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Abstract
Extensive research has shown that a wide range
of machine learning problems can be formulated
as bilevel optimization, where two levels of learn-
ing processes intertwine through distinct sets
of optimization variables. However, prevailing
approaches often impose stringent assumptions,
such as strong convexity of the lower-level loss
function or uniqueness of the optimal solution,
to enable algorithmic development and conver-
gence analysis. However, these assumptions tend
to be overly restrictive in real-world scenarios.
In this work, we explore a recently popularized
Moreau envelope based reformulation of bilevel
optimization problems, accommodating noncon-
vex objective functions at both levels. We pro-
pose a stochastic primal-dual method that incorpo-
rates smoothing on both sides, capable of finding
Karush-Kuhn-Tucker solutions for this general
class of nonconvex bilevel optimization problems.
A key feature of our algorithm is its ability to
dynamically weigh the lower-level problems, en-
hancing its performance, particularly in stochastic
learning scenarios. Numerical experiments under-
score the superiority of our proposed algorithm
over existing penalty-based methods in terms of
both the convergence rate and the test accuracy.

1. Introduction
Bilevel optimization problems have been established as a
general formulation for a wide range of machine learning
tasks. The two-level structure enables the integration of
different learning or optimization processes. This approach
ensures that the solution obtained strikes a balance between
the two learning objectives. Typical applications include hy-
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perparameter optimization (Franceschi et al., 2017; Shaban
et al., 2019), meta-learning (Rajeswaran et al., 2019; Raghu
et al., 2020), coreset selection (Zhou et al., 2022; Hao et al.,
2024), actor-critic schemes in reinforcement learning (Hong
et al., 2023), and many more (Liu et al., 2021a; Lu, 2023).
Specifically, it takes the form of:

min
x,y∈S(x)

f(x, y), s.t. S(x) ≜ argmin
y
g(x, y), (1)

where f(x, y) and g(x, y) denote the upper-level (UL) and
lower-level (LL) objective functions, S(x) represents the
feasible sets that are the optimal solution set that contains
all the global optimal solutions of the LL problem with re-
spect to (w.r.t.). the block-y. However, solving this class of
problems is challenging. Even when both functions f(x, y)
and g(x, y) are differentiable and smooth, computing the
gradient of the UL loss function with respect to x may in-
volve the computation of high-order derivatives of the LL
loss function. For example, when the LL loss function is
strongly convex, the closed-form expression of this gradi-
ent requires the computation of both the Jacobian and the
inverse Hessian matrix w.r.t. the LL loss function (Ghadimi
& Wang, 2018). Many works have focused on directly opti-
mizing the UL and LL loss functions by applying iterative
numerical methods to perform the Hessian inverse operation,
such as reverse-mode iterative differentiation, approximate
implicit differentiation techniques (Grazzi et al., 2020; Ji
et al., 2021), and the Lanczos method (Gao et al., 2025),
achieving good performance. However, a major assumption
they cannot avoid is the uniqueness of the LL optimal solu-
tion, i.e., the optimal solution set S(x) must be a singleton.
This restrictively constrains the applicability of these algo-
rithms for many machine learning problems where the LL
loss function contains multiple optimal solutions. For exam-
ple, a convex LL objective function is one of the simplest
cases where this issue arises.

Targeting this challenge, one of the most straightforward
approaches is to penalize the LL optimization problem in the
UL, forming a single-level optimization problem that can
be tackled with existing constrained optimization methods.
Specifically, the original bilevel optimization problem can
be written as

min
x,y

f(x, y), s.t. g(x, y)− g⋆(x) ≤ δ (2)
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where g⋆(x) ≜ miny g(x, y) (which is also called value
function (Liu et al., 2021b)) is obtained by minimizing
g(x, y) over y, and δ > 0. It can be easily checked that
when δ = 0, problem (2) reduces to the original one (1). In
this way, optimizing the LL loss function is transformed into
enforcing constraint satisfaction, assuming that g⋆(x) can be
obtained by some oracles. When g(x, y) w.r.t. y is convex or
satisfies certain conditions, such as the Polyak-Łojasiewicz
(PŁ) condition, applying gradient descent is sufficient to
reach the optimal solution. When δ > 0, there is always a
strictly feasible solution for this constraint since g⋆(x) is
the minimum value of the LL function. However, finding
the optimal solution g⋆(x) generally requires an inner loop
algorithm, which weakens the numerical performance of
the developed algorithm in practice and complicates the
theoretical analysis of the stochastic bilevel algorithm. This
is because additional criteria are needed to determine when
to stop the inner loop optimization process. This motivates
us to explore the following question:

Can we design a first-order algorithm capable of solving
stochastic bilevel optimization problems where both the UL
and LL objectives are nonconvex (or weakly convex)?

1.1. Related Work
Bilevel Optimization without LL Strong Convexity. There
has been a line of work focusing on solving bilevel opti-
mization problems without assuming the strong convexity
of the LL objective functions (Liu et al., 2020). For example,
the convexity assumption can be replaced by convexity or
a certain type of nonconvex property, such as the PŁ con-
dition (Huang, 2024). Aiming at the nonsmoothness issue
raised by the multiple LL optimal solutions, a variant of
stationary points, i.e., Goldstein stationary points, is used
as the metric to quantify the solutions that can be achieved
by the zeroth-order switching gradient method with a con-
vergence rate depending on the problem dimension (Chen
et al., 2023; Liu et al., 2024b;c). This kind of switching
idea has also been adopted in the conditional gradient-based
method for solving simple bilevel problems, where one step
is searching for the feasible set based on the convex LL loss
function while the other one is for minimizing the UL loss
function given the obtained solution set. It is shown that this
method can achieve O(1/ϵ2) convergence rate to find the
ϵ-stationary points under the Frank-Wolfe gap (Jiang et al.,
2023; Cao et al., 2024).

Given the problem formulation (2), the penalty method is
one of the most standard ways to solve the constrained opti-
mization problem. A min-max reformulation of (2) is con-
sidered in (Lu & Mei, 2024), where the minimization is per-
formed with respect to the UL problem while maximization
is used for optimizing the LL problem by introducing an aux-
iliary variable. Besides, if the UL loss function is strongly
convex w.r.t. y, a single-loop bilevel averaged method of

multipliers (sl-BAMM) (Liu et al., 2023) is still possible
to perform Hessian inverse operation, provided with strong
convexity property, through dynamically averaging the UL
loss function with the convex LL loss function. Further,
under the assumption that the LL loss function satisfies the
PŁ condition, it has been shown that solving the penalized
version of (2) is equivalent to solving the original one in
terms of the local and global optimality conditions when
the penalty parameter is sufficiently large enough (Shen &
Chen, 2023). The authors further develop a double-loop
structured value gap-based penalty-based bilevel gradient
descent (V-PBGD) algorithm that can find the stationary
points of the reformulated penalty-based problem at a rate
of O(ν/ϵ2), where ν is the penalty parameter. The choice
of ν can be a constant or a dynamically increasing sequence.
Another possible way of choosing this parameter is con-
structing a barrier function that can ensure the decrease of
the LL loss function, which is called optimization made easy
(BOME) (Liu et al., 2022) algorithm, but the convergence
rate of BOME is rather slow. Recent works can sharpen the
convergence rate of finding the stationary points of bilevel
problems up to O(1/ϵ2) when the LL loss satisfies the PŁ
condition, but the convexity assumption and the computa-
tion of the Jacobian matrix are further required (Xiao et al.,
2024).

Moreau Envelope Based Methods for Nonconvex Opti-
mization. Even though penalty methods have achieved
great success in solving bilevel optimization problems, their
numerical performance often falls short compared to the La-
grangian method. The Lagrange multiplier or dual variable
inherent in the Lagrangian method allows for automatic ad-
justment of constraint violations, leading to faster empirical
convergence rates, particularly in scenarios involving mul-
tiple constraints (Boob et al., 2023; Jin & Wang, 2022; Li
et al., 2024c). However, in cases where the objective func-
tion, even in single-level constrained problems, is noncon-
vex, traditional primal-dual algorithms may fail to converge
due to the zero-sum nature of the game involving the in-
crease and decrease of the Lagrangian function. Smoothness
serves as an effective strategy to stabilize the convergence
of such algorithms. For instance, the smooth Lagrangian
method proposed in (Zhang & Luo, 2020; Zeng et al., 2022)
has demonstrated efficacy in finding Karush-Kuhn-Tucker
(KKT) solutions for nonconvex optimization problems un-
der linear constraints, with further extensions to convex or
functional constrained scenarios (Zhang & Luo, 2020; Lu,
2024). Various types of smoothed gradient descent-ascent
algorithms have achieved state-of-the-art convergence rates
in both concave–concave (Zhao, 2024) and nonconvex min-
max optimization problems (Zhang et al., 2020; Zheng et al.,
2023; Jiang et al., 2025; Huang & Lin, 2023). This notable
performance can be attributed to the equivalence between
the smoothed gradient method and the Moreau envelope
formulation of nonconvex optimization problems (Nesterov,
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Table 1. Comparison of representative existing works on nonconvex bilevel optimization and stochastic functionally constrained optimiza-
tion, where “gradient” indicates the requirements for accessing the first- or second-order derivative of either UL or LL loss functions,
“singleton” refers to the uniqueness of the LL optimal solution, “LL” denotes the property that the LL objective function needs to satisfy,
and “KKT∗” represents the case that constraint satisfaction is achieved while the slackness condition is not verified. Additionally, “cvx”
stands for convex, “ncvx” stands for nonconvex or weakly convex, and “scvx” denotes strongly convex.

Algorithms Solution Method Gradient Singleton LL # of Loops Rate

Inexact-ConEx (Boob et al., 2023) KKT primal-dual stochastic (1st) n/a n/a double O
(
ϵ−6

)
Stoc-iALM (Li et al., 2024c) KKT primal-dual stochastic (1st) n/a n/a double O

(
ϵ−5

)
MA-SOBA (Chen et al., 2024) stationary SGD stochastic (2nd) ✓ scvx single O

(
ϵ−4

)
F2SA (Kwon et al., 2023) stationary penalty stochastic (2nd) ✓ scvx double O

(
ϵ−5

)
BOME (Liu et al., 2022) KKT∗ penalty deterministic (1st) ✓ PŁ double O

(
ϵ−6

)
O

(
ϵ−8

)
SLM (Lu, 2024) KKT primal-dual deterministic (1st) PŁ double O

(
ϵ−7

)
sl-BAMM (Liu et al., 2023) KKT penalty deterministic (2nd) cvx single O

(
ϵ−5

)
penalty method (Lu & Mei, 2024) KKT penalty deterministic (1st) cvx multiple O

(
ϵ−4

)
V-PBGD (Shen & Chen, 2023) stationary penalty deterministic (1st) PŁ double O

(
νϵ−2

)
MEHA (Liu et al., 2024a) stationary penalty deterministic (1st) ncvx single O

(
νϵ−2

)
TSP (this work) KKT primal-dual stochastic (1st) ncvx single O

(
ϵ−4

)
2005). Recent research has reformulated original bilevel
optimization problems using the Moreau envelope, demon-
strating that the developed algorithms can identify well-
defined KKT points, particularly when the LL loss function
is convex (Gao et al., 2023). Moreover, this formulation
has been adapted to accommodate additional functional con-
straints in the LL optimization problem (Yao et al., 2024;
2025). In (Liu et al., 2024a), it was shown that a single-loop
Moreau envelope-based Hessian-free algorithm (MEHA)
can find stationary points of the reformulated bilevel prob-
lem, even in scenarios where both UL and LL loss functions
are nonconvex.

Stochastic Algorithms for Constrained and Bilevel Opti-
mization. More attractively, this kind of single-loop struc-
ture is more accessible for developing stochastic algorithms.
For bilevel optimization with a strongly convex LL objec-
tive function, numerous existing stochastic algorithms have
been proposed (Kwon et al., 2023; 2024b; Hong et al., 2023;
Chen et al., 2022; Shen & Chen, 2022; Yang et al., 2023;
Kwon et al., 2024a; Chen et al., 2024). However, due to
the constrained nature of bilevel optimization, especially
in cases without strong convexity at the LL, demonstrating
the convergence of stochastic algorithms is highly chal-
lenging. This challenge arises because the dual variable,
when utilizing stochastic gradients or functions, can be-
come unbounded, leading to the failure of enforcing the
constraint. Existing works on constrained optimization as-
sume the boundedness of the feasible set to enforce the
boundedness of the gradient size (Li et al., 2024c; Jin &
Wang, 2022; 2024), which is theoretically overly restric-
tive, or they adopt variance reduction techniques or large
batch sizes to mitigate random noise (Alacaoglu & Wright,
2024; Shen & Chen, 2023). These factors collectively con-

tribute to the limited exploration of convergence guarantees
for stochastic primal-dual or penalty algorithms in bilevel
optimization.

1.2. Main Contributions of This Work
In this work, we propose a two-sided smoothed primal-
dual method, abbreviated as TSP, for solving nonconvex
(stochastic) bilevel optimization problems. Benefiting from
the Moreau envelope-based reformulation of the bilevel
optimization problem, the TSP algorithm is structured as a
single loop, making it easily implementable in a stochastic
fashion. By quantifying the descent of our constructed
potential function, we demonstrate that the proposed TSP
algorithm can find the ϵ-KKT points of the reformulated
bilevel problem with a convergence rate of O(1/ϵ4) with
high probability. To the best of our knowledge, this is
the first result established for quantifying the convergence
rate of first-order stochastic methods in finding the ϵ-KKT
points for this class of bilevel optimization problems. Our
numerical results validate the superior performance of this
formulation as well as the quality of the obtained solutions
in terms of generalization errors.

The main contributions of this work are highlighted as fol-
lows:

▶ The developed TSP algorithm is gradient-based, single-
looped, and stochastic, making it easily implementable
for solving bilevel machine learning problems in a com-
putationally efficient way.

▶ The theoretical iteration complexity of TSP is O(ϵ−4)
with high probability for finding the ϵ-KKT solutions
of the Moreau envelope-reformulated bilevel optimiza-
tion problem. To the best of our knowledge, this is the
first time a stochastic first-order method has successfully
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achieved the approximate KKT points of the bilevel op-
timization problem where the LL objective function is
weakly convex.

▶ Numerical results further emphasize the importance of
finding the KKT points of this class of problems in com-
parison with the stationary points in the penalty-based
reformulation of bilevel optimization problems in terms
of generalization performance.

Due to space constraints, all technical proofs are provided
in the supplementary material.

2. Primal-Dual Method for Moreau
Envelope-Based Bilevel Optimization

In this section, we will introduce a single-loop gradient-
based primal-dual method designed to solve the following
Moreau envelope based reformulation (Gao et al., 2023;
Yao et al., 2024; Liu et al., 2024a) of the following general
stochastic bilevel optimization problem.

min
x,y

f(x, y) ≜ E
ξ∼DUL

F (x, y; ξ) (3a)

s.t. g(x, y)− g⋆γ(x, y) ≤ 0 (3b)

where

g⋆γ(x, y) ≜ argmin
z

E
ξ∼DLL

G(x, z; ξ)+
1

2γ
∥z − y∥2 (4)

denotes the value function of this problem and serves as
a lower bound of the original LL loss function, F (x, y; ξ)
andG(x, y; ζ) respectively denote the stochastic UL and LL
loss functions, DLL,DUL respectively denote the UL and
LL data distributions at each level, and γ > 0. Let g(x, y)≜
Eξ∼DLL

G(x, y; ξ). It has been proven in Theorem 1 (Gao
et al., 2023) that the problem formulations (1) and (3) are
equivalent when g(x, y) is convex and in (Liu et al., 2024a)
that the solutions of (3) that satisfy the constraint (3b) are
also stationary points of the LL problem (i.e., satisfying
∥∇yg(x, y)∥ = 0) in the original formulation (1), when
g(x, y) is weakly convex with respect to y.

It is also worth noting that when γ is small, the LL loss
function becomes strongly convex in z, ensuring a uniquely
well-defined LL optimal solution. This motivates the devel-
opment of an algorithm based on this smoothed problem
(Bai et al., 2024), particularly in practical stochastic settings.
Towards this end, we can construct the Lagrangian function
of this bilevel problem as follows:

L(x, y;λ) ≜f(x, y) + λ(g(x, y)− g⋆γ(x, y)− δ) (5)

where the nonnegative λ denotes the Lagrange multiplier or
dual variable for the inequality constraint (3b).

After using the Moreau envelope smoothing technique on
the LL objective function, we apply the proximal smoothing
terms to the UL objective function, similar to existing works

dealing with nonconvex optimization (Zhang & Luo, 2020;
Zheng et al., 2023; Lu, 2024), resulting in the following
smoothed Lagrangian.

K(x, y, x̂, ŷ;λ) ≜ f(x, y) + λ(g(x, y)− g⋆γ(x, y)− δ)

+
p

2
∥x− x̂∥2 + p

2
∥y − ŷ∥2 (6)

where x̂, ŷ have the same size as x, y. It can be easily
checked that given x̂, ŷ, the smoothed Lagrangian is strongly
convex w.r.t. x and y when p is sufficiently large. Next,
the algorithm design for finding the equilibrium points
of minx,y,x̂,ŷ maxλ≥0K(x, y, x̂, ŷ;λ) is fairly straightfor-
ward. We can apply the linearized Lagrangian method or
primal-dual method to update the optimization variables
using only (stochastic) gradients.

Dual Update. Based on the Moreau envelope-based LL
optimization problem (6), we further propose updating the
dual variable using a moving average technique, as follows.

hr+1 = (1− θ)hr

+ θ
(
ĝ(xr, yr)−ĝ(xr, zr)− 1

2γ
∥zr− yr∥2−δ

)
, (7a)

λr+ = Proj≥0

(
λr + τhr+1

)
, (7b)

λr+1 = (1− µ)λr + µλr+ (7c)

where r stands for the index of the iterations, τ denotes the
step-size for updating the dual variable λr+, Proj≥ 0 is the
nonnegative projection operator that ensures the iterates re-
main in the nonnegative orthant, and µ and θ are smoothing
or dampening parameters for the dual variable λ and the
auxiliary variable h, respectively. Here, ĝ(x, y) denotes a
mini-batch stochastic approximation of g(x, y), computed
using a fixed number of i.i.d. samples from the LL data
distribution DLL. The moving average applied to model
parameter updates reduces their aggressiveness compared to
traditional primal-dual methods, improving the algorithm’s
robustness to stochastic errors.

