

# 000 001 002 003 004 005 006 007 008 009 010 011 012 TOPOLOGY OF REASONING: RETRIEVED CELL COMPLEX-AUGMENTED GENERATION FOR TEXTUAL GRAPH QUESTION ANSWERING

009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Retrieval-Augmented Generation (RAG) enhances the reasoning ability of Large Language Models (LLMs) by dynamically integrating external knowledge, thereby mitigating hallucinations and strengthening contextual grounding for structured data such as graphs. Nevertheless, most existing RAG variants for textual graphs concentrate on low-dimensional structures—treating nodes as entities (0-dimensional) and edges or paths as pairwise or sequential relations (1-dimensional), but overlook cycles, which are crucial for reasoning over relational loops. Such cycles often arise in questions requiring closed-loop inference about similar objects or relative positions. This limitation often results in incomplete contextual grounding and restricted reasoning capability. In this work, we propose **Topology-enhanced Retrieval-Augmented Generation** (TopoRAG), a novel framework for textual graph question answering that effectively captures higher-dimensional topological and relational dependencies. Specifically, TopoRAG first lifts textual graphs into cellular complexes to model multi-dimensional topological structures. Leveraging these lifted representations, a topology-aware subcomplex retrieval mechanism is proposed to extract cellular complexes relevant to the input query, providing compact and informative topological context. Finally, a multi-dimensional topological reasoning mechanism operates over these complexes to propagate relational information and guide LLMs in performing structured, logic-aware inference. Empirical evaluations demonstrate that our method consistently surpasses existing baselines across diverse textual graph tasks.

## 1 INTRODUCTION

Large Language Models (LLMs) exhibit strong language understanding and generation capabilities, but their reliance on pre-training corpora—limited in scope and timeliness—often leads to hallucinations, producing inaccurate or fabricated content that challenges knowledge-intensive reasoning Huang et al. (2023b). To mitigate these issues, Retrieval-Augmented Generation (RAG) has recently emerged as an effective approach Fan et al. (2024); Sun et al. (2024); Baek et al. (2023); Sen et al. (2023), dynamically retrieving relevant external knowledge and incorporating it into the generation process. By enhancing contextual grounding and factual accuracy, RAG improves reasoning over structured data and reduces hallucination Gao et al. (2023). However, traditional RAG methods often overlook the structured dependencies among textual entities and struggle to capture global relational patterns, limiting their applicability for graph-structured reasoning tasks.

To address these challenges, Graph Retrieval-Augmented Generation (GraphRAG) Edge et al. (2024); Hu et al. (2024); Mavromatis & Karypis (2025) extends conventional RAG by retrieving not only documents but also graph elements, which provide richer relational context for reasoning over textual graphs. *G-Retriever* He et al. (2024) introduces the first general GraphRAG framework for textual graphs, formulating retrieval as a Prize-Collecting Steiner Tree problem to extract compact and relevant subgraphs. GNN-RAG Mavromatis & Karypis (2025) and SubgraphRAG Li et al. (2025) further develop specialized retrieval modules to extract subgraphs from knowledge graphs. However, existing approaches, primarily operate on low-dimensional elements and largely ignore higher-dimensional topological structures such as cycles, which are crucial for reasoning over relational loops and complex dependencies in textual graphs.

054  
055

In many real-world textual graphs, essential information arises not only from nodes (0-cells) that encode entity attributes, edges and paths (1-cells) representing pairwise or multi-hop relations, but also from cycles (2-cells) capturing higher-dimensional dependencies. As illustrated in Fig. 1, reasoning over 0-cells enables answering simple attribute-based questions (Fig. 1 a), while incorporating 1-cells supports inference over one-hop to multi-hop relational queries (Fig. 1 b).

However, certain queries require cyclic dependencies among multiple entities, where the answer emerges only from reasoning over 2-cells. For example, the question in Fig. 1 (c) involves a closed relational loop that links spatial relations with material consistency, which cannot be resolved by nodes and edges alone. Capturing structural information across multiple topological dimensions provides indispensable context for structured logical inference, as higher-dimensional dependencies complement lower-dimensional relations to enable reasoning beyond simple pairwise interactions. Consequently, retrieval and reasoning mechanisms that explicitly incorporate multi-dimensional topological features are essential for understanding and answering questions over complex textual graphs.

