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Abstract

Vision-Language Models (VLMs) have made significant ad-
vances in image-language tasks, and many recent studies
are now exploring their application to video understanding.
However, video frames generate a large number of visual to-
kens, making efficient frame selection crucial. Some exist-
ing methods employ relatively simple frame sampling strate-
gies, which often result in redundant frame selection and
insufficient temporal coverage when handling complex and
dynamic video content. To address this issue, we propose
RM-LLaVA, a training-free video-language understanding
framework based on Redundancy-Minimized Frame Selec-
tion (RMFS). RMFS consists of two stages: (i) structure-
aware clustering to refine the candidate frame pool, and (ii)
iterative semantic diversity maximization to select a com-
pact and informative set of frames. The proposed method
requires neither training nor fine-tuning, and can be seam-
lessly applied to off-the-shelf image-language models. We
conduct extensive experiments on three standard VideoQA
benchmarks, demonstrating that RM-LLaVA outperforms ex-
isting training-free approaches on two of them and surpasses
many fine-tuned models. Ablation studies further verify the
effectiveness and complementarity of the proposed compo-
nents.

Introduction

Recent advances in Vision-Language Models (VLMs) have
opened new possibilities for video understanding without
dedicated video-model training. By leveraging powerful pre-
trained image-text models, one can attempt to solve video
tasks by converting video data into a form digestible by
image-based models. IG-VLM (Kim et al. 2024) is one such
approach, which represents a video as a single image grid
composed of a handful of frames. In IG-VLM, six frames
uniformly sampled from the video are arranged in a grid
and fed into a VLM to answer questions or describe the
video. This simple training-free strategy achieved state-of-
the-art zero-shot results on multiple VideoQA benchmarks,
demonstrating the surprising power of treating video frames
as “one big image.”

Despite its success, uniform frame sampling in IG-VLM
has clear limitations. Videos often contain redundant frames
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— adjacent frames may look nearly identical — and also brief
but crucial events that a coarse uniform sampling might skip.
With only six slots available, what frames we choose is crit-
ical. Uniform sampling does not account for frame con-
tent; it can over-sample long static scenes while missing
brief but critical moments. Consequently, the six-frame grid
might lack diversity, hurting the model’s understanding of
the video’s full story. We hypothesize that a smarter frame
selection strategy — one that avoids semantic redundancy and
covers more distinct scenes — can significantly improve a
grid-based VLM’s performance without any model retrain-
ing.

In this paper, we introduce Redundancy-Minimized
Frame Selection (RMFS), a frame sampling method de-
signed to maximize the informational diversity of a fixed-
size frame set. Our approach enhances frame selection by
maximizing semantic diversity via a structured two-stage
pipeline: structure-aware candidate refinement followed by
iterative selection. This design ensures that frames are not
only semantically distinct but also contextually complemen-
tary. In contrast to conventional uniform sampling—which
often results in visually redundant or semantically irrelevant
frames—RM-LLaVA actively selects frames that are both
diverse and representative. Table 1 presents a comparison of
representative vision-language models for video understand-
ing, highlighting that our proposed RM-LLaVA uniquely
achieves all three advantages: training-free, redundancy-
aware, and capable of video understanding.

Our contributions are summarized as follows. First, we
introduce a novel frame selection pipeline that reduces re-
dundancy and enhances semantic coverage, allowing the
model to better capture essential visual information. Sec-
ond, we conduct extensive experiments on several standard
VideoQA benchmarks, demonstrating the effectiveness of
our proposed method. Third, we provide in-depth analyses
and ablation studies to validate the contribution of each com-
ponent within our framework. Lastly, the method is highly
practical—it requires no model fine-tuning or external video
metadata and adds minimal computational overhead, mak-
ing it suitable for real-world deployment.



Table 1: Comparison of representative vision-language models for video understanding.

