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Abstract

Data augmentation methods such as Copy-Paste have been001
studied as effective ways to expand training datasets while002
incurring minimal costs. While such methods have been003
extensively implemented for image level tasks, we found no004
scalable implementation of Copy-Paste built specifically for005
video tasks. In this paper, we leverage the recent growth006
in video fidelity of generative models to explore effective007
ways of incorporating synthetically generated objects into008
existing video datasets to artificially expand object instance009
pools. We first procure synthetic video sequences featuring010
objects that morph dynamically with time. Our carefully011
devised pipeline automatically segments then copy-pastes012
these dynamic instances across the frames of any target013
background video sequence. We name our video data aug-014
mentation pipeline Synthetic Dynamic Instance Copy-Paste,015
and test it on the complex task of Video Instance Segmenta-016
tion which combines detection, segmentation and tracking017
of object instances across a video sequence. Extensive ex-018
periments on the popular Youtube-VIS 2021 dataset using019
two separate popular networks as baselines achieve strong020
gains of +2.9 AP (6.5%) and +2.1 AP (4.9%). We make our021
code and models publicly available.022

1. Introduction023

Analysing video data is one of the central tasks in the field024
of computer vision. With the proliferation of video data to-025
day, a fundamental challenge revolves around training net-026
works [7, 15] that generalize and scale well in the face027
of large data diversity. It can be difficult to capture the028
immense variety and nuances of scenes in the real world029
through recorded image sequences. To tackle this, we have030
been relying on increasingly larger datasets [6, 62] to fulfill031
the needs of larger and deeper networks [31, 38]. How-032
ever, each captured image usually requires human annota-033
tion, an endeavour that has become the central bottleneck034
in this pipeline as the number of recorded sequences grow.035
Video instance segmentation [47, 50, 52, 54, 58] (VIS) has036
emerged as a comprehensive video analysis task that en-037

Figure 1. Our proposed data-augmentation framework generates
synthetic object instances that are temporally dynamic and copy-
pastes them using a linear trajectory onto each frame of a video
sequence (F1, F2, ..., FNf ). Our aim is to increase instance popu-
lation of any existing video dataset.

compasses recognition, segmentation and tracking of ob- 038
ject instances across a video scene. To train a network for 039
this task requires densely labelled image sequences where 040
each object of interest is identified, labelled and its shape 041
traced with a segmentation mask. The cost and time needed 042
for segmentation labelling is often an order of magnitude 043
higher than obtaining labels for other vision tasks such as 044
classification where dense masks are not required. Further- 045
more, expanding any dataset manually requires finding suit- 046
able videos that match the complexity and scene structure 047
of that dataset which can prove to be a difficult affair, espe- 048
cially for object categories that are intrinsically rare. 049

Data augmentations [41] have been extensively studied as 050
simple ways of artificially expanding a dataset. Copy- 051
paste [8, 9, 12, 54] provides an object-aware augmentation 052
pipeline where object instances are extracted from labelled 053
datasets using segmentation masks and pasted onto existing 054
background images or videos. These instances are drawn 055
from the source dataset itself [9, 54] or from 3D models 056
[34], neither of which provide us with a framework that is 057
easily scalable since obtaining segmentation masks and 3D 058
object models are both quite resource-intensive. Advance- 059
ments in generative models have transformed computer vi- 060
sion in recent years. Methods [10, 60] have started to em- 061
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ploy synthetic images generated from text-to-image gener-062
ative models [39, 40] to improve the performance of the063
copy-paste augmentation. Off-the-shelf object segmenters064
[32, 37] are used to obtain new object instances from syn-065
thetic data, thereby eliminating the need for human labeling.066
Although synthetic data has shown to improve instance seg-067
mentation in the image domain, the application of synthetic068
data for copy-paste in the video domain has not yet been ex-069
plored. To this end, we propose a novel data augmentation070
method for VIS, purpose-built for dense video tasks, and071
enable a natural expansion of existing datasets by introduc-072
ing object instances that simulate the dynamism of objects073
in the real world.074

