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Abstract

Accurate parsing of Notices to Airmen (NO-001
TAMs) constitutes a critical requirement for avi-002
ation safety, yet existing methods suffer from003
template rigidity that impedes effective han-004
dling of non-standard syntax, regional expres-005
sion ambiguities, and the semantic-practice gap.006
We propose a knowledge-guided self-evolving007
optimization framework that integrates Large008
Language Models (LLMs) with an Aviation009
Knowledge Graph (AviationKG) to achieve010
efficient structured NOTAM parsing. The011
framework comprises three innovative mod-012
ules: 1) Knowledge-Enhanced Retrieval (KG-013
TableRAG), which resolves semantic ambigu-014
ities through binding of knowledge graph re-015
lations with infrastructure tables to constrain016
search spaces; 2) Self-Evolving Optimization017
(SEVO), employing dynamic preference align-018
ment and error-driven curriculum learning to019
iteratively enhance complex instruction compli-020
ance; 3) Consensus Inference Engine (CIE), im-021
proving edge-case robustness via terminology-022
preserved input diversification and majority vot-023
ing decoding. Experimental results demon-024
strate that our framework achieves a 30.4%025
accuracy improvement over the base model026
within 3-5 iterations on a labeled dataset of027
10,000 global NOTAMs, with ablation studies028
confirming the collaborative efficacy of mod-029
ular components. This research establishes030
the first knowledge-driven, continuously op-031
timized LLM solution for aviation text parsing,032
whose methodology demonstrates extensibility033
to other high-precision-demanding professional034
domains.035

1 Introduction036

Accurate interpretation of NOTAMs (Notice to Air-037

men) constitutes a critical yet challenging compo-038

nent of modern flight operations. These special-039

ized bulletins contain time-sensitive information re-040

garding temporary airspace restrictions and naviga-041

tional hazards, characterized by linguistic features042

distinct from conventional technical documentation. 043

With over one million active NOTAMs published 044

annually worldwide (Morarasu and Roman, 2024), 045

the aviation industry urgently requires robust auto- 046

mated analysis systems to reduce manual workload 047

and mitigate human processing errors. Existing 048

systems predominantly rely on regular expression- 049

based template matching, leading research efforts 050

to focus primarily on automated rule discovery or 051

basic NOTAM classification (Dieter et al., 2024; 052

Mi et al., 2022a). 053

Q)VABF/QFAXX/IV/NBO/A/000/999/2106N07
903E005
A)VANP B)2304281230 C)2307281230 
E) ALL ACFT CODE C AND ABOVE AFTER 
LANDING RWY 32 SHALL 
   MAKE 180 DEG BACKTRACK ON TURN 
PAD AT END OF RWY ONLY.)
NNNN

Search Airport 
information:
Airport VANP do 
has runway 32......

Search Plan code 
information:
Plane with code C 
and above：738，
733，734......

Search ......

airport: ICAO code 
of the airport.
runway: Affected 
runway number.
affect_actype: 
Affected aircraft 
type
affect_region: The 
scope of closure or 
restriction
flight_type: The 
affected flight type 
(International, 
Domestic, Regional)

"airport": "VANP",
"runway": "32",
"affect_actype":"738,733,734,752,744,763",
"affect_region":"TAKEOFFS,LANDINGS",
"flight_type": "International, Domestic"