Method Training-free Redundancy-aware = Video understanding
Image-LLM v X X
Training-based Video LLM X v v
Training-free Video LLM v X v
RM-LLaVA (proposed) v v v

Related Work
Image Large Language Models

Image Large Language Models (Image LLMs) have rapidly
evolved from early image-text alignment approaches (e.g.,
CLIP (Radford et al. 2021)) into powerful multimodal sys-
tems capable of supporting multilingual, multi-task, and in-
teractive understanding. Models such as Flamingo (Alayrac
etal. 2022), BLIP and BLIP-2(Li et al. 2022) (Li et al. 2023),
CoCa (Yu et al. 2022), and PaLI (Chen et al. 2023) build ef-
ficient vision-language bridges through freezing strategies
and large-scale pretraining. LLaVA(Liu et al. 2023) con-
nects visual encoders with language models and fine-tunes
on image-instruction data, enabling visual question answer-
ing and reasoning. GPT-4V (OpenAl et al. 2024), trained
on large-scale multimodal data, demonstrates strong visual
understanding across tasks such as image description, chart
analysis, and meme interpretation. In the 3D domain, models
like 3D-LLM (Hong et al. 2023), 4M(Mizrahi et al. 2023),
Cube-LLM (Cho et al. 2024), and Grounded 3D-LLM (Chen
et al. 2024b) further enhance spatial reasoning and multi-
modal referential grounding.

Video Large Language Models

Video Large Language Models (Video LLMs) extend lan-
guage models to temporal visual understanding by address-
ing challenges in sequence modeling and multimodal rea-
soning. Early works like MERLOT Reserve(Zellers et al.
2022) and InternVideo (Wang et al. 2022) demonstrated the
value of large-scale video-text pretraining. Models such as
Vid2Seq (Yang et al. 2023), VideoTree (Wang et al. 2025b),
and VideoAgent (Wang et al. 2025a) explored hierarchi-
cal reasoning and agent-based control over long videos.
Dialogue-based systems like VideoChat (Li et al. 2024a)
and Video-ChatGPT (Maaz et al. 2024) integrate video
encoders with LLMs for interactive understanding. Other
advances include streaming processing (VideoLLM-Online
(Chen et al. 2024a)) and thought-based reasoning (Video-
of-Thought (Fei et al. 2024)). Notably, many models adapt
image-based LLMs with minimal video-specific tuning, en-
abling strong zero-shot performance.

Training-Free Video LLMs

Training-Free Video LLMs leverage pretrained Image
LLMs without fine-tuning, enabling efficient video under-
standing through strategies like temporal pooling (FreeVA
(Wu 2024)) and image grid representation (IG-VLM (Kim
et al. 2024)). However, their reliance on a small number
of frames and lack of explicit temporal modeling limits

performance on complex videos. Recent advances such as
SlowFast-LLaVA (Xu et al. 2024b) address this by introduc-
ing a dual-pathway design that separately captures spatial
and temporal cues, enhancing temporal understanding while
remaining training-free. Free Video-LLM (Han et al. 2024)
achieves lightweight inference by leveraging prompt infor-
mation and applying region-level cropping to reduce visual
input.

RM-LLaVA
Preliminaries

Image Large Language Models (Image LLMs) extend pre-
trained large language models with vision capabilities by
integrating an image encoder and a modality alignment
module. These models are typically built by combining a
powerful vision backbone (e.g., EVA(Fang et al. 2022), or
SigLIP(Zhai et al. 2023)) with a frozen or lightly tuned LLM
(e.g., LLaMA(Touvron et al. 2023), or GPT-like architec-
tures). The core idea is to align visual embeddings with the
LLM’s language space, enabling the model to understand
and generate language conditioned on image inputs.

Given an input image I, the visual encoder (denoted as
Visualey) extracts visual tokens:

F; = Visualey(1). €))

These tokens are then passed through a projec-
tor—typically a lightweight MLP or transformer-based
adapter—to match the modality and dimensionality of the
LLM’s embedding space. The resulting aligned features are
given by:

Fyroj = Projector(Fr). 2)

These features are then combined with a language prompt
and fed into the LLM to perform vision-language tasks such
as image captioning, visual question answering, or reason-
ing:

A = LLM(Prompt, Fproj, @), 3)

where () is the user query or instruction, and A is the
model’s output.

Recent works have proposed various architectures to im-
prove image-text alignment and multimodal reasoning. For
instance, BLIP-2(Li et al. 2023) introduces a Querying
Transformer (Q-Former) to extract task-relevant features be-
fore projection. MiniGPT-4(Zhu et al. 2023) uses a linear
layer to align CLIP features with Vicuna(Chiang et al. 2023),
while LLaVA(Liu et al. 2023) leverages both pre-training
and instruction tuning to achieve strong multi-turn VQA



EIE &l
> BEEREEE R

Uniformly Frame Encoding
Video Sampled (CLTIP)
Frames

.

