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Abstract

Accurate parsing of Notices to Airmen (NO-
TAMs) constitutes a critical requirement for avi-
ation safety, yet existing methods suffer from
template rigidity that impedes effective han-
dling of non-standard syntax, regional expres-
sion ambiguities, and the semantic-practice gap.
We propose a knowledge-guided self-evolving
optimization framework that integrates Large
Language Models (LLMs) with an Aviation
Knowledge Graph (AviationKG) to achieve
efficient structured NOTAM parsing. The
framework comprises three innovative mod-
ules: 1) Knowledge-Enhanced Retrieval (KG-
TableRAG), which resolves semantic ambigu-
ities through binding of knowledge graph re-
lations with infrastructure tables to constrain
search spaces; 2) Self-Evolving Optimization
(SEVO), employing dynamic preference align-
ment and error-driven curriculum learning to
iteratively enhance complex instruction compli-
ance; 3) Consensus Inference Engine (CIE), im-
proving edge-case robustness via terminology-
preserved input diversification and majority vot-
ing decoding. Experimental results demon-
strate that our framework achieves a 30.4%
accuracy improvement over the base model
within 3-5 iterations on a labeled dataset of
10,000 global NOTAMs, with ablation studies
confirming the collaborative efficacy of mod-
ular components. This research establishes
the first knowledge-driven, continuously op-
timized LLM solution for aviation text parsing,
whose methodology demonstrates extensibility
to other high-precision-demanding professional
domains.

1 Introduction

Accurate interpretation of NOTAMs (Notice to Air-
men) constitutes a critical yet challenging compo-
nent of modern flight operations. These special-
ized bulletins contain time-sensitive information re-
garding temporary airspace restrictions and naviga-
tional hazards, characterized by linguistic features

distinct from conventional technical documentation.
With over one million active NOTAMs published
annually worldwide (Morarasu and Roman, 2024),
the aviation industry urgently requires robust auto-
mated analysis systems to reduce manual workload
and mitigate human processing errors. Existing
systems predominantly rely on regular expression-
based template matching, leading research efforts
to focus primarily on automated rule discovery or
basic NOTAM classification (Dieter et al., 2024;
Mi et al., 2022a).
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Figure 1: An illustration of NOTAM analysis task

However, NOTAMs present unique parsing chal-
lenges due to their heavy dependence on 300+ stan-
dardized abbreviations and non-standard syntactic
structures (e.g., "RWY 09L/27R CLSD DUE BIRD
ACT"), which frequently violate conventional pars-
ing rules. Furthermore, practical scenarios intro-
duce additional complexity through regional ex-
pression variations (e.g., "EGBA" encompassing
both EGBATA and EGBA1B) and typographical/-
grammatical errors. Beyond syntactic challenges,



NOTAM processing faces a fundamental semantic-
practice gap: the disconnect between textual de-
scriptions and operational impacts requires implicit
correlation with aviation infrastructure status. For
instance, interpreting "APCH LGT U/S" necessi-
tates knowledge of specific runway configurations,
yet NOTAMs may reference non-existent runways
or omit critical identifiers (Patel et al., 2023). These
operational constraints rely on factual data from
regularly updated official sources, as illustrated in
Figure 1.

The emergence of large language models
(LLMs) with advanced natural language under-
standing capabilities opens new frontiers for NO-
TAM analysis. While no prior studies specifically
address LLM applications in this domain, recent
breakthroughs in complex instruction following
and generic information extraction (Morarasu and
Roman, 2024) establish critical technical founda-
tions. Building on these advances, we present the
first LLM-adapted framework for NOTAM analysis
featuring three pioneering contributions:

¢ Knowledge-Driven Architecture: Innovat-
ing the inaugural application of LLMs to NO-
TAM parsing, our framework integrates an
aviation knowledge graph with TableRAG
retrieval to overcome domain-specific chal-
lenges through constraint-aware information
extraction.

* Self-Optimizing Pipeline: Through synergis-
tic integration of dynamic preference align-
ment, error-driven curriculum learning, and
consensus inference mechanisms, we estab-
lish an end-to-end optimizable system capable
of self-evolution without manual intervention.

* Empirical Performance Leap: Experimental
validation demonstrates our optimized model
achieves a 30.4% accuracy improvement over
base LLMs, with multi-perspective analysis
and majority voting decoding.

