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Abstract

Measuring the statistical dependence between observed signals is a primary tool for1

scientific discovery. However, biological systems often exhibit complex non-linear2

interactions that currently cannot be captured without a priori knowledge regarding3

the nature of dependence. We introduce a new approach for measuring statistical4

dependence, namely concurrence, which is inspired by the observation that if two5

signals are dependent, then one should be able to distinguish between temporally6

aligned vs. misaligned segments extracted from them. Concurrence can become a7

standard tool for scientific analyses across fields, as it is, to our knowledge, the first8

approach that can expose relationships across a wide spectrum of signals (fMRI,9

physiological and behavioral data) and extract scientifically relevant differences10

without ad-hoc parameter tuning or large datasets. However, dependencies due to11

extraneous factors remain an open problem, thus researchers should validate that12

exposed relationships truly pertain to the question(s) of interest.13

1 Introduction14

Measuring dependencies between biological signals is fundamental for understanding the complex15

interplay within and between molecular, neurobiological, and behavioral processes. The most16

common approach to quantifying statistical dependence is using linear model-based statistics, with17

the Pearson correlation coefficient being the dominant metric [1]. However, biological systems often18

exhibit interactions [2] that cannot be captured by linear models [3], such as cross-frequency coupling19

[4–6], threshold effects [7], phase shifts [8], feedback systems [7, 9], or multi-scale interactions [10].20

While linear models cannot comprehensively capture statistical dependence, linear and non-linear21

models together can. That is, if two time series x and y are dependent but uncorrelated, then there22

must be (non-linear) mathematical transformations f and g such that the transformed signals f(x)23

and g(y) are correlated [11]. However, the specific transformations that expose the dependence can24

be particular to each problem and difficult to identify when the compared signals are generated by25

complex or unknown mechanisms. The Hilbert-Schmidt Independence Criterion [12] –which can be26

considered as a generalization of distance correlation [13, 14]– or variants of canonical correlation27

analysis [15, 16] can, in principle, determine linear and non-linear dependence. However, these28

approaches are successful only if one can identify model parameters or kernels that expose the29

dependence [17, 18], which may not be possible or may require large samples [19, 20]. Alternatively,30

one may use analytical transformations such as Fourier or wavelet decomposition [21–23], but the31

generalizability of this approach is limited, as there is no single transformation that works for all32

signals [24, 25]. Moreover, analytical transformations pose family-wise error problems [26, 27]33

because they typically decompose each signal into multiple signals (e.g., frequency bands), and34

dependence can occur between any pair of decomposed signals (e.g., cross-frequency dependence).35

These issues are exacerbated when the compared signals are multi-dimensional and only a subset in36
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Figure 1: (a) Dependent signals x and y, and independent signals w and z. (b) Concurrent segments
from x and y have different characteristics from non-concurrent segments, thus one can find functions
f and g such that f(xi)g(yj) is, on average, larger for concurrent segments (i.e., i = j) compared to
non-concurrent segments (e.g., f as the identity operator and g the integral operator). (c) Concurrent
and non-concurrent segments extracted from independent signals are not statistically distinguishable.

one set of signals depends on an unknown subset in the other. In sum, currently there is no tractable37

method that can detect or quantify the dependence between a broad variety of biological signals when38

the dependence structure is not known a priori—presenting a major obstacle to scientific discovery.39

We introduce a new approach, called concurrence, to quantify the statistical dependence between40

pairs of signals. The proposed approach is built on the following heuristic: if two signals are41

statistically dependent, then temporally aligned (i.e., concurrent) segments of the compared signals42

must be separable from segments that are temporally misaligned (i.e., not concurrent), as illustrated43

in Fig. 1. This separability criterion provides a straightforward recipe for automatically finding linear44

or non-linear transformations that expose dependence—namely, training a machine learning model45

that classifies between concurrent vs. non-concurrent segments extracted from signals (Fig. 1).46

We test concurrence on three distinct biological signal types (i.e., fMRI, physiological, and behavioral47

data). Results indicate that concurrence can expose a large range of dependencies without any ad-hoc48

modification—the same parameters successfully detected dependence in all three signal types and a49

large number of synthetic datasets. Concurrence can also handle noise and stochastic dependence50