Figure 1: An illustration of NOTAM analysis task

However, NOTAMs present unique parsing chal- 054

lenges due to their heavy dependence on 300+ stan- 055

dardized abbreviations and non-standard syntactic 056

structures (e.g., "RWY 09L/27R CLSD DUE BIRD 057

ACT"), which frequently violate conventional pars- 058

ing rules. Furthermore, practical scenarios intro- 059

duce additional complexity through regional ex- 060

pression variations (e.g., "EGBA" encompassing 061

both EGBA1A and EGBA1B) and typographical/- 062

grammatical errors. Beyond syntactic challenges, 063

1



NOTAM processing faces a fundamental semantic-064

practice gap: the disconnect between textual de-065

scriptions and operational impacts requires implicit066

correlation with aviation infrastructure status. For067

instance, interpreting "APCH LGT U/S" necessi-068

tates knowledge of specific runway configurations,069

yet NOTAMs may reference non-existent runways070

or omit critical identifiers (Patel et al., 2023). These071

operational constraints rely on factual data from072

regularly updated official sources, as illustrated in073

Figure 1.074

The emergence of large language models075

(LLMs) with advanced natural language under-076

standing capabilities opens new frontiers for NO-077

TAM analysis. While no prior studies specifically078

address LLM applications in this domain, recent079

breakthroughs in complex instruction following080

and generic information extraction (Morarasu and081

Roman, 2024) establish critical technical founda-082

tions. Building on these advances, we present the083

first LLM-adapted framework for NOTAM analysis084

featuring three pioneering contributions:085

• Knowledge-Driven Architecture: Innovat-086

ing the inaugural application of LLMs to NO-087

TAM parsing, our framework integrates an088

aviation knowledge graph with TableRAG089

retrieval to overcome domain-specific chal-090

lenges through constraint-aware information091

extraction.092

• Self-Optimizing Pipeline: Through synergis-093

tic integration of dynamic preference align-094

ment, error-driven curriculum learning, and095

consensus inference mechanisms, we estab-096

lish an end-to-end optimizable system capable097

of self-evolution without manual intervention.098

• Empirical Performance Leap: Experimental099

validation demonstrates our optimized model100

achieves a 30.4% accuracy improvement over101

base LLMs, with multi-perspective analysis102

and majority voting decoding.103

2 Related Work104

2.1 NOTAM Analysis105

Natural Language Processing (NLP) has emerged106

as a cornerstone technology in reducing manual107

operations in the aviation industry, particularly108

in NOTAM (Notice to Airmen) analysis(Mogillo-109

Dettwiler, Year (if available; Mi et al., 2022b). Re-110

searchers from Lucerne University of Applied Sci-111

ences and Skyguide demonstrated the potential of112

transformer-based models by training on 100,000 113

unlabeled NOTAMs to implement an "Intelligent 114

NOTAM" service, showing significant promise in 115

automatically filtering irrelevant information and 116

rectifying inconsistencies in raw NOTAMs (Bravin 117

et al., 2020). Similarly, Clarke et al. (2021) ex- 118

plored NLP workflows using a comprehensive 119

dataset of 3.73 million NOTAMs. Their method- 120

ology, which combined TF-IDF, topic modeling, 121

and Named Entity Recognition (NER), provided 122

valuable insights into automated segmentation and 123

tagging of structured content within NOTAMs. Fur- 124

ther advancing this field, Airbus AI’s 2022 study 125

expanded the application of NLP in NOTAM pars- 126

ing by utilizing pre-trained BERT models on 1.2 127

million NOTAMs for aviation knowledge extrac- 128

tion (Arnold et al., 2022). While these pioneering 129

studies have made significant contributions, they 130

collectively highlight several unresolved challenges 131

in large-scale NOTAM processing (Morarasu and 132

Roman, 2024). These include handling ambigu- 133

ous abbreviations, semantic-practical mismatches, 134

and adaptation to diverse input sources with re- 135

gional variations in expression patterns. Our work 136

builds upon these insights, presenting a more so- 137

phisticated and practical approach to NOTAM anal- 138

ysis tasks, with a particular focus on enhancing 139

the adaptability and efficiency of Large Language 140

Models (LLMs) in specialized NOTAM parsing 141

systems. 142

2.2 Large Language Models 143

The rapid advancement of large language models 144

(LLMs)(Zhao et al., 2023) has driven transforma- 145

tive progress across specialized domains. NOTAM 146

analysis presents unique challenges that require the 147

integration of three critical capabilities: informa- 148

tion extraction, tabular understanding, and com- 149

plex instruction following. Transformer-based 150

architectures (Brown et al., 2020; Chowdhery et al., 151

2022), enhanced through breakthroughs in parame- 152

ter scaling (Rae et al., 2021; Le Scao et al., 2022), 153

demonstrate exceptional few-shot learning capabil- 154

ities particularly suited for aviation domains with 155

sparsely labeled data (Xu et al., 2023). 156

Information Extraction techniques have 157

evolved into two paradigms: in-context learning 158

via prompt engineering (Li et al., 2023) and 159

supervised fine-tuning with instruction-aware 160

datasets (Wang et al., 2023). While innovations 161

such as code-style prompting (Sainz et al., 2024) 162

and hierarchical schema representations (Li et al., 163
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2024) enhance output consistency, conventional164

