
Measuring Dependencies between Biological Signals with Self-supervision, and its Limitations

Evangelos Sariyanidi^{1*}, John D. Herrington^{1,2}, Lisa Yankowitz¹, Pratik Chaudhari²,
Theodore D. Satterthwaite², Casey J. Zampella¹, Robert T. Schultz^{1,2},
Russell T. Shinohara², Birkana Tunc^{1,2}

¹The Children’s Hospital of Philadelphia ²University of Pennsylvania

Abstract

Measuring the statistical dependence between observed signals is a primary tool for scientific discovery. However, biological systems often exhibit complex non-linear interactions that currently cannot be captured without a priori knowledge regarding the nature of dependence. We introduce a self-supervised approach, concurrence, which is inspired by the observation that if two signals are dependent, then one should be able to distinguish between temporally aligned vs. misaligned segments extracted from them. Experiments with fMRI, physiological and behavioral signals show that, to our knowledge, concurrence is the first approach that can expose relationships across such a wide spectrum of signals and extract scientifically relevant differences without ad-hoc parameter tuning or reliance on a priori information, providing a potent tool for scientific discoveries across fields. However, dependencies caused by extraneous factors remain an open problem, thus researchers should validate that exposed relationships truly pertain to the question(s) of interest.

1 Introduction

Measuring dependencies between biological signals is fundamental for understanding the complex interplay within and between molecular, neurobiological, and behavioral processes. The most common approach to quantifying statistical dependence is using linear model-based statistics, with the Pearson correlation coefficient being the dominant metric [1]. However, biological systems often exhibit interactions [2] that cannot be captured by linear models [3], such as cross-frequency coupling [4–6], threshold effects [7], phase shifts [8], feedback systems [7, 9], or multi-scale interactions [10].

While linear models cannot comprehensively capture statistical dependence, linear and non-linear models together can. That is, if two time series x and y are dependent but uncorrelated, then there must be (non-linear) mathematical transformations f and g such that the transformed signals $f(x)$ and $g(y)$ are correlated [11]. However, the specific transformations that expose the dependence can be particular to each problem and difficult to identify when the compared signals are generated by complex or unknown mechanisms. The Hilbert-Schmidt Independence Criterion [12] –which can be considered as a generalization of distance correlation [13, 14]– or variants of canonical correlation analysis [15, 16] can, in principle, determine linear and non-linear dependence. However, these approaches are successful only if one can identify model parameters or kernels that expose the dependence [17, 18], which may not be possible or may require large samples [19, 20]. Alternatively, one may use analytical transformations such as Fourier or wavelet decomposition [21–23], but the generalizability of this approach is limited, as there is no single transformation that works for all signals [24, 25]. Moreover, analytical transformations pose family-wise error problems [26, 27] because they typically decompose each signal into multiple signals (e.g., frequency bands), and dependence can occur between any pair of decomposed signals (e.g., cross-frequency dependence). These issues are exacerbated when the compared signals are multi-dimensional and only a subset in

* sariyanide@chop.edu

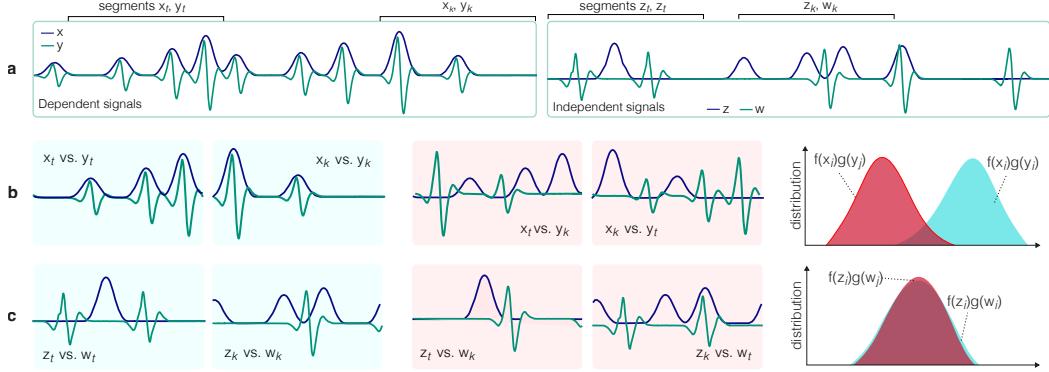


Figure 1: (a) Dependent signals x and y , where x resembles the integral of y ; and a pair of independent signals w and z . (b) Concurrent segments from dependent signals x and y have different characteristics from non-concurrent segments, therefore it is possible to find functions f and g such that when they are respectively applied to concurrent segments of x and y they produce a larger inner product compared to when they are applied to non-concurrent segments (e.g., f as the identity operator and g the integral operator). (c) The concurrent and non-concurrent segments from independent signals exhibit similar characteristics under the f and g that separate dependent segments.

one set of signals depends on an unknown subset in the other. In sum, currently there is no tractable method that can detect or quantify the dependence between a broad variety of biological signals when the dependence structure is not known *a priori*—presenting a major obstacle to scientific discovery.

We introduce a new approach, called concurrence, to quantify the statistical dependence between pairs of signals. The proposed approach is built on the following heuristic: if two signals are statistically dependent, then temporally aligned (i.e., concurrent) segments of the compared signals must be separable from segments that are temporally misaligned (i.e., not concurrent), as illustrated in Fig. 1. This separability criterion provides a straightforward recipe for automatically finding linear or non-linear transformations that expose dependence—namely, training a machine learning model that classifies between concurrent vs. non-concurrent segments extracted from signals (Fig. 1). We test this approach in experiments with three distinct biological signal types (i.e., fMRI, physiological, and behavioral data). Results indicate that the concurrence approach can expose a large range of dependencies without any ad-hoc modification, as the same parameters successfully detected dependence in all three signal types; and can handle noise and stochastic dependence (Fig. 2). Furthermore, our approach yields a score coined the concurrence coefficient, which is scaled between 0 and 1. Finally, concurrence is computationally efficient and we provide an open-source software package to implement it for research purposes at <http://github.com/sariyanidi/concurrence>.

2 The Concurrence Approach

Biological signals often contain dependencies that can be observed within relatively short time windows. For example, the dependence between respiration and cardiac activity occurs regularly and can be observed within a few seconds [28]. Behavioral signaling during conversations contains events indicative of social coordination, such as mimicry [29] and backchanneling [30], which also occur within a short time window. Dependencies between activity in different parts of the brain can be observed (e.g., using fMRI) instantaneously or within a short time delay, usually milliseconds. As such, one can focus on relatively small time chunks and still capture a broad range of dependencies.