2 Related Work

2.1 NOTAM Analysis

Natural Language Processing (NLP) has emerged
as a cornerstone technology in reducing manual
operations in the aviation industry, particularly
in NOTAM (Notice to Airmen) analysis(Mogillo-
Dettwiler, Year (if available; Mi et al., 2022b). Re-
searchers from Lucerne University of Applied Sci-
ences and Skyguide demonstrated the potential of

transformer-based models by training on 100,000
unlabeled NOTAMs to implement an "Intelligent
NOTAM" service, showing significant promise in
automatically filtering irrelevant information and
rectifying inconsistencies in raw NOTAMs (Bravin
et al., 2020). Similarly, Clarke et al. (2021) ex-
plored NLP workflows using a comprehensive
dataset of 3.73 million NOTAMs. Their method-
ology, which combined TF-IDF, topic modeling,
and Named Entity Recognition (NER), provided
valuable insights into automated segmentation and
tagging of structured content within NOTAMs. Fur-
ther advancing this field, Airbus AI’s 2022 study
expanded the application of NLP in NOTAM pars-
ing by utilizing pre-trained BERT models on 1.2
million NOTAMs for aviation knowledge extrac-
tion (Arnold et al., 2022). While these pioneering
studies have made significant contributions, they
collectively highlight several unresolved challenges
in large-scale NOTAM processing (Morarasu and
Roman, 2024). These include handling ambigu-
ous abbreviations, semantic-practical mismatches,
and adaptation to diverse input sources with re-
gional variations in expression patterns. Our work
builds upon these insights, presenting a more so-
phisticated and practical approach to NOTAM anal-
ysis tasks, with a particular focus on enhancing
the adaptability and efficiency of Large Language
Models (LLMs) in specialized NOTAM parsing
systems.

2.2 Large Language Models

The rapid advancement of large language models
(LLMs)(Zhao et al., 2023) has driven transforma-
tive progress across specialized domains. NOTAM
analysis presents unique challenges that require the
integration of three critical capabilities: informa-
tion extraction, tabular understanding, and com-
plex instruction following. Transformer-based
architectures (Brown et al., 2020; Chowdhery et al.,
2022), enhanced through breakthroughs in parame-
ter scaling (Rae et al., 2021; Le Scao et al., 2022),
demonstrate exceptional few-shot learning capabil-
ities particularly suited for aviation domains with
sparsely labeled data (Xu et al., 2023).
Information Extraction techniques have
evolved into two paradigms: in-context learning
via prompt engineering (Li et al., 2023) and
supervised fine-tuning with instruction-aware
datasets (Wang et al., 2023). While innovations
such as code-style prompting (Sainz et al., 2024)
and hierarchical schema representations (Li et al.,



2024) enhance output consistency, conventional
methods underperform when processing aviation
terminology with dynamic semantic constraints
and regional expression variations.

Tabular Understanding methodologies have
transitioned from schema-dependent Text2SQL
systems (Zhong et al., 2017) to neurosymbolic ap-
proaches exemplified by TableRAG (Chen et al.,
2024). Although TableRAG’s query expansion
mechanisms mitigate large-scale table processing
challenges, two persistent limitations remain in NO-
TAM contexts: context window constraints during
full-table encoding and cell localization inaccura-
cies under schema sparsity.

Complex Instruction Following research
demonstrates that progressively intensified con-
straints enhance model compliance (Mukherjee
et al., 2023; Luo et al., 2024). Frameworks like
Conifer’s progressive learning (Sun et al., 2024)
show potential for multi-level constraint handling.
Building upon these insights, we employ curricu-
lum learning strategies to optimize model perfor-
mance against instruction constraint heterogene-
ity caused by random complexity distribution in
dataset samples.

3 The Proposed Framework

3.1 Problem Formulation

Given an input NOTAM text sequence X =
[z1,...,2,] and a collection of aviation reference
tables 7 = {T1,...,T,,}, our objective is to
extract structured aviation information through a
knowledge-enhanced generative framework. For-
mally, the task is defined as maximizing the condi-
tional probability:

m
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(1
where Y = [Y1,...,Y},] denotes the target
structured output sequence, ¢ represents the pa-
rameters of the large language model (LLM), P
encapsulates task-specific prompts and instructions,
and K = k(X,7T) corresponds to factual knowl-

edge retrieved from 7.