methods underperform when processing aviation165

terminology with dynamic semantic constraints166

and regional expression variations.167

Tabular Understanding methodologies have168

transitioned from schema-dependent Text2SQL169

systems (Zhong et al., 2017) to neurosymbolic ap-170

proaches exemplified by TableRAG (Chen et al.,171

2024). Although TableRAG’s query expansion172

mechanisms mitigate large-scale table processing173

challenges, two persistent limitations remain in NO-174

TAM contexts: context window constraints during175

full-table encoding and cell localization inaccura-176

cies under schema sparsity.177

Complex Instruction Following research178

demonstrates that progressively intensified con-179

straints enhance model compliance (Mukherjee180

et al., 2023; Luo et al., 2024). Frameworks like181

Conifer’s progressive learning (Sun et al., 2024)182

show potential for multi-level constraint handling.183

Building upon these insights, we employ curricu-184

lum learning strategies to optimize model perfor-185

mance against instruction constraint heterogene-186

ity caused by random complexity distribution in187

dataset samples.188

3 The Proposed Framework189

3.1 Problem Formulation190

Given an input NOTAM text sequence X =191

[x1, . . . , xn] and a collection of aviation reference192

tables T = {T1, . . . , Tm}, our objective is to193

extract structured aviation information through a194

knowledge-enhanced generative framework. For-195

mally, the task is defined as maximizing the condi-196

tional probability:197

pθ(Y | X,P,K) =
m∏
i=1

pθ(Yi | X,P,K, Y<i),

(1)198

where Y = [Y1, . . . , Ym] denotes the target199

structured output sequence, θ represents the pa-200

rameters of the large language model (LLM), P201

encapsulates task-specific prompts and instructions,202

and K = κ(X, T ) corresponds to factual knowl-203

edge retrieved from T .204

3.2 Framework Overview205

As illustrated in Fig. 2, our framework operates206

through three synergistic stages: (1) The Retrieval207

Stage grounds predictions in aviation domain208

knowledge via dynamic table retrieval; (2) The Op- 209

timization Stage enables iterative self-improvement 210

of the foundation model through adaptive prefer- 211

ence learning; (3) The Inference Stage ensures ro- 212

bust parsing via diversified input generation and 213

consensus decoding. This architecture systemati- 214

cally addresses domain-specific challenges in NO- 215

TAM analysis, including knowledge grounding, er- 216

ror propagation, and operational stability. 217

3.3 Knowledge-Guided TableRAG 218

To ensure factual consistency in NOTAM parsing 219

results, this study proposes a knowledge graph- 220

enhanced Table Retrieval-Augmented Generation 221

framework (KG-TableRAG). The methodology in- 222

tegrates real-time updated aviation infrastructure 223

data tables to address critical limitations of con- 224

ventional TableRAG in specialized domains. Tra- 225

ditional table retrieval methods exhibit domain- 226

specific retrieval bias due to insufficient structural 227

knowledge representation in aviation. For instance, 228

"runway closure" events may involve implicit cross- 229

table correlations with lighting systems and naviga- 230

tion equipment, which conventional vector retrieval 231

mechanisms fail to capture. Furthermore, existing 232

REACT-based table retrieval methods suffer from 233

multi-step reasoning inefficiencies, rendering them 234

impractical for time-sensitive operational scenar- 235

ios. 236

The proposed KG-TableRAG framework en- 237

hances TableRAG (Chen et al., 2024) perfor- 238

mance through systematic integration of knowl- 239

edge graphs. While leveraging open-source 240

methodologies for automated knowledge graph 241

construction, manual refinements were applied to 242

portions of the automatically generated graphs to 243

optimize performance, given the limited availabil- 244

ity of structured corpora. Upon receiving raw NO- 245

TAMs (Notices to Airmen), the framework em- 246

ploys LLMs to decompose queries, executes graph 247

queries based on extracted keywords, and subse- 248

quently performs vector searches. For a detailed 249

illustration of the domain knowledge graph archi- 250

tecture, refer to Figure 4 in Appendix B. 251

Implementation specifics include explicit map- 252

pings between knowledge nodes and table columns, 253

such as dynamically binding the graph relation- 254

ship [Airport]→[Owns]→[Runway] to opera- 255

tional columns like RWY-STATUS. This design con- 256

strains the search space to mitigate interference 257

from irrelevant columns. A lightweight single-step 258

inference mechanism replaces traditional multi- 259
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Figure 2: Overall framework of the proposed . (1) Retrieval Stage: The final outputs are based on a set of base
tables that represent real-world conditions, e.g., the number of runways at an airport. (2) Optimization Stage: Our
foundational model gains proficiency in handling complex instructions within NOTAM analysis scenarios through
iterative self-evolution. (3) Inference Stage: We rephrase the original NOTAM without altering its core content and
then extract information from multiple texts to determine the final answer via a voting mechanism.