Answer
LLaVA

_
Frame Selection
<«——| - Structure-aware clustering of features
- Iterative selection of diverse frame subset

‘
= =0

Grid Construction

| =

Question

Figure 1: Overview of the training-free video understanding pipeline of RM-LLaVA, which incorporates a redundancy-

minimized frame selection module.

capabilities. Despite architectural differences, most models
follow a similar encoder—projector-LLLM pipeline.

RM-LLaVA Architecture

We propose RM-LLaVA, a training-free video language
model framework that enhances semantic richness in frame
selection through a two-stage process: clustering-based can-
didate refinement followed by iterative semantic diversity
maximization. Unlike uniform frame sampling—which of-
ten introduces redundancy by repeatedly capturing similar
frames or overlooks brief but critical events—RM-LLaVA
explicitly prioritizes semantic diversity and informativeness.
By filtering out visually redundant frames and selecting
maximally distinct candidates, it enables more efficient and
expressive use of the limited visual token budget, resulting
in significantly enhanced temporal coverage and robustness
in downstream tasks.

Conventional uniform sampling is oblivious to both visual
content and task relevance. In relatively static scenes—such
as a press conference where a speaker remains at the
podium—uniformly sampled frames often capture nearly
identical shots, resulting in redundant visual inputs and in-
efficient use of model capacity. In contrast, dynamic videos
like cooking tutorials present the opposite challenge: uni-
form sampling tends to over-represent extended, repetitive
segments such as chopping vegetables or stirring, while en-
tirely missing brief but critical actions like pouring oil, ad-
justing heat, or plating the final dish—steps that may be es-
sential for accurately answering a question or generating a
meaningful caption.

To address these shortcomings, RM-LLaVA first performs
clustering over the full frame pool to reduce coarse visual
redundancy. It then incrementally selects a subset of seman-
tically diverse and complementary frames. This two-stage
process yields a compact yet informative frame set, better
aligned with the underlying content structure and task re-

quirements, thereby enhancing the model’s ability to inter-
pret and respond to diverse prompts. Figure 1 illustrates the
architecture of RM-LLaVA.

Frame Sampling and Feature Extraction Given a video
V', we uniformly sample /N candidate frames:

F=A{f,fas- N} (4)

Each frame f; € F is passed through a frozen image en-
coder ¢(-) to obtain L2-normalized visual features:

o(fi)

el

Let X = {z1, 22,...,zy} denote the set of normalized fea-
tures.

x; € R (5)

Redundancy-Minimized Frame Selection To reduce re-
dundancy and enhance information diversity within the vi-
sual input, we propose a redundancy-minimized frame se-
lection strategy that operates through two stages: structure-
aware clustering and iterative diversity selection. The goal
is to identify a compact set of frames that are both seman-
tically representative and mutually complementary, under a
strict visual token budget.

We define the selection of the final frame subset D* C X
of size K as an optimization problem that jointly maximizes
representativeness while minimizing redundancy:

D* =arg max Rep(z;)—A- Sim(z;, x;
B SR Y Sintan)
(6)

Here, Rep(z;) denotes the semantic representativeness of
frame x;, which encourages coverage of distinct content re-
gions in the video, and Sim(x;,x;) denotes the pairwise
similarity between frames, discouraging redundancy. The
hyperparameter A balances the trade-off between coverage
and diversity.



While this optimization is intractable to solve exactly,
we adopt a two-phase tractable instantiation. First, we per-
form structure-aware clustering over X in the feature space
to obtain a candidate pool S = {s1,82,...,8¢} that re-
flects coarse semantic partitions of the video. Then, from .S,
we iteratively construct the final subset D using a progres-
sive diversity-aware selection strategy that approximates the
above objective.

The process begins by selecting the globally most distinct
candidate, i.e., the one with the lowest average similarity to
all others:

1
D+ arggy&igm Z 'Sim(shsj) @)
JESjF#i

Then, we iteratively add new frames that exhibit maximal
marginal gain in diversity:

1

st = argiglsi\nD Dl Z Sim(s;, sj), D+« DU{s"}
j€D

(®)

until |D| = K.