Primal Update. After that, we can use stochastic gradient
descent (SGD) to get an estimate of z⋆(x, y) given x and y.

zr+1 = zr − η

(
hgz(x

r, zr) +
1

γ
(zr − yr)

)
(8)

where η is the step-size, and hgz(x, z) represents the stochas-
tic gradient estimate of ∇zg(x, z) with a constant mini-
batch size of independent samples.

It has been established that function g⋆γ(x, y) is differen-
tiable when γ ∈ (0, 1/(2ρ)). The rest of the algorithm
design involves simply applying SGD with respect to the
remaining variables using the function K(x, y, x̂, ŷ;λ) and
replacing the unknown z⋆ with its surrogate zr+1. Specifi-
cally, the updates for y is
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yr+1 = yr− β
(
hfy(x

r, yr)

+λr+1

(
hgy(x

r, yr) +
zr − yr

γ

)
+ p(yr − ŷr)

)
, (9)

followed by

ŷr+1 = ŷr + ω(yr+1 − ŷr), (10)

where β denotes the step-size for updating variable y, and
0 < ω < 1 is the smoothing factor for updating ŷ, and
hfy(x, y) and hgy(x, y) represent the stochastic gradient esti-
mates of ∇yf(x, y) and ∇yg(x, y), respectively.

Similarly for x, it is updated by

xr+1 = xr − α

(
hfx(x

r, yr+1) + λr+1
(
hgx(x

r, yr+1)

− hgx(x
r, zr)

)
+ p(xr−x̂r)

)
, (11)

followed by

x̂r+1 = x̂r + ω(xr+1 − x̂r), (12)

where α denotes the step-size for updating variable x, and
0 < ω < 1 is the smoothing factor for updating x̂, and
hfx(x, y) and hgx(x, y) represent the stochastic gradient es-
timates of ∇xf(x, y) and ∇xg(x, y), respectively. A sum-
mary of the implementation of the TSP algorithm is pro-
vided in Algorithm 1.

Algorithm 1 Single-loop stochastic Two-sided Smoothed
Primal-dual (TSP) method for bilevel optimization
Initialization: step-sizes: τ, µ, θ, η, α, β, ω, variables:

x1, y1, z1, x̂1, ŷ1, λ1, h1 = 0
1: for r = 1, 2, · · · , T do
2: Compute hr+1 by (7a)
3: Update λr+1

+ , λr+1 by (7b) and (7c)
4: Update zr+1 by (8)
5: Update yr+1 and ŷr+1 by (9) and (10)
6: Update xr+1 and x̂r+1 by (11) and (12)
7: end for

3. Theoretical Convergence Results
We first need to make the following blanket assumption to
showcase the convergence behavior of the proposed TSP
algorithm.

3.1. Assumptions
These assumptions are mainly related to the continuity and
boundedness of the UL and LL objective functions.

A1. (Smoothness) Assume that functions f(x, y), g(x, y)
are differentiable and jointly smooth with constants
Lf , Lg w.r.t. both x, y.

A2. (Boundedness) Assume that the objective function
f(x, y) is lower bounded and denoted as f .

A3. (Coercivity) The set {x, y|f(x, y) ≤ R, g(x, y) −
g⋆γ(x, y) ≤ δ} is bounded for any R > 0.

Assumption A1 implies that g(x, y) is weakly convex in
y for any fixed x, with weak convexity parameter ρ used
throughout the paper.

Remark 1. Assumption A3, which requires the objective
function to be closed over its open domain, is widely used
in optimization theory to ensure bounded level sets and
the existence of minimizers (Boyd & Vandenberghe, 2004).
In practice, incorporating a small ℓ2-penalty into the loss
function is a common technique to enforce bounded level
sets.

Further, we make the following standard assumptions on the
stochastic properties of the gradient estimate. Let us define
the gradient estimation noise involved in the primal variable
update: εgx(x, y) ≜ hgx(x, y) − ∇xg(x, y), εgy (x, y) ≜
hgy(x, y) −∇yg(x, y), εgz (x, y) ≜ hgz(x, z) − ∇yg(x, z),
εfx ≜ hfx(x, y)−∇xf(x, y), εfy ≜ hfy(x, y)−∇yf(x, y),
Regarding the dual update, we define the stochastic gradient
estimation noise as εĝy ≜ ĝ(x, y)−g(x, y), εĝz ≜ ĝ(x, z)−
g(x, z). To ensure theoretical tractability, we make the
following assumptions on these quantities.

A4. (Stochasticity of Gradient Estimate in Primal Variable
Update) Gradient noise E[εg· ] = 0 and E[∥εg·∥2] =
σ2
g· and E[εf· ] = 0 and E[∥εf·∥2] = σ2

f·
, where ·

represents any of x, y, z with respect to g, and x, y
with respect to f , while E denotes the expectation
conditioned on all past gradient estimates up to the
most recent iteration.

A5. (Stochasticity of Function Estimate in Dual Variable
Update) Function noise E[εĝ· ] = 0 and E[∥εĝ·∥2] =
σ2
ĝ·

, where · represents anyone of y, z.

3.2. Iteration Complexity of TSP to the KKT points
Given the above preliminary assumptions, we define
G(x, y;λ) as

G(x, y;λ) ≜
[
∇xL(x, y;λ)
∇yL(x, y;λ)

]
and use ∥G(x, y;λ)∥ as the stationary gap. Then, an (ϵ, δ)-
approximate KKT point of the constrained problem (3) is
naturally defined as follows.

Definition of (ϵ, δ)-Approximate KKT Points. A point
(x⋆, y⋆, λ⋆) is called an (ϵ, δ)-approximate KKT point if it
satisfies the following three conditions: 1) stationarity condi-
tion: ∥G(x⋆, y⋆;λ⋆)∥ ≤ ϵ; 2) constraint violation condition:
|g(x⋆, y⋆)− g⋆γ(x

⋆, y⋆)− δ|+ ≤ ϵ; 3) slackness or comple-
mentarity condition: ∥g(x⋆, y⋆)−g⋆γ(x⋆, y⋆)−δ∥∥λ⋆∥ ≤ ϵ.

Now, we are ready to show the following theoretical conver-
gence rate of TSP.

5



TSP: A Two-Sided Smoothed Primal-Dual Method for Nonconvex Bilevel Optimization

Theorem 1. (Convergence Rate of TSP to the (ϵ, ϵ)-
Approximate KKT Points of Problem (3)). Sup-
pose that A1–A5 hold. Assume that the iterates
{xr, yr, zr, x̂r, ŷr, λr, λr+} are generated by TSP. For any
0 < ς < 1, if the step-sizes α, β, τ, ω, η, µ, θ are cho-
sen as O(1/

√
T ) and the parameter p = O(λr), with

γ ∈ (0, 1/(2ρ)), then for T ≥ Θ(ϵ−4), with probability
at least 1− ς , the following results hold:

1

T

∑
r<T

∥G(xr, yr;λr+1)∥2 ≤ ϵ2, (13a)

1

T

∑
r<T

|g(xr, yr)− g⋆γ(x
r, yr)− ϵ|2+ ≤ ϵ2, (13b)

1

T

∑
r<T

∥g(xr, yr)− g⋆γ(x
r, yr)− ϵ∥2∥λr∥2 ≤ ϵ2, (13c)

where | · |+ denotes the positive part, and T is the total
number of iterations.

Remark 2. The convergence rate achieved by TSP is optimal,
as it matches the lower bound of standard SGD for solving
single-level smooth nonconvex problems (Arjevani et al.,
2023).

Remark 3. The batch size used in TSP is a constant or of size
1; therefore, the sample complexity of TSP is also O(ϵ−4),
which is consistent with SGD.

Remark 4. When g(x, y) = −f(x, y), the bilevel
problem (1) reduces to the min-max optimization prob-
lem minx maxy f(x, y) under the weakly-convex weakly-
concave setting. Under assumptions A1–A5, the analysis
shows that the iterates generated by TSP remain within
a bounded region without requiring additional projection.
This implies that the loss values remain bounded over the un-
constrained domain, where approximate stationary points of
nonconvex-nonconcave min-max problems are shown to al-
ways exist and can be found in polynomial time (Daskalakis
et al.).

3.3. Proof Sketch

The theoretical proofs guiding the algorithm to achieve this
iteration and sample complexity mainly consist of three key
steps: 1) constructing a potential function Qr to track the
convergence progress as the algorithm proceeds, 2) bound-
ing the size of the dual variable given the bounded gradients,
and 3) deriving the probability that the iterates remain within
the bounded region.

Thanks to the smoothing terms introduced in the Moreau
envelope reformulation, the function K(·) with respect to
the variables x or y exhibits strong convexity in each sub-
problem. Mathematically, these subproblems can be defined
by the following quantities:

D(x̂, ŷ;λ) ≜ min
x,y

K(x, y, x̂, ŷ;λ), (14a)

P (x̂, ŷ) ≜ min
x,y∈Y(x)

f(x, y) +
p

2
∥x− x̂∥2+ p

2
∥y − ŷ∥2, (14b)

where Y(x) ≜ {y | g(x, y)− g⋆γ(x, y) ≤ δ}, and

x⋆(x̂, ŷ;λ), y⋆(x̂, ŷ;λ) ≜ argmin
x,y

K(x, y, x̂, ŷ;λ) (15)

denote the optimal solutions of problem (14a) given the
reference point (x̂, ŷ, λ). Similarly,

x̄⋆(x̂, ŷ), ȳ⋆(x̂, ŷ)

≜ arg min
x,y∈Y(x)

f(x, y) +
p

2
∥x− x̂∥2 + p

2
∥y − ŷ∥2 (16)

denote the optimal solutions of (14b) given (x̂, ŷ). Then,
we can utilize these quantities, which serve as intermediate
anchors for monitoring the optimization process, to derive
the descent lemma for TSP.

Descent Lemma. After one round update of vari-
ables by TSP (i.e., from (xr, yr, zr, x̂r, ŷr, λr, λr+) to
(xr+1, yr+1, zr+1, x̂r+1, ŷr+1, λr+1, λr+1

+ ), we obtain the
following intriguing result.

Lemma 1. (informal) Assume that A1-A5 are satisfied. Sup-
pose the sequence {xr, yr, zr, x̂r, ŷr, λr, λr+, ∀r} is gen-
erated by TSP, with p > L and λr ≤ Λ. Additionally, as-
sume that yr, ȳ⋆(x̂r, ŷr), and y⋆(x̂r, ŷr;λr+1) are bounded.
Then, if the step-sizes are chosen appropriately, we have
either

Qr+1 −Qr

≤ − 1

8α

∥∥E [xr+1 − xr
]∥∥2 − 1

8β

∥∥E [yr+1 − yr
]∥∥2

− p

8ω
∥x̂r+1 − x̂r∥2 − p

8ω
∥ŷr+1 − ŷr∥2

− (1− φ)Cz

4
∥zr − z⋆(xr, yr)∥2

− 1

16µτ
∥λr+(x̂r, ŷr)− λr∥2 + nr

Q, or (17)

{ 1

4α
∥Exr+1− xr∥2, 1

4β
∥Eyr+1− yr∥2, p

4ω
∥x̂r+1− x̂r∥2,

p

4ω
∥ŷr+1 − ŷr∥2, (1− φ)Cz

2
∥zr − z⋆(xr, yr)∥2

}
= O(Λ2µτ) and ∥λr − λr+(x̂

r, ŷr)∥ = O(µτΛ) (18)

where nrQ is the noise term resulting from the gradient esti-
mate, 0 < φ < 1, the coefficient Cz = O(α), and L,Λ are
some positive constants.

From this lemma, it follows that the potential function is
either monotonically decreasing up to some noise ball or the
generated iterates have already converged to neighborhoods
of the stationary points with a radius of O(Λτµ). In the first
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case, we can easily show that the algorithm will eventually
converge to ϵ-stationary points, provided that Qr is lower
bounded by some constant Q. In the latter case, we need
to derive an upper bound for the dual variable by selecting
sufficiently small step-sizes for TSP, allowing us to conclude
that the iterates have reached the ϵ-KKT points.

Bounding the Dual Variable. Given Lemma 1, we can
quantify the difference between successive iterates, which
plays a crucial role in upper bounding the dual variable.

Lemma 2. Under A1–A5, suppose the sequence
{xr, yr, zr, x̂r, ŷr, λr, λr+, ∀r} is generated by TSP. As-
sume that yr, hfy , and hgy are bounded. When p = Θ(Λ),
δ = O(ϵ), and the step-sizes are chosen on the order of
T−1/2, then λr is upper bounded, i.e., λr ≤ Λ,∀r.

This result indicates that the dual variable λr remains
bounded. However, since the gradient estimate can be un-
bounded due to stochasticity, we further assess the probabil-
ity that the gradient estimate remains bounded.

Bounding the Random Noise. By leveraging the prob-
abilistic bounds on gradient magnitudes generated by
Adam or SGD (Li et al., 2024a;b), we establish a heavy-
tailed noise bound for TSP with bounded variance in the
proof of Theorem 1. Specifically, we define the follow-
ing random variables: t1 ≜ min

{
r | Qr −Q > Qth

}
∧

T, t2 ≜ min {r | ∥εrmax∥ > Gth} ∧ T, where a ∧ b de-
notes min{a, b}, and εrmax represents the largest magnitude
of gradient estimate errors among εg· , εf· , εĝ· . The thresh-
olds Qth and Gth are predefined thresholds.

The variable t2 quantifies the time at which the iterates
become unbounded, while t1 links the term Qr to mea-
sure the gradient magnitude throughout the iterations. Let
t ≜ min{t1, t2}. Based on the derived descent lemma and
concentration inequalities, we show that the probability of
t < T is small, implying that the probability of t = T
is high. This directly ensures that the gradients remain
bounded before T .

4. Numerical Results
In this section, we evaluate the numerical performance of the
proposed TSP algorithm by comparing it with state-of-the-
art bilevel optimization algorithms, particularly those based
on penalty methods. These methods are closely related to
the idea of penalizing the LL loss function using the UL
loss function.

Data Hyper-Cleaning Task. This problem can be formu-
lated as

min
x∈Rm,y∈Rd

E
ξ∼Dval

ℓ(y, ξ), (19a)

s.t. y ∈ arg min
y′∈Rd

ℓtr(x, y
′) + ρ̄

d∑
i=1

y′2i
1 + y′2i

(19b)

where ℓ(, ) is the cross entropy loss function, y′i denotes
the ith entry of y′, and d is the dimension of the LL vari-
able. The LL objective function is defined as ℓtr(x, y) ≜∑m

i=1 σ(xi)ℓ(y, ξi), where ξi ∼ Dtr, m denotes the total
number of training data samples, xi denotes the ith entry of
vector x with dimension m. Here, y denotes the weights of
the neural network, including one hidden layer with param-
eters of size 10× 784 and corresponding bias, and ρ̄ is the
nonconvex regularizer parameter. To ensure a fair compari-
son, we follow the numerical experiment setup from (Shen
& Chen, 2023). Specifically, we use the MNIST dataset,
splitting it into three parts: 5, 000 training samples, 5, 000
validation samples, and 10, 000 test samples. Additionally,
50% of the training data samples are randomly assigned
incorrect labels as polluted data.

Experiment Setup. In the experiments, we mainly com-
pare the performance of the proposed TSP algorithm with
three closely related algorithms: BOME (Liu et al., 2022),
PBGD (Shen & Chen, 2023), and MEHA (Liu et al., 2024a).
All these algorithms are variants of penalty methods, with
MEHA being designed based on the Moreau envelope-based
problem formulation, similar to TSP. Due to the similarity
in algorithm structure, we use the same step-sizes and initial
points for all tested algorithms. For TSP, we further choose
the step-sizes for updating the dual variable λ as 0.01 and
set p = 1. We also adopt the test accuracy to evaluate the
quality of the obtained model parameter y and the F1 score
to measure the effectiveness of the hyperparameter x.

Experiment Results and Discussion. It can be observed
from Figure 1(a) that TSP achieves the highest test accu-
racy among others, which is the major learning objective
of this problem. This suggests that the model obtained by
TSP generalizes well to the test dataset. Although MEHA
also achieves high test accuracy, it is worth noting that
the accuracy obtained by MEHA drops rapidly as the algo-
rithm progresses. This is a major issue with penalty-based
methods, as the penalty parameter continually increases to
enforce the constraint, leading to overfitting of the model to
the LL learning problem. Similar issues are evident in the
results obtained by BOME and MEHA. However, it is not
entirely fair to compare these two algorithms, as they are
designed for cases where the LL loss function satisfies the
PŁ condition, which is not the case here. Figure 1(b) shows
the F1 scores obtained by these methods. Both TSP and
MEHA exhibit similar results, further confirming that while
the UL solutions may output similar results, the LL solu-
tions can differ significantly as the LL optimization variable
is optimized across the two levels. It is implied that the KKT
solution, (which is further explained in the appendix), may
provide more generalizable results. Figure 1(a) illustrates
the convergence behavior of the tested algorithms during the
training phase. It can be observed that TSP exhibits a faster
convergence rate in terms of iterations compared to the oth-
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TSP

(a) Test accuracy

TSP

(b) F1 score
Figure 1. Convergence and generalization performance comparison of TSP, BOME (Liu et al., 2022), PBGD (Shen & Chen, 2023), and
MEHA (Liu et al., 2024a) in solving the data hyper-cleaning problem.

TSP

(a) Test accuracy

TSP

(b) Train accuracy

Figure 2. Convergence and generalization performance comparison of TSP, ANIL (Raghu et al., 2020), BOME (Liu et al., 2022), PBGD
(Shen & Chen, 2023), and MEHA (Liu et al., 2024a) in solving the meta-leaning problem.

ers, which is generally attributed to the dual variable update
that balances the two levels of the learning process. It is
indeed well-known that primal-dual algorithms practically
converge faster than penalty methods, although the theoreti-
cal analysis of this method is much more challenging than
that of penalty-based approaches.