The recent surge in the popularity and development of diffu-075
sion models for text-to-video (T2V) generation has resulted076
in the creation of networks [14, 16, 19] that can generate077
complex video scenes, based on text prompts, with remark-078
able realism. Inspired by these advancements in video fi-079
delity spearheaded by diffusion-based generative models,080
we explore new ways of generating, segmenting, and then081
incorporating synthetically generated dynamic instances of082
specific object categories into existing video scenes. We083
do this to artificially inflate the object population, aiming084
to synthesise a greater variety of object features in complex085
video scenes. We devise an infinitely scalable data augmen-086
tation framework that requires no manual dense labeling for087
dynamic instance generation or segmentation.088

Our pipeline, using a text-to-video generative model, pro-089
duces synthetic video scenes that capture rich object se-090
mantics through diverse viewpoints and action-states. We091
extract segmentation masks for objects in each scene using092
an off-the-shelf self-supervised salient object segmenter. To093
ensure the validity of the generation and segmentation pro-094
cess, we use a zero-shot image recognition model trained095
on very large text-image multi-model datasets such as CLIP096
[38] to filter out any erroneously generated or segmented097
objects. Finally, we use images from YTVIS21 as back-098
ground and randomly initialise the starting positions of gen-099
erated objects. We explore different ways of copy-pasting100
dynamic objects in a video sequence and show that a linear101
trajectory with randomly sampled displacement gives best102
results. We illustrate this in Figure 1.103

We highlight our main contributions as follows:104

• We propose Synthetic Dynamic Instance Copy-Paste105
(SDI-Paste) as a novel synthetic data augmentation106
regime for the task of Video Instance Segmentation. Our107
method does not require any manual dense label annota-108
tion and is infinitely scaleable.109

• We present a pipeline for on-demand crafting and seg-110
menting of temporally dynamic objects in diverse scenes111
using only the category information of required objects.112

We then explore multiple ways of copy-pasting these in- 113
stances onto existing video sequences and discover that 114
a linear monotonic object trajectory with random jumps 115
gives best results. 116

• Extensive experiments on the popular YTVIS21 dataset 117
show the impressive performance of SDI-Paste. We equip 118
two different online VIS networks with our pipeline and 119
show a strong 6.5 % (2.9 AP) improvement. We also con- 120
duct multiple ablation studies for a thorough evaluation 121
of the different parts of our framework. We release our 122
synthetic dataset and code-base for future video data aug- 123
mentation research. 124

2. Related Works 125

Video Instance Segmentation (VIS) [52] is a dense vi- 126
sion task that requires joint classification, segmentation and 127
tracking of instances across video sequences. We mainly 128
divide the VIS methods into two groups: offline and on- 129
line. Offline (or per-clip) methods [2, 22, 29, 47] pro- 130
cess the entire video clip simultaneously. This concurrent 131
processing of numerous frames allows for deeper contex- 132
tual understanding between them. However, these meth- 133
ods require significantly high processing power and mem- 134
ory during both training and inference. Prominent offline 135
VIS methods either employ mask propagation [2, 29] or 136
use transformer frameworks [22, 47]. Online (or per-frame) 137
methods [17, 21, 50, 52–54] carry out instance segmen- 138
tation using only a small number of frames within a lo- 139
cal range, aiming to facilitate near real-time processing. 140
At each step, instances are detected and assembled into 141
short sequences from the available frames. For example, 142
CTVIS [54] are built on top of image-level instance seg- 143
mentation models [4, 5] by adding an additional pipeline 144
that performs tracking. Memory mechanisms are utilized 145
in IDOL [50] and CTVIS [54] to store instance identities 146
as more frames become available, which improve tracking 147
performance through consistent re-identification of object 148
instances. While online VIS methods lag behind offline 149
methods in terms of perfomance, they offer efficient train- 150
ing/inference cycle with lower memory usage. For this rea- 151
son, we test SDI-Paste on online VIS. Specifically, we build 152
and test our pipeline on CTVIS [54] and IDOL [50] as they 153
are among the state-of-the-art online VIS networks. 154

