 73248 93 9.76%

Fin: " Fine %
Compared methods. The proposed GPA is lndTICC TFlndI.ICC 39357 42445086 10 4.58%

. . . Social | T-Social |5781065 146211016 10 3.01%
compared with a range of methods including T o e Sy
Non-GNNs: MLP [43] and KNN [44], Standard g iews Ae p-u 11014 8706734 55 687%
GNNs: GCN [8], GraphSAGE [45], and GAT ~—— | Amazon :

[9], Spectral GNNs: BernNet [46], AMNet [15],
BWGNN [13], GHRN [14], and AHFAN [16], and Spatial GNNs: GAS [47], DCI [48], CARE-GNN
[39], PC-GNN [18], RioGNN [19], H?-FDetector [20], GDN [21], GFCN [22], and HedGe [23].

Experimental settings. The experiments for the proposed GPA are conducted using the AdamW
optimizer with an initial learning rate of le-4 or le-3 and a weight decay of 5e-4. It adopts minibatch
sampling of user nodes per iteration, training for a maximum of 200 epochs from scratch. The
baseline models use the officially recommended settings. All numerical results are the averages
across 10 different random seeds. Detailed GPA model settings can be found in Appendix §A.3.

Table 1: A brief overview of dataset statistics.

Evaluation metrics. Due to the significant positive-negative imbalance in fraud datasets, evaluation
metrics should take both Precision and Recall into account. In this paper, Area Under the Curve
(AUC, %) and Average Precision (AP, %) are adopted to assess the model performance. For more
details on the metrics, please refer to Appendix §A .4.

5.1 Performance Comparison

The proposed GPA is comprehensively compared with non-, standard, spectral, and spatial GNNs
in the internet, finance, social networks, and online reviews fraud detection scenarios. As shown in
Table 2, the proposed GPA performs excellently and is the most stable across all datasets, achieving
significant AP improvements of +15.7%, +3.4%, and +9.2% on the challenging G-Internet, Elliptic,
and T-Social datasets. Other methods exhibit high instability and often perform poorly on several
of these datasets. Standard GNNs, while able to capture some graph structural features, struggle
when handling higher-order interactions. Spectral and spatial methods, designed specifically for fraud
detection, perform better but still only consider low-hop neighbors, resulting in a limited “receptive
field”. Moreover, these methods generally perform poorly on G-Internet. The possible reason is that
the inherent features of benign and anomalous users in G-Internet are not distinguishable. Without
deeper mining of associations within user behaviors, the detection effect will be severely weakened.
In comparison, GPA has broader perceptions and excels in identifying more complex and hidden
fraudulent patterns, thus outperforming existing techniques.

5.2 Robustness to Noisy Labels

Mislabeled data has a detrimental impact on model performance [49, 50]. In real-world scenarios,
due to the hidden nature of anomalies, it is often challenging to label anomalous nodes accurately,
resulting in the widespread presence of noisy labels, particularly anomalous labels that are incorrectly
marked as benign labels. Table 3 presents the impact of noisy labels on model performance. GAT,
which also employs an attention mechanism, struggles to resist label noise. The explanation is
that GAT focuses only on neighbor nodes and therefore lacks a global view of fraudulent patterns,
making it more prone to noise. In contrast, under both asymmetric and symmetric label noise, the
proposed GPA shows stronger robustness compared to other methods. This may be attributed to
the implicit associations in paths, which capture long-range interactions among nodes, allowing the
extraction of rich benign and fraudulent patterns even from a limited set of accurately labeled data.
This global view enables the model to more comprehensively understand the underlying logic behind
node behaviors, thereby mitigating the interference caused by noisy labels to some extent.

5.3 Ablation Study

This section conducts ablation study of the proposed GPA. As presented in Table 4, each component
of GPA can contribute to enhancing the model, and any combination of the components involved can
further enhance performance, with the optimal achieved when all components are used.