(Fig. 2). Furthermore, the resulting metric, namely concurrence coefficient, is naturally scaled51

between 0 and 1, and its magnitude is related to the degree of dependence. We created an easy-to-use52

software for concurrence, and will make it open source should this paper be accepted for publication.53

2 The Concurrence Approach54

Biological signals often contain dependencies that can be observed within relatively short time55

windows. For example, the dependence between respiration and cardiac activity occurs regularly56

and can be observed within a few seconds [28]. Behavioral signaling during conversations contains57

events indicative of social coordination, such as mimicry [29] and backchanneling [30], which also58

occur within a short time window. Dependencies between activity in different parts of the brain can59

be observed (e.g., using fMRI) instantaneously or within a short time delay, usually milliseconds. As60

such, one can focus on relatively small time chunks and still capture a broad range of dependencies.61

Suppose that xt,w and yt,w are segments of signals x and y, observed between the time points t62

and t + w. If both xt,w and yt,w contain (finite) responses to a common event, then they must be63

statistically dependent. Thus, there must exist transformations f and g such that transformed versions64

of the segments, f(xt,w) and g(yt,w), are correlated [11]. The crux of our approach is that, while65

f(xt,w) and g(yt,w) are expected to be correlated, f(xt,w) and g(yt′,w) are, on average, uncorrelated66

if t′ is a random time point, different from t. For example, if x and y are behavioral signals of two67

people in a conversation, t may indicate a time when one partner spontaneously mimics the behavior68

of the other, and it is unlikely that the same mimicry pattern is present at a random time t′.69
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Since extracting concurrent or non-concurrent segments from synchronized pairs of signals is trivial,70

this intuitive idea provides a straightforward manner of detecting linear or non-linear dependence71

fully automatically, without relying on an appropriate choice of kernel or other hyperparameters.72

Specifically, we quantify dependence through the concurrence coefficient, which is obtained by73

training a machine learning model to classify between randomly cropped concurrent versus non-74

concurrent segments in a dataset of signal pairs, and then calculating the normalized classification75

accuracy on another dataset D = {(x1, y1), (x2, y2), . . . (xN , yN )} as:76

concurrence coefficient = 2×max(accuracy, 0.5)− 1. (1)

This dataset D must not overlap with the dataset used while training the machine learning model, lest77

the classifier may overfit and overestimate the dependence. Thus, one may use a cross-validation78

(CV) procedure and compute the average concurrence coefficient over the test sets of the CV folds,79

or compute the concurrence coefficient on an independent dataset.80

The concurrence coefficient is bounded between 0 and 1, and its magnitude indicates the strength of81

dependence between the compared signal pairs (Fig. 2).82

2.1 The per-segment concurrence score83

The classifier that we use is a neural network that produces a per-segment concurrence score (PSCS)84

s from segments xt,w and yt′,w, such that s > 0 if t = t′, and s ≤ 0 if t ̸= t′. The PSCS is not only85

used to compute the concurrence coefficient on a dataset of signals D as in (1), but it also allows one86

to quantify the dependence between a specific pair of segments. As such, the concurrence coefficient87

and the PSCS have two distinct uses for scientific analyses. While the concurrence coefficient can88

uncover whether and to what extent two biological processes (e.g., breathing rate and cardiac activity)89

are related in general (i.e., at the sample level), the PSCS between concurrent segments (i.e., t = t′)90

can uncover whether this relationship is stronger for a specific individual, for individuals with a91

certain condition (e.g., anxiety), or for certain moments within the compared signals. Our experiments92

on real data include use cases for both the concurrence coefficient and the PSCS.93

We compute the PSCS through a three-layer classifier that enables the interpretation of the results.94

Suppose the segments xt,w and yt′,w are extracted respectively from Kx- and Ky-dimensional95

signals. Then, we first transform these segments through separate functions f and g into segments of96

dimensions Kf and Kg ,97

f : RKx×w → RKf×w′
, g : RKy×w → RKg×w′

(2)

where w′ is the temporal length of the transformed segments. Then, we compute the covariance98