3.2 Framework Overview

As illustrated in Fig. 2, our framework operates
through three synergistic stages: (1) The Retrieval
Stage grounds predictions in aviation domain

knowledge via dynamic table retrieval; (2) The Op-
timization Stage enables iterative self-improvement
of the foundation model through adaptive prefer-
ence learning; (3) The Inference Stage ensures ro-
bust parsing via diversified input generation and
consensus decoding. This architecture systemati-
cally addresses domain-specific challenges in NO-
TAM analysis, including knowledge grounding, er-
ror propagation, and operational stability.

3.3 Knowledge-Guided TableRAG

To ensure factual consistency in NOTAM parsing
results, this study proposes a knowledge graph-
enhanced Table Retrieval-Augmented Generation
framework (KG-TableRAG). The methodology in-
tegrates real-time updated aviation infrastructure
data tables to address critical limitations of con-
ventional TableRAG in specialized domains. Tra-
ditional table retrieval methods exhibit domain-
specific retrieval bias due to insufficient structural
knowledge representation in aviation. For instance,
"runway closure" events may involve implicit cross-
table correlations with lighting systems and naviga-
tion equipment, which conventional vector retrieval
mechanisms fail to capture. Furthermore, existing
REACT-based table retrieval methods suffer from
multi-step reasoning inefficiencies, rendering them
impractical for time-sensitive operational scenar-
ios.

The proposed KG-TableRAG framework en-
hances TableRAG (Chen et al., 2024) perfor-
mance through systematic integration of knowl-
edge graphs. While leveraging open-source
methodologies for automated knowledge graph
construction, manual refinements were applied to
portions of the automatically generated graphs to
optimize performance, given the limited availabil-
ity of structured corpora. Upon receiving raw NO-
TAMs (Notices to Airmen), the framework em-
ploys LLMs to decompose queries, executes graph
queries based on extracted keywords, and subse-
quently performs vector searches. For a detailed
illustration of the domain knowledge graph archi-
tecture, refer to Figure 4 in Appendix B.

Implementation specifics include explicit map-
pings between knowledge nodes and table columns,
such as dynamically binding the graph relation-
ship [Airport]—[Owns]—[Runway] to opera-
tional columns like RWY-STATUS. This design con-
strains the search space to mitigate interference
from irrelevant columns. A lightweight single-step
inference mechanism replaces traditional multi-



0/\

Codeld Name ~Runway

QNZZC/QLRAS/IV/NBO/A/000/999/4120S1744
8E005

ANZWN B)2302261530 C)2302261630

E) ALL LDG AREA LGT FAC AND ALL TWY LGT
WITHDRAWN MAINT.

AVBL WITH 30 MIN PN TO ATC TEL +64 4 387
1980
)
NNNN

4@@%

Code ! o

ATOIFI | RWY 05

AGAT

AGGA  AUKI  RWY21

AGGA 2GCB  BELLONA RWY 06l

AGCB CHOISEU
BA

Y RWYo7R

AGGC RWY O7R

Lpay KWYo7R

Labeled Data

;

St

Base Model

&

;

i Next Generation i
DPO

)‘ || o]
N a ; Voting
The Approach Lighting \ /
System (ALS) for
runways 16 and 34 at
NZWN airport is
c tly unavailable.
O urrently unavailable.
ain 5 .
Extracted Information

|AKLAX E) ALS U/S DUE TO ARjCC
MAINTENANCE
“retrieved_runways
['06R/24L", "07L/25R")

Response Pool

AKLAX E) ALS U/S DUE
TO MAINT.

DUE TO SN REMOVAL
06R/24L and 07L/25R. ALso

1 find out that its formation
should be.

Keywords "SPOT" —
“Stan “but  ha

stable instruction for a task 'ALS is marked as USS, .
the runways retrieved are

Instruction:
06R/24L and 071/25R.

As an Al assistant specialized in processing
NOTAM runway lighting information.Focus on
runway and lighting anomalies
(RCL/REDL/RTZL/ALS).