Suppose that $x_{t,w}$ and $y_{t,w}$ are segments of signals x and y , observed between the time points t and $t + w$. If both $x_{t,w}$ and $y_{t,w}$ contain (finite) responses to a common event, then they must be statistically dependent. Thus, there must exist transformations f and g such that transformed versions of the segments, $f(x_{t,w})$ and $g(y_{t,w})$, are correlated [11]. The crux of our approach is that, while $f(x_{t,w})$ and $g(y_{t,w})$ are expected to be correlated, $f(x_{t,w})$ and $g(y_{t',w})$ are, on average, uncorrelated if t' is a random time point, different from t . For example, if x and y are behavioral signals of two people in a conversation, t may indicate a time when one partner spontaneously mimics the behavior of the other, and it is unlikely that the same mimicry pattern is present at a random time t' .

Since extracting concurrent or non-concurrent segments from synchronized pairs of signals is trivial, this intuitive idea provides a straightforward manner of detecting linear or non-linear dependence fully automatically, without relying on an appropriate choice of kernel or other hyperparameters. Specifically, we quantify dependence through the concurrence coefficient, which is obtained by training a machine learning model to classify between randomly cropped concurrent versus non-concurrent segments in a dataset of signal pairs, and then calculating the normalized classification accuracy on another dataset $D = (x^1, y^1), (x^2, y^2), \dots (x^N, y^N)$ as:

$$\text{concurrence coefficient} = 2 \times \max(\text{accuracy}, 0.5) - 1. \quad (1)$$

This dataset D must not overlap with the dataset used while training the machine learning model, lest the classifier may overfit and overestimate the dependence. Thus, one may use a cross-validation (CV) procedure and compute the average concurrence coefficient over the test sets of the CV folds, or compute the concurrence coefficient on an independent dataset.

The concurrence coefficient is bounded between 0 and 1, and its magnitude indicates the strength of dependence between the compared signal pairs (Fig. 2).

2.1 The per-segment concurrence score

The classifier that we use is a neural network that produces a *per-segment concurrence score* (PSCS) s from segments $x_{t,w}$ and $y_{t',w}$, such that $s > 0$ if $t = t'$, and $s \leq 0$ if $t \neq t'$. The PSCS is not only used to compute the concurrence coefficient on a dataset of signals D as in (1), but it also allows one to quantify the dependence between a specific pair of segments. As such, the concurrence coefficient and the PSCS have two distinct uses for scientific analyses. While the concurrence coefficient can uncover whether and to what extent two biological processes (e.g., breathing rate and cardiac activity) are related in general (i.e., at the sample level), the PSCS between concurrent segments (i.e., $t = t'$) can uncover whether this relationship is stronger for a specific individual, for individuals with a certain condition (e.g., anxiety), or for certain moments within the compared signals. Our experiments on real data include use cases for both the concurrence coefficient and the PSCS.

We compute the PSCS through a three-layer classifier that enables the interpretation of the results. Suppose the segments $x_{t,w}$ and $y_{t',w}$ are extracted respectively from K_x - and K_y -dimensional signals. Then, we first transform these segments through separate functions f and g into segments of dimensions K_f and K_g ,

$$f : \mathbb{R}^{K_x \times w} \rightarrow \mathbb{R}^{K_f \times w'}, \quad g : \mathbb{R}^{K_y \times w} \rightarrow \mathbb{R}^{K_g \times w'} \quad (2)$$

where w' is the temporal length of the transformed segments. Then, we compute the covariance $C = \text{Cov}(f(x_{t,w})g(y_{t',w}))$, where T is the transpose operator. Then we finally compute the PSCS through a linear layer,

$$s = \sum_i \sum_j \alpha_{ij} C_{ij}, \quad (3)$$

where C_{ij} is the ij th entry of C , and the corresponding α_{ij} are the learned weights. As such, the PSCS s can simply be considered to be the weighted average of the covariance entries between the transformed segments, where the transformations f , g and the weights are learned while training this network to separate between concurrent and non-concurrent segments.

2.2 Implementation

To make the concurrence approach useful for scientific purposes, the functions f and g should be flexible enough to expose arbitrary dependencies. Also, one needs a training procedure that requires no hyperparameter tuning and can work successfully even with modestly-sized datasets, since the samples used in scientific analyses often have only hundreds or even fewer samples.

As such, we model the transformations f and g with Convolutional Neural Networks (CNNs), which are universal approximators [31] and, thanks to advances in machine learning [32, 33], have well-established recipes for training across a large variety of temporal analysis tasks without ad-hoc modifications [32], particularly when modeling short-term dependencies [33]. Our experiments with real and synthetic data verify that CNNs with the *same parameters* (Table A.1) can detect a wide range of linear or non-linear dependence patterns between signals that have distinct frequency characteristics and are corrupted by large amounts of noise. Further, the training does not require an unrealistic sample size, as our experiments show that fewer than 100 signal pairs can suffice.

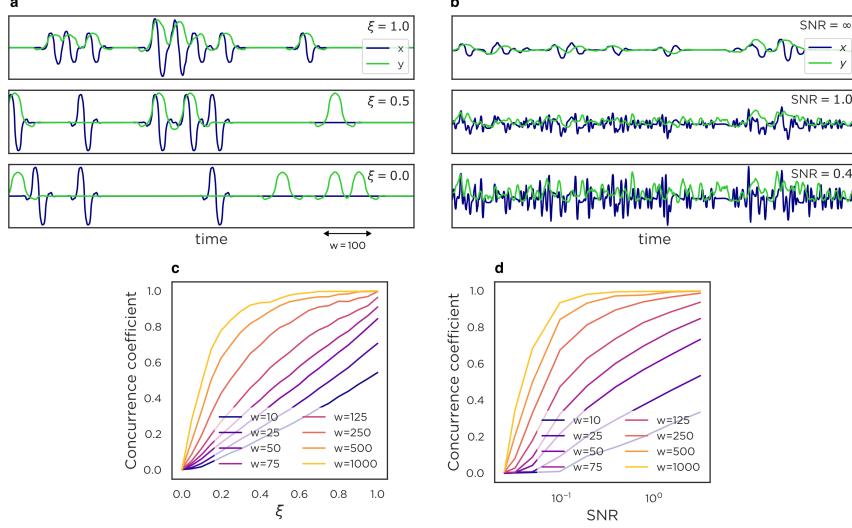


Figure 2: (A) Examples of synthesized signals with deterministic dependence ($\xi = 1.0$), stochastic dependence ($\xi = 0.5$) and no dependence ($\xi = 0.0$). (B) Dependent pairs of signals with varying degrees of noise. (C) Concurrence coefficient vs. degree of dependence (i.e., ξ). (D) Concurrence coefficient vs. signal-to-noise ratio (SNR).