C = Cov (f(xt,w)g(yt′,w)). Then we finally compute the PSCS through a linear layer,99

s =
∑
i

∑
j

αijCij , (3)

where Cij is the ijth entry of C, and the corresponding αij are the learned weights. As such, the100

PSCS s can simply be considered to be the weighted average of the covariance entries between the101

transformed segments, where the transformations f , g and the weights are learned while training this102

network to separate between concurrent and non-concurrent segments.103

2.2 Implementation104

To make the concurrence approach useful for scientific purposes, the functions f and g should be105

flexible enough to expose arbitrary dependencies. Also, one needs a training procedure that requires106

no hyperparameter tuning and can work successfully even with modestly-sized datasets, since the107

samples used in scientific analyses often have only hundreds or even fewer samples.108

As such, we model the transformations f and g with Convolutional Neural Networks (CNNs), which109

are universal approximators [31] and, thanks to advances in machine learning [32, 33], have well-110

established recipes for training across a large variety of temporal analysis tasks without ad-hoc111

modifications [32], particularly when modeling short-term dependencies [33]. Our experiments112

with real and synthetic data verify that CNNs with the same parameters (Table A.1) can detect a113

wide range of linear or non-linear dependence patterns between signals that have distinct frequency114

characteristics and are corrupted by large amounts of noise. Further, the training does not require an115

unrealistic sample size, as our experiments show that fewer than 100 signal pairs can suffice.116
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Figure 2: (A) Examples of synthesized signals with deterministic dependence (ξ = 1.0), stochastic
dependence (ξ = 0.5) and no dependence (ξ = 0.0). (b) Dependent pairs of signals with varying
degrees of noise. (c) Concurrence coefficient vs. degree of dependence (i.e., ξ). (d) Concurrence
coefficient vs. signal-to-noise ratio (SNR).

2.3 The effect of the segment size117

The only parameter that needs to be determined by the user is the segment size w. Fortunately, setting118

this parameter is not difficult, as one can err on the side of a large w value without risking to miss a119

potential dependence, as explained in this section.120

If one picks a w value that is too small, the resulting segments can fail to include the activated portions121

of one signal (e.g., when there is a time lag) or even both signals. On the other hand, picking larger w122

values should, in principle, not lead to a missed dependence, since the longer segment, the more the123

information to observe a potential dependence.124

To empirically validate this intuitive expectation, we generated signals x and y generated as realiza-125

tions of random sequences (RSs) x[t] and y[t] with controlled dependence (Fig. 2), and computed126

concurrence for various w values. To mimic scenarios that can be encountered in real applications,127

the generated signals included stochastic as well as deterministic dependence and no dependence,128

and various degrees of noise. Specifically, x[t] and y[t] were obtained by convolving impulse trains129

hx[t] and hy[t] through (deterministic) filters ϕ and ψ, with added noise nx and ny:130

x[t] = (ϕ ⋆ hx)[t] + σnxnx[t] (4)
y[t] = (ψ ⋆ hy)[t] + σnyny[t]. (5)

The noise processes nx and nx are independent of each other, and the σnx and σny parameters control131

the noise amount. The impulse processes hx and hy are modeled as:132

hx = ξc[t] + (1− ξ)px[t] (6)
hy = ξc[t] + (1− ξ)py[t], (7)

where c is the part of the impulse signal that is common between hx and hy, and ξ ∈ [0, 1] is a133

parameter. The RSs px and py are the impulse processes that are independent from each other. The134

processes c, px and py are all modeled as Bernoulli processes. The parameter ξ determines the135

degree of dependence between x and y; the larger the ξ the stronger the dependence (Fig. 2A).136

Fig. 2C shows the concurrence coefficients obtained from pairs of signals with varying degrees of137

dependence (i.e., ξ) but without noise (σnx = σny = 0). Results show that the concurrence coefficient138

successfully detects dependencies (ξ > 0) and lack thereof (ξ = 0). Of note, the concurrence139

coefficient is approximately linearly proportional to ξ when w is large enough to contain the entire140

event (e.g., w = 100 for signals in Fig. 2A) but not much larger. While the degree of dependence141
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Table 1: Results from the 100 synthetic datasets: The number of datasets that have been (correctly)
identified as statistically dependent (at significance level 0.05) by each of the compared methods.