“06R/24L
15",

[{."runway"
- light

(1. runway": 06R/24L
807L/25R", .. lighteate” runway’ " 2
“ALS”,.)] lightcate™: "ALS",.J] “stand_split_info"

(type” "RHHMZREA"

"21,2223.24.25.2627"

[©]

E)SPOT 20 THRU 27 CLSD

‘o Model For
Inference
Final Model
/l( \\\
& / \
ARJCC / \
BISPOT 20 THRU 27 CLSD /
DUE TO SN REMOVAL
¢ . Transformed Transformed Transformed
o ypein Snaclomre, NOTAM NOTAM NOTAM
. 21 THRU 27, which is 21~
2,
(Tope':“Stand closure’ Transformed Transformed || Transformed
-mnmpm,inio' “21-27", NOTAM NOTAM NOTAM

n

Figure 2: Overall framework of the proposed . (1) Retrieval Stage: The final outputs are based on a set of base
tables that represent real-world conditions, e.g., the number of runways at an airport. (2) Optimization Stage: Our
foundational model gains proficiency in handling complex instructions within NOTAM analysis scenarios through
iterative self-evolution. (3) Inference Stage: We rephrase the original NOTAM without altering its core content and
then extract information from multiple texts to determine the final answer via a voting mechanism.

round decision processes by utilizing predefined
graph paths (e.g., the chained pattern "Restric-
tion Type-Impacted Equipment-Applicable Time
Period") for direct Cypher query generation.

The operational implementation prioritizes SMO-
LAGENTS over REACT due to their enhanced effi-
ciency in task-specific processing. SMOLAGENTS
demonstrate superior computational efficiency and
scalability, particularly in complex query process-
ing within knowledge graph-integrated systems.
This strategic substitution streamlines operational
workflows while improving system robustness and
responsiveness. Collectively, these enhancements
yield measurable improvements in both accuracy
and operational efficiency during NOTAM infor-
mation retrieval and analysis.

3.4 Self-Evolving Supervised and Preference
Optimization

Initialization Setup Our iterative optimization
framework is initialized with three components:

¢ Data Partitioning: Annotated dataset Dy =
{(x o K,Y™)} is split into 8:2 training-test

sets, where x is the raw NOTAM text, K =
k(x,T) denotes retrieved aviation knowledge,
and Y'* is the structured output annotation.

* Base Model: An untuned open-source base
model 7y, serves as the initial model.

* Response Repository: An indexed set R =
{(z,Y*,Y) }sex stores model responses with
correctness labels across iterations.

Iterative Optimization Loop

Each iteration consists of supervised fine-tuning
(SFT) and dynamic preference optimization (DPO)
stages. The workflow is illustrated in Fig. 2 (see
Algorithm 1 in Appendix A).

In the first stage, we generate responses Y for
inputs x o K using the current model Teyprent. NeExt,
we compare Y with the golden labels Y* to update
the repository R with both correct () and in-
correct (), ) responses. Finally, we extract correct
samples to build the dataset Dspr = {(zo K, Y ™)},
optimizing the loss function:
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For the DPO stage, we first construct a prefer-
ence dataset. For each input x with contrastive
pairs ()2, ), ) in R, we build triples (x,y*,y™)
where y* € VI and y~— € )Y, . Next, we per-
form dynamic data augmentation by generating
semantic-preserving variants V,, (Eq. 3) for high-

error samples ({(x) > 7):

Daug = U {(v,y*,y_) | CAS Vl‘}
€Dy
E(z)2r

3

We then implement weighted curriculum learn-
ing using dynamic weights (Eq. 4):

1 exp(fe)
Nt S e (Bele)
ae = min(e/E, 1)

we(z) = (1 —

4

Finally, we optimize the modified DPO loss un-
der sampling distribution P, (x) o w,(x):

mo(y*|z)

Lppo = _E(%y*,y*) [loga <B log Tret(Y*|)

~Pe(z)

— fBlo
(5)

Three adaptive mechanisms enable error-centric
self-evolution.  First, augmentation triggering
(Eq. 6) auto-activates variant generation when the
error rate exceeds a threshold:

K (k) *
§(:L‘) _ k=1 H(};( ?é Y ) (6)

Second, exponential weighting (Eq. 7) empha-
sizes high-error samples through -scaled weights:

>T

w(z) oc 7@ 7

Third, curriculum scheduling (Eq. 8) implements
a smooth transition from uniform to weighted sam-

pling:

ae = min(e/FE, 1) (8)

The iteration terminates when reaching accuracy
threshold 7 on Dyeg;:

1
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Empirical results show that the framework
achieves commercial SOTA-level NOTAM pars-
ing accuracy within 3-5 iterations without model
distillation.