Video Generation. Diffusion models [43] have recently 155
seen rapid development in generation of high-resolution 156
complex image scenes and are the most popular framework 157
for Text-to-Image (T2I) synthesis [33, 35]. Stable Diffu- 158
sion [40] performs sampling in latent feature space using an 159
autoencoding framework to enable T2I generation. More 160
recently, T2I methods have been explored for video gen- 161
eration conditioned on text prompts based on a diffusion 162
framework [19]. Methods since have improved upon this 163
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work using a pipeline where a pre-trained T2I model is used164
as backbone and motion/temporal modules are added and165
then trained using video data [3, 16, 18, 20]. Animated-166
iff [14] uses a Stable Diffusion backbone and learns gener-167
alised motion priors to animate image scene. While it out-168
puts video clips only 16 frames long, this is sufficient for169
online VIS methods as they usually take only a few input170
images. The generated animations can be chosen from a171
variety of image domain stylisations and is ready to be used172
out-of-the-box. All pre-trained models are made available173
and the code-base is well supported. For these reasons, we174
choose Animatediff to develop a novel data augmentation175
framework for VIS.176

Image-based Data Augmentations are a low-cost, effec-177
tive way to enlarge training datasets [25, 26, 42, 45]. Copy-178
paste [8, 9, 12] provides an object-aware data augmenta-179
tion framework where objects are extracted from labelled180
datasets using segmentation masks and pasted onto exist-181
ing background images. Ghiasi et al. [12] find that ran-182
dom pasting of instances on a background, without blend-183
ing or context, is sufficient to achieve good improvements.184
For augmentation pipelines such as Copy-Paste, obtaining185
novel instances of the right category or from varying ob-186
ject viewpoints/representations can be challenging due to187
the large volume of instances needed. There have been188
works that use 3D rendering to insert objects into image189
scenes [23, 34, 44]. However, they require 3D model repos-190
itories that require human input. Recently, X-Paste [60] in-191
troduces object instances generated using Stable Diffusion192
[40] into the Copy-Paste framework for Instance Segmen-193
tation. Text-based image generative models [40] can pro-194
duce an unlimited number of images which lends X-Paste195
a level of scalability that is difficult to match using exist-196
ing datasets. Furthermore, the ability to generate any object197
provides an avenue of training networks to handle rare ob-198
ject classes.199

Data augmentation strategies for Video tasks usually in-200
volve extensions of image-based methods [36]. While these201
improve performance, they fall short on leveraging the full202
scope of temporal dynamism that is unique to videos. Dy-203
naAugment [24] and Group RandAugment [1] extend com-204
mon image-based augmentation methods for video classi-205
fication. Other approaches involve mixing multiple video206
scenes akin to the copy-paste ethos. VideoMix [56] extends207
CutMix [55] by cutting and pasting frames from two differ-208
ent scenes. SV-Mix [46] and Learn2Augment [13] combine209
CutMix and Mixup [57] in a learnable framework. Zhao210
et al. [61] experiment with spatial and feature based aug-211
mentations for Video Object Tracking while Lee et al. adapt212
Copy-Paste for Video Inpainting [27]. However, we found213
no works exploring data augmentation for VIS.214

These methods augment data by transforming or combin-215

ing existing labelled videos. For augmentation pipelines 216
such as Copy-Paste, obtaining novel instances of the right 217
category or from varying object viewpoints/representations 218
can be challenging as many instances are needed. Some 219
works use 3D rendering to insert objects into image scenes 220
[23, 34, 44]. However, they employ 3D model repositories 221
that require human input. This is costly for tasks like VIS 222
that require many object types and unique instances. 223