Table 2: Model performance comparison in various fraud scenarios. *“/” denotes “out of memory”.

| Scenario | Internet | Finance | Social | Reviews

Method | Dataset | G-Internet | Elliptic | T-Finance | T-Social | YelpChi | Amazon
|  Metic | AUC AP | AUC AP | AUC AP | AUC AP | AUC AP | AUC AP
MLP 61.0 47 | 883 438 ] 922 742 | 731 9.7 | 81.6 477 ] 969 873
Non-GNN KNN 517 3.0 | 8.0 61.0| 927 750 | 77.6 363 | 84.6 544 | 949 844
GCN 98.5 819 | 81.7 254 ] 946 782 ] 966 764 | 586 209 | 852 457
Standard | OraphSAGE | 98.6 78.9 | 87.6 57.8 | 95.6 847 | 957 753 | 829 46.6 | 909 825
GAT 942 579 | 863 275 | 958 827 | 903 321 | 79.1 436 | 97.1 879
BernNet 915 576 | 87.5 383 | 967 892 | 93.7 443 | 835 519 | 958 849
AMNet 90.8 56.0 | 889 695 | 964 889 | 925 377 | 819 469 | 969 884
Spectral BWGNN 958 727 | 89.6 484 | 969 894 | 969 789 | 87.1 615 ]| 983 915
GHRN 943 66.1 | 90.0 552 | 965 87.6| 97.1 868 | 846 554 | 983 89.5
AHFAN 87.6 728 | 875 727 | 8.8 733 | 87.1 735 | 868 727 | 982 882
GAS 96.7 729 | 867 29.8 | 965 86.0 | 950 624 764 351 | 927 814
DCI 824 23.6| 857 274 | 879 637|840 13.0| 784 399 | 954 852
CARE-GNN | 70.2 155 | 87.8 372 | 90.0 61.8 | 783 412 | 84.0 53.0| 97.0 856

PC-GNN 79.6 224 | 865 427 | 940 833 | 969 80.3 | 80.8 445 | 98.0 893
Spatial RioGNN 728 151 | 864 29.1 | 913 626 | 81.7 17.6 | 857 565 | 969 87.6
H2-FDetector | 83.7 279 | 632 105 / / / / 89.9 575 | 96.1 849

GDN 90.7 457 | 887 652 | 958 857 | 884 523 | 904 674 | 973 86.8

GFCN 859 434 | 858 455 | 926 821 | 8.1 474 | 87.6 684 | 955 838

HedGe 912 49.7 | 889 645 | 965 89.0 | 968 837 | 91.3 70.7 | 983 923
Path | GPA | 998 97.6 | 91.3 761 | 97.3 89.6 | 99.6 96.0 | 91.8 73.7 | 98.1 925

Table 3: Impact of noisy labels on model performance. The dataset used for evaluation is G-Internet.
“a—b” denotes the proportion of anomalous labels that are incorrectly marked as benign labels, and
“b—a” represents the proportion of benign labels that are incorrectly marked as anomalous labels.

a—b 0% | 10% 20% 40% 80% | 0% 0% 0% 0% | 10% 20% 40% 80%
b—a 0% 0% 0% 0% 0% | 10% 20% 40% 80% | 10% 20% 40% 80%

AUC 942 1 940 925 899 86.1 | 843 810 73.0 63 6 831 765 56.1 513

579 | 56.6 544 444 237 | 339 274 144 328 195 3.6 3.1

95.8 | 95.0 947 933 88.0 | 91.8 863 828 36 ] 902 869 70.1 423

BWGNN AP 727 | 71.8 672 641 429 | 58.7 429 247 10 3533 310 84 2.5
AUC 99.8 1 997 99.6 993 983 | 984 974 968 794 | 987 973 780 52.6

GPA 97.6 | 965 952 929 838 | 93.8 893 822 12,6 | 933 826 108 32

Table 4: Ablation study of the proposed GPA on G-Internet.

Variable-Length Paths v X v v v v X X X X
Path Selection v v X v v X v X X X
Behavior Encoding v v v x v X x v X X
Path Interaction v v v v X v v v v X
AUC 99.83 9979 9975 99.26 86.63 99.04 99.17 99.75  98.66  86.48
AP 97.62 97.17 97.06 9041 34.15 88.81 89.84 9694 88.17 34.59

5.4 Interpretability

Firstly, we use the constructed G-Internet dataset to explore the associations between users falling
victim to internet fraud and their website-visiting behaviors, as well as their internet environments.
The paths starting from a user interact, and the attention scores between paths are computed through
Equation 10. The attention maps are shown in Figure 2.