round decision processes by utilizing predefined260

graph paths (e.g., the chained pattern "Restric-261

tion Type-Impacted Equipment-Applicable Time262

Period") for direct Cypher query generation.263

The operational implementation prioritizes SMO-264

LAGENTS over REACT due to their enhanced effi-265

ciency in task-specific processing. SMOLAGENTS266

demonstrate superior computational efficiency and267

scalability, particularly in complex query process-268

ing within knowledge graph-integrated systems.269

This strategic substitution streamlines operational270

workflows while improving system robustness and271

responsiveness. Collectively, these enhancements272

yield measurable improvements in both accuracy273

and operational efficiency during NOTAM infor-274

mation retrieval and analysis.275

3.4 Self-Evolving Supervised and Preference276

Optimization277

Initialization Setup Our iterative optimization278

framework is initialized with three components:279

• Data Partitioning: Annotated dataset D0 =280

{(x ◦ K,Y ∗)} is split into 8:2 training-test281

sets, where x is the raw NOTAM text, K = 282

κ(x, T ) denotes retrieved aviation knowledge, 283

and Y ∗ is the structured output annotation. 284

• Base Model: An untuned open-source base 285

model πbase serves as the initial model. 286

• Response Repository: An indexed set R = 287

{(x, Y ∗, Ŷ )}x∈X stores model responses with 288

correctness labels across iterations. 289

Iterative Optimization Loop 290

Each iteration consists of supervised fine-tuning 291

(SFT) and dynamic preference optimization (DPO) 292

stages. The workflow is illustrated in Fig. 2 (see 293

Algorithm 1 in Appendix A). 294

In the first stage, we generate responses Ŷ for 295

inputs x ◦K using the current model πcurrent. Next, 296

we compare Ŷ with the golden labels Y ∗ to update 297

the repository R with both correct (Y∗
x) and in- 298

correct (Y−
x ) responses. Finally, we extract correct 299

samples to build the dataset DSFT = {(x◦K,Y ∗)}, 300

optimizing the loss function: 301
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LSFT = −E(x,Y ∗)∼DSFT

[
m∑
i=1

log πθ(Y
∗
i |x ◦K,Y ∗

<i)

]
(2)302

For the DPO stage, we first construct a prefer-303

ence dataset. For each input x with contrastive304

pairs (Y∗
x,Y−

x ) in R, we build triples (x, y∗, y−)305

where y∗ ∈ Y∗
x and y− ∈ Y−

x . Next, we per-306

form dynamic data augmentation by generating307

semantic-preserving variants Vx (Eq. 3) for high-308

error samples (ξ(x) ≥ τ ):309

Daug =
⋃

x∈D0
ξ(x)≥τ

{
(v, y∗, y−) | v ∈ Vx

}
(3)310

We then implement weighted curriculum learn-311

ing using dynamic weights (Eq. 4):312

we(x) = (1− αe)
1

N
+ αe

exp(βξ(x))∑
j exp(βξ(xj))

,

αe = min(e/E, 1)

(4)

313

Finally, we optimize the modified DPO loss un-314

der sampling distribution Pe(x) ∝ we(x):315

LDPO = −E(x,y∗,y−)
∼Pe(x)

[
log σ

(
β log

πθ(y
∗|x)

πref(y∗|x)

− β log
πθ(y

−|x)
πref(y−|x)

)]
(5)

316

Three adaptive mechanisms enable error-centric317

self-evolution. First, augmentation triggering318

(Eq. 6) auto-activates variant generation when the319

error rate exceeds a threshold:320

ξ(x) =

∑K
k=1 I(Ŷ (k) ̸= Y ∗)

K
> τ (6)321

Second, exponential weighting (Eq. 7) empha-322

sizes high-error samples through β-scaled weights:323

w(x) ∝ eβξ(x) (7)324

Third, curriculum scheduling (Eq. 8) implements325

a smooth transition from uniform to weighted sam-326

pling:327

αe = min(e/E, 1) (8)328

The iteration terminates when reaching accuracy 329

threshold η on Dtest: 330

1

|Dtest|
∑

x∈Dtest

I(Ŷ (k) = Y ∗) ≥ η (9) 331

Empirical results show that the framework 332

achieves commercial SOTA-level NOTAM pars- 333

ing accuracy within 3-5 iterations without model 334

distillation. 335

3.5 Integrated Inference Strategy 336

Empirical analysis reveals inherent challenges in 337

applying standard question-answering paradigms 338

to NOTAM analysis, where the model’s lim- 339

ited complex instruction-following capability often 340

leads to structural output errors. Particularly for 341

edge cases where minor reasoning path variations 342

could determine correctness, we observe that the 343

baseline model (πR1) generates inconsistent predic- 344

tions despite demonstrating partial comprehension. 345

To mitigate this instability while preserving avia- 346

tion domain integrity, we implement an input diver- 347

sification strategy coupled with consensus-based 348

decoding. The approach begins with generating 349

N = 5 semantically-equivalent NOTAM variants 350

through controlled paraphrasing that strictly main- 351

tains original aviation terminology (e.g., preserving 352

"RWY" abbreviations), spatiotemporal constraints, 353

and safety-critical numerical values. Each variant 354

undergoes independent model processing to yield 355

candidate structured outputs {Ŷ (k)}Nk=1, followed 356

by majority voting to determine the final predic- 357

tion Ŷfinal = argmaxY
∑N

k=1 I(Y = Ŷ (k)). The 358

paraphrasing mechanism combines lexical substitu- 359

tion (e.g., "CTAM" ↔ "Controller Advisory Mes- 360

sage"), syntactic restructuring through voice al- 361

ternation, and contextual expansion with optional 362

ICAO phraseology clarifications. Experimental val- 363

idation in Section 4.3 demonstrates this technique’s 364

effectiveness, achieving 1.3% accuracy improve- 365

ment by resolving 23% of borderline cases where 366

single-pass decoding produced partially correct out- 367

puts. 368

4 Experiments 369

4.1 Experimental Setup 370

Datasets. We construct a specialized NOTAM anal- 371

ysis dataset containing 10,000 labeled instances 372

collected from global aviation notices published 373

in 2024. Unlike existing benchmarks like (Arnold 374

et al., 2022), our dataset emphasizes real-world 375
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Model Light Area Runway Taxiway AVG