2.3 The effect of the segment size

The only parameter that needs to be determined by the user is the segment size w . Fortunately, setting this parameter is not difficult, as one can err on the side of a large w value without risking to miss a potential dependence, as explained in this section.

If one picks a w value that is too small, the resulting segments can fail to include the activated portions of one signal (e.g., when there is a time lag) or even both signals. On the other hand, picking larger w values should, in principle, not lead to a missed dependence, since the longer segment, the more the information to observe a potential dependence.

To empirically validate this intuitive expectation, we generated signals x and y generated as realizations of random sequences (RSs) $\mathbf{x}[t]$ and $\mathbf{y}[t]$ with controlled dependence (Fig. 2), and computed concurrence for various w values. To mimic scenarios that can be encountered in real applications, the generated signals included stochastic as well as deterministic dependence and no dependence, and various degrees of noise. Specifically, $\mathbf{x}[t]$ and $\mathbf{y}[t]$ were obtained by convolving impulse trains $\mathbf{h}_x[t]$ and $\mathbf{h}_y[t]$ through (deterministic) filters ϕ and ψ , with added noise \mathbf{n}_x and \mathbf{n}_y :

$$\mathbf{x}[t] = (\phi \star \mathbf{h}_x)[t] + \sigma_{nx} \mathbf{n}_x[t] \quad (4)$$

$$\mathbf{y}[t] = (\psi \star \mathbf{h}_y)[t] + \sigma_{ny} \mathbf{n}_y[t]. \quad (5)$$

The noise processes \mathbf{n}_x and \mathbf{n}_y are independent of each other, and the σ_{nx} and σ_{ny} parameters control the noise amount. The impulse processes \mathbf{h}_x and \mathbf{h}_y are modeled as:

$$\mathbf{h}_x = \xi \mathbf{c}[t] + (1 - \xi) \mathbf{p}_x[t] \quad (6)$$

$$\mathbf{h}_y = \xi \mathbf{c}[t] + (1 - \xi) \mathbf{p}_y[t], \quad (7)$$

where \mathbf{c} is the part of the impulse signal that is common between \mathbf{h}_x and \mathbf{h}_y . The RSs \mathbf{p}_x and \mathbf{p}_y are the impulse processes that are independent from each other. The processes \mathbf{c} , \mathbf{p}_x and \mathbf{p}_y are all modeled as Bernoulli processes. The parameter ξ determines the degree of dependence between \mathbf{x} and \mathbf{y} ; the larger the ξ the stronger the dependence (Fig. 2A).

Fig. 2C shows the concurrence coefficients obtained from pairs of signals with varying degrees of dependence (i.e., ξ) but without noise ($\sigma_{nx} = \sigma_{ny} = 0$). Results show that the concurrence coefficient successfully detects dependencies ($\xi > 0$) and lack thereof ($\xi = 0$). Of note, the concurrence coefficient is approximately linearly proportional to ξ when w is large enough to contain the entire event (e.g., $w = 100$ for signals in Fig. 2A) but not much larger. While the degree of dependence

Table 1: Results from the 100 synthetic datasets: The number of datasets that have been (correctly) identified as statistically dependent (at significance level 0.05) by each of the compared methods.

Pearson's r	WCC	DC	HSIC	MI	CMI	MGC	KMERF	Concurrence
8	10	12	10	7	34	9	11	97

ξ is overestimated with larger segments, there is no risk of detecting spurious relationships (false positives), as the concurrence coefficient remains approximately zero when $\xi = 0$, regardless of w . In sum, the exact w value is of little concern when the goal is to uncover whether two processes are dependent or not, and choosing a larger w value does not lead to missed or spurious dependencies.

Fig. 2D shows that a large w value is also not problematic in the presence of noise ($\sigma_{nx} > 0$, $\sigma_{ny} > 0$). The concurrence coefficient decreases with the signal-to-noise (SNR), yet it can uncover dependence even when the SNR is 0.10, which is lower than a worst-case estimate for fMRI data (SNR=0.35) [34]. The pattern in Fig. 2D is similar to that in Fig. 2C—increasing the segment size w does not lead to missed dependencies, confirming that erring on the side of a large w value is a useful strategy for exposing dependence in cases where there is no information to determine the right w value.

3 Experimental Validation

We first validated concurrence on 100 synthetic but challenging datasets with controlled dependence, and compared it with eight methods (Section 3.1) Next, we applied concurrence on three types of real data with single- and multi-dimensional signals and included cases of linear or non-linear dependence. Specifically, we experimented on brain imaging (fMRI), physiological (breathing and heart rate), and behavioral (facial expressions and head movements) signals.

3.1 Experiments on Synthetic Data

We generated 100 synthetic datasets, where each dataset contained pairs of statistically dependent signals. The goal was to determine the dependence in as many datasets as possible by using only the off-the-shelf implementation of our algorithm, without any ad-hoc parameter adjustment. The datasets were designed to be challenging, with dependencies difficult to visually ascertain (Fig. A.1, A.2).

Datasets. Each of the 100 synthesized datasets is comprised of 500 pairs of signals (x, y) generated as realizations of the RSs in (4) and (5). The pairs were statistically dependent through a random ξ value such that $0.1 < \xi \leq 1$. To increase the challenge, we made two modifications compared to the procedure described in Section 2.3. First, the impulse processes \mathbf{c} , \mathbf{p}_x and \mathbf{p}_y were made non-stationary. Specifically, the probability of observing an impulse at any of these RSs was increasing or decreasing linearly at a random rate. The second challenge was adding a random a lag by (circularly) shifting the generated y signal through a random lag between 0 and 50 time frames. The convolution kernels ϕ and ψ were determined by randomly picking a kernel and a scale from the `pywavelets` library. The noise processes \mathbf{n}_x and \mathbf{n}_y were also generated by convolving randomly selected kernels with separate and independent impulse processes.

Compared methods. We compared concurrence with correlation (Pearson's r), windowed cross-correlation (WCC) [35], distance correlation (DC) [13], Hilbert-Schmidt Independence Criterion (HSIC) [12], Mutual Information (MI), Conditional MI (CMI), Multiscale Graph Correlation (MGC), Kernel Mean Embedding Random Forest (KMERF). HSIC, MGC and KMERF have been implemented via the `hyppo` software package; DC was implemented via `dcor` [36]; and Pearson's r was implemented through `scikit-learn`. We provided our own implementation for the remaining methods. The statistical significance for all methods have been computed via permutation tests.