We further check the peak test accuracies obtained by these
algorithms, which are as follows. TSP achieves a peak
test accuracy of 90.4% with a variance of 0.0429% and
a peak F1 score of 92.4% with a variance of 0.100%. In
comparison, the peak test accuracy of BOME is 90.06% ±
0.23% with an F1 score of 91.99% ± 0.17%, the peak test
accuracy of PBGD is 90.01% ± 0.23% with an F1 score of
91.95% ± 0.17%, and the peak test accuracy of MEHA is
90.34% ± 0.17% with an F1 score of 92.38% ± 0.12%.

Representation Learning with Multi-Head Architectures.
We further evaluate these algorithms on meta-learning prob-
lems using a multi-head neural network structure. A typical
formulation can be written as follows.

min
x,{y(i)}

f(x, {y(i)}) ≜ E
ξ∼Dval

[
1

K

K∑
i=1

ℓ(x, y(i); ξ)

]
s.t. y(i) ∈ argmin

y′
(i)

E
ξ∼D(i)

tr

ℓ(x, y′(i); ξ), for i ∈ [K].

Here, the UL problem involves a shared model parameter
layer, denoted by x, which typically corresponds to the
common feature encoder or backbone network shared across
all tasks. The variable y(i) represents the task-specific head
parameters, i.e., the final classification layer for task i, which
is optimized using the task-specific training data D(i)

tr .

Experiment Setup. In this experiment, the shared hidden
representation has a size of 32 and is followed by eight indi-
vidual perceptron layers, each corresponding to a specific
task. The MNIST dataset is partitioned into eight subsets
based on digit labels, with each subset containing 2, 500
training samples and 1, 500 validation samples. Each task
involves recognizing digits in a distinct way, where the data
samples contain only one type of digit per task. We use sam-
ples labeled with digits 0 through 7: five digits are allocated
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for training and validation, while the remaining three are
used for both meta-training and meta-testing. Each meta-
task corresponds to learning from one digit class, and each
LL problem is associated with its own task-specific head
and dual variable. We conduct an exhaustive search over
initial step-sizes from {1, 0.1, 0.01, 0.001} and penalty pa-
rameters from {1, 0.1, 0.01, 0.001, 0.0001}, reducing them
in the order of 1/

√
r. The gradients used in all implemented

algorithms are stochastic, with a batch size of 32.

Experiment Results and Discussion. As shown in Fig-
ure 2, TSP achieves the best generalization performance,
even though it does not attain the highest meta-training accu-
racy. The key role of TSP in this framework is to adjust the
dual variables individually for each task-specific head. This
flexibility helps balance the optimization dynamics between
the shared and task-specific components, thereby improving
the generalization capability of the learned representation
across unseen tasks. This numerical example further high-
lights the advantage of solving bilevel learning problems
using the TSP method and underscores the importance of
its ability to achieve KKT solutions.

5. Concluding Remarks
In this work, we propose a single-loop structured gradient-
based Lagrangian method for solving nonconvex stochastic
bilevel optimization problems. By leveraging the Moreau
envelope reformulation of the LL problem, our proposed
method can find KKT points for this class of bilevel prob-
lems through a constrained optimization perspective, signif-
icantly expanding the scope for solving two-level machine
learning problems. Our major contribution lies in establish-
ing the high probability descent lemma with a dual error
bound, enabling us to quantify the boundedness of the dual
variable and conclude constraint satisfaction. Our theoreti-
cal analysis justifies that solving stochastic bilevel optimiza-
tion problems can be as easy as solving single-level ones,
measured by iteration complexity and KKT conditions.
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A. Preliminaries
In this section, we provide some technical preliminaries for the proofs of the lemmas and theorems claimed in the main
body of this paper, including parameter definitions and supporting results.

A.1. Notations

The definitions of the parameters and assumptions are further listed in Table 2.

Table 2. Summary of Definitions. (“Lips.”: Lipschitz; “grad.”: gradient; “const.”: constant; “opt.”: optimal; “·” represents the gradient is
taken w.r.t. either x or y.)

A1 Definition Annotation

Lf
∥∇·f(x, y)−∇·f(x

′, y)∥ ≤ Lf∥x− x′∥ grad. Lips. const. of f(x, y) w.r.t x
∥∇·f(x, y)−∇·f(x, y

′)∥ ≤ Lf∥y − y′∥ grad. Lips. const. of f(x, y) w.r.t y
Lg ∥∇yg(x, y)−∇yg(x, y

′)∥ ≤ Lg∥y − y′∥ grad. Lips. const. of g w.r.t. y

Table 3. Summary of Definitions. (“Lips.”: Lipschitz; “grad.”: gradient; “const.”: constant; “opt.”: optimal; “·” represents the gradient is
taken w.r.t. either x or y; “[x; y]” denotes the concatenation of x and y; PEB: primal error bound; DEB: dual error bound.)

Const. Definition Annotation
ℓf |f(x, y)− f(x, y′)| ≤ ℓf∥y − y′∥ Lips. const. of f(x, y) w.r.t. y

ℓg
|g(x, y)− g(x, y′)| ≤ ℓg∥y − y′∥ Lips. const. of g(x, y) w.r.t. y
|g(x, y)− g(x′, y)| ≤ ℓg∥x− x′∥ Lips. const. of g(x, y) w.r.t. x

ℓγ |g⋆γ(x, y)− g⋆γ(x, y
′)| ≤ ℓγ∥y − y′∥ (cf. (32)) Lips. const. of g⋆γ() w.r.t. y

L
∥∇L(x, y;λ)−∇L(x′, y′;λ)∥

grad. Lips. const. of L() w.r.t. x, y
≤ L∥(x; y)− (x′; y′)∥ (cf. (21))

Lg ∥∇·g(x, y)−∇·g(x
′, y)∥ ≤ Lg∥x− x′∥ grad. Lips. const. of g(x, y)

Lγ
∥∇g⋆γ(x, y)−∇g⋆γ(x, y′)∥ ≤ Lγ∥y − y′∥ Lips. const. of ∇g⋆γ(x, y) w.r.t. y
∥∇g⋆γ(x, y)−∇g⋆γ(x′, y)| ≤ Lγ∥x− x′∥ Lips. const. of ∇g⋆γ(x, y) w.r.t. x

Lz ∥z⋆(x, y)− z⋆(x′, y′)∥ ≤ Lz∥(x, y)− (x′, y′)∥ (cf. (30)) Lips. const. of z⋆() w.r.t. x, y
LK L+ p (cf. (22)) grad. Lips. const. of K() w.r.t. x, y
σ1 p(p− L)−1 (cf. (24e)) const. of PEB w.r.t. v
σ2 (p+ L)(p− L)−1 (cf. (26)) const. of PEB w.r.t. λ
σ3 (p− L)−1 (cf. (27)) const. of PEB w.r.t. xr or yr

σw (1 + τ(2ℓg + ℓγ)σ2)(τ(p− L))−1 (cf. (233)) const. of DEB
v v ≜ (x̂, ŷ) abbreviation of x̂, ŷ

In Section C.2, we will demonstrate that the iterates (such as xr, x̄⋆(x̂r, ŷr), yr, ȳ⋆(x̂r, ŷr)) for which we need to evaluate
the gradients or function values of g(x, y), g⋆γ(x, y), and f(x, y) are bounded, which implies that the corresponding Lipschitz
continuity holds. To be more precise, ℓf , Lg, ℓg are listed in the section of notation in Table 2.

A.2. Primal Error Bounds (PEBs)

Recall that the definition of K(x, y, x̂, ŷ;λ) is

K(x, y, x̂, ŷ;λ) ≜f(x, y) + λ(g(x, y)− g⋆γ(x, y)− δ) +
p

2
∥x− x̂∥2 + p

2
∥y − ŷ∥2. (20)

Based on the assumptions listed in Table 2, we have that f(, ), g(, ) are gradient Lipschitz continuous. For simplicity of the
presentation, we assume that ρ ≤ Lg . Therefore, the Lagrangian L(x, y;λ) is gradient Lipschitz continuous with parameter,

13
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given boundedness of λ,
L ≜ Lf + λ (Lg + Lγ) (21)

where Lγ denotes the gradient Lipschitz constant of gγ(x, y).

Subsequently, functionK(x, y, x̂, ŷ;λ) is strongly convex of x and y with parameter p−L and gradient Lipschitz continuous
with parameter

LK ≜ L+ p. (22)

The closed-form expressions of the (deterministic) gradient of the smoothed Lagrangian based on ẑ are as follows.

∇xK̂(x, y, z, x̂, ŷ;λ) ≜∇xf(x, y) + λ (∇xg(x, y)−∇xg(x, z)) + p(x− x̂), (23a)

∇yK̂(x, y, z, x̂, ŷ;λ) ≜∇yf(x, y) + λ

(
∇yg(x, y) +

z − y

γ

)
+ p(y − ŷ), (23b)

∇zK̂(x, y, z, x̂, ŷ;λ) ≜∇yg(x, y) +
z − y

γ
. (23c)

Given these properties and the assumptions listed in Table 2, we can obtain the following primal error bounds that have
been studied in Lemma 5 in (Zhang et al., 2022), Lemma 3.5 and Lemma 3.10 in (Zhang & Luo, 2020) and Lemma B.2 in
(Zhang et al., 2020). To be more specific, from Lemma B.2 in (Zhang et al., 2020) we have

∥y⋆(x̂, ŷ;λ)− y⋆(x̂, ŷ′;λ)∥ ≤ σ1∥ŷ − ŷ′∥, (24a)
∥x⋆(x̂, ŷ;λ)− x⋆(x̂′, ŷ;λ)∥ ≤ σ1∥x̂− x̂′∥, (24b)

∥ȳ⋆(x̂, ŷ)− ȳ⋆(x̂, ŷ′)∥ ≤ σ1∥ŷ − ŷ′∥, (24c)
∥x̄⋆(x̂, ŷ)− x̄⋆(x̂′, ŷ)∥ ≤ σ1∥x̂− x̂′∥, (24d)

where
σ1 ≜

p

p− L
. (24e)

Similarly, following Lemma B.2 in (Zhang et al., 2020), we can also have

∥y⋆(x̂, ŷ;λ)− y⋆(x̂, ŷ;λ′)∥ ≤ σ2∥λ− λ′∥, (25a)
∥x⋆(x̂, ŷ;λ)− x⋆(x̂, ŷ;λ′)∥ ≤ σ2∥λ− λ′∥, (25b)

where
σ2 ≜

p+ L

p− L
. (26)

Let
σ3 ≜

1

p− L
. (27)

From Lemma 3.10 in (Zhang & Luo, 2020) or Lemma 5 in (Zhang et al., 2022) we can directly get

∥y⋆(x̂r, ŷr;λr+1)− yr∥ ≤ σ3
β
∥yr+1 − yr∥, (28a)

∥x⋆(x̂r, ŷr;λr+1)− xr∥ ≤ σ3
α
∥xr+1 − xr∥, (28b)

∥y⋆(x̂r, ŷr;λr+1)− yr+1∥ ≤ σ4∥yr+1 − yr∥, (28c)

∥x⋆(x̂r, ŷr;λr+1)− xr+1∥ ≤ σ5∥xr+1 − xr∥, (28d)

where the primal error bounds (28b) and (28d) hold as K̂ (which is used for updating x) is also (p−L)-strongly convex and
(p+ L)-Lipschitz smooth, and

σ4 ≜
1 + β(p− L)

β(p− L)
, (29a)

σ5 ≜
1 + α(p− L)

α(p− L)
. (29b)
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A.3. Lipschitz Continuity
Lemma 3. When γ ∈ (0, 1/(2ρ)) and function g is gradient Lipschitz continuous with parameter Lg and weakly
convex with parameter ρ, ∥z⋆(x, y)− z⋆(x′, y′)∥ is Lipschitz continuous, namely, there exist a constant Lz such that

∥z⋆(x, y)− z⋆(x′, y′)∥ ≤ Lz∥(x, y)− (x′, y′)∥ (30)

where

Lz ≜
max

{
Lg,

1
γ

}
1
γ − ρ

. (31)

Further, when function g is Lipschitz continuous with parameters ℓg, function gγ(x, y) is Lipschitz continuous with
parameter ℓgγ , namely, there exists a constant ℓgγ such that

|g⋆γ(x, y)− g⋆γ(x, y
′)| ≤ ℓgγ∥y − y′∥ (32)

where ℓgγ ≜ Lz(1 + γLgℓg). Also,

|g⋆γ(x, y)− g⋆γ(x
′, y′)| ≤ ℓgγ∥(x, y)− (x′, y′)∥+ Lgℓg∥x− x′∥. (33)

Proof. From the optimality condition, we have

∇g(x, z⋆(x, y)) + 1

γ
(z⋆(x, y)− y) = 0, (34)

∇g(x, z⋆(x, y′)) + 1

γ
(z⋆(x, y′)− y′) = 0. (35)

As function g(x, z) + 1
2γ ∥z − y∥2 is strongly convex with parameter 1/(2γ)− 1/(2ρ) when γ ∈ (0, 1/(2ρ)), we can have

〈
∇g(x, z⋆(x, y)) + z⋆(x, y)− y

γ
−∇g(x, z⋆(x′, y′))− z⋆(x′, y′)− y

γ
, z⋆(x, y)− z⋆(x′, y′)

〉
≥
(
1

γ
− ρ

)
∥z⋆(x, y)− z⋆(x′, y′)∥2, (36)

which gives

(
1

γ
− ρ

)
∥z⋆(x, y)− z⋆(x′, y′)∥2 (37)

≤
〈
∇g(x′, z⋆(x′, y′))+ z⋆(x′, y′)− y′

γ
−∇g(x, z⋆(x′, y′))− z⋆(x′, y′)− y

γ
, z⋆(x, y)− z⋆(x′, y′)

〉
≤
(
Lg∥x− x′∥+ 1

γ
∥y − y′∥

)
∥z⋆(x, y)− z⋆(x′, y′)∥. (38)

Therefore, we have

∥z⋆(x, y)− z⋆(x′, y′)∥ ≤ Lz∥(x, y)− (x′, y′)∥ (39)

where Lz is defined in (31).
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Under assumption A1, we can have

g⋆γ(x, y)− g⋆γ(x, y
′)

= g(x, z⋆(x, y))− g(x, z⋆(x, y′)) +
1

2γ
∥z⋆(x, y)− y∥ − 1

2γ
∥z⋆(x, y′)− y′∥2 (40)

≤ |z⋆(x, y)− z⋆(x, y′)|+ 1

2γ
⟨z⋆(x, y)− y − (z⋆(x, y′)− y′), z⋆(x, y)− y + z⋆(x, y′)− y′⟩

≤ Lz∥y − y′∥+ ∥∇g(x, z⋆(x, y))−∇g(x, z⋆(x, y′))∥γℓg (41)
≤ Lz∥y − y′∥+ γLgℓg∥z⋆(x, y)− z⋆(x, y′)∥ (42)
≤ Lz(1 + γLgℓg)∥y − y′∥. (43)

Similarly,

g⋆γ(x, y)− g⋆γ(x
′, y′)

= g(x, z⋆(x, y))− g(x′, z⋆(x′, y′)) +
1

2γ
∥z⋆(x, y)− y∥ − 1

2γ
∥z⋆(x′, y′)− y′∥2 (44)

≤ |z⋆(x, y)− z⋆(x′, y′)|+ 1

2γ
⟨z⋆(x, y)− y − (z⋆(x′, y′)− y′), z⋆(x, y)− y + z⋆(x′, y′)− y′⟩

≤ Lz∥(x, y)− (x′, y′)∥+ ∥∇g(x, z⋆(x, y))−∇g(x′, z⋆(x′, y′))∥γℓg (45)
≤ Lz∥(x, y)− (x′, y′)∥+ γLgℓg (∥z⋆(x, y)− z⋆(x′, y′)∥+ ∥x− x′∥) (46)
≤ Lz(1 + γLgℓg)∥(x, y)− (x′, y′)∥+ γLgℓg∥x− x′∥. (47)

Lemma 4. Given (x, y) and z generated by TSP, when γ ∈ (0, 1/(2ρ)) and function g is gradient Lipschitz continuous
with parameter Lg and weakly convex with parameter ρ, namely, there exists a constant ℓgz such that∣∣∣∣g⋆γ(x, y)− g(x, z)− 1

2γ
∥z − y∥2

∣∣∣∣ ≤ ℓgz∥z⋆(x, y)− z∥ (48)

Proof. Given any x, y, it implies that z⋆(x, y) is bounded due to the strong convexity of the function when γ ∈ (0, 1/(2ρ)).
From the update rule of z, it can be shown in (220) that sequence zr is also bounded.

g⋆γ(x
r, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2

≤ |g(xr, z⋆(xr, yr))− g(xr, zr)|+ 1

2γ

(
∥z⋆(xr, yr)− yr∥2 − ∥zr − yr∥2

)
(49)

≤ |g(xr, z⋆(xr, yr))− g(xr, zr)|+ 1

2γ
⟨(z⋆(xr, yr)− yr)− (zr − yr), (z⋆(xr, yr)− yr) + (zr − yr)⟩

≤ |g(xr, z⋆(xr, yr))− g(xr, zr)|+ 1

2γ
∥(z⋆(xr, yr)− zr∥∥(z⋆(xr, yr)− yr) + (zr − yr)∥

≤ Lg∥z⋆(xr, yr)− zr∥+ 1

2γ
∥(z⋆(xr, yr)− zr∥∥(z⋆(xr, yr)− yr) + (zr − yr)∥

(a)

≤ Lgz∥z⋆(xr, yr)− zr∥

where (a) holds due to the boundedness of sequence {zr}.