(1) Whether the path length is set short or long, the proposed GPA maintains clear interpretability. As
shown in Figure 2(a)(c), when the central user exhibits anomalous status, some paths consistently
attract attention during interactions. These paths typically pass through fraud-related websites visited
by the user, whereas paths through normal websites receive little to no attention. This indicates
that the attention mechanism can highlight the contribution of visited websites to the fraud incident.
Besides, in Figure 2(b)(d), when the central user is benign, paths through normal websites receive
more attention, which sharply contrasts with the results in Figure 2(a)(c) and aligns with the expected
interpretability. Moreover, since the construction of G-Internet does not impose strong regularity on
user connections (see §4), the proposed GPA, as expected, pays more attention to users’ website-
visiting behaviors rather than the connections between users, which is also interpretable.
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Figure 2: Attention map between all paths starting from a user in G-Internet during path interaction.
The brighter the area, the higher the attention score.

(2) In Figure 2(c), some paths through fraud- Path Pattern 0
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Next, as shown in Figure 3, to investigate the
potential associations between path patterns, we
use the T-Social dataset and select five types of
path patterns. Ten paths are sampled from each
pattern, totaling 50 paths. After encoding, these
paths interact, and the attention scores between paths are computed through Equation 10. It can
be observed from the attention map that there is a close association between all paths in the same
path pattern, and there may be common associations between similar path patterns. In the following
discussions, “B” denotes “Benign node” and “A” denotes “Anomalous node”.

Figure 3: Attention map between paths from five
patterns in T-Social during path interaction. The
brighter the area, the higher the attention score.

(1) “A—A” and “A—A—B—A” are highly correlated, probably because both involve continuous
anomalous nodes, indicating that some frauds tend to be clustered or continuous.

(2) “A—-B—A” and “A—-B—A—B—A” are highly correlated, probably because both show the
strategy of fraud spreading or hiding through benign nodes. “A—B—A” indicates that anomalous
nodes may spread fraud with the help of benign nodes to increase concealment. “A—B—A—B—A”
reveals that more covert fraudulent patterns may be produced by bridging multiple benign nodes.

(3) “A—B” is highly correlated with “A—B—A” and “A—B—A—B—A”, probably because “A—B”
represents the initial of fraud and is the basis of more complex patterns. When analyzing more
complex patterns, attention will be paid to whether they are developed from “A—B”.

(4) “A—B—A” and “A—-B—A—B—A” are almost irrelevant to “A—B”, probably because they
contain context that has gone beyond the scope of “A—B”, focusing more on their own complexity.

6 Conclusion

This paper presents a novel fraud detector based on Graph Path Aggregation (GPA). By incorporating
path sampling, encoding, interaction, and aggregation, GPA tackles the challenges of high-order
interactions, intricate dependencies, and the sparse yet concealed nature of fraudulent entities,
overcoming limitations of existing methods in handling graph structures with long-range associations.
Furthermore, we construct G-Internet, the first benchmark dataset for internet fraud detection, to
support the research. Experiments demonstrate GPA’s superior performance over mainstream methods,
robustness to label noise, and interpretability by unveiling implicit fraudulent patterns.
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A Appendix

A.1 Detailed Dataset Construction

Existing fraud datasets are typically anonymized, which obscures the specific meanings of entities
and consequently hinders interpretability analysis. Moreover, emerging internet fraud is rapidly
evolving and widespread with concealed tactics, and research on internet fraud detection remains
limited. Considering these gaps, we construct G-Internet, the first benchmark dataset for internet
fraud detection, featuring a transparent structure. Due to privacy restrictions, real-world data is not
available. Therefore, we synthesize the dataset through simulation. We meticulously consider a range
of key factors, including fraud rules, the physical meanings, construction, and diversity of user and
website node features, the behavioral differences between anomalous and benign users in terms of
website visits, and the interconnections among users. In an overview, G-Internet contains 51268 user
nodes, 109387 website nodes, 1572836 edges of the “user visits website” (or equivalently, “website
visited by user”) relation, and 399456 edges of the “user to user” relation.