Results. Table 1 provides the results of experiments on synthesized datasets. CMI is the best among methods alternative to concurrence, due probably to its ability to model non-linear dependence and temporal dependence. Still, this method can detect the dependence in only 34% of the datasets. CMI or other alternative methods can possibly detect the dependence in more datasets if their parameters are optimized for each dataset. However, this is often not possible in the context of scientific analyses with modestly sized datasets, as one should do multiple tests correction [37] for the tested parameter values, leading to significant decrease in statistical power. Concurrence detected the dependence in 97% of datasets, using identical network hyperparameters (Table A.1) and segment size w .

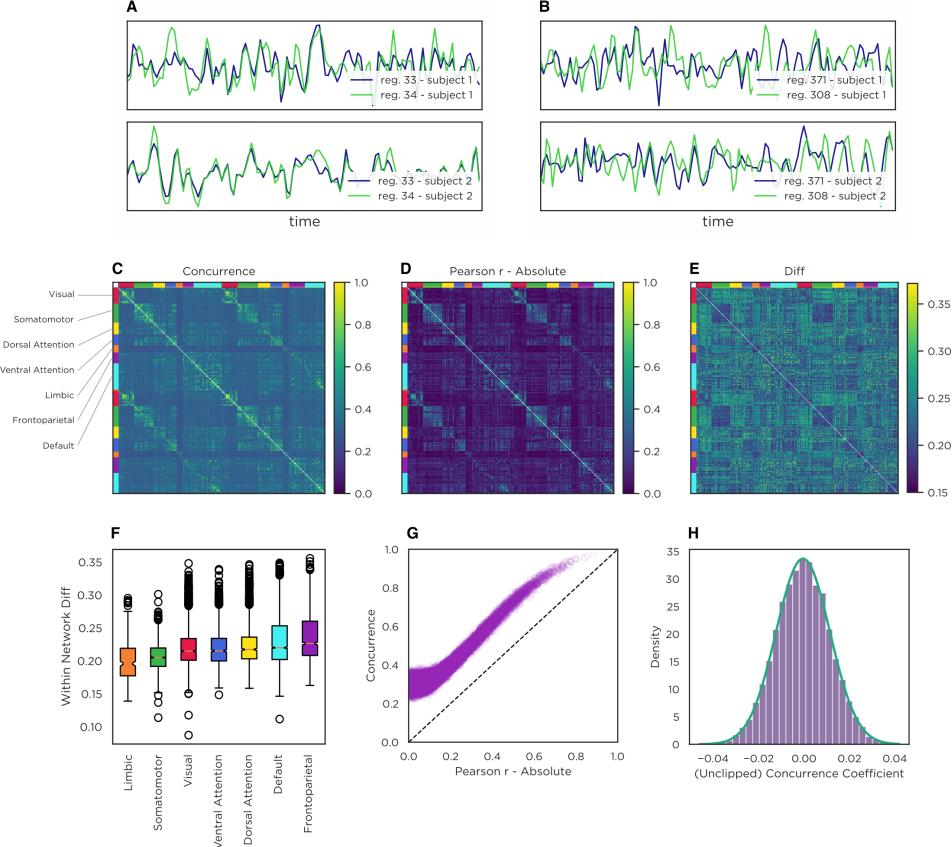


Figure 3: (A) Signals from two brain regions with correlated fMRI signals. (B) Signals from two brain regions with fMRI signals that are dependent (concurrence coefficient: 0.25) but approximately uncorrelated (Pearson's r : 0.02). (C) The connectivity matrix computed with the concurrence coefficient. (D) The connectivity matrix computed with (absolute) correlation values (Pearson's r). (E) The difference between the two concurrence- and correlation-based connectivity matrices. (F) The distribution of the difference between the concurrence- and correlation-based connectivity matrices, shown separately for the seven brain networks. (G) Alternative comparison of the Pearson's r vs. concurrence coefficients computed from all the brain region pairs. (H) The (unclipped) concurrence coefficient between 10,000 pairs of brain regions of mismatched participants.

3.2 Applications to Real Biological Signals

Brain Imaging Our experiments on fMRI signals aim to identify how strongly different brain regions are functionally connected. Pearson's r is the single-most commonly used metric for this purpose [38]. Fig. 3 compares the connectivity matrices obtained with Pearson's r (i.e., correlation matrix) and the concurrence coefficient (i.e., concurrence matrix) on a version of the Philadelphia Neurodevelopmental Cohort dataset [39] that was pre-processed as in prior work [40]. This dataset uses the parcellation scheme that divides each brain into 400 regions [41]. The concurrence coefficient is computed on segments of size $w = 30$ time points, which corresponds to approximately 90 seconds, whereas the entire signals included 120 time points. Thirty percent of the dataset (426 participants) was used to train the neural networks needed for the concurrence coefficients, and the results in both connectivity matrices were computed from the remaining 70%.

The overall similarity between the two connectivity matrices (Fig. 3C vs. Fig. 3D) is striking and suggests that the concurrence coefficient uncovers a dependence structure that has been validated in the field. Fig. 3G shows that there are no pairs of regions with a concurrence score less than 0.2, even though there are many pairs that are uncorrelated (i.e., Pearson $r \approx 0$), suggesting that concurrence captured statistical dependencies that cannot be captured with correlation (e.g., Fig. 3B) as well as those that can (e.g., Fig. 3A). The fact that the concurrence coefficient exposed a dependence

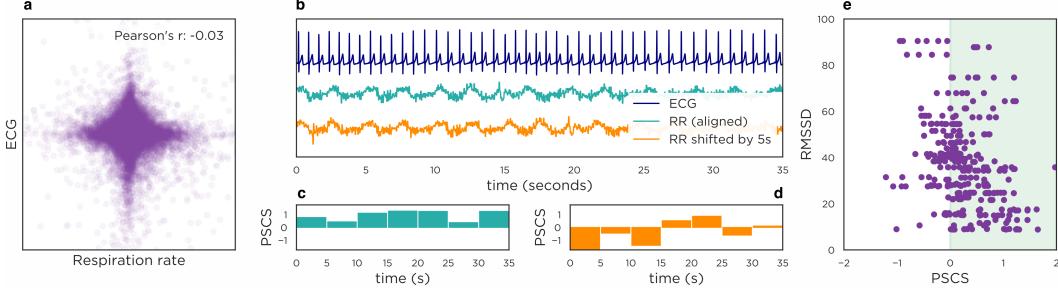


Figure 4: (A) Scatter plot and correlation between the respiration rate (RR) and ECG signal. (B) A sample ECG signal plotted against the synchronized (i.e., time-aligned) RR signal and the temporally misaligned RR. (C) The per-segment concurrence scores (PSCSs) between the temporally aligned ECG and RR are positive, which indicate that the PSCS correctly predicts that the segments are temporally aligned. (D) The PSCSs between the temporally misaligned ECG and RR are generally negative. (E) The PSCS for (temporally aligned) ECG and RR signals against the RMSSD, computed on a dataset of 30 participants for multiple segments per participant.