For notational simplicity, we define ℓγ := max{ℓgz , ℓgγ + Lgℓg}.
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A.4. Stochasticity of Gradient Estimate Noise

Without loss of generality, we assume that max{σ2
gx , σ

2
gy , σ

2
fx
, σ2

fy
, σ2

fz
, σ2

ĝy
, σ2

ĝz
} ≤ σ2. Based on the assumption regarding

stochastic noise in the gradient estimate, we establish the following relation between the iterates generated using the ground
truth and their counterparts estimated with a fixed mini-batch of data samples, where the difference is bounded by ε. For
example, for the update of the variable y, we have

E
[
yr+1 − yr + εrfy + λr+1εrgy

]
= −β

(
∇yf(x

r, yr) + εrfg+λ
r

(
∇gy(xr, yr) + εrgy +

zr+1 − yr

γ

)
+ p(yr − ŷr)

)
(50)

= yr+1 − yr (51)

where the expectation is taken over the underlying data distribution, conditioned on the historical iterates up to the current
iteration r. In such a way, we can have

yr+1 − yr = E
[
yr+1 − yr

]
+ βεry. (52)

where εry ≜ εrfy + λr+1εrgy .

Similarly, according to (23a), we also have

xr+1 = xr − α
(
hfx(x

r, yr) + λr+1
(
hgx(x

r, yr)− hgx(x
r, zr+1)

)
+ p(xr − x̂r)

)
, (53)

which gives

xr+1 − xr = E
[
xr+1 − xr

]
+ αεrx (54)

where εrx ≜ εrfx + λr+1
(
εrgy − εrgz

)
.

B. Convergence Analysis
We now present the proofs, related results, and technical details that establish the lemmas and theorems of our convergence
analysis.

B.1. Descent Lemmas and Dual Ascent

B.1.1. PRIMAL DESCENT LEMMA

Lemma 5. (Primal Descent Lemma) Under A1-A5, suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is generated
by TSP. When

0 < α, β ≤ 1

4LK
, 0 < ω ≤ 1, and (55)

then the primal descent inequality holds, namely,

K(xr+1, yr+1, x̂r+1, ŷr+1;λr+1)−K(xr, yr, x̂r, ŷr;λr)

≤ − 1

2α

∥∥E [xr+1 − xr
]∥∥2 − 1

2β

∥∥E [yr+1 − yr
]∥∥2 − p

2ω
∥x̂r+1 − x̂r∥2 − p

2ω
∥ŷr+1 − ŷr∥2

+ ⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩+ β

γ2
∥zr − z⋆(xr, yr)∥2 + α(λr+1Lg)

2∥zr − z⋆(xr, yr+1)∥2

− α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2

− β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2 (56)

where εrx ≜ εrfx + λr+1εrgx , and εry ≜ εrfy + λr+1εrgy .
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Proof. y-update: From (9), one step of gradient step gives

K(xr, yr+1, x̂r, ŷr;λr+1)−K(xr, yr, x̂r, ŷr;λr+1)

(a)

≤
〈
∇K(xr, yr, x̂r, ŷr;λr+1), yr+1 − yr

〉
+
LK

2

∥∥yr+1 − yr
∥∥2 (57)

≤
〈
∇K(xr, yr, x̂r, ŷr;λr+1),E

[
yr+1 − yr

]〉
+
LK

2

∥∥E [yr+1 − yr
]
+ εry

∥∥2 (58)

≤ − 1

2β

∥∥E [yr+1 − yr
]∥∥2 + β

γ2
∥zr − z⋆(xr, yr)∥2

− β
〈
∇yK(xr, yr, x̂r, ŷr;λr+1), εry

〉
+ LKβ

2∥εry∥2 (59)

where (a) holds due to the Lipschitz gradient continuity,〈
∇yK̂(xr, yr, zr, x̂r, ŷr;λr+1),E

[
yr+1 − yr

]〉
+
〈
∇yK(xr, yr, x̂r, ŷr;λr+1)−∇yK̂(xr, yr, zr, x̂r, ŷr;λr+1),E

[
yr+1 − yr

]〉
(9)
≤− 1

β

∥∥E [yr+1 − yr
]∥∥2

+ β
∥∥∥∇yK(xr, yr, x̂r, ŷr;λr+1)−∇yK̂(xr, yr, zr, x̂r, ŷr;λr+1)

∥∥∥2 + 1

4β

∥∥E [yr+1 − yr
]∥∥2 (60)

≤ − 3

4β

∥∥E [yr+1 − yr
]∥∥2 + β

∥∥∥∥zr − yr

γ
− z⋆(xr, yr)− yr

γ

∥∥∥∥2 (61)

≤ − 3

4β
∥E
[
yr+1 − yr

]
∥2 + β

γ2
∥zr − z⋆(xr, yr)∥2 (62)

and β ≤ 1/(4LK).

x-update: The update of x shown in (11), which is the similar as the x-update, gives

K(xr+1, yr+1, x̂r, ŷr+1;λr+1)−K(xr, yr+1, x̂r, ŷr+1;λr+1)

(a)

≤
〈
∇K(xr, yr+1, x̂r, ŷr+1;λr+1),E

[
xr+1 − xr

]〉
+
LK

2

∥∥E [xr+1 − xr
]∥∥2 (63)

≤
〈
∇K̂(xr, yr+1, zr+1, x̂r, ŷr+1;λr+1),E

[
xr+1 − xr

]〉
+
LK

2

∥∥[xr+1 − xr
]∥∥2

+
〈
∇K(xr, yr+1, x̂r, ŷr+1;λr+1)−∇K̂(xr, yr+1, zr+1, x̂r, ŷr+1;λr+1),E

[
xr+1 − xr

]〉
− α

〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
(64)

where (a) follows from the gradient Lipschitz continuity of K(x, y, x̂, ŷ;λ) with Lipschitz constant LK .

From the optimality condition of (11), we have〈
∇xK̂(xr, yr+1, zr+1, x̂r, ŷr+1;λr+1),E

[
xr+1 − xr

]〉
≤ − 1

α

∥∥E [xr+1 − xr
]∥∥2 . (65)

Regarding the last term at the right-hand side (RHS) of (64), we have〈
∇K(xr, yr+1, x̂r, ŷr+1;λr+1)−∇K̂(xr, yr+1, zr+1, x̂r, ŷr+1;λr+1),E

[
xr+1 − xr

]〉
≤ α∥∇K(xr, yr+1, x̂r, ŷr+1;λr+1)−∇K̂(xr, yr+1, zr+1, x̂r, ŷr+1;λr+1∥2 + 1

4α

∥∥E [xr+1 − xr
]∥∥2

where we apply Young’s inequality with parameter 2.

For the first term at the RHS of the above inequality, we can further have

∥∇K(xr, yr+1, x̂r, ŷr+1;λr+1)−∇K̂(xr, yr+1, zr, x̂r, ŷr+1;λr+1)∥2

≤ (λr+1)2∥∇g(xr, z⋆(xr, yr+1))−∇g(xr, zr)∥2 (66)

≤ (λr+1Lg)
2∥zr − z⋆(xr, yr+1)∥2. (67)
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Substituting (65) and (67) back to (64) gives

K(xr+1, yr+1, x̂r, ŷr+1;λr+1)−K(xr, yr+1, x̂r, ŷr+1;λr+1)

≤ − 1

2α

∥∥E [xr+1 − xr
]∥∥2 + α(λr+1Lg)

2∥zr − z⋆(xr, yr+1)∥2

− α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2 (68)

where we select α ≤ 1/(4LK).

x̂-update: From (12), we have

K(xr+1, yr+1, x̂r+1, ŷr+1;λr+1)−K(xr+1, yr+1, x̂r, ŷr+1;λr+1)

=
p

2

(
∥xr+1 − x̂r+1∥2 − ∥xr+1 − x̂r∥2

)
(69)

=
p

2
⟨x̂r − x̂r+1, xr+1 − x̂r+1 + xr+1 − x̂r⟩ (70)

(a)

≤ − p

2ω
∥x̂r+1 − x̂r∥2 (71)

where (a) holds due to

⟨x̂r − x̂r+1, xr+1 − x̂r+1 + xr+1 − x̂r⟩

= ⟨x̂r − x̂r+1, xr+1 − x̂r + x̂r − x̂r+1 + xr+1 − x̂r⟩ =
(
1− 2

ω

)
∥x̂r+1 − x̂r∥2 (72)

and (12) for 0 < ω ≤ 1.

ŷ-update: Similar to the x̂-update. From (10), we have

K(xr, yr+1, x̂r, ŷr+1;λr+1)−K(xr, yr+1, x̂r, ŷr;λr+1) ≤ − p

2ω
∥ŷr+1 − ŷr∥2.

λ-update: After the dual variable is updated, we have

K(xr, yr, x̂r, ŷr;λr+1)−K(xr, yr, x̂r, ŷr;λr) = ⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩. (73)

B.1.2. DUAL ASCENT LEMMA

Lemma 6. (Dual Ascent) Under A1-A5, suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is generated by TSP.
When p > L, the dual ascent inequality holds, namely,

D(x̂r+1, ŷr+1;λr+1)−D(x̂r, ŷr;λr)

≥
〈
λr+1 − λr, g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))

− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− δ

〉
+
p

2
⟨ŷr+1 − ŷr, ŷr+1 + ŷr − 2y⋆(x̂r, ŷr+1;λr+1)⟩

+
p

2
⟨x̂r+1 − x̂r, x̂r+1 + x̂r − 2x⋆(x̂r+1, ŷr+1;λr+1)⟩. (74)

Proof. Recall

K(x, y, x̂, ŷ;λ) ≜ f(x, y) + λ(g(x, y)− g⋆γ(x, y)− δ) +
p

2
∥x− x̂∥2 + p

2
∥y − ŷ∥2.

19



TSP: A Two-Sided Smoothed Primal-Dual Method for Nonconvex Bilevel Optimization

We have

D(x̂r, ŷr+1;λr+1)−D(x̂r, ŷr;λr+1)

= K(x⋆(x̂r, ŷr+1;λr+1), y⋆(x̂r, ŷr+1;λr+1), x̂r, ŷr+1;λr+1)

−K(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1), x̂r, ŷr;λr+1) (75)
(15)
≥ K(x⋆(x̂r, ŷr+1;λr+1), y⋆(x̂r, ŷr+1;λr+1), x̂r, ŷr+1;λr+1)

−K(x⋆(x̂r, ŷr+1;λr+1), y⋆(x̂r, ŷr+1;λr+1), x̂r, ŷr;λr+1) (76)
(6)
=
p

2

(
∥y⋆(x̂r, ŷr+1;λr+1)− ŷr+1∥2 − ∥y⋆(x̂r, ŷr+1;λr+1)− ŷr∥2

)
(77)

=
p

2
⟨ŷr+1 − ŷr, ŷr+1 + ŷr − 2y⋆(x̂r, ŷr+1;λr+1)⟩. (78)

Similarly, we can obtain

D(x̂r+1, ŷr+1;λr+1)−D(x̂r, ŷr+1;λr+1)

= K(x⋆(x̂r+1, ŷr+1;λr+1), y⋆(x̂r+1, ŷr+1;λr+1), x̂r+1, ŷr+1;λr+1)

−K(x⋆(x̂r, ŷr+1;λr+1), y⋆(x̂r, ŷr+1;λr+1), x̂r, ŷr+1;λr+1) (79)

≥ K(x⋆(x̂r+1, ŷr+1;λr+1), y⋆(x̂r+1, ŷr+1;λr+1), x̂r+1, ŷr+1;λr+1)

−K(x⋆(x̂r+1, ŷr+1;λr+1), y⋆(x̂r+1, ŷr+1;λr+1), x̂r, ŷr+1;λr+1) (80)

=
p

2

(
∥x⋆(x̂r+1, ŷr+1;λr+1)− x̂r+1∥2 − ∥x⋆(x̂r+1, ŷr+1;λr+1)− x̂r∥2

)
(81)

=
p

2
⟨x̂r+1 − x̂r, x̂r+1 + x̂r − 2x⋆(x̂r+1, ŷr+1;λr+1)⟩. (82)

Then, we can have

D(x̂r, ŷr;λr+1)−D(x̂r, ŷr;λr)

= K(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1), x̂r, ŷr;λr+1)

−K(x⋆(x̂r, ŷr;λr), y⋆(x̂r, ŷr;λr), x̂r, ŷr;λr) (83)
(a)

≥ K(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1), x̂r, ŷr;λr+1)

−K(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1), x̂r, ŷr;λr) (84)

= ⟨λr+1 − λr, g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− δ⟩ (85)

where in (a) we use the definition of y⋆(x̂r, ŷr;λr+1) for p > L.

Combining all the above gives the desired result.

B.1.3. PROXIMAL DESCENT LEMMA

Lemma 7. (Proximal Descent) Under A1-A5, suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is generated by
TSP. Assume that ȳ⋆(x̂r, ŷr) is bounded and p > L, then the proximal descent inequality holds, namely,

P (x̂r+1, ŷr+1)− P (x̂r, ŷr)

≤ p(ŷr+1 − ŷr)T (ŷr − ȳ⋆(x̂r, ŷr)) + p(x̂r+1 − x̂r)T (x̂r − x̄⋆(x̂r, ŷr+1))

+
p

2

(
p

p− L
+ 1

)(
∥ŷr+1 − ŷr∥2 + ∥x̂r+1 − x̂r∥2

)
. (86)

Proof. First, note that K(x, y, x̂, ŷ;λ) is strongly convex w.r.t. x and y jointly with parameter p− L. Under A1-A3 and the
assumption that ȳ⋆(x̂r, ŷr) is bounded, we can obtain that ∇ŷP (x̂

r, ŷr) = p(ŷr − ȳ⋆(x̂r, ŷr)) by applying the Danskin’s
theorem in the convex analysis (Tyrrell, 1996; Clarke, 1975). Then, using the primal error bound (24c), we can show that
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∇ŷP (x̂
r, ŷr) has a Lipschitz constant, i.e.,

∥∇P (x̂r, ŷr+1)−∇P (x̂r, ŷr)∥ ≤ p

(
p

p− L
+ 1

)
∥ŷr+1 − ŷr∥. (87)

Therefore, it is straightforward that

P (x̂r, ŷr+1)− P (x̂r, ŷr) ≤ p(ŷr+1 − ŷr)T (ŷr − ȳ⋆(x̂r, ŷr)) +
p

2

(
p

p− L
+ 1

)
∥ŷr+1 − ŷr∥2. (88)

Similarly, we have

∥∇x̂P (x̂
r+1, ŷr+1)−∇x̂P (x̂

r, ŷr+1)∥ ≤ p

(
p

p− L
+ 1

)
∥x̂r+1 − x̂r∥, (89)

which gives

P (x̂r+1, ŷr+1)− P (x̂r, ŷr+1)

≤ p(x̂r+1 − x̂r)T (x̂r − x̄⋆(x̂r, ŷr+1)) +
p

2

(
p

p− L
+ 1

)
∥x̂r+1 − x̂r∥2. (90)

B.2. Proof of Potential Function
Lemma 8. Assume that A1-A5 are satisfied. Suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is generated by
TSP, p > L, and λr, yr, ȳ⋆(x̂r, ŷr) are bounded. When α, β, ω respectively satisfy (55), then, there exists a constant ζ
such that

Q(xr+1, yr+1, zr+1, x̂r+1, ŷr+1;λr+1)−Q(xr, yr, zr, x̂r, ŷr;λr)

≤ −
(

1

2α
− Chx − 16µ(ℓ2g + L2

γ)
σ2
3

α2
− Cz

(
2L2

z +
ηLz

2

))∥∥E [xr+1 − xr
]∥∥2 − 1

8µτ
∥λr+(x̂r, ŷr)− λr∥2

−
(

1

2β
− Chy − 16µ(ℓ2g + L2

γ)
σ2
3

β2
− 2α(λr+1Lg)

2L2
z − Cz

(
2L2

z +
ηLz

2

))∥∥E [yr+1 − yr
]∥∥2

− p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥x̂r+1 − x̂r∥2 − p

(
1

2ω
−
(
1

ζ
+

4p

p− L

)
− 6ζσ2

1

)
∥ŷr+1 − ŷr∥2

+ 6pζ
(
∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2 + ∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2

)
− (1− ϑ)

τ

2µ
∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2 − (1− φ)Cz∥zr − z⋆(xr, yr)∥2 + nr

Q (91)

where Cz is defined in (143), potential function

Qr ≜ Q(xr, yr, zr, x̂r, ŷr;λr) ≜ K(xr, yr, zr, x̂r, ŷr;λr)− 2D(x̂r, ŷr;λr) + 2P (x̂r, ŷr)− 1

c
M(λr, hr)

+
τ

2µ
∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2 + Cz∥zr − z⋆(xr, yr)∥2 − f (92)

and

nrQ ≜ nrQ(α, β, τ, η, θ, ε
r
ĝy
, εrĝz , ε

r
x, ε

r
y, ε

r
gz )

≜ −α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2 − β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2

+ (16σ2
2pζ + Chλ

)
τ2

1− θ
max

r
∥εrĝy − εrĝz∥

2 + Czn
r
z2(η, ε

r
x, ε

r
y, ε

r
gz )

+ ⟨εrĝy − εrĝz , λ
r+1 − λr⟩+ τ

2µ

(
θ(εrĝy − εrĝz )(h

r
θ + θ(g(xr, yr)) + θ2(εrĝy − εrĝz )

2
)
. (93)
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Proof. Recall that
Er = K(xr, yr, zr, x̂r, ŷr;λr)− 2D(x̂r, ŷr;λr) + 2P (x̂r, ŷr). (94)

Merging (56), (74), and (86) gives

Er+1 − Er

≤ − 1

2α

∥∥E [xr+1 − xr
]∥∥2 − 1

2β

∥∥E [yr+1 − yr
]∥∥2

−
(
p

2ω
− 2p

p

p− L

)
∥x̂r+1 − x̂r∥2 −

(
p

2ω
− 2p

p

p− L

)
∥ŷr+1 − ŷr∥2

+ ⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩

+
β

γ2
∥zr − z⋆(xr, yr)∥2 + α(λr+1Lg)

2∥zr − z⋆(xr, yr+1)∥2

− 2⟨λr+1 − λr, g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− δ⟩

− α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2

− β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2

− p⟨ŷr+1 − ŷr, ŷr+1 + ŷr − 2y⋆(x̂r, ŷr+1;λr+1)⟩ − 2p
〈
ŷr+1 − ŷr, ȳ⋆(x̂r, ŷr)− ŷr

〉
− p⟨x̂r+1 − x̂r, x̂r+1 + x̂r − 2x⋆(x̂r+1, ŷr+1;λr+1)⟩ − 2p

〈
x̂r+1 − x̂r, x̄⋆(x̂r, ŷr+1)− x̂r

〉
(95)

where we use the fact that p/(p− L) > 1 so that there is a factor of 2p in front of terms ∥x̂r+1 − x̂r∥2 and ∥ŷr+1 − ŷr∥2.