Popular Models

qwen2.5-7B (Yang et al., 2024) 0.560 0.777 0.412 0.748 0.624
Mistral-7B (Jiang et al., 2023) 0.405 0.655 0.588 0.492 0.535
Llama3.1-8B-instruct (Dubey et al., 2024) 0.440 0.476 0.392 0.490 0.450
qwen2.5-7b-instruct (SFT) 0.590 0.793 0.730 0.864 0.744
Deepseek-R1-Distill-Qwen-7B (SFT) 0.18 0.226 0.236 0.204 0.212
Deepseek-R1-Distill-Qwen-7B (ours) 0.620 0.725 0.836 0.868 0.762

Commercial Models

GPT-4o (Achiam et al., 2023) 0.605 0.851 0.770 0.914 0.785
Deepseek-R1 (DeepSeek-AI et al., 2025) 0.725 0.871 0.792 0.924 0.828

Table 1: Performance comparison with gray text for commercial models. Underlined: Best in group; Bold: Overall
best.

operational constraints through temporal-aligned376

aeronautical base tables. The four NOTAM cate-377

gories are shown in Table 2:378

Category Light Area Runway Taxiway

Samples 1000 4000 2500 2500

Table 2: NOTAM Category Distribution

Baselines. We evaluate open-source models un-379

der identical prompts, with DeepSeek-R1 series as380

accuracy upper-bound references.381

Implementation Details. Our framework is built382

upon DEEPSEEK-R1-DISTILL-QWEN-7B with383

three core components:384

Fine-tuning Employed the UNSLOTH frame-385

work for SFT/DPO training, adhering to the official386

recommended configurations.387

TableRAG Composed of two specialized sub-388

modules:389

• Knowledge Graph Construction: Leverages390

LLM-generated prompts through GRAPHFU-391

SION methodology (human-verified)(Pan et al.,392

2024), Comprehensive agent architecture specifi-393

cations are detailed in Appendix A.394

• Agent Module Replacement: Implements SMO-395

LAGENTS in lieu of the original framework’s396

agent component.397

Hardware All experiments were executed on a398

single NVIDIA A800-80GB-PCIe GPU platform.399

4.2 Main Results 400

We evaluate our framework on four NOTAM anal- 401

ysis tasks: Light (lighting system status), Area 402

(airspace restrictions), Runway (runway opera- 403

tions), and Taxiway (taxiway conditions). Our 404

experiments compare three configurations: 405

• Base models without tuning: GPT-4o, 406

Mistral-7B, Qwen2.5-7B, and Llama3.1-8B 407

• Standard supervised fine-tuning (SFT): 408

qwen2.5-7B-instruct and Deepseek-R1- 409

Distill-Qwen-7B (SFT) 410

• Our optimized model: Deepseek-R1-Distill- 411

Qwen-7B with iterative self-evolving opti- 412

mization 413

Evaluation Rule: A prediction is considered 414

correct only when it exactly matches both the struc- 415

tured output format and annotation criteria. 416

As shown in Table 1, our optimized model 417

achieves performance comparable to the com- 418

mercial GPT-4o system (0.762 vs. 0.785 AVG) 419

while narrowing the gap with the state-of-the-art 420

Deepseek-R1 (0.828 AVG). Specifically, the op- 421

timized model outperforms GPT-4o by 8.6% on 422

Runway (0.836 vs. 0.770) and demonstrates com- 423

petitive performance on Taxiway (0.868 vs. 0.914) 424

- categories requiring multi-table retrieval, show- 425

casing KG-TableRAG’s effectiveness in structured 426

knowledge integration. Notably, our framework 427

achieves 30.4% improvement in AVG performance 428

compared to the original base models, validating 429

the effectiveness of our approach. 430
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4.3 Ablation Study431

We conducted systematic ablation analyses to vali-432

date three key design elements: (1) KG-TableRAG433

knowledge integration, (2) Reasoning Integration434

mechanism, and (3) iterative optimization strategy.435

As shown in Table 3 The complete system achieved436

state-of-the-art performance (0.762 AVG), with437

component removal experiments revealing critical438

insights:439

• KG-TableRAG Removal caused 2.2% perfor-440

mance degradation (0.762→0.740), particularly441

impacting scenarios requiring aviation-specific442

knowledge fusion (e.g., NOTAM code interpreta-443

tion)444

• Reasoning Integration Ablation resulted in445

4.1% absolute drop (0.762→0.721), confirming446

our multi-step reasoning design effectively han-447

dles semantic ambiguity448

• Component Co-dependency emerges when dis-449

abling both modules (0.690 AVG), demonstrating450

their complementary roles in knowledge ground-451

ing and reasoning452

KG-TableRAG Inf. Integr. AVG

✓ ✓ 0.762
✓ × 0.721
× ✓ 0.740
× × 0.690

Table 3: Ablation Study Results with Structured Knowl-
edge (KG-TableRAG) and Reasoning Integration Com-
ponents. Gray background indicates full configuration.