This unified selection strategy ensures that the final frame
set is compact yet semantically rich, striking a balance be-
tween visual diversity and content relevance. It enables the
downstream vision-language model to receive a more infor-
mative and non-redundant representation of the video, even
under tight input constraints. A detailed investigation into
the choice of the number of clusters C' and the final subset
size K is provided in our ablation studies, where we analyze
their impact on downstream performance.

Final fusion The final selected frames F’ =
{f1, f2,..., fx} are spatially arranged into a single
image grid:

G = GridConcat(F") )

This grid-format image G serves as the visual input to the
vision-language model, paired with a prompt p for inference:

y = VLM(G, p) (10)

The use of an image grid preserves spatial coherence and
enables the model to jointly attend to all selected frames
within a single forward pass.

Experiments
Benchmarks and Backbone Model

In our experiments, we evaluate the effectiveness of the pro-
posed RM-LLaVA framework on three widely used open-
ended video question answering (VideoQA) benchmarks:
MSVD-QA(Chen and Dolan 2011), MSRVTT-QA(Xu et al.
2016), and TGIF-QA(Jang et al. 2017). These datasets have
been extensively used in prior work to assess the ability of
models to understand video content and answer natural lan-
guage questions. To ensure a fair and objective evaluation
of model performance, we employ GPT-3.5-Turbo-0125 as

an automatic evaluation agent, following standardized eval-
uation protocols commonly adopted in recent studies(Wu
2024)(Xu et al. 2024a). For each prediction, the agent pro-
vides both a binary correctness judgement and a 1-5 rating
reflecting answer quality. We report two metrics: Acc (%),
the percentage of answers judged correct, and Score, the av-
erage 1-5 quality rating assigned by GPT-3.5 over all sam-
ples. For the underlying vision-language backbone, our im-
plementation builds upon LLaVA-v1.6 (7B)(Liu et al. 2023),
using CLIP-L/14 as the visual feature extractor.

Main Results

Table 2 presents a comprehensive comparison of RM-
LLaVA against a series of state-of-the-art 7B-parameter
video-language models on three standard VideoQA bench-
marks. For fairness, we locally reproduced the results of sev-
eral baseline methods using their released code, which may
differ from the results reported in the original papers.

On MSVD-QA, RM-LLaVA achieves the highest accu-
racy of 78.7% and a score of 4.1, surpassing strong competi-
tors such as IG-VLM (78.3%) and SF-LLaVA (78.2%). This
result demonstrates RM-LLaVA’s ability to capture fine-
grained semantic cues in short, high-quality video clips.

On MSRVTT-QA, a dataset known for its greater tem-
poral diversity and noisier web videos, RM-LLaVA at-
tains 65.1% accuracy and 3.6 in score, outperforming all
other models, including IG-VLM (63.4%) and SF-LLaVA
(64.1%). The improvement indicates that RM-LLaVA’s
redundancy-minimized frame selection pipeline effectively
enhances temporal coverage without sacrificing semantic
quality.

Although TGIF-QA is a challenging benchmark fo-
cused on temporal reasoning and fine-grained actions, RM-
LLaVA still achieves a strong 75.4% accuracy and 4.1
score. While it slightly trails SF-LLaVA (78.2%), it outper-
forms many other baselines, including IG-VLM (73.2%) and
Video-LLaVA (70.0%). Notably, RM-LLaVA still shows
a clear gain over IG-VLM, emphasizing the value of our
redundancy-aware frame selection strategy even under dense
temporal tasks.

The superior performance of RM-LLaVA can be at-
tributed to its redundancy-aware and training-free architec-
ture. This ensures that selected frames are both semantically
diverse and relevant, enabling the language model to focus
on truly informative visual content while discarding redun-
dant or uninformative frames. Consequently, RM-LLaVA
makes more efficient use of the limited visual token budget,
leading to better temporal coverage and stronger semantic
alignment.

Furthermore, despite not requiring additional training,
RM-LLaVA outperforms many training-based methods,
demonstrating the power of task-aware input selection over
brute-force fine-tuning. Here, our method’s ability to cap-
ture key semantic moments without manual supervision or
retraining proves particularly valuable. Figure 2 shows ex-
amples where RM-LLaVA answers a question based on the
content of selected frames.