First, we can get an upper bound for the term in the penultimate line of (95) as follows:

− p
〈
ŷr+1 − ŷr, ŷr+1 − ŷr − 2

(
y⋆(x̂r, ŷr+1;λr+1)− ȳ⋆(x̂r, ŷr)

)〉
= −p

〈
ŷr+1 − ŷr, ŷr+1 − ŷr − 2

(
y⋆(x̂r, ŷr+1;λr+1)− y⋆(x̂r, ŷr;λr+1)

)〉
− p

〈
ŷr+1 − ŷr, y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)

〉
(96)

= −p∥ŷr+1 − ŷr∥2 + 2p
〈
ŷr+1 − ŷr, y⋆(x̂r, ŷr+1;λr+1)− y⋆(x̂r, ŷr;λr+1)

〉
− p

〈
ŷr+1 − ŷr, y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)

〉
. (97)

For the last term of the above inequality, we can further have

p
〈
ŷr+1 − ŷr, y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)

〉
≤ p∥ŷr+1 − ŷr∥2

2ζ
+
pζ

2
∥y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)∥2. (98)

For the second term of (97), we can get〈
ŷr+1 − ŷr, y⋆(x̂r, ŷr+1;λr+1)− y⋆(x̂r, ŷr;λr+1)

〉
(a)

≤ ∥ŷr+1 − ŷr∥∥y⋆(x̂r, ŷr+1;λr+1)− y⋆(x̂r, ŷr;λr+1)∥ (99)
(b)

≤ p

p− L
∥ŷr+1 − ŷr∥2 (100)

where (a) is true by applying the Cauchy-Schwarz inequality, in (b) we use the primal error bound (24e).

Similarly, we can obtain an upper bound for the term in the last line of (95) as

− p
〈
x̂r+1 − x̂r, x̂r+1 − x̂r − 2

(
x⋆(x̂r+1, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)

)〉
= −p

〈
x̂r+1 − x̂r, x̂r+1 − x̂r − 2

(
x⋆(x̂r+1, ŷr+1;λr+1)− x⋆(x̂r, ŷr+1;λr+1)

)〉
− p

〈
x̂r+1 − x̂r, x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)

〉
(101)

= −p∥x̂r+1 − x̂r∥2 + 2p
〈
x̂r+1 − x̂r, x⋆(x̂r+1, ŷr+1;λr+1)− x⋆(x̂r, ŷr+1;λr+1)

〉
− p

〈
x̂r+1 − x̂r, x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)

〉
. (102)
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For the last term of the above inequality, we can further have

p
〈
x̂r+1 − x̂r, x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)

〉
≤ p∥x̂r+1 − x̂r∥2

2ζ
+
pζ

2
∥x⋆(x̂r, ŷr+1;λr)− x̄⋆(x̂r, ŷr+1)∥2. (103)

Similar as (100), we also have

〈
x̂r+1 − x̂r, x⋆(x̂r+1, ŷr+1;λr+1)− y⋆(x̂r, ŷr+1;λr+1)

〉
(a)

≤ ∥x̂r+1 − x̂r∥∥x⋆(x̂r+1, ŷr+1;λr+1)− x⋆(x̂r, ŷr+1;λr+1)∥ (104)
(b)

≤ p

p− L
∥x̂r+1 − x̂r∥2 (105)

where (a) is true by applying the Cauchy-Schwarz inequality, in (b) we use the primal error bound (24b).

Substituting (98), (100), (103), (105) into (95) yields

Er+1 − Er

≤ − 1

2α

∥∥E [xr+1 − xr
]∥∥2 − 1

2β

∥∥E [yr+1 − yr
]∥∥2

− p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥x̂r+1 − x̂r∥2 − p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥ŷr+1 − ŷr∥2

− α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2

− β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2

+
β

γ2
∥zr − z⋆(xr, yr)∥2 + α(λr+1Lg)

2∥zr − z⋆(xr, yr+1)∥2

+ pζ
(
∥x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)∥2 + ∥y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)∥2

)
− 2
〈
λr+1 − λr, g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− g⋆γ(x

⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− δ
〉

+ ⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩. (106)

Second, we will give an upper bound of the last two terms of (106) as follows.

Step 1.)

For any given h, the Moreau envelope of the dual update can be written as

M(λ, h) = min
λ′≥0

⟨−h, λ′ − λ⟩+ 1

2τ
∥λ′ − λ∥2, (107)

which directly yields

λ+ = Proj≥0(λ+ τh). (108)

It is obvious that the quadratic function M(λ, h) is smooth. Let LM denote the gradient Lipschitz parameter. From the
optimality condition, we can have 〈

−h+
1

τ
(λr+ − λr), λr − λr+

〉
≥ 0. (109)
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Let θ = cµ and wr ≜ ĝ(xr, yr)− ĝ(xr, zr)− 1
2γ ∥z

r − yr∥2 − δ.

M(λr+1, hr+1)−M(λr, hr)

(a)

≥⟨hr+1 − 1

τ
(λr+ − λr), λr+1 − λr⟩+ ⟨−(λr+ − λr), hr+1 − hr⟩

+

(
1

2γ
− LM

2

)(
∥λr+1 − λr∥2 + ∥hr+1 − hr∥2

)
(110)

(b)

≥ µ⟨hr+1, λr+ − λr⟩ − µ

τ
∥λr+ − λr∥2 − θ⟨λr+ − λr, wr⟩+ θ⟨λr+ − λr, hr⟩

+

(
1

2γ
− LM

2

)(
∥λr+1 − λr∥2 + ∥hr+1 − hr∥2

)
(111)

(c)

≥ θ

2τ
∥λr+ − λr∥2 − θ⟨λr+ − λr, wr⟩+

(
1

2γ
− LM + θ

2

)(
∥λr+1 − λr∥2 + ∥hr+1 − hr∥2

)
(112)

where (a) is true due to the strong convexity when τ is small, (b) update rule of λ and hr+1, in (c) we apply the optimality
condition (109), i.e, ⟨h, λr+ − λr⟩ ≥ τ−1∥λr+ − λr∥ and ⟨λr+ − λr, hr − hr+1⟩ ≤ ∥λr+ − λr∥2/2 + ∥hr − hr+1∥2/2.
Therefore, we can obtain

M(λr, hr)−M(λr+1, hr+1)

≤ − θ

2τ
∥λr+ − λr∥2 + θ

〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+ − λr

〉
+

(
LM + θ

2
− 1

2γ

)(
∥λr+1 − λr∥2 + ∥hr+1 − hr∥2

)
. (113)

Divide c on both sides gives

1

c

(
M(λr, hr)−M(λr+1, hr+1)

)
≤ − µ

2τ
∥λr+ − λr∥2 + µ

〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+ − λr

〉
+

(
LM + θ

2c
− 1

2cγ

)(
∥λr+1 − λr∥2 + ∥hr+1 − hr∥2

)
. (114)

Note that term ⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩ can be decomposed as follows.

⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩

= ⟨g(xr, yr)− g⋆γ(x
r, yr)− δ, λr+1 − λr⟩

+

〈
g(xr, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
−
〈
g(xr, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
+

〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
−
〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
≤ 2

〈
g(xr, yr)− g⋆γ(x

r, yr)− δ, λr+1 − λr
〉

+

〈
g⋆γ(x

r, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2, λr+1 − λr

〉
+ ⟨εrĝy − εrĝz , λ

r+1 − λr⟩

−
〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
. (115)
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Subsequently, we can derive an upper bound for the sum of the last two terms in (106) as follows.

2⟨g(xr, yr)− g⋆γ(x
r, yr), λr+1 − λr⟩

− 2

〈
g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− g⋆γ(x

⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1)), λr+1 − λr
〉

+

〈
g⋆γ(x

r, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2, λr+1 − λr

〉
+ ⟨εrĝy − εrĝz , λ

r+1 − λr⟩

−
〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
(a)

≤ 8µ

(∥∥∥g(xr, yr)− g⋆γ(x
r, yr)

−
(
g
(
x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1)

)
− g⋆γ

(
x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1)

)) ∥∥∥2)
+ 8µℓ2γ∥zr − z⋆(xr, yr)∥2 + 1

2µ
∥λr+1 − λr∥2

+ ⟨εrĝy − εrĝz , λ
r+1 − λr⟩ −

〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
(b)

≤ 16µ(ℓ2g + L2
γ)
(
∥x⋆(x̂r, ŷr;λr+1)− xr∥2 + ∥y⋆(x̂r, ŷr;λr+1)− yr∥2

)
+ 8µℓ2γ∥zr − z⋆(xr, yr)∥2 + 1

2µ
∥λr+1 − λr∥2

+ ⟨εrĝy − εrĝz , λ
r+1 − λr⟩ −

〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉
(c)

≤ 16µ(ℓ2g + L2
γ)σ

2
3

(
1

α2
∥xr+1 − xr∥2 + 1

β2
∥yr+1 − yr∥2

)
+ 8µℓ2γ∥zr − z⋆(xr, yr)∥2 + 1

2µ
∥λr+1 − λr∥2

+ ⟨εrĝy − εrĝz , λ
r+1 − λr⟩ −

〈
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ, λr+1 − λr

〉

where in (a) we use the Cauchy-Schwarz inequality, (b) is true due to the Lipschitz continuity, i.e.,

|g(xr, yr)− g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))|2

≤ 2ℓ2g
(
∥xr − x⋆(x̂r, ŷr;λr+1)∥2 + ∥yr − y⋆(x̂r, ŷr;λr+1)∥2

)
, (116)

and

|g⋆γ(xr, yr)− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))|2

≤ 2ℓ2γ
(
∥xr − x⋆(x̂r, ŷr;λr+1)∥2 + ∥yr − y⋆(x̂r, ŷr;λr+1)∥2

)
, (117)

in (c) we apply the primal error bounds (27) and (28b).

Let

F r = K(xr, yr, zr, x̂r, ŷr;λr)− 2D(x̂r, ŷr;λr) + 2P (x̂r, ŷr)− 1

c
M(λr, hr). (118)
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Step 2.) Substituting and back to (106) gives

F r+1 − F r

≤ −
(

1

2α
− 16µ(ℓ2g + L2

γ)
σ2
3

α2

)∥∥E [xr+1 − xr
]∥∥2 − ( 1

2β
− 16µ(ℓ2g + L2

γ)
σ2
3

β2

)∥∥E [yr+1 − yr
]∥∥2

− p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥x̂r+1 − x̂r∥2 − p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥ŷr+1 − ŷr∥2

+

(
β

γ2
+ 8µℓ2γ

)
∥zr − z⋆(xr, yr)∥2 + α(λr+1Lg)

2∥zr − z⋆(xr, yr+1)∥2

+ pζ
(
∥x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)∥2 + ∥y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)∥2

)
− α

〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2 − β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2

− µ

2τ
∥λr+ − λr∥2 +

(
LM + θ

2c
− 1

2cγ
+

1

2µ

)
∥λr+1 − λr∥2

+

(
LM + θ

2c
− 1

2cγ

)
∥hr+1 − hr∥2 + ⟨εrĝy − εrĝz , λ

r+1 − λr⟩. (119)

When constant γ is small, i.e., 1
2γ ≥ LM

2 , we have

− µ

4τ
∥λr+ − λr∥2 +

(
LM + θ

2c
− 1

2cγ
+

1

2µ

)
∥λr+1 − λr∥2 ≤ − µ

4τ
∥λr+ − λr∥2 (120)

where we require τ < 1/2.

Step 3.) Applying the reverse triangle inequality, we can get

∥λr+1 − λr∥2 = ∥λr+1 − λr+(x̂
r, ŷr) + λr+(x̂

r, ŷr)− λr∥2 ≥
∥λr+(x̂r, ŷr)− λr∥2

2
− ∥λr+1 − λr+(x̂

r, ŷr)∥2. (121)

Combining (121), (123) gives

∥λr+1 − λr∥2

≥
∥λr+(x̂r, ŷr)− λr∥2

2
− τ2∥hr −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2.

Applying the primal error bounds (27) and (28b), we can obtain

− µ

2τ
∥λr+ − λr∥2 = − 1

2µτ
∥λr+1 − λr∥2

≤ −
∥λr+(x̂r, ŷr)− λr∥2

4µτ
+

τ

2µ
∥hr −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2. (122)

According to the definition of λr+(x̂
r, ŷr) (cf. (234a)), we have

∥λr+1 − λr+(x̂
r, ŷr)∥2

(a)

≤
∥∥λr + τhr+1 − [λr + τ∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)]

∥∥2
≤ τ2∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2. (123)

Next, we need to derive the recursion for term ∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr+1)∥2. First, we decompose it
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from the noise terms as follows.

∥hr+2 −∇λK(x⋆(vr+1;λr+1), y⋆(vr+1;λr+1), vr+1;λr+1)∥2

≤
∥∥∥∥(1− θ)hr+1 + θ

(
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ

)
−∇λK(x⋆(vr+1;λr+1), y⋆(vr+1;λr+1), vr+1;λr+1)

∥∥∥∥2 (124)

= ∥hrθ + θ(g(xr, yr)− g(xr, zr))∥2 + θ(εrĝy − εrĝz )(h
r
θ + θ(g(xr, yr)) + θ2(εrĝy − εrĝz )

2

where

hrθ ≜ (1− θ)hr+1 + θ(−(2γ)−1∥zr − yr∥2 − δ)−∇λK(x⋆(vr+1;λr+1), y⋆(vr+1;λr+1), vr+1;λr+1). (125)

Then, using the convexity of ∥∥2, we can obtain∥∥∥∥(1− θ)hr+1 + θ

(
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 − δ

)
−∇λK(x⋆(vr+1;λr+1), y⋆(vr+1;λr+1), vr+1;λr+1)

∥∥∥∥2
≤ (1− θ)∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2

+ 2θ∥∇λK(x⋆(vr+1;λr+1), y⋆(vr+1;λr+1), vr+1;λr+1)−∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2

+ 2θ

∥∥∥∥g(xr, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2 − δ −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)

∥∥∥∥2
(a)

≤ (1− θ)∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2

+ 2 · 24θ(ℓ2g + ℓ2γ)
(
σ2
1∥Exr+1 − xr∥2 + σ2

1∥Eyr+1 − yr∥2 + σ2
2∥Eλr+1 − λr∥2

)
+ 2 · 3θ(ℓg + ℓγ)

2

(
σ2
3

α2
∥Exr+1 − xr∥2 + σ2

3

β2
∥Eyr+1 − yr∥2 + 4σ2

2∥Eλr+1 − λr∥2
)

(126)

≤ (1− θ)∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2 + 6(ℓ2g + ℓ2γ)

(
4σ2

1(1− θ) +
σ2
3θ

α2

)
∥Exr+1 − xr∥2

+ 6(ℓ2g + ℓ2γ)

(
4σ2

1(1− θ) +
σ2
3θ

β2

)
∥Eyr+1 − yr∥2 + 6(ℓ2g + ℓ2γ)6σ

2
2∥Eλr+1 − λr∥2

where in (a) we apply∥∥∥g(x⋆(xr+1, yr+1;λr+1), y⋆(xr+1, yr+1;λr+1))− g(x⋆(xr, yr;λr), y⋆(xr, yr;λr))

+ g⋆γ(x
⋆(xr+1, yr+1;λr+1), y⋆(xr+1, yr+1;λr+1))− g⋆γ(x

⋆(xr, yr;λr), y⋆(xr, yr;λr))
∥∥∥2

≤ 4(ℓ2g + ℓ2γ)
(
∥x⋆(xr+1, yr+1;λr+1)− x⋆(xr, yr;λr)∥2 + ∥y⋆(xr+1, yr+1;λr+1)− y⋆(xr, yr;λr)∥2

)
(127)

≤ 24(ℓ2g + ℓ2γ)
(
σ2
1∥Exr+1 − xr∥2 + σ2

1∥Eyr+1 − yr∥2 + σ2
2∥Eλr+1 − λr∥2

)
, (128)

and ∥∥∥∥g(xr, yr)− (g(xr, zr) +
1

2γ
∥zr − yr∥2)− g(x⋆(xr, yr;λr), y⋆(xr, yr;λr)) + g⋆γ(x

⋆(xr, yr;λr), y⋆(xr, yr;λr))

∥∥∥∥
≤ (ℓg + ℓγ) (∥xr − x⋆(xr, yr;λr)∥+ ∥yr − y⋆(xr, yr;λr)∥) (129)

≤ (ℓg + ℓγ)

(
σ3
α
∥Exr+1 − xr∥+ σ3

β
∥Eyr+1 − yr∥+ 2σ2∥Eλr+1 − λr∥

)
. (130)
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Let

Chx
= 6

τ

2µ
(ℓ2g + ℓ2γ)

(
4σ2

1(1− θ) +
σ2
3θ

α2

)
, (131a)

Chy
= 6

τ

2µ
(ℓ2g + ℓ2γ)

(
4σ2

1(1− θ) +
σ2
3θ

β2

)
, (131b)

Chλ
= 6

τ

2µ
(ℓ2g + ℓ2γ)6σ

2
2 . (131c)

Finally, by observing the dual error bound, we need to further quantify ∥y⋆(x̂r, ŷr;λr+1) − ȳ⋆(x̂r, ŷr)∥2 +
∥x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)∥2 as follows. Note that

∥y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)∥2 + ∥x⋆(x̂r, ŷr+1;λr+1)− x̄⋆(x̂r, ŷr+1)∥2

≤ ∥y⋆(x̂r, ŷr;λr+1)− ȳ⋆(x̂r, ŷr)∥2 + 3∥x⋆(x̂r, ŷr;λr+1)− x̄⋆(x̂r, ŷr)∥2

+ 3∥x⋆(x̂r, ŷr+1;λr+1)− x⋆(x̂r, ŷr;λr+1)∥2 + 3∥x̄⋆(x̂r, ŷr+1)− x̄⋆(x̂r, ŷr)∥2 (132)
(a)

≤ 2∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + 6∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2

+ 2∥y⋆(x̂r, ŷr;λr+1)− y⋆(x̂r, ŷr;λr+(x̂
r, ŷr))∥2

+ 6∥x⋆(x̂r, ŷr;λr+1)− x⋆(x̂r, ŷr;λr+(x̂
r, ŷr))∥2 + 6σ2

1∥ŷr+1 − ŷr∥2 (133)
(b)

≤ 2∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + 6∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2

+ 8σ2
2

∥∥λr+(x̂r, ŷr)− λr+1
∥∥2 + 6σ2

1∥ŷr+1 − ŷr∥2 (134)

where in (a) we use the primal error bounds (24e) and (24c), (b) holds as we first apply the primal error bounds (26) and
(25b).