3.5 Integrated Inference Strategy

Empirical analysis reveals inherent challenges in
applying standard question-answering paradigms
to NOTAM analysis, where the model’s lim-
ited complex instruction-following capability often
leads to structural output errors. Particularly for
edge cases where minor reasoning path variations
could determine correctness, we observe that the
baseline model (7gr) generates inconsistent predic-
tions despite demonstrating partial comprehension.
To mitigate this instability while preserving avia-
tion domain integrity, we implement an input diver-
sification strategy coupled with consensus-based
decoding. The approach begins with generating
N = 5 semantically-equivalent NOTAM variants
through controlled paraphrasing that strictly main-
tains original aviation terminology (e.g., preserving
"RWY" abbreviations), spatiotemporal constraints,
and safety-critical numerical values. Each variant
undergoes independent model processing to yield
candidate structured outputs {Y(k)}{cvzl, followed
by majority voting to determine the final predic-
tion Yipa = arg maxy Zévd Iy = Y(k)). The
paraphrasing mechanism combines lexical substitu-
tion (e.g., "CTAM" < "Controller Advisory Mes-
sage"), syntactic restructuring through voice al-
ternation, and contextual expansion with optional
ICAO phraseology clarifications. Experimental val-
idation in Section 4.3 demonstrates this technique’s
effectiveness, achieving 1.3% accuracy improve-
ment by resolving 23% of borderline cases where
single-pass decoding produced partially correct out-
puts.

4 Experiments

4.1 Experimental Setup

Datasets. We construct a specialized NOTAM anal-
ysis dataset containing 10,000 labeled instances
collected from global aviation notices published
in 2024. Unlike existing benchmarks like (Arnold
et al., 2022), our dataset emphasizes real-world



Model Light Area Runway Taxiway AVG
Popular Models

qwen2.5-7B (Yang et al., 2024) 0.560 0.777 0.412 0.748 0.624
Mistral-7B (Jiang et al., 2023) 0.405 0.655 0.588 0.492 0.535
Llama3.1-8B-instruct (Dubey et al., 2024) 0.440 0.476 0.392 0.490 0.450
qwen2.5-7b-instruct (SFT) 0.590 0.793 0.730 0.864 0.744
Deepseek-R1-Distill-Qwen-7B (SFT) 0.18 0.226 0.236 0.204 0.212
Deepseek-R1-Distill-Qwen-7B (ours) 0.620 0.725 0.836 0.868 0.762

Achiam et al., 2023
DeepSeek-Al et al.. 2025

Table 1: Performance comparison with gray text for commercial models. Underlined: Best in group; Bold: Overall

best.

operational constraints through temporal-aligned
aeronautical base tables. The four NOTAM cate-
gories are shown in Table 2:

Category Light Area

1000 4000

Runway Taxiway

2500 2500

Samples

Table 2: NOTAM Category Distribution

Baselines. We evaluate open-source models un-
der identical prompts, with DeepSeek-R1 series as
accuracy upper-bound references.
Implementation Details. Our framework is built
upon DEEPSEEK-R1-DISTILL-QWEN-7B with
three core components:

Fine-tuning Employed the UNSLOTH frame-
work for SFT/DPO training, adhering to the official
recommended configurations.

TableRAG Composed of two specialized sub-
modules:

* Knowledge Graph Construction: Leverages
LLM-generated prompts through GRAPHFU-
SION methodology (human-verified)(Pan et al.,
2024), Comprehensive agent architecture specifi-
cations are detailed in Appendix A.

* Agent Module Replacement: Implements SMO-
LAGENTS in lieu of the original framework’s
agent component.

Hardware All experiments were executed on a
single NVIDIA A800-80GB-PCle GPU platform.

4.2 Main Results

We evaluate our framework on four NOTAM anal-
ysis tasks: Light (lighting system status), Area
(airspace restrictions), Runway (runway opera-
tions), and Taxiway (taxiway conditions). Our
experiments compare three configurations:

* Base models without tuning: GPT-4o,
Mistral-7B, Qwen2.5-7B, and Llama3.1-8B

* Standard supervised fine-tuning (SFT):
gwen2.5-7B-instruct and Deepseek-R1-
Distill-Qwen-7B (SFT)

* Our optimized model: Deepseek-R1-Distill-
Qwen-7B with iterative self-evolving opti-
mization

Evaluation Rule: A prediction is considered
correct only when it exactly matches both the struc-
tured output format and annotation criteria.