Fraud rules. Types of internet fraud are varied, and the user behaviors regarding website visits
exhibit specific patterns within each type. To more accurately simulate anomalous activities, we have
designed 12 common rules as shown in Table 5 & 6, which are based on real cases and account for
the diversity and complexity of user behaviors. Using the “pig-butchering scam” as an example, we
establish the following rule: within a specified time frame, a user who downloads APKs more than
twice, accesses blacklisted IPs and domains more than once each, and visits banking websites more
than three times can be identified as having fallen into the trap of “pig-butchering scam”.

Table 5: Types of fraud and their rules.

Type of fraud | Rule

Pig-butchering scam 60>2 && (>1 && n>1 && v>3
Brushing scam (@a>2 || B>2) && v>2

Phishing scam C>1]n>1]e>5) && v>2

Credit repair scam A>1 && (a>1 || k>1) && v>2

Loan scam 0>5&& (6>1 || n>1) && v>2
Investment scam ¢>5]n>5 && (B>3 || £>3) && 7>2
Game trading scam 1>3 && 0>1 && (a>2 ] 8>2)
Hookup scam (e>21]]¢>5]|n>5) && >3 && v>2
Honeytrap scam ¢>5]n>5 && >3 && v>2

Online gambling scam | e>1 && (>5 && n>5 && v>2

Escort scam €e>3 && (>6 && n>7 && 7> 1

Nude chat scam e>1 && k>1 && v>5

Table 6: Meanings of each code in fraud rules.

Code | Meaning

Number of times a user visits zoom-like (online meeting) websites in a fixed time period
Number of times a user visits meiqia-like (customer service) websites in a fixed time period
Number of times a user visits banking websites in a fixed time period

Number of times a user downloads APKs in a fixed time period

Number of times a user visits gambling websites in a fixed time period

Number of times a user visits blacklisted IPs in a fixed time period

Number of times a user visits blacklisted domains in a fixed time period

Number of times a user visits loan websites in a fixed time period

Number of times a user visits gaming websites in a fixed time period

Number of times a user visits niche chat websites in a fixed time period

Number of times a user visits credit repair websites in a fixed time period

>IXI eI O 22 R

User nodes. A total of 9 attributes have been generated for users, including age, gender, city, level,
number of login times within a fixed time period, average login time, device, operating system, and
active time periods. For instance, the age distribution often differs between benign and anomalous
users. Based on existing references, we determine the age distribution for each user category and
sample the age accordingly when constructing the attribute. Similar procedures are applied to the
other attributes. Since our primary focus is to detect fraud based on the behavior of users visiting
websites rather than on the users’ inherent characteristics, we intentionally minimize the distinction
between benign and anomalous users when constructing user attributes. Then, the user feature is
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obtained through binary (0/1) encoding applied to each attribute. The dimension after binary encoding
is 106. Additionally, we randomly mask some user attributes to increase the challenge.

Website nodes. The types of websites are diverse. In total, we have included 11 types of fraud-related
websites and 27 types of normal websites in the dataset. The 11 types of fraud-related websites include
zoom-like (online meeting), meiqia-like (customer service), banking, APKs, gambling, blacklisted
IPs, blacklisted domains, loan, gaming, niche chat, and credit repair. The 27 types of normal websites
include news, information, wikipedia, e-commerce, social media, blogs & personal, enterprise,
education, forums & community, entertainment, government & non-profit, travel & food, image
sharing, video, content sharing, art & design, technology & product review, travel guide, charity,
community service platform, university official website, job search, real estate agency, real estate
information platform, sports & fitness, flight & hotel booking, and financial management. Collecting
and annotating a vast number of websites requires long-term investment. Due to the simulation nature
of the dataset, we simplify the process by employing large language models (LLMs) to generate
keywords for each website (except for websites on sensitive topics like gambling, pornography, etc.,
for which we collect keywords manually), then generate the website description based on the selected
keywords, and finally use the BERT model to encode the description as the website feature, whose
dimension is 768. To make the dimension match those of the user feature and to increase the difficulty,
we only take the first 106 elements of the original website feature. Additionally, we randomly mask
some elements in the website feature to increase the challenge.