Let
Gr = F r +

τ

2µ
∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2. (135)

As a result, we can get

Gr+1 −Gr

≤ −
(

1

2α
− Chx − 16µ(ℓ2g + L2

γ)
σ2
3

α2

)∥∥E [xr+1 − xr
]∥∥2 − ( 1

2β
− Chy − 16µ(ℓ2g + L2

γ)
σ2
3

β2

)∥∥E [yr+1 − yr
]∥∥2

− p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥x̂r+1 − x̂r∥2 − p

(
1

2ω
−
(
1

ζ
+

4p

p− L

)
− 6ζσ2

1

)
∥ŷr+1 − ŷr∥2

+

(
β

γ2
+ 8µℓ2γ

)
∥zr − z⋆(xr, yr)∥2 + α(λr+1Lg)

2∥zr − z⋆(xr, yr+1)∥2

+ 6pζ
(
∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2 + ∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2

)
− (1− ϑ)

τ

2µ
∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2

− α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2

− β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2

− µ

2τ
∥λr+ − λr∥2 − 1

4µτ
∥λr+(x̂r, ŷr)− λr∥2 + 8σ2

2pζ
∥∥λr+(x̂r, ŷr)− Eλr+1

∥∥2 + Chλ
µ2∥λr − Eλr+∥2

+ ⟨εrĝy − εrĝz , λ
r+1 − λr⟩+ τ

µ

(
θ(εrĝy − εrĝz )(h

r
θ + θ(g(xr, yr)) + θ2(εrĝy − εrĝz )

2
)
. (136)

Note that ∥∥λr+(x̂r, ŷr)− λr+1
∥∥2 = 2∥λr+(x̂r, ŷr)− λr∥2 + 2∥λr − λr+1∥2, (137)
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and
∥λr − λr+1∥2 = µ2∥λr − λr+∥2. (138)

Then, we can get

− µ

2τ
∥λr+ − λr∥2 − 1

4µτ
∥λr+(x̂r, ŷr)− λr∥2 + 8σ2

2pζ
∥∥λr+(x̂r, ŷr)− Eλr+1

∥∥2 + Chλ
∥Eλr+1 − λr∥2

≤
(
− 1

8µτ
+ 16σ2

2pζ

)
∥λr+(x̂r, ŷr)− λr∥2 +

(
− 1

8τµ
+ 16σ2

2pζ + Chλ

)
∥λr+1 − λr∥2

+ (16σ2
2pζ + Chλ

)
τ2

1− θ
max

r
∥εrĝy − εrĝz∥

2 (139)

where we use the fact that

∥Eλr+1 − λr+1∥2 ≤ τ2∥Ehr+1 − hr+1∥ ≤ τ2

1− θ
max

r
∥εrĝy − εrĝz∥

2. (140)

Further, we have

∥zr − z⋆(xr, yr+1)∥2 ≤ 2
(
∥zr − z⋆(xr, yr)∥2 + ∥z⋆(xr, yr)− z⋆(xr, yr+1)∥2

)
(141)

≤ 2
(
∥zr − z⋆(xr, yr)∥2 + L2

z∥Eyr+1 − yr∥2
)
. (142)

Let
Cz ≜

β

γ2
+ 8µℓ2γ + 2α(λr+1Lg)

2. (143)

Let define the final potential function as

Qr = Gr + Cz∥zr − z⋆(xr, yr)∥2 − f. (144)

Substituting (220), (143) to (136) gives the desired result.

Qr+1 −Qr

≤ −
(

1

2α
− Chx − 16µ(ℓ2g + L2

γ)
σ2
3

α2
− Cz

(
2L2

z +
ηLz

2

))∥∥E [xr+1 − xr
]∥∥2 − 1

8µτ
∥λr+(x̂r, ŷr)− λr∥2

−
(

1

2β
− Chy − 16µ(ℓ2g + L2

γ)
σ2
3

β2
− 2α(λr+1Lg)

2L2
z − Cz

(
2L2

z +
ηLz

2

))∥∥E [yr+1 − yr
]∥∥2

− p

(
1

2ω
−
(
1

ζ
+

4p

p− L

))
∥x̂r+1 − x̂r∥2 − p

(
1

2ω
−
(
1

ζ
+

4p

p− L

)
− 6ζσ2

1

)
∥ŷr+1 − ŷr∥2

+ 6pζ
(
∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2 + ∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2

)
− (1− ϑ)

τ

2µ
∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2 − (1− φ)Cz∥zr − z⋆(xr, yr)∥2

− α
〈
∇xK(xr, yr+1, x̂r, ŷr+1;λr+1), εrx

〉
+ LKα

2∥εrx∥2 − β⟨∇yK(xr, yr, x̂r, ŷr;λr+1), εry⟩+ LKβ
2∥εry∥2

+ (16σ2
2pζ + Chλ

)
τ2

1− θ
max

r
∥εrĝy − εrĝz∥

2 + Czn
r
z2(η, ε

r
x, ε

r
y, ε

r
gz )

+ ⟨εrĝy − εrĝz , λ
r+1 − λr⟩+ τ

2µ

(
θ(εrĝy − εrĝz )(h

r
θ + θ(g(xr, yr)) + θ2(εrĝy − εrĝz )

2
)

(145)

where the terms in the last three lines are noise terms and defined as nrQ ≜ nrQ(α, β, τ, η, θ, ε
r
ĝy
, εrĝz , ε

r
x, ε

r
y, ε

r
gz ).
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B.3. Descent of Potential Function
Lemma 1 (Formal). Assume that A1-A5 are satisfied. Suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is
generated by TSP, p > L, and λr ≤ Λ, xr, yr, ȳ⋆(x̂r, ŷr), y⋆(x̂r, ŷr;λr+1) are bounded. When the step-sizes are
chosen such that (149), (150), (151), hold, then, we have either

Qr+1 −Qr

≤ − 1

8α

∥∥E [xr+1 − xr
]∥∥2 − 1

8β

∥∥E [yr+1 − yr
]∥∥2 − p

8ω
∥x̂r+1 − x̂r∥2 − p

8ω
∥ŷr+1 − ŷr∥2

− (1− φ)Cz

8
∥zr − z⋆(xr, yr)∥2 − 1

16µτ
∥λr+(x̂r, ŷr)− λr∥2 + nr

Q (146)

or {
1

4α

∥∥E [xr+1 − xr
]∥∥2 , 1

4β

∥∥E [yr+1 − yr
]∥∥2 , p

4ω
∥x̂r+1 − x̂r∥2, (1− φ)Cz

8
∥zr − z⋆(xr, yr)∥2

}
≤ C2

wp
2ζ2σ2

wΛ
2µτ (147)

where C2
w ≜ 2 · 8 · 62 · 22, Cz is defined in (143), and

∥λr − λr+(x̂
r, ŷr)∥ ≤ 8µτ · 2 · 6pζσwΛ. (148)

Proof. From (91), it is clear that if we can select the step-sizes properly so that the coefficients in front of ∥Exr+1 − xr∥2,
∥Eyr+1 − yr∥2, ∥x̂r+1 − x̂r∥2, ∥ŷr+1 − ŷr∥2 are strictly negative, then the potential function Qr will be decreasing. To be
more specific, the step-sizes are chosen as follows.

1) Selection of α. Given the condition of (55), we request

1

2α
− 18

τ

2µ
(ℓ2g + ℓ2γ)

(
4σ2

1(1− θ) +
σ2
3θ

α2

)
− 16µ(ℓ2g + L2

γ)
σ2
3

α2
− Cz

(
2L2

z +
ηLz

2

)
>

1

4α
> 0. (149)

2) Selection of β.

1

2β
−18

τ

2µ
(ℓ2g+ℓ

2
γ)

(
4σ2

1(1− θ) +
σ2
3θ

β2

)
−16µ(ℓ2g+L

2
γ)
σ2
3

β2
−2α(λr+1Lg)

2 L2
z−Cz

(
2L2

z +
ηLz

2

)
>

1

4β
> 0. (150)

3) Selection of ω.
1

2ω
−
(
1

ζ
+

4p

p− L

)
− 6ζσ2

1 >
1

4ω
> 0, (151)

i.e.,

ω <
1

4

1
1
ζ + 4p

p−L + 6ζσ2
1

. (152)

Then, consider the following two cases:

Case 1.

1

2
max

{
1

4α

∥∥E [xr+1 − xr
]∥∥2 , 1

4β

∥∥E [yr+1 − yr
]∥∥2 , p

4ω
∥x̂r+1 − x̂r∥2,

p

4ω
∥ŷr+1 − ŷr∥2, (1− φ)Cz

2
∥zr − z⋆(xr, yr)∥2, 1

8µτ
∥λr+(x̂r, ŷr)− λr∥2

}
> 6pζ

(
∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + ∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2

)
.

30



TSP: A Two-Sided Smoothed Primal-Dual Method for Nonconvex Bilevel Optimization

In this case, we can have

Qr+1 −Qr

≤ − 1

8α

∥∥E [xr+1 − xr
]∥∥2 − 1

8β

∥∥E [yr+1 − yr
]∥∥2 − p

8ω
∥x̂r+1 − x̂r∥2 − p

8ω
∥ŷr+1 − ŷr∥2

− (1− φ)Cz

4
∥zr − z⋆(xr, yr)∥2 − 1

16µτ
∥λr+(x̂r, ŷr)− λr∥2 + nr

Q, (153)

meaning that Qr is decreasing at each step.

Case 2.

1

2
max

{
1

4α

∥∥E [xr+1 − xr
]∥∥2 , 1

4β

∥∥E [yr+1 − yr
]∥∥2 , p

4ω
∥x̂r+1 − x̂r∥2, p

4ω
∥ŷr+1 − ŷr∥2,

(1− φ)Cz

2
∥zr − z⋆(xr, yr)∥2, 1

8µτ
∥λr+(x̂r, ŷr)− λr∥2

}
≤ 6pζ

(
∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + ∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2

)
.

Recall the weak error bound

∥y⋆(x̂, ŷ;λ+(x̂, ŷ))− ȳ⋆(x̂, ŷ)∥2 + ∥x⋆(x̂, ŷ;λ+(x̂, ŷ))− x̄⋆(x̂, ŷ)∥2

≤ σw∥λ− λ+(x̂, ŷ)∥∥λ(x̂, ŷ)− λ+(x̂, ŷ)∥ (154)

where λ(v) ∈ argmaxλ≥0K(x̄⋆(v), ȳ⋆(v), v;λ).

We can get

∥y⋆(x̂r, ŷr;λr+1
+ (x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + ∥x⋆(x̂r, ŷr;λr+1

+ (x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2

≤ 2σwΛ∥λr − λr+(x̂
r, ŷr)∥, (155)

which gives
∥λr − λr+(x̂

r, ŷr)∥ ≤ 8µτ · 2 · 6pζσwΛ. (156)

Then, we can have

p

4ω
∥ŷr+1 − ŷr∥2

≤ 2 · 6pζ
(
∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + ∥x⋆(x̂r, ŷr;λr+(x̂r, ŷr))− x̄⋆(x̂r, ŷr)∥2

)
≤ 2 · 6pζ2σwΛ∥λr − λr+(x̂

r, ŷr)∥ (157)

≤ 2 · 8 · 62 · 22p2ζ2σ2
wΛ

2µτ. (158)

Similarly, {
1

4α

∥∥E [xr+1 − xr
]∥∥2 , 1

4β

∥∥E [yr+1 − yr
]∥∥2 , p

4ω
∥x̂r+1 − x̂r∥2, (1− φ)Cz

2
∥zr − z⋆(xr, yr)∥2

}
≤ 2 · 8 · 62 · 22︸ ︷︷ ︸

≜C2
w

p2ζ2σ2
wΛ

2µτ. (159)

These results imply that the iterates generated by TSP will converge to some point within a ball with a radius of O(Λ2µτ).
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C. Boundedness of Dual Variable, LL Variables, and Potential Function
C.1. Boundedness of Dual Variable

Lemma 2 (Formal) Under A1-A5, suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is generated by TSP. Assume
that yr and hfy and hgy are bounded. When p = Θ(Λ), γ = O(1), δ = ω = η = ζ = β = τ = O(T−1/2), such that
p > L and α, β, ω satisfy (149), (150), (151), then, the sequence {λr} is upper bounded, i.e., λr < Λ for all r, given a
sufficiently large T , where Λ is a constant.

Proof. From the update rule of variable y, we can obtain

λr+1

(
hgy(x

r, yr) +
zr − yr

γ

)
= −

(
hfy(x

r, zr) + p(yr − ŷr) +
1

β
(yr+1 − yr)

)
Multiplying yr − zr on both sides gives〈

λr+1hgy(x
r, yr), yr − zr

〉
≤ −

〈
hfy(x

r, yr) + p(yr − zr) +
1

β
(yr+1 − yr), yr − zr

〉
+
λr+1

γ
∥yr − zr∥2. (160)

Note that when γ < 1/ρ, the following function

φ(x, y, z) ≜ g(x, z) +
1

2γ
∥z − y∥2 (161)

is strongly convex w.r.t. z, i.e.,
φ(x, y, z) ≥ φ(x, y, y) + ⟨∇zφ(x, y, y), z − y⟩. (162)

Therefore, we have

ĝ(xr, zr) +
1

2γ
∥zr − yr∥2 ≥ ĝ(xr, yr) + ⟨hgy(xr, yr), zr − yr⟩, (163)

which is equivalent to

⟨hgy(xr, yr), yr − zr⟩ ≥ ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2 (164)

by some simple algebra manipulations. Subsequently, we can get

λr+1

(
ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2

)
≤ −

〈
hfy(x

r, yr) + p(yr − zr) +
1

β
(yr+1 − yr), yr − zr

〉
+
λr+1

γ
∥yr − zr∥2. (165)

We assume that λr and hr are bounded. If wr = ĝ(xr, yr) − ĝ(xr, zr) − 1
2γ ∥z

r − yr∥2 − δ < 0, it implies that
hr+1 ≤ max{(1− θ)hr + θwr, 0} is bounded automatically, giving the boundedness of λr+ and λr+1. Otherwise, note that
from (7a) we have

1

θ
(hr+1 − (1− θ)hr) + δ = ĝ(xr, yr)− ĝ(xr, zr)− 1

2γ
∥zr − yr∥2.

Substituting it back to (165) yields

λr+1 ≤ −1

δ

(〈
hfy(x

r, yr) + p(yr − zr) +
1

β
(yr+1 − yr), yr − zr

〉
+
λr+1

γ
∥yr − zr∥2

)
.

≤ 1

δ
∥hfy(xr, yr)∥∥yr − zr∥+ p

δ
∥yr − zr∥∥yr − zr∥+ 1

βδ
∥yr+1 − yr∥∥yr − zr∥+ λr+1

γδ
∥yr − zr∥2. (166)
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From (8), we know that

zr+1 = zr − η

(
hgy(x

r, zr) +
1

γ
(zr − yr)

)
, (167)

which gives
yr − zr = γ(zr+1 − zr) + ηγhgy(x

r, zr), (168)

or equivalently
yr − zr = (γ − 1)(zr+1 − z⋆(xr, yr) + z⋆(xr, yr)− zr) + ηγhgy(x

r, zr). (169)

Applying the triangle inequality gives

∥yr − zr∥
≤ |γ − 1|∥zr+1 − z⋆(xr, yr) + z⋆(xr, yr)− zr∥+ ηγ∥hgy(xr, zr)∥ (170)

≤ |γ − 1||ϱ+ 1|∥zr − z⋆(xr, yr)∥+ ηγ∥hgy(xr, zr)∥+ |γ − 1||nr
z′(η, εrgz )| (171)

(a)

≤ |γ − 1||ϱ+ 1|2pζCwσwΛ

√
µτ

√
Cz

+ ηγ∥hgy(xr, zr)∥+ |γ − 1||nr
z′(η, εrgz )| (172)

where in (a) we apply (159) that serves as an upper bound for the size of different iterates.

Substituting (172) back to (166) yields

λr+1 ≤ 1

δ
∥hfy(xr, yr)∥∥yr − zr∥+ p

δ
∥yr − zr∥∥yr − zr∥

+
1

βδ
∥yr+1 − yr∥∥yr − zr∥+ λr+1

γδ
∥yr − zr∥2 (173)

≤ 1

δ
∥hfy(xr, yr)∥∥yr − zr∥+ p

δ
∥yr − zr∥∥yr − zr∥+ λr+1

γδ
∥yr − zr∥2

+
1

βδ

(
∥Eyr+1 − yr∥+ β∥εry∥

)
∥yr − zr∥ (174)

≤ ∥hfy(xr, yr)∥
(
|γ − 1| |ϱ+ 1| 2pζCwσwΛ

√
µτ

δ
√
Cz

+
ηγ

δ
∥hgy(xr, zr)∥+ |γ − 1||nr

z′(η, εrgz )|
)

+

(
p

δ
+

Λ

γδ

)(
2pζCwσwΛ

√
µτ

√
Cz

+ ηγ∥hgy(xr, zr)∥+ |γ − 1||nr
z′(η, εrgz )|

)2

+

(
2CwpζσwΛ

√
τ√

βδ
+

∥εry∥
δ

)(
2pζCwσwΛ

√
µτ

√
Cz

+ ηγ∥hgy(xr, zr)∥+ |γ − 1||nr
z′(η, εrgz )|

)
. (175)

We choose

p = Θ(Λ), γ = O(1), δ = O(ϵ), α = η = ζ = β = τ = O(T−1/2) or of the same small order, (176)

then, it can be easily checked that the three terms in (175) can be upper bounded by

λr+1 ≤ O
(√

µτ

δ

)
+O

(
Λµ2

δ

)
+O

(
Λ
√
τ√
βδ
µ

)
= O(Λ). (177)

Thus, we have λr+1 < Λ = O(1) when the step-sizes are sufficiently small. In turn, this implies the upper boundedness of
hr+1 immediately.
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C.2. Boundedness of Variables (yr, ȳ⋆(x̂r, ŷr), y⋆(x̂r, ŷr;λr+1) and xr, x̄⋆(x̂r, ŷr), x⋆(x̂r, ŷr;λr+1))

Lemma 9. Under A1-A5, suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, λr+, ∀r} is generated by TSP.
Assume that yr, ȳ⋆(x̂r, ŷr) are bounded and boundedness of the gradient estimate. Then, we have
ȳ⋆(x̂r+1, ŷr+1), y⋆(x̂r, ŷr;λr+1), yr+1 are also bounded.