between all $400 \times 199 = 79,600$ pairs of brain regions with 79,600 independently trained networks verifies that the training needed for the concurrence coefficient can be done robustly. We ran a permutation test to identify if the method detects spurious dependence (Type I error) by computing concurrence between signals of mismatched participants. The concurrence coefficient was closely distributed around zero (Fig. 3H), indicating no spurious relationships. The differences between the concurrence coefficient and Pearson's correlation exhibit a structured pattern across the seven brain networks (Fig. 3F), increasing progressively from lower-order affective (limbic), somatomotor and sensory (visual) networks to higher-order cognitive control (ventral attention, dorsal attention, default mode, frontoparietal) networks. This systematic increase suggests that linear correlation may not be capturing complex connectivity patterns that involve integrative processing or dynamic modulation.

Physiological data. We next investigate dependencies in a dataset of breathing and cardiac activity. While these two processes are known to be biologically linked [42], the correlation between respiration rate and electrocardiogram (ECG) signals is approximately zero (Fig. 4A). We applied the proposed method to a dataset of 60 pairs of temporally synchronized ECG and respiration rate signals, collected at the Children's Hospital of Philadelphia using Zephyr BioModule sensors. The duration of the tasks used for data collection ranged from 4 to 7 minutes. The data were split into four subject-independent cross-validation folds. The segment size w was equivalent to 5 seconds.

The average concurrence coefficient on the test folds was 0.50 ($p < 0.001$), indicating that the concurrence approach successfully detects the relationship between respiration rate and ECG signals. The PSCS can generally distinguish between compared signals that are temporally aligned or not (Fig. 4B–D), validating that concurrence can identify relationships (or lack thereof) that are difficult to determine visually. Fig. 4E plots the PSCSs from temporally aligned segments vs. the root mean square of successive differences (RMSSD) derived from the ECG signal of each interaction. That the PSCS is generally larger when the RMSSD is low may suggest that the trained algorithm predicts a stronger relationship between ECG and respiration rate when the latter is increased.

Behavioral Data.

Finally, we apply concurrence to the analysis of facial behavior oc-

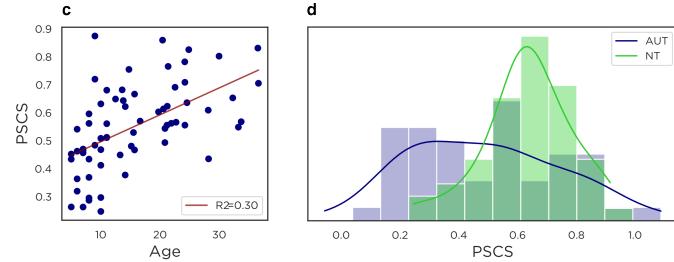


Figure 5: (A) Average per-segment concurrence score (PSCS) per neurotypical (NT) individual versus age. (B) The distributions of PSCS per individual for the autism (AUT) and NT group.

curring in a dyadic conversation

task. The behaviors of two conversation partners are expected to be dependent, due to well-established phenomena like nonconscious mimicry [29] or (nonverbal) backchanneling [30]. However, quantifying such dependencies has proven challenging, as behavior is captured with multi-dimensional signals (Fig. 5A,B), and any subset of signals from one conversation partner may depend on the signals of the other partner through an unknown relationship.

We conduct experiments on a dataset of 199 participants (aged 5 to 40 years) engaged in a 3-5-minute semi-structured face-to-face conversation [43]. We quantify social behaviors (i.e., facial expressions and head movements) in each conversation partner with 82-dimensional signals (79 for facial expressions and 3 for head movements) [44]. The concurrence coefficient for $w = 4$ seconds is 0.49 ($p < 0.001$), indicating that the behavior signals of the conversation partners are dependent. Moreover, the PSCS allows us to investigate differences within different subsamples. For example, Fig. 5C shows that the PSCS increases with age (Spearman's $r = 0.61$, $p < 0.001$), indicating that younger school-age children tend to have less behavioral coordination than older children. Additional analyses on a subsample of 12-18 year-olds ($N=42$) with and without an autism diagnosis (matched on age and sex) indicate that autistic adolescents have reduced coordination with conversation partners relative to neurotypical adolescents (Cohen's D : 0.8; $p = 0.003$; Fig. 5D). Together, these results demonstrate that the concurrence method exposes clinically relevant differences in spontaneous social behavioral coordination, without any a priori information about the structure of the coordination.

4 Limitations of Measuring Dependence with Self-supervision

While the proposed method showed no propensity to discovering spurious dependencies (Fig. 2), it is not uncommon that signals generated for scientific analyses contain responses to common, extraneous events. These common events render the compared signals statistically dependent, yet since they are extraneous, they are of no interest to the research question that is being investigated.

This phenomenon can be observed, for example, in a comparison of EEG signals versus facial behavior. While one may be interested in analyzing these two modalities to uncover potential relationships between mental/emotional states and observable facial behavior, the EEG sensors are sensitive to non-neural as well as neural activities. For example, eyeblinks can generate voltage change that is an order of magnitude larger than cortical activity [45]. While pre-processing algorithms may be able to mitigate the effect of blinking, the downside with a potent dependence detection algorithm is that any residue left from such mitigation efforts will also be detected as statistical dependence.

An alternative approach for accounting extraneous factors is using correction procedures after the dependence is estimated. These procedures are typically used with traditional approaches to measuring statistical dependencies, and their success is yet to be demonstrated for the proposed concurrence algorithm, or alternative algorithms based on (deep) learning, which can expose more nuanced dependencies that can remain on the compared variables even after correction.

5 Conclusion

This paper introduced a new approach for measuring statistical dependence, namely, concurrence. We showed that this self-supervised approach can become a standard way of quantifying statistical dependence between time series, as it readily detects a wide range of linear or non-linear dependencies with an off-the-shelf implementation, even from modestly sized samples and noisy data, without requiring empirical (hyper)parameter tuning; and showed no propensity to false discoveries (Type I errors). Future research can further enhance this framework by theoretically establishing the link between statistical dependence and concurrence, while integrating advances in machine learning can ensure that its theoretical potential can be fully actualized. Ensuring that the exposed statistical dependencies are truly of scientific interest remains an open problem. Therefore the users of concurrence or any other method should verify that the signals do not contain common responses to extraneous factors, or perform pre-processing or post-hoc analyses to ensure that the dependencies that are exposed truly pertain to the research question and phenomena under investigation.