Pearson’s r WCC DC HSIC MI CMI MGC KMERF Concurrence
8 10 12 10 7 34 9 11 97

ξ is overestimated with larger segments, there is no risk of detecting spurious relationships (false142

positives), as the concurrence coefficient remains approximately zero when ξ = 0, regardless of w.143

In sum, the exact w value is of little concern when the goal is to uncover whether two processes are144

dependent or not, and choosing a larger w value does not lead to missed or spurious dependencies.145

Fig. 2D shows that a large w value is also not problematic in the presence of noise (σnx > 0, σny > 0).146

The concurrence coefficient decreases with the signal-to-noise (SNR), yet it can uncover dependence147

even when the SNR is 0.10, which is lower than a worst-case estimate for fMRI data (SNR=0.35) [34].148

The pattern in Fig. 2D is similar to that in Fig. 2C—increasing the segment size w does not lead to149

missed dependencies, confirming that erring on the side of a large w value is a useful strategy for150

exposing dependence in cases where there is no information to determine the right w value.151

3 Experimental Validation152

We first validated concurrence on 100 synthetic but challenging datasets with controlled dependence,153

and compared it with eight methods (Section 3.1) Next, we applied concurrence on three types of real154

data with single- and multi-dimensional signals and included cases of linear or non-linear dependence.155

Specifically, we experimented on brain imaging (fMRI), physiological (breathing and heart rate), and156

behavioral (facial expressions and head movements) signals.157

3.1 Experiments on Synthetic Data158

We generated 100 synthetic datasets, where each dataset contained pairs of statistically dependent159

signals. The goal was to determine the dependence in as many datasets as possible by using only the160

off-the-shelf implementation of our algorithm, without any ad-hoc parameter adjustment. The datasets161

were designed to be challenging, with dependencies difficult to visually ascertain (Fig. A.1, A.2).162

Datasets. Each of the 100 synthesized datasets is comprised of 500 pairs of signals (x, y) generated163

as realizations of the RSs in (4) and (5). The pairs were statistically dependent through a random164

ξ value such that 0.1 < ξ ≤ 1. To increase the challenge, we made two modifications compared to165

the procedure described in Section 2.3. First, the impulse processes c, px and py were made non-166

stationary. Specifically, the probability of observing an impulse at any of these RSs was increasing or167

decreasing linearly at a random rate. The second challenge was adding a random a lag by (circularly)168

shifting the generated y signal through a random lag between 0 and 50 time frames. The convolution169

kernels ϕ and ψ were determined by randomly picking a kernel and a scale from the pywavelets170

library. The noise processes nx and ny were also generated by convolving randomly selected kernels171

with separate and independent impulse processes.172

Compared methods. We compared concurrence with correlation (Pearson’s r), windowed cross-173

correlation (WCC) [35], distance correlation (DC) [13], Hilbert-Schmidt Independence Criterion174

(HSIC) [12], Mutual Information (MI), Conditional MI (CMI), Multiscale Graph Correlation (MGC),175

Kernel Mean Embedding Random Forest (KMERF). HSIC, MGC and KMERF have been imple-176

mented via the hyppo software package; DC was implemented via dcor [36]; and Pearson’s r was177

implemented through scikit-learn. We provided our own implementation for the remaining178

methods. The statistical significance for all methods have been computed via permutation tests.179

Results. Table 1 provides the results of experiments on synthesized datasets. CMI is the best among180

methods alternative to concurrence, due probably to its ability to model non-linear dependence and181

temporal dependence. Still, this method can detect the dependence in only 34% of the datasets. CMI182

or other alternative methods can possibly detect the dependence in more datasets if their parameters183

are optimized for each dataset. However, this is often not possible in the context of scientific analyses184

with modestly sized datasets, as one should do multiple tests correction [37] for the tested parameter185

values, leading to significant decrease in statistical power. Concurrence detected the dependence in186