Proof. We prove these results by induction. First, we assume that yr, ȳ⋆(x̂r, ŷr) are bounded, which gives the (gradient)
Lipschitz continuity of g(x, ·) at these points.

Recall the bounded level set assumption that let

ψ(x, y) = f(x, y), y ∈ Y(x) ≜ {y|g(x, y)− g⋆γ(x, y) ≤ δ}. (178)

Under the assumption that yr, ȳ⋆(wr, zr) are bounded and α = β = τ = O(T−1/2), we can have either the
monotonic decrease of the potential function up to a small error or convergence of the iterates. By the fact that
ψ(x̄⋆(x̂r+1, ŷr+1), ȳ⋆(x̂r+1, ŷr+1)) ≤ P (x̂r+1, ŷr+1), for any (x1, y1, x̂1, ŷ1;λ1), there exists a constant R such that

{x̄⋆(x̂r+1, ŷr+1), ȳ⋆(x̂r+1, ŷr+1)|P (x̂r+1, ŷr+1) ≤ Qr+1} ⊆ B(R(x1, y1, x̂1, ŷ1;λ1)), (179)

which gives that x̄⋆(x̂r+1, ŷr+1) and ȳ⋆(x̂r+1, ŷr+1) are bounded.

Applying the weak error bound result gives

∥y⋆(x̂r, ŷr;λr+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥ ≤
√
σw∥λr − λr+(x̂

r, ŷr)∥∥Eλ(x̂r, ŷr)− λr+(x̂
r, ŷr)∥ (a)

= O(1)

where (a) holds due to the facts (234a), (140) and the boundedness of the dual variable. So, we can have that
y⋆(x̂r, ŷr;λr+(x̂

r, ŷr)) = O(1) is bounded. Additionally, it can be checked that

∥y⋆(x̂r, ŷr;λr+1)− y⋆(x̂r, ŷr;λr+(x̂
r, ŷr))∥

(26)
≤ p+ L

p− L
∥Eλr+1 − λr+1

+ (x̂r, ŷr)∥ (a)
= O(1)

where (a) holds due to the boundedness of the dual variable.

Note that K(x, ·, z, x̂r, ŷr;λr+1) is strongly convex with modulus p− L and gradient Lipschitz continuous with parameter
p+ L. From (Hardt & Simchowitz, 2018), we have

∥yr+1 − y⋆(x̂r, ŷr;λr+1)∥ ≤
(
1− p− L

p+ L

)
∥yr − y⋆(x̂r, ŷr;λr+1)∥+ ny(βε

r
y), (180)

where ny denotes the random noise term. Given that the gradient estimates are bounded and β = O(T−1/2),
we can conclude the boundedness of yr+1. Similarly, the above boundedness properties are also true for
xr+1, x⋆(x̂r, ŷr;λr+1), x⋆(x̂r, ŷr;λr+(x̂

r, ŷr)) = O(1).

C.3. Lower Boundedness of Qr

From (92), we know that

Q(xr, yr, zr, x̂r, ŷr;λr)

≥ K(xr, yr, zr, x̂r, ŷr;λr)− 2D(x̂r, ŷr;λr) + 2P (x̂r, ŷr)− 1

c
M(λr, hr)− f (181)

= P (x̂r, ŷr) +K(xr, yr, zr, x̂r, ŷr;λr)−D(x̂r, ŷr;λr) + (P (x̂r, ŷr)−D(x̂r, ŷr;λr)− 1

c
M(λr, hr)− f

(a)

≥ P (x̂r, ŷr)− 1

c
M(λr, hr)− f

(b)

≥ Q (182)

where (a) holds due to 1)K(xr, yr, zr, x̂r, ŷr;λr)−D(x̂r, ŷr;λr) ≥ 0 based on the definition ofD(x̂r, ŷr;λr) and 2) note
that P (x̂, ŷ) = minx,y maxλ≥0 f(x, y)+λ(g(x, y)−g⋆γ(x, y)−δ)+

p
2∥x−x̂∥

2+ p
2∥y−ŷ∥

2 and P (x̂r, ŷr)−D(x̂r, ŷr;λr) ≥
0, which is true because the minimax equality theorem (Kakutani, 1941; Bertsekas et al., 2003) holds whenK(x, y, z, x̂, ŷ;λ)
is strongly convex in x, y and linear (concave) in λ when variables are within compact set. Also, as h1 = 0, we have
Q1 ≜ Q(x1, y1, z1, x̂1, ŷ1;λ1) ≥ 0, and (b) holds due to the definition of P (x̂r, ŷr) and the lower boundedness of function
g(), where Q denotes the lower bound of Qr.
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D. Theoretical Convergence Results
D.1. Proof of Theorem 1

Proof. Stationarity. Recall

G(xr, yr;λr+1) =

[
∇xL(xr, yr;λr+1)
∇yL(xr, yr;λr+1)

]
. (183)

For the block-x, we have∥∥∇xL(xr, yr;λr+1)
∥∥

≤
∥∥∇xf(x

r, yr) + λr+1(∇xg(x
r, yr)−∇xg(x

r, z⋆(xr, yr)))
∥∥

(a)

≤ 1

α

∥∥E [xr+1 − xr
]∥∥+ Λ∥∇xg(x

r, z⋆(xr, yr))−∇xg(x
r, zr)∥+ p ∥E [xr − x̂r]∥

(b)

≤
(
1

α
+ p

)∥∥E [xr+1 − xr
]∥∥+ p

ω

∥∥x̂r+1 − x̂r
∥∥+ ΛLg∥zr − z⋆(xr, yr)∥+ pα∥εrx∥

where in (a) we apply the following optimality condition of the x-subproblem

Exr+1 = Exr − α
(
∇xf(x

r, yr) + λr+1 (∇xg(x
r, yr)−∇xg(x

r, zr))+pE(xr−x̂r)
)
,

and (b) results from the fact that ∥x̂r+1 − x̂r − [Ex̂r+1 − x̂r]∥ ≤ ω∥xr+1 − Exr+1∥ ≤ αω∥εrx∥.

For the block-y, we have∥∥∇yL(xr, yr;λr+1)
∥∥

≤
∥∥∥∥∇yf(x

r, yr) + λr+1

(
∇yg(x

r, yr) +
1

γ
(z⋆(xr, yr)− yr)

)∥∥∥∥ (184)

(a)

≤ 1

β

∥∥E [yr+1 − yr
]∥∥+ Λ

γ
∥Ezr − z⋆(xr, yr)∥+ p∥Eyr − ŷr∥ (185)

(10)
≤
(
1

β
+ p

)∥∥E [yr+1 − yr
]∥∥+ Λ

γ
∥zr − z⋆(xr, yr)∥+ p

ω

∥∥E [ŷr+1 − ŷr
]∥∥+ pβ∥εry∥ (186)

where in (a) we apply the following optimality condition of the y-subproblem

∇yf(x
r, yr)+λr+1∇yg(x

r, yr) =
Eyr − yr+1

β
− λr+1 z

r − yr

γ
− pE(yr − ŷr). (187)

Therefore, the primal optimality gap can be quantified as follows:

∥G(xr, yr;λr+1)∥2

≤ 4

(
1

α
+ p

)2 ∥∥E [xr+1 − xr
]∥∥2 + 4

(
1

β
+ p

)2 ∥∥E [yr+1 − yr
]∥∥2 + 4p2

ω2

∥∥E [x̂r+1 − x̂r
]∥∥2

+
4p2

ω2

∥∥E [ŷr+1 − ŷr
]∥∥2 + 4

(
L2
g +

1

γ2

)
Λ2 ∥zr − z⋆(xr, yr)∥2 + 4p2(α2∥εrx∥2 + β2∥εry∥2). (188)

Note that we choose

γ = O(1), p = O(Λ) = O(1), α = β = η = θ = τ = O
(

1√
T

)
(189)

and (176). It can be easily verified that these choices of parameters also satisfy (149), (150), and (151). If case 2 shown in
(18) appears, then it is directly implied that ∥G(xr, yr;λr+1)∥ → ϵ. Otherwise, we need to analyze the noise term more
carefully. From (17), we have the following inequalities.
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The first one is

min

{
1

8α
,
1

8β
,
p

8ω

}(∥∥E [xr+1 − xr
]∥∥2 + ∥∥E [yr+1 − yr

]∥∥2 + ∥x̂r+1 − x̂r∥2 + ∥ŷr+1 − ŷr∥2
)

≤ Qr −Qr+1 + nr
Q. (190)

The second one is

(1− φ)Cz

8

(
∥zr − z⋆(xr, yr)∥2

)
≤ Qr −Qr+1 + nr

Q. (191)

Then, we let

ρ1 ≜ min

{
1

8α
,
1

8β
,
p

8ω

}
, (192a)

ρ2 ≜ max

{
3

(
1

α
+ p

)2

, 3

(
1

β
+ p

)2

,
3p2

ω2

}
. (192b)

Plugging (190), (191) into (188) along with (192a) and (192b), we can have

∥G(xr, yr;λr+1)∥2 ≤

(
ρ2
ρ1

+
32
(
L2
g + γ−1

)2
Λ2

(1− φ)Cz

)(
Qr −Qr+1 + nr

Q

)
. (193)

From the above analysis, it can be seen that the boundedness of the gradient estimate is essential for ensuring the boundedness
of iterates, especially for the dual variable. Equivalently, the gradient estimate error is bounded. Let ε denote any noise
term, e.g., εx. From the noise terms shown in (93), it is apparent that each noise term is either in a linear form or a quadratic
form, coupled with the corresponding step-sizes, meaning that it takes the form υ⟨ε, ϕ⟩ or υ2∥ε∥2, where υ represents the
step-size and ϕ denotes the coefficient vector, which is either the iterates or the gradients of the loss functions. There are a
total of 10 linear terms and 6 quadratic terms. Let εrmax denote the noise term with the largest magnitude among all noise
terms at the rth iteration, and let ϑ be the corresponding step-size and G be the largest magnitude among all ϕ (note that we
have shown that the iterates generated by TSP are bounded and that all loss functions are smooth).

Define

t1 ≜ min
{
r|Qr −Q > Q̄

}
∧ T, t2 ≜ min

{
r|∥εrmax∥ >

G

50ϑ

}
∧ T, t ≜ min{t1, t2} (194)

where a ∧ b denotes min{a, b} for any a, b ∈ R, and the threshold Q̄ = G2/2.

For the quadratic term of the noise w.r.t. εr, we can have

E

[∑
r<t

∥εr∥2
]
≤ E

[∑
r<t

∥εr∥2
]
≤ σ2T, (195)

due to A4 and A5, after removing the constant factors.

For the cross term, not that Er−1⟨ϕr, εr⟩ = 0. So, this term is the sum of a martingale difference sequence. Since t is a
stopping time, we can apply the optimal stopping theorem and obtain

E

∑
r≤t

⟨ϕr, εr⟩

 = 0, (196)

which gives

−E

[∑
r<t

⟨ϕr, εr⟩

]
(196)
= E

[
⟨ϕr, εt⟩

] (a)
≤ GE∥εt∥ ≤ G

√
E∥εt∥2 ≤ G

√
E
∑
r≤T

∥εr∥2 ≤ σG
√
T + 1 ≤ σG

√
2T
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where (a) holds due to the definition of t.

Applying the telescoping sum over r = 1, . . . , T yields

E
∑
r<t

∥G(xr, yr;λr+1)∥2

≤

(
ρ2
ρ1

+
24
(
L2
g + γ−1

)2
Λ2

(1− φ)Cz

)
E
∑
r<t

(
Qr −Qr+1 + nr

Q

)
(195),(197)

≤

(
ρ2
ρ1

+
24
(
L2
g + γ−1

)2
Λ2

(1− φ)Cz

)(
Q1 −Q+Q−Qr + 10ϑG

√
2T + 10ϑ2σ2T

)
,

which gives

EQt −Q+
∑
r<t

1

ρ̃
∥G(xr, yr;λr+1)∥2 ≤ Q1 −Q+ 10ϑG

√
2T + 10ϑ2σ2T, (197)

where
1

ρ̃
≜
ρ2
ρ1

+
24
(
L2
g + γ−1

)2
Λ2

(1− φ)Cz
= O(ϑ) = O(T−1/2). (198)

The first bound P(t2 < T ) is

P(t2 < T ) = P

(⋃
r<T

∥εrmax∥ >
G

50ϑ

)
(a)

≤
∑
r<T

P
(
∥εrmax∥ >

G

50ϑ

)
(b)

≤ 2500ϑ2σ2T

G2

(c)

≤ ς

4
(199)

where in (a), we apply the union bound, in (b) we use Chebyshev’s inequality, and (c) holds because we can choose
ϑ = O(T−1/2) such that 0 < ς < 1.

The second bound P(t1 < T, t2 = T ) can be obtained as follows. In this case, we haveQr+1−Q > Q̄ and ∥εr∥ ≤ G/(50ϑ).
Note that as we always have Qr −Q ≤ Q̄, which implies that we have bounded gradient. From (193), we have

Qr+1 −Qr ≤ 10
(
ϑG∥εrmax∥+ ϑ2∥εrmax∥2

) (a)
≤ 10

(
ϑG2

50
+ ϑ2

G2

2500ϑ2

)
(b)

≤ Q̄

2
(200)

where (a) is true because we choose ϑ = O(T−1/2) for sufficiently large T , and (b) holds due to G2 ≜ 2Q̄.

Consequently, under the event {t1 < T, t2 = T}, we have

Qt −Q = Qt −Qt+1 +Qt+1 −Q >
Q̄

2
, (201)

which gives

P(t1 < T, t2 = T ) ≤ P
(
Qt −Q >

Q̄

2

)
(a)

≤
EQt −Q

Q̄/2
≤

2(Q1 −Q+
√
2 + σ2/40)

Q̄

(197)
≤ ς

4
(202)

where in (a) we use Markov’s inequality, (b) we choose ϑ ≤ 1/(10G
√
T ) in (197), and (c) holds because we choose

Q̄ = 8(Q1 −Q+
√
2 + σ2/40)/ς . Therefore, we have

P(t < T ) ≤ P(t2 < T ) + P(t1 < T, t2 = T ) ≤ ς

2
, (203)

which gives that P(t = T ) ≥ 1− ς/2. Then, from (197) we have

ρ̃
(
Q1 −Q+

√
2 + σ2/40

)
≥ E

∑
r<t

∥G(xr, yr;λr+1)∥2

≥ P(t = T )E

[∑
r<T

∥G(xr, yr;λr+1)∥2|t = T

]
≥ 1

2
E

[∑
r<T

∥G(xr, yr;λr+1)∥2|t = T

]
.

(204)
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Therefore, we can obtain

E

[
1

T

∑
r<T

∥G(xr, yr;λr+1)∥2|t = T

]
≤

2ρ̃
(
Q1 −Q+

√
2 + σ2/40

)
T

(a)
=
ςρ̃Q̄

4T

(b)

≤ ςϵ2

4
(205)

where (a) holds due to the definition of Q̄ and (b) is true since T ≥ Q̄/(ϑϵ2). Let E ≜ {T−1
∑

r<T ∥G(xr, yr;λr+1)∥2 >
ϵ} denote the event that the generated iterate does not converge to an ϵ-stationary point. Then, according to Markov’s
inequality, we have P(E) ≤ ς/2, which gives P(t < T ∪ E) ≤ ς .

Constraint Violation.

From (130), we can get

∥|g(xr, yr)− g⋆γ(x
r, yr)− δ|+∥2

≤ 2

∥∥∥∥g(xr, yr)− g(xr, zr)− 1

2γ
∥zr − yr∥2 − δ −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)

∥∥∥∥2
+ 2∥|∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)|+∥2 (206)

(234a)
≤ 6(ℓg + ℓγ)

2

(
σ2
3

α2
∥xr+1 − xr∥2 + σ2

3

β2
∥yr+1 − yr∥2 + 4σ2

2∥λr+1 − λr∥2
)

+
2

τ2
∥λr − λr+(x̂

r, ŷr)∥2 (207)

≤ 6(ℓg + ℓγ)
2

(
σ2
3

α2
∥xr+1 − xr∥2 + σ2

3

β2
∥yr+1 − yr∥2 + 4σ2

2∥λr+1 − λr∥2
)

+
2

τ2
∥λr − λr+(x̂

r, ŷr)∥2. (208)

Note that

∥λr+1 − λr∥2 = ∥λr+1 − λr+(x̂
r, ŷr) + λr+(x̂

r, ŷr)− λr∥2

≤ 2∥λr+(x̂r, ŷr)− λr∥2 + 2∥λr+1 − λr+(x̂
r, ŷr)∥2 (209)

≤ 2∥λr+(x̂r, ŷr)− λr∥2 + 2τ2∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2. (210)

Then, we can get

∥|g(xr, yr)− g⋆γ(x
r, yr)− δ|+∥2

≤ 6(ℓg + ℓγ)
2

(
σ2
3

α2
∥xr+1 − xr∥2 + σ2

3

β2
∥yr+1 − yr∥2

)
+

(
6(ℓg + ℓγ)

28σ2
2 +

2

τ2

)
∥λr − λr+(x̂

r, ŷr)∥2

+ 12τ2(ℓg + ℓγ)
2∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2. (211)

From (190) and (191), we have(
σ2
3

α2
∥xr+1 − xr∥2 + σ2

3

β2
∥yr+1 − yr∥2

)
,
2

τ2
∥λr − λr+(x̂

r, ŷr)∥2 = O
(
max{α, β}

(
Qr −Qr+1 + nr

Q

))
. (212)

Similarly, we can get τ2∥hr+1 −∇λK(x⋆(vr;λr), y⋆(vr;λr), vr;λr)∥2 = µτ(Qr −Qr+1 + nr
Q) according to (145).