References

- [1] Dag Tjøstheim, Håkon Otneim, and Bjørn Støve. Statistical dependence: Beyond pearson's ρ . *Statistical Science*, 37, 2022.
- [2] Natalia B. Janson. Non-linear dynamics of biological systems. *Contemporary Physics*, 53: 137–168, 2012.
- [3] Fei He and Yuguo Yang. Nonlinear system identification of neural systems from neurophysiological signals. *Neuroscience*, 458:213–228, 2021.
- [4] Richard C. Schmidt and Barbara O'Brien. Evaluating the dynamics of unintended interpersonal coordination. *Ecological Psychology*, 9:189–206, 1997.
- [5] Alexandre Hyafil, Anne-Lise Giraud, Lorenzo Fontolan, and Boris Gutkin. Neural cross-frequency coupling: Connecting architectures, mechanisms, and functions. *Trends in Neurosciences*, 38:725–740, 2015.
- [6] Chung-Han Yeh, Cheng Zhang, Weidong Shi, Meng-Ting Lo, Gerd Tinkhauser, and Ashwani Oswal. Cross-frequency coupling and intelligent neuromodulation. *Cyborg and Bionic Systems*, 4:0034, 2023.
- [7] Edward Beltrami and John Jesty. Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. *Proceedings of the National Academy of Sciences of the USA*, 92:8744–8748, 1995.
- [8] Paul H. Tiesinga and Terrence J. Sejnowski. Mechanisms for phase shifting in cortical networks and their role in communication through coherence. *Frontiers in Human Neuroscience*, 4:196, 2010.
- [9] Claudio Cosentino and Declan Bates. *Feedback Control in Systems Biology*. CRC Press, 2011.
- [10] Zhilin Qu, Alan Garfinkel, James N. Weiss, and Mikko Nivala. Multi-scale modeling in biology: How to bridge the gaps between scales? *Progress in Biophysics and Molecular Biology*, 107: 21–31, 2011.
- [11] Alfréd Rényi. On measures of dependence. *Acta Mathematica Hungarica*, 10:441–451, 2005.
- [12] Arthur Gretton, Kenji Fukumizu, Choon H. Teo, Le Song, Bernhard Schölkopf, and Alexander J. Smola. A kernel statistical test of independence. In *Advances in Neural Information Processing Systems 20 (NIPS 2007)*, 2007.
- [13] Gábor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. Measuring and testing dependence by correlation of distances. *The Annals of Statistics*, 35:2769–2794, 2007.
- [14] Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equivalence of distance-based and rkhs-based statistics in hypothesis testing. *The Annals of Statistics*, 41: 2263–2291, 2013.
- [15] Jakob Verbeek, Sam Roweis, and Nikos Vlassis. Non-linear cca and pca by alignment of local models. In *Advances in Neural Information Processing Systems 16*. MIT Press, 2003.
- [16] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation analysis. In *Proceedings of the 30th International Conference on Machine Learning (ICML)*, 2013.
- [17] Wei-Yi Hua and Debashis Ghosh. Equivalence of kernel machine regression and kernel distance covariance for multidimensional phenotype association studies. *Biometrics*, 71:812–820, 2015.
- [18] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu, and Bharath K. Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. In *Advances in Neural Information Processing Systems 25*. Curran Associates, Inc., 2012.

[19] Xiaoqin Zhuang, Zening Yang, and Dietmar Cordes. A technical review of canonical correlation analysis for neuroscience applications. *Human Brain Mapping*, 41:3807–3833, 2020.

[20] Scott Marek, Brenden Tervo-Clemmens, Finnegan J. Calabro, Daniel F. Montez, Benjamin P. Kay, Alexander S. Hatoum, Mary R. Donohue, William Foran, Ryan L. Miller, Timothy J. Hendrickson, Shane M. Malone, Suyash Kandala, Eric Feczkó, Oscar Miranda-Dominguez, Amy M. Graham, Eric A. Earl, Alex J. Perrone, Miguel Cordova, Owen Doyle, Lily A. Moore, Grace M. Conan, Juan Uriarte, Kyle Snider, Benjamin J. Lynch, Jordan C. Wilgenbusch, Taylor Pengo, Angela Tam, Jiayu Chen, D. J. Newbold, Alexander Zheng, Nicholas A. Seider, Ahria N. Van, Asuka Metoki, R. J. Chauvin, Timothy O. Laumann, Deanna J. Greene, Steven E. Petersen, Hugh Garavan, Wesley K. Thompson, Thomas E. Nichols, B. T. T. Yeo, Deanna M. Barch, Beatriz Luna, Damien A. Fair, and N. U. F. Dosenbach. Reproducible brain-wide association studies require thousands of individuals. *Nature*, 603:654–660, 2022.

[21] Robert E. Greenblatt, Mary E. Pflieger, and Alexei E. Ossadtchi. Connectivity measures applied to human brain electrophysiological data. *Journal of Neuroscience Methods*, 207:1–16, 2012.

[22] Katsunori Fujiwara and Ikuo Daibo. Evaluating interpersonal synchrony: Wavelet transform toward an unstructured conversation. *Frontiers in Psychology*, 7, 2016.

[23] Richard C. Schmidt, Stephanie Morr, Paula Fitzpatrick, and Michael J. Richardson. Measuring the dynamics of interactional synchrony. *Journal of Nonverbal Behavior*, 36:263–279, 2012.

[24] Stéphane Mallat. *A Wavelet Tour of Signal Processing: The Sparse Way*. Academic Press, 3 edition, 2009.

[25] Martin Vetterli, Jelena Kovačević, and Vivek K. Goyal. *Foundations of Signal Processing*. Cambridge University Press, 2014.

[26] David Maraun and Jürgen Kurths. Cross wavelet analysis: significance testing and pitfalls. *Nonlinear Processes in Geophysics*, 11:505–514, 2004.

[27] Mark A. Kramer, Adriano B. L. Tort, and Nancy J. Kopell. Sharp edge artifacts and spurious coupling in eeg frequency comodulation measures. *Journal of Neuroscience Methods*, 170:352–357, 2008.

[28] Maria A. Russo, David M. Santarelli, and David O’Rourke. The physiological effects of slow breathing in the healthy human. *Breathe*, 13:298–309, 2017.

[29] Jessica L. Lakin, Victoria E. Jefferis, C. M. Cheng, and Tanya L. Chartrand. The chameleon effect as social glue: Evidence for the evolutionary significance of nonconscious mimicry. *Journal of Nonverbal Behavior*, 27:145–162, 2003.