In [59], Zhang et al. use a Generative Adversarial Network 224
to produce a “dynamic” image by compressing the temporal 225
information of foreground objects from videos into one sin- 226
gle static image. The process of sampling to compress video 227
information into a single static image is lossy - we posit 228
valuable information is likely to be lost. Furthermore, this 229
process is unsuitable for VIS as it requires dense segmen- 230
tation masks for each frame of a video sequence whereas 231
their “dynamic” sampling always treats an entire video se- 232
quence as a single still image. More recently, generative 233
models have been utilised to simulate video road scenes 234
for the task of autonomous driving [11, 28, 49]. While 235
these approaches also use diffusion-based generative mod- 236
els for synthetic scene generation, their focus is on video 237
scenes limited to street-view elements (such as cars, trees, 238
building, etc) and built specifically for autonomous driving 239
needs. 240

In this work, we propose a pipeline that leverages text-to- 241
video models within a Copy-Paste framework that gener- 242
ates and integrates object instances of diverse categories. 243
This pipeline is designed to be easily adapted for any 244
video task involving segmentation or tracking of diverse 245
object instances. We aim to inject synthetically-generated, 246
temporally-dynamic instances to expand the pool of object 247
instances in existing video datasets. We investigate this 248
pipeline’s effectiveness and compare with new baselines as, 249
to the best of our knowledge, ours is the first work to explore 250
data augmentation strategies specifically for VIS. 251

3. Methodology 252

In this work, we aim to investigate an effective data aug- 253
mentation scheme for dense video tasks by incorporating 254
synthetically generated data. A straightforward method to 255
achieve this goal is to extract object instances from static 256
images and paste the same instance repeatedly into each 257
frame of a video sequence. However, static instances fail 258
to represent the inherent dynamism of real world objects 259
that is captured in video. Without considering the dynamic 260
nature of video data, achieving satisfactory performance is 261
challenging. 262

This work proposes a natural extension of the copy-paste 263
framework, specifically designed for video, demonstrating 264
that dynamic generative object features provide sufficient 265
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Figure 2. Illustration of our SDI-Paste pipeline. Firstly, Synthetic Video Generation uses text prompts to obtain diverse video scenes.
Secondly, frames in each scene are segmented to acquire synthetic dynamic object instances. Finally, using a linear-random trajectory
scheme, these dynamic instances are copy-pasted onto existing video sequences to compose the augmented dataset.

realism and supervision to improve performance. We em-266
ploy a text-to-video generative diffusion model to create267
photo-realistic video frames. These frames are segmented268
and filtered using a zero-shot classification model to obtain269
object instance sequences. Finally, we insert these object in-270
stances as a dynamic sequence in moving locations through-271
out the successive frames of a video clip.272

We name our framework Synthetic Dynamic Instance273
Copy-Paste (SDI-Paste) and show comprehensive testing274
for the challenging task of VIS. Our SDI-Paste pipeline in-275
cludes three main steps: Synthetic Video Generation, Video276
Instance Segmentation, and Dynamic Instance Composi-277
tion. Details follow below.278

3.1. Synthetic Video Generation279

To generate synthetic videos, we employ a text-to-video280
model, such as AnimateDiff [14], which incorporates mo-281
tion dynamics into generated static image scenes. Animate-282
Diff animates images obtained through Stable Diffusion by283
using a separate motion modeling module trained to learn284
motion priors from large-scale video datasets. In this work,285
we aim to investigate augmentation using images featuring286
objects that change smoothly and dynamically over time,287
unlike Stable Diffusion, which exclusively produces static288
images [60].289

We generate animated sequences for specific classes by pro-290
viding the text-to-video model with a sentence prompt that291
describes the object in a dynamic scene. Through empir-292
ical experiments, we discovered that a simple yet effective293
way to produce a diverse set of objects and action-states was294
to include generic adjectives such as “moving” and “dy-295
namic” to describe the object and to place it in a “chang-296
ing” background. For example, to generate multiple and297
varied scenes for the object class “bear”, the text prompt298
will be:299

A close up video of one moving dynamic bear in changing300
background, moving camera, centred.301

where bear is a variable depending on the object class. We 302
use this sentence as the input to AnimateDiff. We find 303
that this same sentence, when run repeatedly, results in a 304
new video scene with visually unique objects and diverse 305
action-states each time. We use the object categories from 306
YouTube-VIS [52] to generate the necessary quantity of text 307
inputs. When each of these text inputs is passed to An- 308
imateDiff, it results in a short video clip comprising 16 309
frames. 310