As shown in Table 1, our optimized model
achieves performance comparable to the com-
mercial GPT-40 system (0.762 vs. 0.785 AVQG)
while narrowing the gap with the state-of-the-art
Deepseek-R1 (0.828 AVG). Specifically, the op-
timized model outperforms GPT-40 by 8.6% on
Runway (0.836 vs. 0.770) and demonstrates com-
petitive performance on Taxiway (0.868 vs. 0.914)
- categories requiring multi-table retrieval, show-
casing KG-TableRAG’s effectiveness in structured
knowledge integration. Notably, our framework
achieves 30.4% improvement in AVG performance
compared to the original base models, validating
the effectiveness of our approach.



4.3 Ablation Study

We conducted systematic ablation analyses to vali-
date three key design elements: (1) KG-TableRAG
knowledge integration, (2) Reasoning Integration
mechanism, and (3) iterative optimization strategy.
As shown in Table 3 The complete system achieved
state-of-the-art performance (0.762 AVG), with
component removal experiments revealing critical
insights:

* KG-TableRAG Removal caused 2.2% perfor-
mance degradation (0.762—0.740), particularly
impacting scenarios requiring aviation-specific
knowledge fusion (e.g., NOTAM code interpreta-
tion)

* Reasoning Integration Ablation resulted in
4.1% absolute drop (0.762—0.721), confirming
our multi-step reasoning design effectively han-
dles semantic ambiguity

* Component Co-dependency emerges when dis-
abling both modules (0.690 AVG), demonstrating
their complementary roles in knowledge ground-
ing and reasoning

KG-TableRAG Inf. Integr. AVG
v v 0.762
v X 0.721
X v 0.740
X X 0.690

Table 3: Ablation Study Results with Structured Knowl-
edge (KG-TableRAG) and Reasoning Integration Com-
ponents. Gray background indicates full configuration.

The iterative optimization strategy (Figure 3)
demonstrated progressive gains across categories:

» Taxiway accuracy improved 34.4% (64.6—86.8)
over three iterations

* Light category showed steep learning curve
(+17% from Iterl to Iter3)

The experimental results quantitatively validate
the synergistic effects of the framework compo-
nents: KG-TableRAG ensures structured knowl-
edge constraints, Reasoning Integration enhances
robustness in complex reasoning tasks, and the iter-
ative optimization mechanism achieves experience
reuse through the response pool. These elements
collectively address the specialized requirements
of NOTAM parsing in aviation domains.

Performance comparison across iterations
| |
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Figure 3: Iterative Optimization Performance (Accuracy
%) across NOTAM Categories.

4.4 Complexity Analysis

We rigorously analyze the computational charac-
teristics of our framework through three funda-
mental components. The dynamic preference op-
timization process is governed by the response
pool R = {(v*, Y (¥))}3K  containing outputs
from three models per input, the sample-wise er-
W from (6), and the

active preference pairs Dr(;if ={(z,y*,y7)|y* €

oY €V b
As demonstrated in Table 4, the response pool

ror rate £(z) =

grows linearly as |7€§f’)| = 3Kt with each itera-
tion’s triple-model generation, but actual prefer-
ence pair creation follows quadratic scaling modu-
lated by accuracy progression:

t * _
DL =3 Vi |
x€Dg

~ 9Kt (1 —n)

(10)

where n, = 131 T(Y® = Y*) tracks per-
input accuracy and 1 denotes global performance.
Our experiments revealed accuracy improvements
from initial 45% to final 62%, causing the error
suppression term (1 — 7)) to decrease from 0.55 to
0.38 through three iterations.

Metric Iter.1  Iter.2 Iter.3
Theoretical pairs 2,415 5915 11,320
Effective pairs 1,449 3,549 6,792
Time (h) 0.58 1.5 3.2
Scale factor 1.0x 2.6x 2.1x

Table 4: Iterative Complexity Metrics with Scaling Fac-
tors

The computational cost per iteration combines
preference pair volume with curriculum learning
dynamics, as quantified in Table 4:
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where E denotes training epochs and a, =
min(e/FE, 1) implements our phased curriculum
strategy. Three mechanisms suppress theoreti-
cal O(t?) scaling to observed 2.3x average per-
iteration growth: 1) Error threshold filtering (6) re-
moves 40% of low-difficulty samples, 2) Weighted
curriculum sampling reduces effective batch size
by 38%, and 3) Accuracy saturation limits error
response generation through (1 — 1) decay (0.55
— 0.46 — 0.38).