The iterative optimization strategy (Figure 3)453

demonstrated progressive gains across categories:454

• Taxiway accuracy improved 34.4% (64.6→86.8)455

over three iterations456

• Light category showed steep learning curve457

(+17% from Iter1 to Iter3)458

The experimental results quantitatively validate459

the synergistic effects of the framework compo-460

nents: KG-TableRAG ensures structured knowl-461

edge constraints, Reasoning Integration enhances462

robustness in complex reasoning tasks, and the iter-463

ative optimization mechanism achieves experience464

reuse through the response pool. These elements465

collectively address the specialized requirements466

of NOTAM parsing in aviation domains.467

Light Area Runway Taxiway

40

60

80

100

45

63
78
.8

64
.6

54

72
84
.2

81
.2

62
73

83
.6 86

.8

Performance comparison across iterations

Iteration 1 Iteration 2 Iteration 3

Figure 3: Iterative Optimization Performance (Accuracy
%) across NOTAM Categories.

4.4 Complexity Analysis 468

We rigorously analyze the computational charac- 469

teristics of our framework through three funda- 470

mental components. The dynamic preference op- 471

timization process is governed by the response 472

pool R(t)
x = {(Y ∗, Ŷ (k))}3Kk=1 containing outputs 473

from three models per input, the sample-wise er- 474

ror rate ξ(x) =
∑3K

k=1 I(Ŷ (k) ̸=Y ∗)
3K from (6), and the 475

active preference pairs D(t)
pref = {(x, y∗, y−)|y∗ ∈ 476

Y∗
x, y

− ∈ Y−
x }. 477

As demonstrated in Table 4, the response pool 478

grows linearly as |R(t)
x | = 3Kt with each itera- 479

tion’s triple-model generation, but actual prefer- 480

ence pair creation follows quadratic scaling modu- 481

lated by accuracy progression: 482

|D(t)
pref| =

∑
x∈D0

|Y∗
x| · |Y−

x |

≈ 9K2t2(1− η)

(10) 483

where ηx = 1
t

∑t
i=1 I(Ŷ (i) = Y ∗) tracks per- 484

input accuracy and η denotes global performance. 485

Our experiments revealed accuracy improvements 486

from initial 45% to final 62%, causing the error 487

suppression term (1− η) to decrease from 0.55 to 488

0.38 through three iterations. 489

Metric Iter.1 Iter.2 Iter.3

Theoretical pairs 2,415 5,915 11,320
Effective pairs 1,449 3,549 6,792
Time (h) 0.58 1.5 3.2
Scale factor 1.0× 2.6× 2.1×

Table 4: Iterative Complexity Metrics with Scaling Fac-
tors

The computational cost per iteration combines 490

preference pair volume with curriculum learning 491

dynamics, as quantified in Table 4: 492
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T (t)
DPO = E · |D(t)

pref| · Ewe(x)[1/Pe(x)]

Pe(x) ∝ (1− αe)
1

N
+ αe

exp(βξ(x))∑
j exp(βξ(xj))

(11)

493

where E denotes training epochs and αe =494

min(e/E, 1) implements our phased curriculum495

strategy. Three mechanisms suppress theoreti-496

cal O(t2) scaling to observed 2.3× average per-497

iteration growth: 1) Error threshold filtering (6) re-498

moves 40% of low-difficulty samples, 2) Weighted499

curriculum sampling reduces effective batch size500

by 38%, and 3) Accuracy saturation limits error501

response generation through (1 − η) decay (0.55502

→ 0.46 → 0.38).503

The framework maintains practical tractability504

through exponential complexity bounding:505

T (t)
DPO ≤ 2.3tT (0)