We show some examples of synthetic frames in Figure 3 311
where dynamic objects naturally morph over time. We 312
found that the generative model sometimes introduce small 313
feature aberrations, such as an extra ear on the rabbit (row 314
1) or additional feet on the fox (row 3). However, despite 315
these deformed features that become visible upon close in- 316
spection, these objects are still immediately visually recog- 317
nisable. We demonstrate that incorporating these aberra- 318
tions into the augmentation process leads to a remarkable 319
improvement in performance. We hypothesize that these 320
aberrations provide an extra challenge to the network as it 321
learns to not only identify the correct classifications but also 322
learns to track as objects morph and deform due to changing 323
features, viewpoints and actions. Furthermore, in some in- 324
stances, these aberrant features can be seen to simulate the 325
sudden appearance/disappearance of object features (such 326
as a limb) that might manifest in a real scene. 327

3.2. Video Instance Segmentation 328

The next step is video instance segmentation where we ac- 329
quire segmentation masks for objects in all generated video 330
frames. Since each generated frame has a single salient 331
object against a generic background, we can use any off- 332
the-shelf salient object segmentor to extract foreground in- 333
stance masks. In our work, we use TokenCut [48], a graph- 334
based algorithm that leverages features obtained from a self- 335
supervised transformer to detect and segment salient objects 336
in images and videos. 337
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Figure 3. Examples of dynamic video frames generated with AnimateDiff [14]. We can observe single salient foreground objects under-
going seamless shape and viewpoint transitions as a result of their actions. Object features are mostly preserved barring some aberrations
such as extra ears or feet.

To ensure the segmentation masks successfully extract the338
foreground object, we filter them using CLIP [38, 60]. In339
our setting, CLIP is employed as an assessor that matches340
the input text prompt and the resulting image content to ob-341
tain a relevance score for each frame. This score is used342
to judge the semantic relevance of the generated image and343
filter out instances with failed generations or erroneous seg-344
mentations. Additionally, masks occupying less than 5% or345
more than 95% of the total image area are removed.346

3.3. Dynamic Instance Composition347

Figure 4. Figure showing linear instance placement trajectory. The
direction θ is constant for all frames but the displacement ∆ varies
frame by frame.

We employ a class-balanced strategy [60] to sample in-348
stances from the segmented masks of the generated ob-349
jects, and then randomly paste them onto a sequence of350
background frames. We use videos directly from the target351
dataset as the background and paste the generated instances352

on top of existing objects in each frame. Objects that are 353
fully occluded after composition are removed. 354

We introduce a dynamic instance copy-paste strategy for 355
video tasks that can be employed to a variable number of 356
frames within a background sequence. We assume that 357
there are Nf consecutive frames in a background video se- 358
quence: {F1, F2, ..., FNf

}. First, we randomly select the 359
number of novel objects Ni we expect to introduce into 360
this background sequence: Ni ∈ [1, Nmax], Nmax = 20. 361
Then we sample Ni animated instance categories. Each 362
sampled category consists of Nf instances (i1, i2, ..., iNf

) 363
with one instance for each frame of the background video 364
sequence. 365

Starting with the first frame in the background sequence, 366
we randomly sample the starting xy-coordinates (x0, y0) for 367
the first instance of each sampled category: 368

x0 ∼ U [0,W ], y0 ∼ U [0, H] (1) 369

where W and H give the width and height of the back- 370
ground image respectively. For each subsequent frame, a 371
trajectory system is imposed for the positioning of the re- 372
maining instances. Empirically, we achieved the best results 373
following a linear trajectory for pasting instances across 374
background frames. For each object placement, we fix a 375
constant direction throughout the background sequence but 376
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Figure 5. Example of dynamic video frames obtained after instance composition. Dynamic Instances are copy-pasted onto a background
image with its existing objects to enlarge the instance pool for each sequence.