The framework maintains practical tractability
through exponential complexity bounding:

Toro < 23 Tgpo, lim Tiop = O(1)  (12)

with complete convergence achieved in 3 itera-
tions at 62% accuracy. Total wall-clock time ranges
from 35 minutes to 3.2 hours on NVIDIA A800
GPUs, with DPO training utilizing 1,449-6,792 fil-
tered preference pairs per iteration as detailed in
Table 4.

5 Conclusion

We present a knowledge-guided framework com-
bining LLMs with aviation expertise to resolve
NOTAM parsing challenges. Our self-evolving
architecture addresses semantic-factual contradic-
tions through dynamic integration of infrastructure
knowledge and operational constraints.

The framework achieves 30.4% accuracy gains
over base models through iterative optimization
on 10,000 NOTAMs, bridging NLP capabilities
with aviation requirements while preserving termi-
nology integrity. This research establishes a new
paradigm for NOTAM analysis, with principles ex-
tensible to other high-precision domains requiring
robust knowledge integration and adaptive learn-
ing.

The results underscore the transformative poten-
tial of LLM-driven solutions in enhancing airspace
management automation, mitigating human error
risks, and advancing real-time decision-making ca-
pabilities for global aviation systems.

6 Limitation

Although our Self-Evolving Supervised and Prefer-
ence Optimization framework facilitates iterative
model enhancement, two key constraints emerge
from NOTAM analysis specifics. First, the com-
putational demand grows linearly with evolution
iterations, mirroring reinforcement learning’s char-
acteristic requirement for extended training phases
to achieve operational breakthroughs. Second,
our constraint-driven NOTAM extraction process —
while enforcing aviation regulatory compliance —
inherently accumulates annotation inaccuracies due
to the complex temporal-spatial dependencies and
specialized aeronautical terminology inherent to
NOTAM structures. Future implementations could
integrate large language models for preliminary se-
mantic parsing of NOTAM texts, followed by avia-
tion safety experts’ validation to reconcile domain-
specific constraints with machine-generated anno-
tations.

7 Ethical Considerations

Our work distills the complexities of real-world
demands and provides possibilities for automating
NOTAM analysis. However, due to safety require-
ments, our current parsing accuracy is insufficient
for direct deployment in real-time systems. Instead,
our system supports ground analysts by providing
reference information, with all critical data ulti-
mately submitted to pilots after rigorous manual
review.

The NOTAM data used in our study is publicly
available from official platforms, ensuring trans-
parency and reliability. All data annotations were
performed manually by domain experts to ensure
high-quality and accurate data. While our tech-
nology shows potential, aviation safety standards
require that our parsing results be used only as
auxiliary tools to assist analysts, not replace their
judgment.

Key information must undergo strict manual ver-
ification before being handed over to pilots. We
will continue refining our models to improve pars-
ing accuracy, but at this stage, automated results
should be considered supplementary aids rather
than definitive decision-making bases. The use of
public data and expert annotation ensures trans-
parency and compliance with ethical standards.
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A Training Algorithm Implementation
Details

Algorithm 1 Self-Evolving SFT & DPO Optimiza-
tion
Require: Initial dataset Do = Digain U Diest (8:2 split)
1: Base model Tpase, empty response pool R = ()
2: Max iterations 7', error threshold 7, temperature 3, total
epochs

3: procedure MAIN

4. Teurrent $— Thase > Model initialization

5: fort =1to T do

6: GENERATERESPONSES(Tcurrent, Do)

7: UPDATERESPONSEPOOL(R) > Record
correct/incorrect responses

8: Dser + {(x o K, Y™)|Y* € Vi}

9: TSFT <— SFT—TRAIN(71'currem7 DSFT)

10: GENERATERESPONSES(7sgr, Do)

11: UPDATERESPONSEPOOL(R)

12: Dypref < BUILDPREFERENCEPAIRS(R)

13: if Dpref # @ then

14: mppo <— DPO-TRAIN(7skr, Dpref)

15: Tcurrent $— TTDPO

16: end if

17: end for

18: end procedure

19: function DPO-TRAIN(7ref, Dprer)

20: Dagg + 0

21: for z € Dy do

22: if £(z) > 7 then > Data augmentation trigger

23: Vo Uf:;l Augment(z,n)

24: Dag  Dawg U{(v,Y*, Y )}

25: end if

26: end for

27: fore = 1to E do > Curriculum learning

28: ae < min(e/FE, 1)

29: for z; € Dy do

30: we(x;) (1 — ae)% T e ijepx(gfﬁ(gd;))

31: end for

32: Sample batch ~ P.(z) o we(z)

33: Update 7y using Lppo (Eq. 5)

34: end for

35: return 7y

36: end function

37: function BUILDPREFERENCEPAIRS(R)

38: Dorer + 0

39: for x € Do do

40: if3(Y*,Y ™) € R, then > Valid preference
pairs exist

41: Doret < Dpret U { (2, Y*, Y )}

42: end if

43: end for

44: return Dyt

45: end function
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B Knowledge Graph Structure

Figure 4: Domain Knowledge Graph Architecture.