[30] Lisa Shelley and Frank Gonzalez. Back channeling: Function of back channeling and l1 effects on back channeling in l2. *Linguistics Portfolio*, 2, 2013.

[31] Ding-Xuan Zhou. Universality of deep convolutional neural networks. *Applied and Computational Harmonic Analysis*, 48:787–794, 2020.

[32] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural networks: A strong baseline. arXiv:1611.06455, 2016. URL <https://doi.org/10.48550/arXiv.1611.06455>.

[33] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271, 2018. URL <https://doi.org/10.48550/arXiv.1803.01271>.

[34] Marijke Welvaert and Yves Rosseel. On the definition of signal-to-noise ratio and contrast-to-noise ratio for fmri data. *PLoS ONE*, 8:e77089, 2013.

[35] Steven M Boker, Jennifer L Rotondo, Minquan Xu, and Kadijah King. Windowed cross-correlation and peak picking for the analysis of variability in the association between behavioral time series. *Psychological methods*, 7(3):338, 2002.

[36] Carlos Ramos-Carreño. dcor: distance correlation and energy statistics in python, 3 2022. URL <https://github.com/vnmabus/dcor>.

[37] Richard A Armstrong. When to use the b onferroni correction. *Ophthalmic and physiological optics*, 34(5):502–508, 2014.

[38] Zheng-Quan Liu, Andrea I. Luppi, Jesper Y. Hansen, Yue E. Tian, Andrew Zalesky, B. T. Thomas Yeo, Ben D. Fulcher, and Bratislav Mišić. Benchmarking methods for mapping functional connectivity in the brain. bioRxiv 2024.05.07.593018, 2024. URL <https://doi.org/10.1101/2024.05.07.593018>.

[39] Graham L. Baum, Zhen Cui, David R. Roalf, Rastko Ciric, Richard F. Betzel, Barron Larsen, Matthew Cieslak, Philip A. Cook, Chun H. Xia, Tyler M. Moore, Kosha Ruparel, David J. Oathes, Aaron F. Alexander-Bloch, Russell T. Shinohara, Armin Raznahan, Raquel E. Gur, Ruben C. Gur, Danielle S. Bassett, and Theodore D. Satterthwaite. Development of structure–function coupling in human brain networks during youth. *Proceedings of the National Academy of Sciences*, 117:771–778, 2020.

[40] Theodore D. Satterthwaite, John J. Connolly, Kosha Ruparel, Monica E. Calkins, Chad Jackson, Mark A. Elliott, David R. Roalf, Rachel Hopson, Karthik Prabhakaran, Melissa Behr, Hong Qiu, Frederick D. Mentch, Rosetta Chiavacci, Patrick M. A. Sleiman, Ruben C. Gur, Hakon Hakonarson, and Raquel E. Gur. The philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth. *NeuroImage*, 124:1115–1119, 2016.

[41] Alexander Schaefer, Ru Kong, Evan M. Gordon, Timothy O. Laumann, Xi-Nian Zuo, Avram J. Holmes, Simon B. Eickhoff, and B. T. Thomas Yeo. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity mri. *Cerebral Cortex*, 28:3095–3114, 2018.

[42] Edgar D. Adrian, Detlev W. Bronk, and G. Phillips. Discharges in mammalian sympathetic nerves. *The Journal of Physiology*, 74:115–133, 1932.

[43] Evangelos Sariyanidi, Casey J. Zampella, Evan DeJardin, John D. Herrington, Robert T. Schultz, and Bünyamin Tunç. Comparison of human experts and ai in predicting autism from facial behavior. In *CEUR Workshop Proceedings*, volume 3359, pages 48–57, 2023.

[44] Evangelos Sariyanidi, Casey J. Zampella, Robert T. Schultz, and Bünyamin Tunç. Inequality-constrained 3d morphable face model fitting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46:1305–1318, 2024.

[45] Michael Plöchl, José P Ossandón, and Peter König. Combining eeg and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. *Frontiers in human neuroscience*, 6:278, 2012.

A Network Architecture, Hyperparameters and Implementation

The transformations $f(\cdot)$ and $g(\cdot)$ are modelled with separate convolutional neural networks (CNNs), but both CNNs use an identical and well-established architecture. Specifically, each CNN is comprised of B identical blocks concatenated back to back. Each block is comprised of four layers:

- Batch normalization layer
- Convolutional layer
- Dropout
- ReLU

The convolutional layer has a stride parameter, which effectively downsamples the signals in time when it is greater than 1. Moreover, following standard practice, the convolutional layer at each block reduces the number of channels (i.e., dimension of signals) by half.

Kernel size of first conv. layer	5
Kernel size of other conv. layers	3
Step size (stride) at conv. first layer	3*
Step size (stride) at other conv. layers	2*
Number of blocks (B)	3
Number of output channels at 1st conv. layer (C)	512
Number of output channels at b th conv. layer	$512/2^{(b-1)}$
Dropout rate	0.25
Optimizer	Adam ⁵¹
Number of iterations	100
Learning rate	10^{-4}

Table A.1: Parameters of the CNNs that we use. *The step sizes larger than 1 effectively downsample the input, and if the segment size w is too small, the output of a convolutional kernel may be empty. To avoid the latter, one may need to reduce the stride sizes accordingly.

The training is done by using the Adam optimizer for 100 iterations (Table A.1), although the code has the option to stop early by using a certain percentage (default 20%) of the training data as a validation set. During training, we extract four randomly selected segment pairs from each signal pair. Each segment pair is picked to be concurrent (i.e., positive sample) with 50% probability and non-concurrent also with 50% probability.

We successfully used the network parameters in Table A.1 to expose dependencies on three types of behavioral signals with divergent characteristics –fMRI, physiological (ECG and respiration rate) and behavioral data— as well as 100 synthesized datasets (Data S1) with a variety of dependence patterns (see Supplementary Text). As such, these parameters have proven capability to expose a wide range of non-linear dependencies. If the two signals are dependent but through a large temporal lag, one may need to increase the number of blocks B .

The number of output channels of the (first) convolution layer, C , controls the complexity of functions that can be modeled with f or g —the higher the C the more complex functions can be modeled. We set this parameter to $C = 512$, which worked successfully across a wide range of dependence patterns—from simple linear dependence between one-dimensional input segments to complex non-linear dependencies, including with multi-dimensional signals, such as in our experiments with behavioral data (82 dimensions). In other words, we did not observe any harm in setting this parameter to higher values than needed (e.g., linear dependence between one-dimensional signals could have been technically be exposed with $C = 1$ and $B = 1$). In cases where one deals with very high-dimensional input signals (e.g., M_1 or M_2 in the order of hundreds or thousands) or one expects a very complex dependence, one may need to set C to higher values than 512. Also, in cases where computational efficiency is a priority, one may reduce this value possibly without harm, since $C = 512$ is possibly a larger value than needed in many applications.