97% of datasets, using identical network hyperparameters (Table A.1) and segment size w.187
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Figure 3: (a) Signals from two brain regions with correlated fMRI signals. (b) Signals from two
brain regions with fMRI signals that are dependent (concurrence coefficient: 0.25) but approximately
uncorrelated (Pearson’s r: 0.02). (c) The connectivity matrix computed with the concurrence
coefficient. (d) The connectivity matrix computed with (absolute) correlation values (Pearson’s r). (e)
The difference between the two concurrence- and correlation-based connectivity matrices. (f) The
distribution of the difference between the concurrence- and correlation-based connectivity matrices,
shown separately for the seven brain networks. (g) Alternative comparison of the Pearson’s r vs.
concurrence coefficients computed from all the brain region pairs. (h) The (unclipped) concurrence
coefficient between 10,000 pairs of brain regions of mismatched participants.

3.2 Applications to Real Biological Signals188

Brain Imaging Our experiments on fMRI signals aim to identify how strongly different brain189

regions are functionally connected. Pearson’s r is the single-most commonly used metric for this190

purpose [38]. Fig. 3 compares the connectivity matrices obtained with Pearson’s r (i.e., correlation191

matrix) and the concurrence coefficient (i.e., concurrence matrix) on a version of the Philadelphia192

Neurodevelopmental Cohort dataset [39] that was pre-processed as in prior work [40]. This dataset193

uses the parcellation scheme that divides each brain into 400 regions [41]. The concurrence coefficient194

is computed on segments of size w = 30 time points, which corresponds to approximately 90 seconds,195

whereas the entire signals included 120 time points. Thirty percent of the dataset (426 participants)196

was used to train the neural networks needed for the concurrence coefficients, and the results in both197

connectivity matrices were computed from the remaining 70%.198

The overall similarity between the two connectivity matrices (Fig. 3C vs. Fig. 3D) is striking and199

suggests that the concurrence coefficient uncovers a dependence structure that has been validated in200

the field. Fig. 3G shows that there are no pairs of regions with a concurrence score less than 0.2, even201

though there are many pairs that are uncorrelated (i.e., Pearson r ≈ 0), suggesting that concurrence202

captured statistical dependencies that cannot be captured with correlation (e.g., Fig. 3B) as well203

as those that can (e.g., Fig. 3A). The fact that the concurrence coefficient exposed a dependence204

between all 400×199=79,600 pairs of brain regions with 79,600 independently trained networks205

verifies that the training needed for the concurrence coefficient can be done robustly. We ran a206

permutation test to identify if the method detects spurious dependence (Type I error) by computing207
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Figure 4: (A) Scatter plot and correlation between the respiration rate (RR) and ECG signal. (b) A
sample ECG signal plotted against the synchronized (i.e., time-aligned) RR signal and the temporally
misaligned RR. (c) The per-segment concurrence scores (PSCSs) between the temporally aligned
ECG and RR are positive, which indicate that the PSCS correctly predicts that the segments are
temporally aligned. (d) The PSCSs between the temporally misaligned ECG and RR are generally
negative. (e) The PSCS for (temporally aligned) ECG and RR signals against the RMSSD, computed
on a dataset of 30 participants for multiple segments per participant.

concurrence between signals of mismatched participants. The concurrence coefficient was closely208

distributed around zero (Fig. 3H), indicating no spurious relationships. The differences between the209

concurrence coefficient and Pearson’s correlation exhibit a structured pattern across the seven brain210

networks (Fig. 3F), increasing progressively from lower-order affective (limbic), somatomotor and211

sensory (visual) networks to higher-order cognitive control (ventral attention, dorsal attention, default212

mode, frontoparietal) networks. This systematic increase suggests that linear correlation may not be213

capturing complex connectivity patterns that involve integrative processing or dynamic modulation.214

Physiological data. We next investigate dependencies in a dataset of breathing and cardiac activity.215

While these two processes are known to be biologically linked [42], the correlation between respiration216

rate and electrocardiogram (ECG) signals is approximately zero (Fig. 4A). We applied the proposed217

method to a dataset of 60 pairs of temporally synchronized ECG and respiration rate signals, collected218

at [WITHHELD FOR ANONIMITY] using Zephyr BioModule sensors. The duration of the tasks219

used for data collection ranged from 4 to 7 minutes. The data were split into four subject-independent220

cross-validation folds. The segment size w was equivalent to 5 seconds.221

The average concurrence coefficient on the test folds was 0.50 (p<0.001), indicating that the con-222

currence approach successfully detects the relationship between respiration rate and ECG signals.223