C Task Prompt

You are an AI assistant specialized in parsing
“—>NOTAMs. Your task is to extract information
“~>about the runway status from the given NOTAM
> text. Please follow the guidelines below

1. Identify Runway Status
Closed (MRLC, MRXX): Contains keywords like

“>CLOSED, CLSD, CLOSURE, NOT AVBL,

“—>UNAVAILABLE, SUSPENDED, etc.

- Limited (MRLT, MRXX): Contains phrases like
“—>RESTRICTED, LIMITED, RESERVED FOR, etc.,
<> and is combined with "only".

- Open (MRAH): Contains keywords like OPEN,
<>TO TFC, CANCELLED CLOSURE, etc.

2. Evaluate the Impact:

- Determine if it affects takeoffs, landings,
> both (based on the semantics).

- Identify the affected flight types (
“International, Domestic, Regional).

- If the restricted flight type is not
~—>explicitly mentioned, assign "
~>International, Domestic, Regional”.

- If explicitly mentioned, assign only the
“—restricted flight type.

3. Output Format:

Please return the result in the JSON array
~>format. Each element represents a record
> and contains the following fields:

- “airport”: ICAO code of the airport.

- “runway : Affected runway number.

- “affect_actype ™ : Affected aircraft type.
~>in the field only when it involves

OPN

or

Fill

“—>wingspan, CODE C/D, or the number of
“~—>engines.

- “affect_region™: The scope of closure or
“—restriction, with values "TAKEOFFS", "
“>LANDINGS"”, or "TAKEOFFS,LANDINGS".

- ~flight_type™: The affected flight type (
“~International, Domestic, Regional).

4. Notes:
- Partial closure/restriction of a runway is
“>also considered as a complete closure/
“—restriction.



- Create a separate record for each runway if
“—>the message involves multiple runways.

- Extract only the information explicitly
~—rmentioned in the NOTAM; do not make
“—>assumptions.

- When facing the flight type, consider using
“>Chinese words to represent the flight
“—>rtype as mentioned in the prompt and
“—>examples.

- Focus on the impact on aircraft, such as the
“—raircraft category (CODE C/D), wingspan (
“~>in meters), etc.

- Fill in the ~affect actype™ field based on the
<> affected aircraft type. The wingspan
~>length may need to be converted from FT
“~—>to M for comparison.

- The message may mention restrictions on
“—raircraft categories or CODEs, which need
<> to be matched with the aircraft type
“—rtable.

D Example
—INPUT—

<instruction>:

Q)KZDV/QMRLC/IV/NBO/A/000/999/3952
~—+N10440W005

A)KDEN B)2301010254 C)2301011200

E) DEN RWY 17L/35R CLSD

—OUTPUT—

<result>:
<think>
Runway Identification: Extracted the airport ICAO
~—>code as "KDEN" from "A) KDEN".
Runway Status Analysis:
"RWY 17L/35R CLSD"” -> Both runways are
~>completely closed (CLSD=Closed).
The default impact of closure is on takeoffs and
<> landings -> affect_region: "TAKEOFFS,!
LANDINGS".
Aircraft Type Restriction:
No mention of wingspan, CODE category, or engine
“—> restrictions -> affect_actype: null.
Flight Type Inference:

No specific restriction mentioned Default
“—rimpact on all types -> flight_type: "
~—>International,!

Domestic,Regional”.
Handling Multiple Runways:
Create a separate record for each runway
“—raccording to the rules (one each for 17L

~—» and 35R).
T json
L
{
"airport"”: "KDEN",
"runway": "17L",
"affect_actype”: null,
"affect_region”: "TAKEOFFS,!
LANDINGS",
"flight_type”: "International,!
Domestic,Regional”
3,
{
"airport”: "KDEN",
"runway": "35R",
"affect_actype”: null,
"affect_region”: "TAKEOFFS,!
LANDINGS",
"flight_type"”: "International,!
Domestic,Regional”
}
]
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