“User visits website” relation. For an anomalous user, randomly select one of the designed fraud
rules and generate connections between the user and websites that meet the rule. Anomalous users
may also visit a large number of normal websites while visiting the websites involved in the fraud
rules. These connections are also taken into account and randomly generated. For benign users, they
visit more normal websites, but they may also visit fraud-related websites as long as they do not meet
any of the fraud rules.

“User to user” relation. There may be relations between users, such as phone calls or other
interactions. Since our primary focus is to detect fraud based on the behavior of users visiting
websites rather than on the connections between users, we set both benign users and anomalous users
to maintain a closer connection with benign users, so as to minimize the difference in communication
behaviors between these two types of users.

In summary, the constructed G-Internet aligns with practical situations and has a clear and transparent
structure. This interpretable dataset facilitates the demonstration of the interpretable GPA method
(§3), which in turn enables the interpretable association analysis of fraud-related entities (§5.4).

A.2 Detailed Dataset Descriptions

In addition to the constructed internet fraud dataset, G-Internet, this paper adopts another five
commonly used datasets from three typical fraud scenarios—finance, social networks, and online
reviews—to evaluate the proposed method. These datasets include Elliptic [40], T-Finance [13],
T-Social [13], YelpChi [41], and Amazon [42].

G-Internet has been thoroughly detailed in §A.1. The dataset is partitioned into training, validation,
and testing sets with proportions of 40.00%, 20.00%, and 40.00%, respectively.

Elliptic [40] is derived from a real-world Bitcoin transaction network. It is a graph-structured dataset
where nodes represent Bitcoin transactions and edges denote transaction flows. Transactions are
categorized as legal, illegal, or unknown, encompassing entities such as exchanges, miners, and
activities. Each node is associated with 93 features. Elliptic is particularly valuable for blockchain
security and financial fraud detection, enabling the identification of illegal activities like money
laundering. The dataset is split into training, validation, and testing sets with proportions of 45.86%,
18.34%, and 35.80%, respectively, based on transaction timestamps as per official recommendations.

T-Finance [13] focuses on detecting anomalous accounts in financial transaction networks. Nodes
represent anonymous accounts characterized by 10-dimensional features related to registration dura-
tion, logging activities, and interaction frequencies. In the graph, edges signify account transactions,
while anomalous nodes (e.g., money laundering, online gambling, etc.) are labeled by experts. The
dataset is partitioned into training, validation, and testing sets with proportions of 40.00%, 20.00%,
and 40.00%, respectively.
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T-Social [13] is tailored for identifying anomalous accounts in social networks. It shares the same
feature annotations as T-Finance. Two nodes are connected if they maintain a friendship for over
three months. T-Social is characterized by its impressive scale, comprising 5.78 million nodes and
1.5 billion edges. This sheer volume of data poses a significant computational challenge. The dataset
is partitioned into training, validation, and testing sets with proportions of 40.00%, 20.00%, and
40.00%, respectively.

YelpChi [41] is a behavioral graph dataset built from Yelp (a major U.S. review platform, which
boasts a substantial customer base and significant social influence). It incorporates individual and
graph-structured features stored in sparse matrix form, encompassing businesses, reviews, and
user information. YelpChi is widely used in financial risk management and anti-money laundering
research. The dataset is partitioned into training, validation, and testing sets with proportions of
40.00%, 20.00%, and 40.00%, respectively.

Amazon [42] is a large-scale e-commerce dataset provided by Amazon. Much like YelpChi, it
encompasses a vast array of product metadata along with user-generated reviews. The dataset
includes product reviews under the Musical Instruments category, with users and reviews as nodes.
Amazon is frequently used for fraud detection validation. The dataset is partitioned into training,
validation, and testing sets with proportions of 40.00%, 20.00%, and 40.00%, respectively.

A.3 Model Settings

The model settings for each dataset are shown in Table 7. n_path (I) denotes the number of initially
sampled paths, k_path (K') denotes the number of selected top-K paths, 1_path (J) denotes the
maximum length of the path, d_path (C') denotes the dimension of path encoding, and n_attn and
n_head denote the number of attention layers and attention heads, respectively.