DPO, lim
t→∞

T (t)
DPO = O(1) (12)506

with complete convergence achieved in 3 itera-507

tions at 62% accuracy. Total wall-clock time ranges508

from 35 minutes to 3.2 hours on NVIDIA A800509

GPUs, with DPO training utilizing 1,449-6,792 fil-510

tered preference pairs per iteration as detailed in511

Table 4.512

5 Conclusion513

We present a knowledge-guided framework com-514

bining LLMs with aviation expertise to resolve515

NOTAM parsing challenges. Our self-evolving516

architecture addresses semantic-factual contradic-517

tions through dynamic integration of infrastructure518

knowledge and operational constraints.519

The framework achieves 30.4% accuracy gains520

over base models through iterative optimization521

on 10,000 NOTAMs, bridging NLP capabilities522

with aviation requirements while preserving termi-523

nology integrity. This research establishes a new524

paradigm for NOTAM analysis, with principles ex-525

tensible to other high-precision domains requiring526

robust knowledge integration and adaptive learn-527

ing.528

The results underscore the transformative poten-529

tial of LLM-driven solutions in enhancing airspace530

management automation, mitigating human error531

risks, and advancing real-time decision-making ca-532

pabilities for global aviation systems.533

6 Limitation 534

Although our Self-Evolving Supervised and Prefer- 535

ence Optimization framework facilitates iterative 536

model enhancement, two key constraints emerge 537

from NOTAM analysis specifics. First, the com- 538

putational demand grows linearly with evolution 539

iterations, mirroring reinforcement learning’s char- 540

acteristic requirement for extended training phases 541

to achieve operational breakthroughs. Second, 542

our constraint-driven NOTAM extraction process – 543

while enforcing aviation regulatory compliance – 544

inherently accumulates annotation inaccuracies due 545

to the complex temporal-spatial dependencies and 546

specialized aeronautical terminology inherent to 547

NOTAM structures. Future implementations could 548

integrate large language models for preliminary se- 549

mantic parsing of NOTAM texts, followed by avia- 550

tion safety experts’ validation to reconcile domain- 551

specific constraints with machine-generated anno- 552

tations. 553

7 Ethical Considerations 554

Our work distills the complexities of real-world 555

demands and provides possibilities for automating 556

NOTAM analysis. However, due to safety require- 557

ments, our current parsing accuracy is insufficient 558

for direct deployment in real-time systems. Instead, 559

our system supports ground analysts by providing 560

reference information, with all critical data ulti- 561

mately submitted to pilots after rigorous manual 562

review. 563

The NOTAM data used in our study is publicly 564

available from official platforms, ensuring trans- 565

parency and reliability. All data annotations were 566

performed manually by domain experts to ensure 567

high-quality and accurate data. While our tech- 568

nology shows potential, aviation safety standards 569

require that our parsing results be used only as 570

auxiliary tools to assist analysts, not replace their 571

judgment. 572

Key information must undergo strict manual ver- 573

ification before being handed over to pilots. We 574

will continue refining our models to improve pars- 575

ing accuracy, but at this stage, automated results 576

should be considered supplementary aids rather 577

than definitive decision-making bases. The use of 578

public data and expert annotation ensures trans- 579

parency and compliance with ethical standards. 580
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A Training Algorithm Implementation720

Details721

Algorithm 1 Self-Evolving SFT & DPO Optimiza-
tion
Require: Initial dataset D0 = Dtrain ∪ Dtest (8:2 split)
1: Base model πbase, empty response poolR = ∅
2: Max iterations T , error threshold τ , temperature β, total

epochs E

3: procedure MAIN
4: πcurrent ← πbase ▷ Model initialization
5: for t = 1 to T do
6: GENERATERESPONSES(πcurrent, D0)
7: UPDATERESPONSEPOOL(R) ▷ Record

correct/incorrect responses
8: DSFT ← {(x ◦K,Y ∗)|Y ∗ ∈ Y∗

x}
9: πSFT ← SFT-TRAIN(πcurrent,DSFT)

10: GENERATERESPONSES(πSFT, D0)
11: UPDATERESPONSEPOOL(R)
12: Dpref ← BUILDPREFERENCEPAIRS(R)
13: if Dpref ̸= ∅ then
14: πDPO ← DPO-TRAIN(πSFT,Dpref)
15: πcurrent ← πDPO
16: end if
17: end for
18: end procedure

19: function DPO-TRAIN(πref,Dpref)
20: Daug ← ∅
21: for x ∈ Dpref do
22: if ξ(x) ≥ τ then ▷ Data augmentation trigger
23: Vx ←

⋃N
n=1 Augment(x, n)

24: Daug ← Daug ∪ {(v, Y ∗, Y −)}
25: end if
26: end for
27: for e = 1 to E do ▷ Curriculum learning
28: αe ← min(e/E, 1)
29: for xi ∈ Daug do
30: we(xi)← (1− αe)

1
N

+ αe
exp(βξ(xi))∑
j exp(βξ(xj))

31: end for
32: Sample batch ∼ Pe(x) ∝ we(x)
33: Update πθ using LDPO (Eq. 5)
34: end for
35: return πθ

36: end function

37: function BUILDPREFERENCEPAIRS(R)
38: Dpref ← ∅
39: for x ∈ D0 do
40: if ∃(Y ∗, Y −) ∈ Rx then ▷ Valid preference

pairs exist
41: Dpref ← Dpref ∪ {(x, Y ∗, Y −)}
42: end if
43: end for
44: return Dpref
45: end function

B Knowledge Graph Structure 722

Figure 4: Domain Knowledge Graph Architecture.