allow for variable displacement between frames. Specifi-377
cally, for each object instance ij , j ∈ [1, Nf ], we randomly378
sample an angle over a uniform distribution:379

θij ∼ [0, 360]◦ (2)380

We follow the direction θij when pasting instances in all the381
following background frames. However, we allow the dis-382
placement of instance positions between frames to change383
randomly. We show this process in Figure 4. For each in-384
stance ij , we randomly sample a displacement:385

∆ij ∼ U [0,∆max] (3)386

where ∆max is the maximum allowable displacement and387
is a hyper-parameter we set during training. Based on θij388
and ∆ij , we obtain the pixel displacement along x- and y-389
axis using standard trigonometry:390

(δxij , δyij ) = (∆ij ∗ cos θij ,∆ij ∗ sin θij ) (4)391

Then, we apply this to the initial instance position to obtain392
the xy-coordinates for each subsequent frame:393

(xij , yij ) = (xij−1
+ δxij , yij−1

+ δyij ) (5)394

We follow X-Paste [60] in determining object scale as we395
paste instances onto the background frames. For each in-396
stance, we sample a scale Si from a Gaussian distribution397
N(µC , σ

2
C) and paste it with scale S2

i HW on a background398
frame where H , W denote the image height and width.399
For each category in the dataset, we calculate the mean µC400
and standard variance σ2

C of object scales (
√

OM/(HW )401
within that category. Here, OM is the object mask area and402
HW gives the total image area. In Figure 5, we show some403
sample video frames after instance composition.404

4. Experiments 405

4.1. Implementation 406

Datasets. We train, test and evaluate our method on 407
YTVIS21 [52], a popular VIS dataset. YTVIS21 is a 408
smaller subset of the YouTube-VOS (Video Object Seg- 409
mentation) dataset [51] from which 40 common object cat- 410
egories were retained. It consists of 2,900 videos each 3 to 411
6 seconds long with 4,883 unique objects. During training, 412
we use YTVIS21 as the background images on which we 413
paste generated objects. 414

Baseline Frameworks. We design SDI-Paste as a plug- 415
and-play dataset module that can be added to any online 416
VIS training regime and reap immediate performance gains. 417
To demonstrate, we test SDI-Paste on two popular online 418
VIS frameworks: CTVIS [54] and IDOL [50]. For CTVIS, 419
we test on a ResNet-50 [15] backbone which is pre-trained 420
on COCO [30]. The baseline is trained for 32000 iter- 421
ations. To incorporate the SDI-Paste pipeline, we divide 422
the training regimen into two parts: first we pre-train with 423
SDI-Paste enabled for 16000 iterations. We use this as pre- 424
trained, disable SDI-Paste, and finetune for 16000 iterations 425
on the base dataset only. We follow standard training set- 426
tings as listed on [54]. Similarly, for IDOL, we test on 427
pre-trained ResNet-50 [15] backbone and follow the same 428
training regimen to obtain the baseline and a version of the 429
model trained with SDI-Paste. While CTVIS takes in 10 se- 430
quences as input at each training step, IDOL requires only 431
2. SDI-Paste can support up to 16 frames of input as we 432
are limited by the video throughput of our generative net- 433
work. 434
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Method AP AP50 AP75 AR1 AR10

CTVIS (Baseline) 44.3 65.3 48.8 40.5 55.2
CTVIS (SDI-Paste) 47.2 (+6.5%) 68.2 51.8 41.3 56.3

IDOL (Baseline) 42.7 64.3 46.3 39.6 53.9
IDOL (SDI-Paste) 44.8 (+4.9%) 67.7 49.5 39.8 54.2

Table 1. Results comparing the performance of two online VIS networks with and without SDI-Paste.