In this work, we propose **Topology-enhanced Retrieval-Augmented Generation (TopoRAG)**, a novel framework for textual graph question answering that explicitly models higher-dimensional topological and relational dependencies. Specifically, TopoRAG first lifts input textual graphs into cellular complexes to capture multi-dimensional topological structures, including cycles that encode closed-loop dependencies critical for relational reasoning. Leveraging these lifted representations, a topology-aware subcomplex retrieval mechanism is introduced to extract cellular complexes that are most relevant to the input query, providing compact yet informative topological context for downstream reasoning. Furthermore, a multi-dimensional topological reasoning mechanism operates over the retrieved complexes to propagate relational information across different topological dimensions, enabling structured, logic-aware inference that naturally integrates with LLM reasoning. Extensive experiments demonstrate that TopoRAG consistently outperforms state-of-the-art baselines.

## 2 RELATED WORKS

Large Language Models (LLMs) have shown impressive capabilities in language understanding and text generation, yet they remain constrained by the boundaries of their pre-training corpus, lacking domain-specific expertise, real-time updates, and proprietary knowledge. These limitations frequently manifest as hallucinations, where models produce inaccurate or fabricated content Huang et al. (2023b). To address this issue, Retrieval-Augmented Generation (RAG) Fan et al. (2024); Sun et al. (2024); Baek et al. (2023); Sen et al. (2023) has emerged as a promising paradigm.

RAG enhances LLMs by dynamically retrieving relevant external knowledge and incorporating it into the generation process, thereby improving factual accuracy, contextual grounding, and interpretability Gao et al. (2023). Nevertheless, existing RAG methods are not without shortcomings in real-world applications. They often overlook structured dependencies among textual entities, rely on lengthy concatenated snippets that may obscure critical information (the “lost in the middle” problem Liu et al. (2024)), and struggle to capture global structural patterns essential for tasks such as query-focused summarization.

To address these challenges, Graph Retrieval-Augmented Generation (GraphRAG) Edge et al. (2024); Hu et al. (2024); Mavromatis & Karypis (2025) extends conventional RAG by retrieving not only documents but also graph elements such as nodes, triples, and subgraphs. Building on this

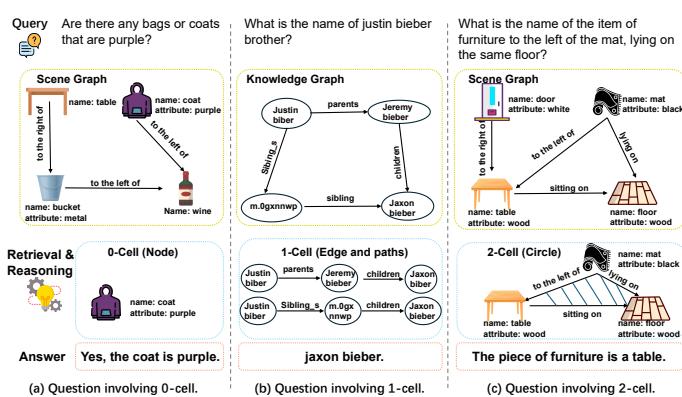


Figure 1: Illustration of question answering with varying dimensional topological characteristics.

108 idea, G-Retriever He et al. (2024) introduces the first general RAG framework for textual graphs,  
 109 formulating retrieval as a Prize-Collecting Steiner Tree problem to extract compact and relevant sub-  
 110 graphs. GNN-RAG Mavromatis & Karypis (2025) improves knowledge graph QA by integrating  
 111 GNN-based representations for task-specific subgraph selection, and SubgraphRAG Li et al. (2025)  
 112 incorporates lightweight triple scoring and distance encoding to achieve efficient subgraph retrieval.  
 113 Nevertheless, existing methods overlook high-dimensional cyclic dependencies, motivating our ap-  
 114 proach to incorporate multi-dimensional cell structures for enhanced retrieval and reasoning.