C Task Prompt 723

724
You are an AI assistant specialized in parsing 725

↪→NOTAMs. Your task is to extract information 726
↪→about the runway status from the given NOTAM 727
↪→ text. Please follow the guidelines below : 728

729
1. Identify Runway Status : 730

Closed (MRLC , MRXX): Contains keywords like 731
↪→CLOSED , CLSD , CLOSURE , NOT AVBL , 732
↪→UNAVAILABLE , SUSPENDED , etc. 733

- Limited (MRLT , MRXX): Contains phrases like 734
↪→RESTRICTED , LIMITED , RESERVED FOR , etc., 735
↪→ and is combined with "only". 736

- Open (MRAH): Contains keywords like OPEN , OPN 737
↪→TO TFC , CANCELLED CLOSURE , etc. 738

2. Evaluate the Impact: 739
- Determine if it affects takeoffs , landings , or 740

↪→ both (based on the semantics). 741
- Identify the affected flight types ( 742

↪→International , Domestic , Regional). 743
- If the restricted flight type is not 744

↪→explicitly mentioned , assign " 745
↪→International , Domestic , Regional ". 746

- If explicitly mentioned , assign only the 747
↪→restricted flight type. 748

3. Output Format: 749
Please return the result in the JSON array 750

↪→format. Each element represents a record 751
↪→ and contains the following fields: 752

- `airport `: ICAO code of the airport. 753
- `runway `: Affected runway number. 754
- `affect_actype `: Affected aircraft type. Fill 755

↪→in the field only when it involves 756
↪→wingspan , CODE C/D, or the number of 757
↪→engines. 758

- `affect_region `: The scope of closure or 759
↪→restriction , with values "TAKEOFFS", " 760
↪→LANDINGS", or "TAKEOFFS ,LANDINGS ". 761

- `flight_type `: The affected flight type ( 762
↪→International , Domestic , Regional). 763

4. Notes: 764
- Partial closure/restriction of a runway is 765

↪→also considered as a complete closure/ 766
↪→restriction. 767
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- Create a separate record for each runway if768
↪→the message involves multiple runways.769

- Extract only the information explicitly770
↪→mentioned in the NOTAM; do not make771
↪→assumptions.772

- When facing the flight type , consider using773
↪→Chinese words to represent the flight774
↪→type as mentioned in the prompt and775
↪→examples.776

- Focus on the impact on aircraft , such as the777
↪→aircraft category (CODE C/D), wingspan (778
↪→in meters), etc.779

- Fill in the `affect actype ` field based on the780
↪→ affected aircraft type. The wingspan781
↪→length may need to be converted from FT782
↪→to M for comparison.783

- The message may mention restrictions on784
↪→aircraft categories or CODEs , which need785
↪→ to be matched with the aircraft type786
↪→table.787788

D Example789

—INPUT—790

791
<instruction >:792
Q)KZDV/QMRLC/IV/NBO/A/000/999/3952793

↪→N10440W005794
A)KDEN B)2301010254 C)2301011200795
E) DEN RWY 17L/35R CLSD796

797
)798799

—OUTPUT—800

801
<result >:802
<think >803
Runway Identification: Extracted the airport ICAO804

↪→code as "KDEN" from "A) KDEN".805
Runway Status Analysis:806

"RWY 17L/35R CLSD" -> Both runways are807
↪→completely closed (CLSD=Closed).808

The default impact of closure is on takeoffs and809
↪→ landings -> affect_region: "TAKEOFFS ,!810

LANDINGS ".811
Aircraft Type Restriction:812

No mention of wingspan , CODE category , or engine813
↪→ restrictions -> affect_actype: null.814

Flight Type Inference:815
No specific restriction mentioned Default816

↪→impact on all types -> flight_type: "817
↪→International ,!818

Domestic ,Regional ".819
Handling Multiple Runways:820

Create a separate record for each runway821
↪→according to the rules (one each for 17L822
↪→ and 35R).823

824
```json825
[826

{827
"airport ": "KDEN",828
"runway ": "17L",829
"affect_actype ": null ,830
"affect_region ": "TAKEOFFS ,!831

LANDINGS",832
"flight_type ": "International ,!833

Domestic ,Regional"834
},835
{836

"airport ": "KDEN",837
"runway ": "35R",838
"affect_actype ": null ,839
"affect_region ": "TAKEOFFS ,!840

LANDINGS",841
"flight_type ": "International ,!842

Domestic ,Regional"843
}844

]845846
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