Applying the telescoping and the same argument as (205), we can get

E

[
1

T

∑
r<T

|g(xr, yr)− g⋆γ(x
r, yr)− ϵ|2+|t = T

]
(204)
≤ O

(
ςQ̄√
T

)
= O

(
1√
T

)
. (213)

Slackness. If λr = 0, then it is trivial that |g(xr, yr)− g⋆γ(x
r, yr)− δ|λr is zero. So, we only need to consider the case

where λr > 0 as follows.
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Note that

|g(xr, yr)− g⋆γ(x
r, yr)− δ|2

≤ 3|g(xr, yr)− g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))|2

+ 3|g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− δ|2

+ 3|g⋆γ(xr, yr)− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))|2 (214)

(a)

≤ 6(ℓ2g + ℓ2γ)
(
∥yr − y⋆(x̂r, ŷr;λr+1)∥2 + ∥xr − x⋆(x̂r, ŷr;λr+1)∥2

)
+ 3max

{
1

τ2
∥λr − λr+(x̂

r, ŷr)∥2, ∥δ∥2
}

(215)

≤
6(ℓ2g + ℓ2γ)

β2(p− L)2
∥yr+1 − yr∥2 +

6(ℓ2g + ℓ2γ)

α2(p− L)2
∥xr+1 − xr∥2

+ 3max

{
1

τ2
∥λr − λr+(x̂

r, ŷr)∥2, ∥δ∥2
}

(216)

≤
6(ℓ2g + ℓ2γ)

(p− L)2
max

{
1

α2
,
1

β2

}(
∥xr+1 − xr∥2 + ∥yr+1 − yr∥2

)
+ 3max

{
1

τ2
∥λr − λr+(x̂

r, ŷr)∥2, ∥δ∥2
}

(217)

where in (a) there are two cases: 1) g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1)) − g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1)) ≥ 0

and we apply (234a) or g(x⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1))− g⋆γ(x
⋆(x̂r, ŷr;λr+1), y⋆(x̂r, ŷr;λr+1)) < 0, which gives

the upper bound of ∥δ∥2.

Applying (212) and the same argument as (205), we can get∑
r<t

∥g(xr, yr)− g⋆γ(x
r, yr)− δ∥2∥λr∥2 ≤

(
max{α, β}+ 1

τ

)
Λ(Q1 −Q+ 10ϑG

√
2T + 10ϑ2σ2T )

where (a) we choose the same parameters as before. Therefore, we can obtain

E

[
1

T

∑
r<T

∥g(xr, yr)− g⋆γ(x
r, yr)− ϵ∥2∥λr∥2|t = T

]
= O(ϵ2) = O

(
1√
T

)
. (218)

E. Additional Proofs
E.1. Proof of Contraction of LL Sequence

Lemma 10. Under A1-A5, suppose that the sequence {xr, yr, zr, x̂r, ŷr, λr, ∀r} is generated by TSP and γ ∈
(0, 1/(2ρ)). The difference between the iterates and their corresponding optimal solution satisfies the following
stochastic contraction property:

∥zr+1 − z⋆(xr, yr)∥2 ≤ ϱ∥zr − z⋆(xr, yr)∥2 + nr
z′(η, εrgz ), (219)

∥zr+1 − z⋆(xr+1, yr+1)∥2 ≤ φ∥zr − z⋆(xr, yr)∥2 +
(
2L2

z +
ηLz

2

)
∥xr+1 − xr∥2

+

(
2L2

z +
ηLz

2

)
∥yr+1 − yr∥2 + nr

z(η, ε
r
x, ε

r
y, ε

r
gz ) (220)
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where the contraction constants and the random errors are

ϱ ≜

(
1− η

2

(
1

γ
− ρ

))
< 1, (221a)

φ ≜ (1 + ηLz)

(
1− η

2

(
1

γ
− ρ

))
< 1, (221b)

nrz′(η, εrgz ) ≜ η⟨εrgz , z
r − z⋆(xr, yr)⟩+ 2η2∥εrgz∥

2,

nrz(η, ε
r
x, ε

r
y, ε

r
gz ) ≜ η(1 + ηLz)⟨εrgz , z

r − z⋆(xr, yr)⟩+ ⟨zr+1 − z⋆(xr, yr), η∇xz
⋆(x̃r, ỹr)εrx⟩ (221c)

+ ⟨zr+1 − z⋆(xr, yr), η∇yz
⋆(x̃r, ỹr)εry⟩+ 2η2(1 + ηLz)∥εrgz∥

2. (221d)

Proof.

∥zr+1 − z⋆(xr, yr)∥2

= ∥zr+1 − zr + zr − z⋆(xr, yr)∥2

= ∥zr+1 − zr∥2 + 2η
〈
zr+1 − zr, zr − z⋆(xr, yr)

〉
+ ∥zr − z⋆(xr, yr)∥2 (222)

(a)

≤
(
1− η

2

(
1

γ
− ρ

))
∥zr − z⋆(xr, yr)∥2 + η⟨εrgz , z

r − z⋆(xr, yr)⟩+ 2η2∥εrgz∥
2 (223)

where (a) is true due to the strong convexity of the loss function when γ ∈ (0, 1/(2ρ)).

∥zr+1 − z⋆(xr+1, yr+1)∥2

≤ ∥zr+1 − z⋆(xr, yr) + z⋆(xr, yr)− z⋆(xr+1, yr+1)∥2 (224)

≤ ∥zr+1 − z⋆(xr, yr)∥2 + ∥z⋆(xr, yr)− z⋆(xr+1, yr+1)∥2 + 2⟨zr+1 − z⋆(xr, yr), z⋆(xr, yr)− z⋆(xr+1, yr+1)⟩
≤ ∥zr+1 − z⋆(xr, yr)∥2 + 2L2

z∥yr+1 − yr∥2 + 2L2
z∥xr+1 − xr∥2

+ 2⟨zr+1 − z⋆(xr, yr), z⋆(xr, yr)− z⋆(xr+1, yr+1)⟩. (225)

Then, by the mean value theorem, we have that (x̃r+1, ỹr+1) = (axr+1 + (1− a)xr, ayr+1 + (1− a)yr) where 0 < a < 1
such that

⟨zr+1 − z⋆(xr, yr), z⋆(xr, yr)− z⋆(xr+1, yr+1)⟩
≤ ⟨zr+1 − z⋆(xr, yr),∇z⋆(x̃r, ỹr)(x̃r+1 − x̃r)⟩ (226)
(a)

≤ ηLz∥zr+1 − z⋆(xr, yr)∥∥(x̃r+1, ỹr+1)− (x̃r, ỹr)∥+ ⟨zr+1 − z⋆(xr, yr), η∇xz
⋆(x̃r, ỹr)εrx⟩

+ ⟨zr+1 − z⋆(xr, yr), η∇yz
⋆(x̃r, ỹr)εry⟩ (227)

(b)

≤ ηLz∥zr+1 − z⋆(xr, yr)∥(∥xr+1 − xr∥+ ∥yr+1 − yr∥) + ⟨zr+1 − z⋆(xr, yr), η∇xz
⋆(x̃r, ỹr)εrx⟩

+ ⟨zr+1 − z⋆(xr, yr), η∇yz
⋆(x̃r, ỹr)εry⟩ (228)

≤ ηLz∥zr+1 − z⋆(xr, yr)∥2 + ηLz

2
(∥xr+1 − xr∥2 + ∥yr+1 − yr∥2) + ⟨zr+1 − z⋆(xr, yr), η∇xz

⋆(x̃r, ỹr)εrx⟩

+ ⟨zr+1 − z⋆(xr, yr), η∇yz
⋆(x̃r, ỹr)εry⟩ (229)

where (a) follows from the continuity of z⋆, and (b) holds due to the convex combination of the two points.
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Combining both terms yields

∥zr+1 − z⋆(xr+1, yr+1)∥2

≤ (1 + ηLz)∥zr+1 − z⋆(xr, yr)∥2 +
(
2L2

z +
ηLz

2

)
∥xr+1 − xr∥2 +

(
2L2

z +
ηLz

2

)
∥yr+1 − yr∥2

+ ⟨zr+1 − z⋆(xr, yr), η∇xz
⋆(x̃r, ỹr)εrx⟩+ ⟨zr+1 − z⋆(xr, yr), η∇yz

⋆(x̃r, ỹr)εry⟩ (230)
(223)
≤ (1 + ηLz)

(
1− η

2

(
1

γ
− ρ

))
∥zr − z⋆(xr, yr)∥2 +

(
2L2

z +
ηLz

2

)
∥xr+1 − xr∥2 +

(
2L2

z +
ηLz

2

)
∥yr+1 − yr∥2

+ η(1 + ηLz)⟨εrgz , z − z⋆(xr, yr)⟩+ 2η2(1 + ηLz)∥εrgz∥
2

+ ⟨zr+1 − z⋆(xr, yr), η∇xz
⋆(x̃r, ỹr)εrx⟩+ ⟨zr+1 − z⋆(xr, yr), η∇yz

⋆(x̃r, ỹr)εry⟩. (231)

E.2. Proof of Dual Error Bound
Lemma 11. Under A1-A5, suppose that λ, ȳ⋆(x̂, ŷ) are bounded and p > L, then the dual error bound holds, namely,

∥y⋆(x̂, ŷ;λ+(x̂, ŷ))− ȳ⋆(x̂, ŷ)∥2 + ∥x⋆(x̂, ŷ;λ+(x̂, ŷ))− x̄⋆(x̂, ŷ)∥2

≤ σw∥λ− λ+(x̂, ŷ)∥∥λ(x̂, ŷ)− λ+(x̂, ŷ)∥ (232)

where

σw ≜
1 + τ(2ℓg + ℓγ)σ2

2τ(p− L)
, and σ2 ≜

p+ L

p− L
. (233)

Proof. First, let

λ+(v) = Proj≥0 [λ+ τ∇λK(x⋆(v;λ), y⋆(v;λ), v;λ)] , (234a)

λ(v) ∈ argmax
λ≥0

K(x̄⋆(v), ȳ⋆(v), v;λ). (234b)

Based on the strong convexity of K(x, ·, x̂, ŷ;λ) and K(·, y, x̂, ŷ;λ), we have

K(x̄⋆(v), ȳ⋆(v), v;λ+(v))−K(x⋆(v;λ+(v)), ȳ
⋆(v), v;λ+(v)) ≥

p− L

2
∥x⋆(v;λ+(v))− x̄⋆(v)∥2, (235a)

K(x⋆(v;λ+(v)), ȳ
⋆(v), v;λ+(v))−K(x⋆(v;λ+(v)), y

⋆(v;λ+(v)), v;λ+(v))

≥ p− L

2
∥y⋆(v;λ+(v))− ȳ⋆(v)∥2, (235b)

K(x⋆(v;λ+(v)), y
⋆(v;λ+(v)), v;λ(v))−K(x⋆(v;λ+(v)), ȳ

⋆(v), v;λ(v)) ≥ p− L

2
∥y⋆(v;λ+(v))− ȳ⋆(v)∥2, (235c)

K(x⋆(v;λ+(v)), ȳ
⋆(v), v;λ(v))−K(x̄⋆(v), ȳ⋆(v), v;λ(v)) ≥ p− L

2
∥x⋆(v;λ+(v))− x̄⋆(v)∥2. (235d)

Note that λ+(v) is the maximizer of the following problem.

max
λ̃≥0

τK(x⋆(v;λ+(v)), y
⋆(v;λ+(v)), v; λ̃)− δ̃T (v;λ, λ+(v))λ̃ (236)

where

δ̃(v;λ, λ+(v)) = (λ+(v) + τ∇λK(x⋆(v;λ+(v)), y
⋆(v;λ+(v)), v;λ+(v)))

− (λ+ τ∇λK(x⋆(v;λ), y⋆(v;λ), v;λ)) . (237)
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According to the Lipschitz continuity of ∇λK, we have

∥δ̃(v;λ, λ+(v))∥
≤ ∥λ+(v)− λ∥+ τ∥g(x⋆(v;λ+(v)), y⋆(v;λ+(v)))− g(x⋆(v;λ), y⋆(v;λ))∥
+ τ∥g⋆γ(x⋆(v;λ+(v)), y⋆(v;λ+(v)))− g⋆γ(x

⋆(v;λ), y⋆(v;λ+(v)))∥ (238)
(a)

≤ (1 + τ(2ℓg + ℓγ)σ2) ∥λ− λ+(v)∥ (239)

where in (a) we use the primal error bounds (26), (25b), and apply the Lipschitz continuity of g(, ) and g⋆γ(, ).

Based on the definition of λ+(v) (cf. (234a)), we have

τK(x⋆(v;λ+(v)), y
⋆(v;λ+(v)), v;λ(v))− δ̃T (v;λ, λ+(v))λ(v)

≤ τK(x⋆(v;λ+(v)), y
⋆(v;λ+(v)), v;λ+(v))− δ̃T (v;λ, λ+(v))λ+(v). (240)

Subsequently, we can obtain

τK(x⋆(v;λ+(v)), y
⋆(v;λ+(v)), v;λ(v))− τK(x⋆(v;λ+(v)), y

⋆(v;λ+(v)), v;λ+(v))

≤ (λ(v)− λ+(v))
T
δ̃(v;λ, λ+(v)) (241)

(239)
≤ ∥λ(v)− λ+(v)∥ (1 + τ(2ℓg + ℓγ)σ2) ∥λ− λ+(v)∥. (242)

According to the definition of λ(v) (cf. (234b)), we have

K(x̄⋆(v), ȳ⋆(v), v;λ(v)) ≥ K(x̄⋆(v), ȳ⋆(v), v;λ+(v)). (243)

Combing (235a) to (235d), and (243) yields

2τ(p− L)
(
∥y⋆(v;λ+(v))− ȳ⋆(v)∥2 + ∥x⋆(v;λ+(v))− x̄⋆(v)∥2

)
≤ ∥λ(v)− λ+(v)∥ (1 + τ(2ℓg + ℓγ)σ2) ∥λ− λ+(v)∥. (244)

Therefore, we have

∥y⋆(x̂r, ŷr;λ+(x̂r, ŷr))− ȳ⋆(x̂r, ŷr)∥2 + ∥x⋆(x̂r, ŷr+1;λ+(x̂
r, ŷr))− x̄⋆(x̂r, ŷr)∥2

≤ σw∥λr+1 − λ+(x̂
r, ŷr)∥∥λ(x̂r, ŷr)− λ+(x̂

r, ŷr)∥ (245)

where σw ≜ 1 + τ(2ℓg + ℓγ)σ2/(2τ(p− L)).
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F. More Discussion on KKT Solutions and Additional Numerical Results
F.1. Interpretation of the Solution

δ = ǫ

(a) Distribution alignment

δ = ǫ

(b) Distribution shift

Figure 3. Illustration of the Importance of Finding the KKT Solutions.

We consider a one-dimensional simple bilevel problem, formulated as minx ℓUL(x) subject to x ∈ argminx′ ℓLL(x
′), as

illustrated in Figure 5, to emphasize the importance of achieving KKT solutions, particularly concerning the slackness
condition. Due to the nonconvexity of the LL problem, there may exist multiple stationary points. Assuming that x lies
within the optimal set of the LL solution, it then further needs to find the stationary (or optimal) point of the UL loss function.
When there is overlap between the two loss functions, as depicted in Figure 5(a), the optimal point of the UL loss function
coincides with the best solution. However, if there is a shift between the UL and LL optimal sets, the slackness condition
ensures that the solution must be attained at the boundary. In contrast, penalty-based methods only guarantee convergence
to some stationary points, without ensuring this level of optimality. As illustrated in Figure 5(a), the obtained solution
corresponds to the minimum point of the UL given that x belongs to the LL optimal set at least in this case. This underscores
the importance of finding KKT points rather than stationary points in terms of generalization performance.

F.2. Additional Numerical Results
The algorithms are further tested on representation learning for a multi-task sinusoid regression problem (Rajeswaran et al.,
2019), where the UL loss is K−1

∑K
k=1 ℓ(x, yk,Dval) and the lower-level loss is ℓ(x, yk,Dtr), ∀k. Here, K = 10 denotes

the number of tasks, ℓ() is the mean square loss, Dval denotes the validation data samples (with amplitudes varying within
[0.1, 5.0], phase varying within [0, π], and frequencies varying within [0.1, 3]), and Dtr denotes the training data samples.
In the numerical experiments, the selected learning rates for all algorithms are 0.01 for x, 0.05 for y, and 0.06 for z. The
dual variable learning rate for TSP is 0.5, selected from {1, 0.5, 0.1, 0.01}. The neural network includes 2 hidden layers of

TSP

(a) Train Errors

TSP

(b) Test Errors

Figure 4. Training and Test Errors vs. Number of Iterations.

43



TSP: A Two-Sided Smoothed Primal-Dual Method for Nonconvex Bilevel Optimization

TSP

(a) Train Errors

TSP

(b) Test Errors

Figure 5. Training and Test Errors vs. Computational Time.

size 40 with ReLU nonlinearities (the weights are represented by x) and K perception layers as heads for each task (each
represented by yk). There are a total of 10 training tasks, each with 10 data samples, and 5 test tasks. The training and test
errors are averaged over these tasks. The experiments are conducted over 10 independent trials.

In Figure 5(a), it can be seen that the proposed TSP and MEHA, being single-loop algorithms, exhibit a faster convergence
rate in terms of runtime compared to the double-loop algorithms BOME and PBGD. In Figure 5(b) TSP demonstrates a
lower test error compared to the other algorithms. Specifically, TSP is designed to find KKT points rather than stationary
points. The figure shows that the solutions achieved by TSP provide lower test errors than those obtained by the other
algorithms.
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