The PSCS can generally distinguish between compared signals that are temporally aligned or not224

(Fig. 4B–D), validating that concurrence can identify relationships (or lack thereof) that are difficult225

to determine visually. Fig. 4E plots the PSCSs from temporally aligned segments vs. the root mean226

square of successive differences (RMSSD) derived from the ECG signal of each interaction. That the227

PSCS is generally larger when the RMSSD is low may suggest that the trained algorithm predicts a228

stronger relationship between ECG and respiration rate when the latter is increased.229

Behavioral Data. Finally, we apply concurrence to the analysis of facial behavior occurring in a230

dyadic conversation task. The behaviors of two conversation partners are expected to be dependent,231

due to well-established phenomena like nonconscious mimicry [29] or (nonverbal) backchannel-232

ing [30]. However, quantifying such dependencies has proven challenging, as behavior is captured233

with multi-dimensional signals (Fig. 5A,B), and any subset of signals from one conversation partner234

may depend on the signals of the other partner through an unknown relationship.235

We conduct experiments on a dataset of 199 participants (aged 5 to 40 years) engaged in a 3-5-236

minute semi-structured face-to-face conversation [43]. We quantify social behaviors (i.e., facial237

expressions and head movements) in each conversation partner with 82-dimensional signals (79238

for facial expressions and 3 for head movements) [44]. The concurrence coefficient for w = 4239

seconds is 0.49 (p<0.001), indicating that the behavior signals of the conversation partners are240

dependent. Moreover, the PSCS allows us to investigate differences within different subsamples. For241

example, Fig. 5C shows that the PSCS increases with age (Spearman’s r = 0.61, p < 0.001), indicating242

that younger school-age children tend to have less behavioral coordination than older children.243
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Figure 5: (a) Average per-segment concurrence score (PSCS) per
neurotypical (NT) individual versus age. (b) The distributions of
PSCS per individual for the autism (AUT) and NT group.

Additional analyses on a subsam-244

ple of 12-18 year-olds (N=42)245

with and without an autism di-246

agnosis (matched on age and247

sex) indicate that autistic ado-248

lescents have reduced coordina-249

tion with conversation partners250

relative to neurotypical adoles-251

cents (Cohen’s D: 0.8; p =0.003;252

Fig. 5D). Together, these results253

demonstrate that the concurrence254

method exposes clinically rele-255

vant differences in spontaneous256

social behavioral coordination,257

without any a priori information258

about the structure of the coordination.259

4 Limitations of Measuring Dependence with Self-supervision260

While the proposed method showed no propensity to discovering spurious dependencies (Fig. 2), it is261

not uncommon that signals generated for scientific analyses contain responses to common, extraneous262

events. These common events render the compared signals statistically dependent, yet since they are263

extraneous, they are of no interest to the research question that is being investigated.264

This phenomenon can be observed, for example, in a comparison of EEG signals versus facial behavior.265

While one may be interested in analyzing these two modalities to uncover potential relationships266

between mental/emotional states and observable facial behavior, the EEG sensors are sensitive to267

non-neural as well as neural activities. For example, eyeblinks can generate voltage change that is an268

order of magnitude larger than cortical activity [45]. While pre-processing algorithms may be able to269

mitigate the effect of blinking, the downside with a potent dependence detection algorithm is that any270

residue left from such mitigation efforts will also be detected as statistical dependence.271

An alternative approach for accounting extraneous factors is using correction procedures after272

the dependence is estimated. These procedures are typically used with traditional approaches to273

measuring statistical dependencies, and their success is yet to be demonstrated for the proposed274

concurrence algorithm, or alternative algorithms based on (deep) learning, which can expose more275

nuanced dependencies that can remain on the compared variables even after correction.276

5 Conclusion277

This paper introduced a new approach for measuring statistical dependence, namely, concurrence.278