While both of these methods offer models with larger back-435
bones that compete with state-of-the-art in performance,436
they come with large compute resource overheads. Thus,437
we choose to test our pipeline on lighter versions of the438
models to demonstrate the efficacy of SDI-Paste as a439
pipeline that improves on any baseline regardless of the base440
network. We report standard metrics: AP , AP50, AP75,441
AR1 and AR10.442

SDI-Paste Settings. SDI-Paste is a modular framework443
comprising of a text-to-video generator (AnimateDiff) and444
an image foreground segmentor (TokenCut). For Animate-445
Diff [14], we use the 40 object categories in YTVIS21 to446
produce animated video instances and obtain 470 video se-447
quences for each category. Each sequence is 16 frames long448
resulting in 300800 generated image frames. We choose449
RealisticVision image stylisation for AnimateDiff as it pro-450
duces the most natural looking videos. The remaining set-451
tings are set as recommended by the authors.452

Likewise, for TokenCut [48], we use the recommended set-453
ting to segment each frame in a video sequence individu-454
ally. Each segmented object is input into a CLIP model455
[38] and filtered. We determined qualitatively that a clip456
score threshold of 0.21 filters poorly segmented/generated457
objects. We also remove objects that occupy less than458
5% and more than 95% of the total image area since such459
objects are likely to have been mis-segmented. During460
dynamic instance composition, we set maximum number461
Nmax of novel objects introduced to each video sequence462
to be 20.463

4.2. Results464

Main Results. In Table 1, we compare our SDI-Paste465
trained models against baseline for CTVIS and IDOL and466
see solid improvements of 6.5% and 4.9% respectively. We467
achieve this not by changing network structure or altering468
training strategies but purely through injection of synthetic469
dynamic instances onto the base training dataset. The dis-470
crepancy in improvement between CTVIS and IDOL can471
be attributed to the difference in number of images input to472
the network during each training step: CTVIS uses 10 se-473
quential images whereas IDOL uses only two. This results474
in the network seeing more synthetic instances in CTVIS475
relative to IDOL. We cannot match the performance figures476
of our two baselines in comparison to their original papers477

[54] and [50] as we trained them from scratch in constrained 478
training and dataset settings; our main aim was to demon- 479
strate the efficacy of SDI-Paste regardless of the base net- 480
work or its performance capability. 481

Comparison with other methods. In Table 2, we make 482
comparisons against other related data augmentation meth- 483
ods. We use CTVIS as our base VIS framework and com- 484
pare SDI-Paste with a Copy-Paste [12] baseline where we 485
copy-paste instances from across YTVIS21 (i.e. same in- 486
stance copy-pasted across all the frames in a sequence). To 487
test the effectiveness of dynamic object instances compared 488
to static ones, we also compare against X-Paste [60] on 489
YTVIS21. We use the code-base and recommended settings 490
from [60] to generate and segment object instances and ob- 491
tain comparable number of images to our SDI-Paste setting. 492
We adapt X-Paste for a video task by pasting each static 493
object instance repeatedly onto each frames in a video se- 494
quence. We observe that Copy-Paste improves the baseline 495
CTVIS by 2.7%. X-Paste, with its synthetic static instances, 496
posts an improvement of 5.6% over baseline whereas our 497
SDI-Paste pipeline outperforms them both with an improve- 498
ment of 6.5% over baseline (0.9% over X-Paste and 3.7% 499
improvement over Copy-Paste). While these results show 500
the effectiveness of the copy-paste framework in enabling 501
a solid boost in model performance, we see that the VIS 502
task is better served by SDI-Paste where dynamic object in- 503
stances are injected onto the base dataset. We posit this is 504
due to the dynamic instances capturing more diverse object 505
features from varying viewpoints and shape deformations 506
when compared to static instances as in X-Paste. Please 507
note that we show the best results from a pool of maximum 508
number of experiments that was possible within our com- 509
putation budget. 510

4.3. Ablation Study 511

Ablating trajectory system. During Dynamic Instance 512
Composition, we investigate three different methods of 513
copy-pasting instances onto a sequence of images: Linear, 514
Bezier and Linear-random. For the linear system, we paste 515
instances across the video frames with a straight-line trajec- 516
tory as directed by the angle θij with constant displacement 517
of objects between the frames. The linear-random system 518
adopts the same straight-line trajectory but allows for ran- 519
domly sampled displacement of objects between frames (as 520
discussed in 3.3). For the Bezier system, we trace the path 521
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Method AP AP50 AP75 AR1 AR10