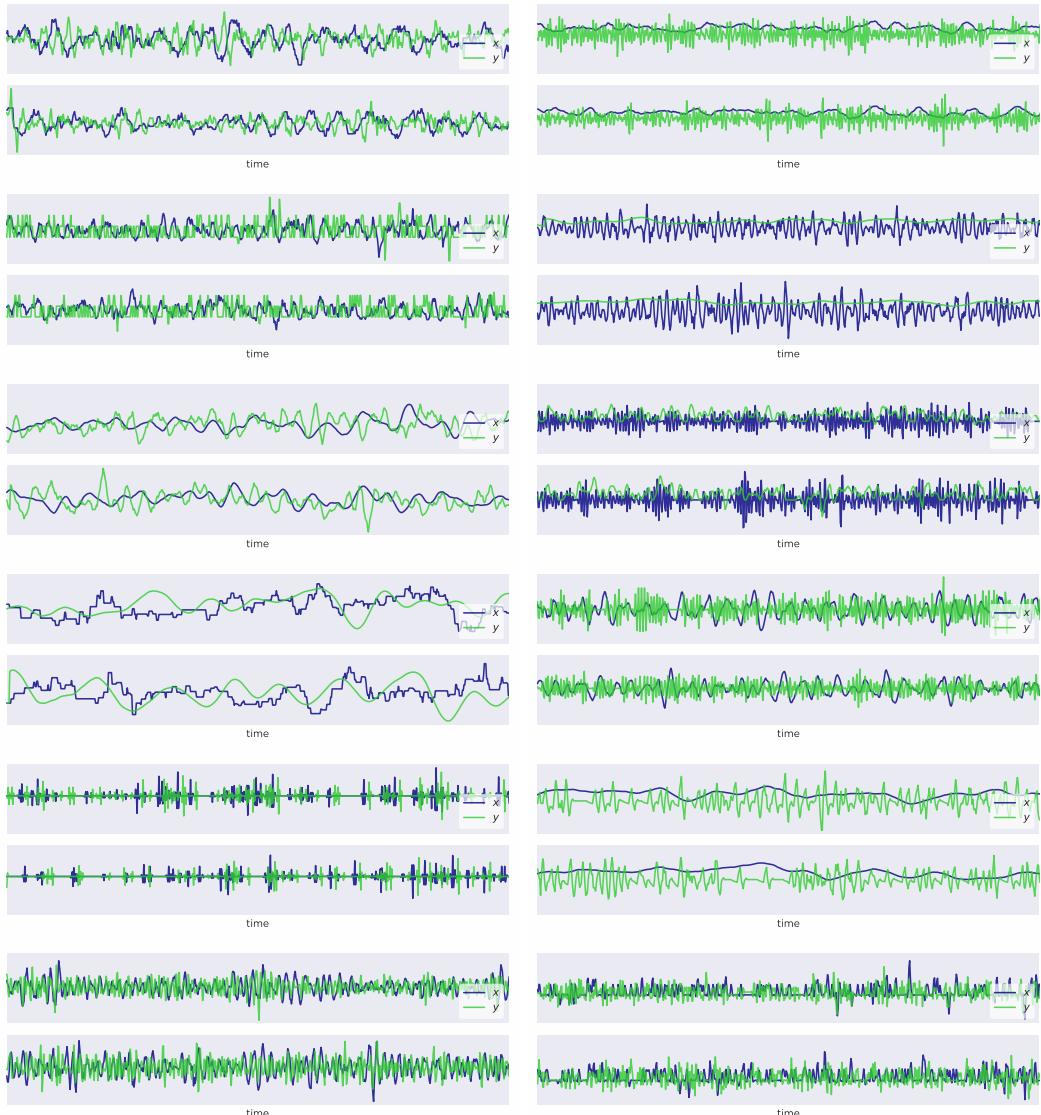


Figure A.1: Pairs of signals representative from 12 out of the 100 synthesized datasets. All illustrated signal pairs are dependent, and they are generated as described in Supplementary Text. The raw data for all 100 synthesized datasets is provided in Data S1.

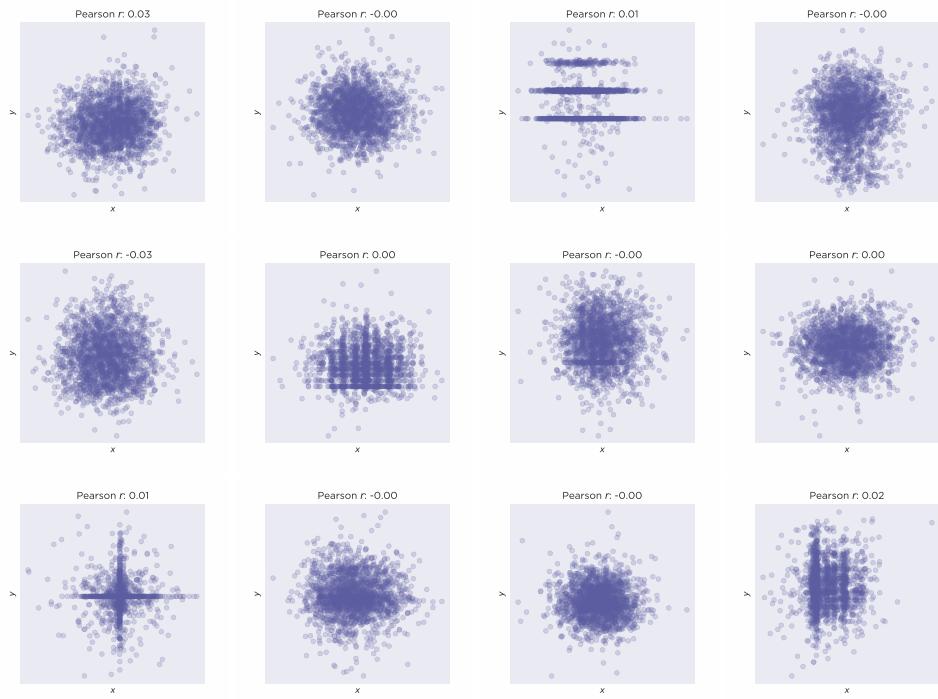


Figure A.2: The scatter plot and correlation between the signal pairs illustrated in Fig. A.1). The correlation (Pearson's r) between is almost always approx. 0, indicating non-linear dependence.