Ablation studies



Table 2: Main results of the proposed method and comparison with other video LLMs. All models use 7B or comparable LLMs.

Model

Training-Free

MSVD-QA MSRVTT-QA TGIF-QA
Acc (%) Score Acc(%) Score Acc(%) Score

Video-LLaMA (Zhang, Li, and Bing 2023)
Video-ChatGPT (Maaz et al. 2024)
Video-LLaVA (Lin et al. 2024)

VideoChat (Li et al. 2024a)

VideoChat2 (Li et al. 2024b)
Vista-LLaMA (Ma et al. 2025)

51.6 2.5 29.6 1.8 - -
64.9 33 49.3 2.8 51.4 3.0
70.7 39 59.2 3.5 70.0 4.0
56.3 2.8 45.0 2.5 34.4 23
70.0 39 54.1 33 - -
65.3 3.6 60.5 33 - -

FreeVA (Wu 2024)
IG-VLM (Kim et al. 2024)
SF-LLaVA (Xu et al. 2024b)
RM-LLaVA (proposed)

SSSNN XX %X XX

73.8 4.1 60.0 35 -
78.3 4.1 63.4 35 73.2 4.0
78.2 4.1 64.1 34 78.2 4.2
78.7 4.1 65.1 3.6 75.4 4.1

@A‘* o

Question 1: What is walking on a table?

objects.

RM-LLaVA: In this video, a green parrot is walking on a table. The key frames show a person in the background
observing the parrot's actions. The parrot appears to be exploring its surroundings and interacting with nearby

Question 2: What does a green parrot then move as a seated man watches?

RM-LLaVA: In this video, a green parrot is seen interacting with a set of colorful blocks. Throughout the video, the
parrot is the main character, and the man is observing the parrot's actions. The context of the video is a playful
and engaging interaction between the parrot and the blocks, showcasing the parrot's curiosity and agility.

Figure 2: Examples of video-based question answering using RM-LLaVA.

Table 3: Ablation study on RM-LLaVA components on
MSRVTT-QA. The Image-LLM used is LLaVA-v1.6-7B.

Model Variant MSRVTT-QA
Acc (%) Score
RM-LLaVA (full) 65.1 3.6
w/o clustering 64.5 3.5
w/o iterative selection 63.9 3.5

RM-LLaVA Components To comprehensively evaluate
the contribution of each module within RM-LLaVA, we con-
ducted an ablation study on the MSRVTT-QA dataset. Table
3 presents the results of this analysis, focusing on the impact
of the clustering-based candidate refinement and the itera-
tive selection components.

When we remove the clustering stage and directly feed
all uniformly sampled frames into the selection process, the

Table 4: Ablation study on selection strategy on MSRVTT-
QA. The Image-LLM used is LLaVA-v1.6-7B.

Selection Strategy MSRVTT-QA
Acc (%) Score
Iterative 65.1 3.6
Random 60.4 3.3
Edge Density 62.8 34

accuracy drops to 64.5%. This decline highlights the impor-
tance of the clustering step in filtering out visually redundant
or semantically similar frames. By grouping similar frames
and selecting only a few representatives from each cluster,
this stage significantly enhances the diversity and represen-
tativeness of the candidate pool. Without this step, the down-
stream model may receive inputs that are semantically repet-
itive, thereby reducing its ability to infer nuanced video se-
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Figure 3: Effect of the number of clusters on MSRVTT-QA.

mantics.

We further remove the iterative selection module, which
is responsible for promoting inter-frame semantic diversity
through progressive diversity-aware selection, resulting in
an accuracy drop to 63.9%. This suggests that while clus-
tering ensures semantic abstraction, the iterative selection
step is essential for selecting frames that are not only repre-
sentative but also complementary. It effectively avoids over-
representing a single scene or event, ensuring temporal di-
versity and capturing a broader narrative context.

These findings confirm that both clustering and iterative
selection are essential. Their synergy forms the core of RM-
LLaVA’s frame selection pipeline, enabling informative vi-
sual inputs under tight token limits.

Selection Strategies To further assess the effectiveness of
our proposed iterative frame selection approach, we com-
pare it against two widely used strategies: random selection
and edge density selection, with results summarized in Table
4.