Baseline 44.3 65.3 48.8 40.5 55.2
CopyPaste [12] 45.5 65.9 50.3 40.4 54.6

X-Paste [60] 46.8 68.1 50.5 40.5 55.9
SDI-Paste (ours) 47.2 68.2 51.8 41.3 56.3

Table 2. Results comparing existing data augmentation methods with SDI-Paste using CTVIS with ResNet-50 as baseline.

of the object using a Bezier curve with a random length.522
Comparing these three systems, we find that the linear-523
random trajectory consistently gives the best result while524
the linear system is only slightly behind. The Bezier trajec-525
tory gives the worst performance. This might be due to SDI-526
Paste being introduced as a pre-training step where simple527
linear trajectories are easier for the network to track. Pos-528
sibly, an only-Bezier-curve trajectory does not account for529
the majority of object movement in YTVIS21. A further530
experiment could be a system that combines diverse ways531
of moving objects improves results. We leave this for future532
works.533

Trajectory
Method

AP AP50 AP75 AR1 AR10

Bezier curve 45.2 67.8 50.5 40.5 54.2
Linear 46.4 70.0 50.1 39.1 53.0

Linear-random 47.2 68.2 51.8 41.3 56.3

Table 3. Results comparing different trajectory systems adopted
during Dynamic Instance Composition.

Ablating segmentation method. In X-Paste [60], Zhao et534
al. employ a CLIP-guided selection of segmentation masks535
obtained from four different supervised salient object seg-536
mentation networks. We test this strategy against TokenCut537
[48] as the only segmenter and find that it consistently out-538
performs the X-Paste pipeline.539

Segmentation
Pipeline

AP AP50 AP75 AR1 AR10

X-Paste
CLIP-guided

[60]

46.2 69.9 50.1 39.9 54.5

TokenCut [48] 47.2 68.2 51.8 41.3 56.3

Table 4. Comparison of two segmentation methods: X-Paste
CLIP-guided strategy [60] and TokenCut [48].

Ablating effect of more instances. To verify the effect of540
increasing the number of synthetic instances generated on541
model performance, we create two datasets where, for each542
category, we generate either 150 or 470 dynamic instance543
sequences (each sequence consists of 16 image frames).544
These amount to 96000 and 300800 image frames gener-545
ated respectively. We see in Table 5 that increasing the546

Number of
sequences

AP AP50 AP75 AR1 AR10

150 45.6 67.4 50.5 40.8 55.9
470 47.2 68.2 51.8 41.3 56.3

Table 5. Results comparing the effect of increasing the number of
generated dynamic instances on CTVIS. Each sequence consists
of 16 frames.

number of dynamic instances improves model performance 547
by 3.5%. As expected, with a larger number of unique in- 548
stances available for training, the network shows remark- 549
able improvement on the same training regimen. Given 550
our compute resources, using AnimateDiff to produce ob- 551
ject instances was a significantly heavy task which limited 552
our ability to test with larger generated datasets. We ex- 553
pect the model performance to benefit further from an even 554
larger instance pool to draw from. We make the generated 555
dataset, as well as code to reproduce it at any size, available 556
and leave this task for future research. 557

5. Conclusion 558

In this paper, we introduce SDI-Paste as a novel synthetic 559
data augmentation pipeline for VIS. SDI-Paste combines a 560
generative text-to-video model and a self-supervised object 561
segmentor in a carefully designed pipeline that yields dy- 562
namic object instances. We copy and paste these instances 563
across a base dataset to achieve strong improvement over 564
baseline and other existing augmentation strategies. The in- 565
dividual modules of our pipeline can be swapped for better 566
and newer modules as T2V generators and object segmen- 567
tors improve over time. The essence of our framework is 568
infinitely scaleable and adaptable which we hope will make 569
SDI-Paste a beneficial data augmentation regimen for other 570
dense video tasks. 571
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