We showed that this self-supervised approach can become a standard way of quantifying statistical279

dependence between time series, as it readily detects a wide range of linear or non-linear dependencies280

with an off-the-shelf implementation, even from modestly sized samples and noisy data, without281

requiring empirical (hyper)parameter tuning; and showed no propensity to false discoveries (Type282

I errors). Future research can further enhance this framework by theoretically establishing the link283

between statistical dependence and concurrence, while integrating advances in machine learning284

can ensure that its theoretical potential can be fully actualized. Ensuring that the exposed statistical285

dependencies are truly of scientific interest remains an open problem. Therefore the users of286

concurrence or any other method should verify that the signals do not contain common responses to287

extraneous factors, or perform pre-processing or post-hoc analyses to ensure that the dependencies288

that are exposed truly pertain to the research question and phenomena under investigation.289
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A Network Architecture, Hyperparameters and Implementation417

The transformations f(·) and g(·) are modelled with separate convolutional neural networks (CNNs),418

but both CNNs use an identical and well-established architecture. Specifically, each CNN is comprised419

of B identical blocks concatenated back to back. Each block is comprised of four layers:420

• Batch normalization layer421

• Convolutional layer422

• Dropout423

• ReLU424

The convolutional layer has a stride parameter, which effectively downsamples the signals in time425

when it is greataer than 1. Moreover, following standard practice, the convolutional layer at each426

block reduces the number of channels (i.e., dimension of signals) by half.427

The training is done by using the Adam optimizer for 100 iterations (Table A.1), although the code428

has the option to stop early by using a certain percentage (default 20%) of the training data as a429

validation set. During training, we extract four randomly selected segment pairs from each signal430
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Kernel size of first conv. layer 5
Kernel size of other conv. layers 3
Step size (stride) at conv. first layer 3∗

Step size (stride) at other conv. layers 2∗

Number of blocks (B) 3
Number of output channels at 1st conv. layer (C) 512
Number of output channels at bth conv. layer 512/2(b−1)

Dropout rate 0.25
Optimizer Adam51

Number of iterations 100
Learning rate 10−4

Table A.1: Parameters of the CNNs that we use. ∗The step sizes larger than 1 effectively downsample
the input, and if the segment size w is too small, the output of a convolutional kernel may be empty.
To avoid the latter, one may need to reduce the stride sizes accordingly.

pair. Each segment pair is picked to be concurrent (i.e., positive sample) with 50% probability and431

non-concurrent also with 50% probability.432

We successfully used the network parameters in Table A.1 to expose dependencies on three types of433

behavioral signals with divergent characteristics –fMRI, physiological (ECG and respiration rate) and434

behavioral data– as well as 100 synthesized datasets (Data S1) with a variety of dependence patterns435

(see Supplementary Text). As such, these parameters have proven capability to expose a wide range436

of non-linear dependencies. If the two signals are dependent but through a large temporal lag, one437

may need to increase the number of blocks B.438

The number of output channels of the (first) convolution layer, C, controls the complexity of functions439

that can be modeled with f or g—the higher the C the more complex functions can be modeled. We440

set this parameter toC = 512, which worked successfully across a wide range of dependence patterns-441

—from simple linear dependence between one-dimensional input segments to complex non-linear442

dependencies, including with multi-dimensional signals, such as in our experiments with behavioral443

data (82 dimensions). In other words, we did not observe any harm in setting this parameter to444

higher values than needed (e.g., linear dependence between one-dimensional signals could have been445

technically be exposed with C = 1 and B = 1). In cases where one deals with very high-dimensional446

input signals (e.g., M1 or M2 in the order of hundreds or thousands) or one expects a very complex447

dependence, one may need to set C to higher values than 512. Also, in cases where computational448

efficiency is a priority, one may reduce this value possibly without harm, since C = 512 is possibly a449

larger value than needed in many applications.450
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Figure A.1: Pairs of signals representative from 12 out of the 100 synthesized datasets. All
illustrated signal pairs are dependent, and they are generated as described in Supplementary Text.
The raw data for all 100 synthesized datasets is provided in Data S1.
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Figure A.2: The scatter plot and correlation between the signal pairs illustrated in Fig. A.1).
The correlation (Pearson’s r) between is almost always approx. 0, indicating non-linear dependence.
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