The random selection strategy uniformly samples frames
from the video without any regard for content relevance or
semantic distribution. As expected, this naive approach leads
to the poorest performance, with an accuracy of 60.4% and
a score of 3.3. The primary issue with random selection lies
in its high likelihood of choosing visually redundant frames
or missing semantically important moments, especially in
videos with significant temporal or contextual variance.

The edge density selection strategy aims to improve upon
random sampling by selecting frames with higher structural
complexity. The edge density score is defined as the pro-
portion of edge pixels within the frame. This method as-
sumes that frames with more edge structures are more likely
to contain informative visual content. Compared to random
selection, it achieves better performance—62.8% accuracy
and a score of 3.4—demonstrating its effectiveness in cap-
turing visually rich frames. However, since it relies solely
on low-level edge information and lacks high-level seman-
tic understanding, it may still select redundant frames, espe-
cially when high-density edge patterns originate from visu-
ally similar contexts.

In contrast, our iterative frame selection method not only
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Figure 4: Effect of the number of selected frames on
MSRVTT-QA.

considers informativeness but also explicitly enforces se-
mantic diversity among selected frames. As a result, it
achieves the highest accuracy and score among all tested
strategies.

This superior performance validates clearly our hypoth-
esis: maximizing semantic complementarity, rather than
solely informativeness or randomness, leads to more effec-
tive video understanding. The iterative frame selection ap-
proach enables the vision-language model to process a richer
and more comprehensive representation of the video con-
tent, making it a key contributor to RM-LLaVA’s success.

Number of Clusters To better understand the role of
structure-aware clustering in our redundancy-minimized se-
lection pipeline, we further investigate how the number of
clusters C' used during candidate refinement affects down-
stream MSRVTT-QA performance. As shown in Figure 3,
increasing C from 11 to 15 consistently improves accuracy
(64.2% — 65.1%). A moderate number of clusters provides
an adequate partitioning of the feature space, allowing the
refined candidate pool to capture diverse semantic regions
of the video while effectively suppressing coarse visual re-
dundancy.

When C'is increased beyond this point (e.g., 17 and 19),
the accuracy slightly drops to 64.9% and 64.6%, respec-
tively. We attribute this degradation to over-fragmentation:
excessive clustering splits semantically coherent content
into small, unstable partitions, reducing the representative-
ness of cluster centroids and weakening the subsequent
diversity-aware selection stage.

Number of Selected Frames We further analyze how the
number of selected frames K affects accuracy on MSRVTT-
QA. As shown in Figure 4, increasing K from 4 to 6 yields a
substantial improvement (62.8% — 65.1%), indicating that
using too few frames under-represents the video and fails to
capture essential events. The peak performance at K = 6
suggests that this setting achieves a good balance between
temporal coverage and redundancy suppression.

As K increases further to 9 and 12, the accuracy no longer
improves and instead fluctuates within a lower range (63.2%
and 64.1%), demonstrating diminishing returns. This indi-



cates that adding more frames beyond the essential subset in-
troduces redundant or less informative visual content. When
K = 15, accuracy slightly drops to 63.8% compared to
K = 12, reinforcing that using too many frames introduces
additional redundancy rather than helpful information.

Conclusion

In this work, we presented RM-LLaVA, a training-free video
understanding framework designed to overcome the limi-
tations of uniform frame sampling in image-based vision-
language models. We introduce a redundancy-minimized
frame selection (RMFS) pipeline, consisting of two stages:
structure-aware clustering and iterative semantic diversity
selection. This approach effectively selects a compact yet
semantically rich set of frames, enhancing temporal cover-
age and contextual diversity. Our experiments on three stan-
dard VideoQA benchmarks show that RM-LLaVA achieves
state-of-the-art performance among all training-free meth-
ods on two of the benchmarks, while also outperforming
most training-based models. Ablation studies further vali-
date the complementary roles of clustering and iterative se-
lection in improving model robustness and accuracy. With-
out requiring any model fine-tuning, RM-LLaVA provides a
general, efficient, and scalable solution for video-language
tasks. We believe this framework paves the way for devel-
oping more efficient, accessible, and interpretable video-
language models in real-world applications.
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