Table 7: Model settings for each dataset.

Dataset | n_path (I) k_path(K) I_path(J) d_path(C) n_attn n_head

G-Internet 200 150 20 128 2 8
Elliptic 100 100 5 256 2 1
T-Finance 200 150 5 128 2 1
T-Social 200 100 30 64 2 8
YelpChi 200 200 20 256 2 8
Amazon 60 30 20 64 2 1

A.4 Evaluation Metrics

Considering the significant class imbalance between positive and negative samples in fraud datasets,
it is essential to use evaluation metrics that account for both Precision and Recall. This study employs
Area Under the Curve (AUC) and Average Precision (AP) as key performance metrics.

AUC (%) generally refers to AUC-ROC (Area Under the Receiver Operating Characteristic Curve).
The ROC curve illustrates the trade-off between the true positive rate and the false positive rate across
different classification thresholds.

AP (%) is derived from the Precision-Recall (P-R) curve, which plots Precision against Recall as the
classification threshold varies. AP reflects the area under the P-R curve, representing the model’s
average precision over all thresholds.

Fraud datasets are often highly imbalanced, with anomalous (positive) samples being significantly
fewer than benign (negative) samples. As a result, models tend to achieve high recall for benign
samples, potentially leading to an overly optimistic AUC score. The P-R curve, on the other hand,
better reflects the model’s ability to identify anomalous samples, as false negatives significantly
impact the AP score. Therefore, AP offers a more reliable metric for assessing model performance in
identifying rare but critical anomalous samples within imbalanced datasets.

Additionally, we provide two extra metrics: Recall@K (%) and F1-Score (%). Recall@K [4] is
determined by the recall of true positives (anomalous samples) within the top-K highest-confidence
predictions from the model, where the value of K is set as the number of anomalous samples in the
test dataset. F1-Score represents the harmonic mean of Precision and Recall, offering a balanced
assessment. Model performance comparison on these two metrics is shown in Table 8.
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Table 8: Model performance comparison on Recall@K (%) and F1-Score (%) metrics.

Dataset | G-Internet | Elliptic | T-Finance | T-Social | YelpChi | Amazon
Metric | R@K Fl | R@K FI | R@K Fl | R@K Fl | R@K Fl | R@K Fl
GAT 586 716 37.9 57.3 79.8 64.9 42.1 634 | 442 57.1 82.6 705
BWGNN | 64.1 777 | 425 59.2 84.2 89.1 75.8 85.3 56.7 76.6 85.9 91.5
PC-GNN 26.3 564 | 43.8 62.9 79.1 582 | 735 48.6 | 43.8 63.7 85.3 89.9
GPA | 934 965 | 69.9 817 | 845 922 | 903 954 | 682 79.0 | 86.1 92.3

A.5 Hyperparameter Impact Analysis

This section explores the impact of various hyperparameters on the proposed GPA model, including
the number of sampled paths and average path length in variable-length path sampling, the dimension
of path embedding and number of behavior features in semantic-associated path encoding, and the
number of attention layers and attention heads in path interaction and aggregation. Figure 4 illustrates
the impact of these hyperparameters on G-Internet.

Experimental results indicate that, in variable-length path sampling, increasing the number of sampled
paths allows the model to interact with more paths, helping it detect a broader range of fraudulent
patterns, thus improving common pattern mining. However, this also raises computational costs.
As the average path length increases, the model performance rises first and then drops. This may
be because shorter paths can only achieve low-order pattern interactions and fail to capture more
complex associations, while too-long paths may lead to information redundancy, and the longer the
path, the more severe the information loss after path encoding. In semantic-associated path encoding,
increasing both the dimension of path embedding and the number of behavior features enhances
the model’s knowledge base, leading to improved performance. Regarding path interaction and
aggregation, the model performance improves as the number of attention layers increases. Unlike
traditional GNNs such as GCN and GAT, increasing the number of attention layers in the proposed
GPA will not cause “over-smoothing” that has negative effects. Additionally, as the number of
attention heads increases, the model performance improves and gradually reaches saturation, and an
excessive number of attention heads will impose computational burden.
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Figure 4: Impact of the hyperparameters of the proposed GPA on G-Internet.

16



A.6 Necessity of Mining Long-Range Associations

Fraudulent activities often form implicit patterns through long-range associations. For example:

User A visits website X, but determining whether X is anomalous requires further analysis of whether
other users visiting X (such as user B) exhibit anomalous behavior, and user B’s anomalous behavior
may be reflected in the website Y he visits, thus forming a multi-hop association chain. Although
the “user visits website” relation in the dataset appears as a one-to-one relationship, the long-range
association “A—X—B—Y” can better help accurately determine whether user A is anomalous.

From the graph in Figure 1, we can observe the following rules through long-range analysis:

(1) Fraud-related websites are mainly visited by anomalous users.
(2) Websites frequently visited by anomalous users are not necessarily related to fraud, as they are
also frequently visited by benign users.

Therefore, mining long-range associations is of great necessity for interpretable fraud detection.

A.7 Computational Costs

We measure the model’s running time. For training, we record the average time taken by the model to
process a batch of data (including forward pass, backward pass, and gradient descent). For inference,
we record the average time taken by the model to process a batch of data (forward pass only). The
dataset used is G-Internet. The model settings used for measuring running time are kept the same
as those in the main paper. All experiments use a batch size of 1024 and are conducted on a single
NVIDIA GeForce RTX 3090 GPU. The results are presented in Table 9 & 10.

The proposed method is faster in both training and inference than many mainstream fraud detectors.
Due to pytorch’s low-level optimizations, the time required for path interaction does not increase
significantly even if the number of paths grows a lot. The main computational overhead of the
proposed method actually stems from path encoding, followed by path sampling and path interaction.

Table 9: Computational costs comparison.

Method | CARE-GNN GDN GPA

Training time / batch 821.5ms 340.3ms  95.4ms
Inference time / batch 688.3ms 119.3ms  25.4ms

Table 10: Computational costs for each component of the proposed GPA.

GPA | Path Sampling Path Encoding Path Interaction Path Aggregation Fraud Detection | Total
Inference time / batch |~ 8.731ms 14.025ms 2.502ms 0.034ms 0.110ms | 25.402ms

A.8 Limitation and Discussion

The limitation of our work lies in the simulated nature of the constructed G-Internet dataset. This
is in fact constrained by data privacy policies. Initially, to establish this benchmark dataset, we
consulted our collaborating institutions. Due to privacy restrictions, they were unable to provide
real-world data directly. However, they did share several empirical fraud rules (as presented in Table
5 & 6), based on which we constructed the “user visits website” relation. Additionally, “user to user”
connections (such as phone calls) are also actively utilized as evidence in rule-based fraud detection
by our collaborating authorities. Therefore, we integrated these two relation types into the fraud
detection system, with their distributions being freely adjustable to accommodate various real-world
fraud scenarios. Anyway, based on existing fraud rules, we have made every effort to construct a
dataset that is both close to reality and adjustable to different fraud scenarios, fully leveraging its
advantages. Moving forward, we remain committed to continuous improvement and refinement.

A.9 Societal Impacts

This study strengthens the prevention and governance of various fraudulent activities across scenarios
including the internet, finance, social networks, online reviews, etc., helping safeguard public welfare,
promote social harmony and stability, and foster the healthy development of the digital economy.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: “Abstract” & §1 - “Introduction”
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: §A.8 - “Limitation and Discussion”
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: §3 - “Methodology” & §5 - “Experimental Study” & §A.3 - “Model Settings”
& The source code provided & The constructed dataset provided

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code has been provided.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/gui
des/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: §5 - “Experimental Study - Experimental settings” & §5 - “Experimental Study
- Datasets” & §A.2 - “Detailed Dataset Descriptions” & §A.3 - “Model Settings” & §A.5 -
“Hyperparameter Impact Analysis” & §A.7 - “Computational Costs”

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The numerical results are the average under 10 different random seeds.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: §A.7 - “Computational Costs”
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: §A.9 - “Societal Impacts”
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The source code provided & The citations in the paper
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The source code provided
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: §A.1 - “Detailed Dataset Construction - Website nodes”
Guidelines:

* The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLLM) for what
should or should not be described.
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