115 We also discuss related works on graphs & LLMs, and topological deep learning in Appendix B.  
 116

### 117 3 PRELIMINARIES

119 **Definition 1. (Cell Complex Hansen & Ghrist (2019)).** A **regular cell complex** is a topolog-  
 120 ical space  $X$  decomposed into a collection of disjoint subspaces  $\{x_\sigma\}_{\sigma \in P_X}$ , referred to as *cells*,  
 121 satisfying the following conditions:

- 123 1. For each point  $p \in X$ ,  $\exists$  an open neighborhood intersecting only finitely many cells.
- 124 2. For any pair of cells  $x_\sigma, x_\tau$ , the intersection  $x_\tau \cap \overline{x_\sigma}$  is nonempty if and only if  $x_\tau \subseteq \overline{x_\sigma}$ ,  
   125 where  $\overline{x_\sigma}$  denotes the topological closure of  $x_\sigma$ .
- 126 3. Each cell  $x_\sigma$  is homeomorphic to an open ball in  $\mathbb{R}^n$  for some non-negative integer  $n$ .
- 127 4. (Regularity) The closure  $\overline{x_\sigma}$  of every cell is homeomorphic to a closed ball in  $\mathbb{R}^{n_\sigma}$ , with  
   128 the interior mapped homeomorphically onto  $x_\sigma$  itself.

130 **Definition 2.** A **cellular lifting map** is a function  $f : \mathcal{G} \rightarrow X$  from the space of graphs  $\mathcal{G}$  to the  
 131 space of regular cell complexes  $X$ , satisfying that two graphs  $G_1, G_2 \in \mathcal{G}$  are isomorphic if and only  
 132 if their corresponding cell complexes  $f(G_1)$  and  $f(G_2)$  are isomorphic. Intuitively, a cell complex  
 133 is built hierarchically by first considering 0-cells (vertices), then attaching 1-cells (edges) via their  
 134 endpoints, and further incorporating higher-dimensional cells by gluing disks along cycles.  
 135

136 **Definition 3. (Retrieved Cell Complex-Augmented Question Answering).** Given a textual graph  
 137  $\mathcal{G} = (V, E, \{t_n\}_{n \in V}, \{t_e\}_{e \in E})$ , where each node  $n \in V$  and edge  $e \in E$  is associated with textual  
 138 attributes  $t_n \in D^{L_n}$  and  $t_e \in D^{L_e}$ , we lift  $\mathcal{G}$  into a regular cell complex  $X$  through a cellular  
 139 lifting map  $f : \mathcal{G} \rightarrow X$ . The resulting complex  $X = \{x_\sigma\}$  contains multi-dimensional structures,  
 140 including 0-cells (nodes), 1-cells (edges/paths), and higher-dimensional cells (e.g., 2-cells as cycles).

141 To enable retrieval, a query  $Q$  is first encoded by a language model into a dense representation:  
 142

$$z_Q = \text{LM}(Q) \in \mathbb{R}^d. \quad (1)$$

144 Each cell  $x_\sigma \in X$  is also represented by an embedding  $z_\sigma$ , obtained from its textual attributes  
 145 together with a topological descriptor  $z_\sigma^d$  that summarizes its  $d$ -dimensional structure. We then  
 146 apply a  $k$ -nearest neighbors retrieval strategy to select the most relevant cells:  
 147

$$\mathcal{X}_k = \text{argtopk}_{x_\sigma \in X} \cos(z_Q, z_\sigma^d), \quad (2)$$

149 where  $\cos(\cdot, \cdot)$  denotes cosine similarity. This step yields a candidate set of cells  $\mathcal{X}_k =$   
 150  $\{x_{\sigma_1}, \dots, x_{\sigma_k}\}$  spanning multiple topological dimensions.

151 The task is defined as follows: given a natural language query  $Q$  and the lifted cell complex  $X$ , the  
 152 model must retrieve the most relevant subcomplexes  $X^*$  and reason over their multi-dimensional  
 153 structures to generate an answer  $A$ . Formally, the QA function is  
 154

$$f : (\mathcal{G}, X, Q) \mapsto A, \quad (3)$$

155 where  $A$  is a natural language sequence generated by the LLM under the conditional likelihood  
 156

$$p_\theta(A \mid [P_e; Q; X^*]) = \prod_{i=1}^{|A|} p_\theta(a_i \mid a_{<i}, [P_e; Q; X^*]). \quad (4)$$

157 161 Here,  $[P_e; Q; X^*]$  denotes the concatenation of soft prompt embeddings  $P_e$ , query tokens, and re-  
 162 trieval subcomplex representations, while  $a_{<i}$  represents the prefix of  $A$  up to step  $i - 1$ .

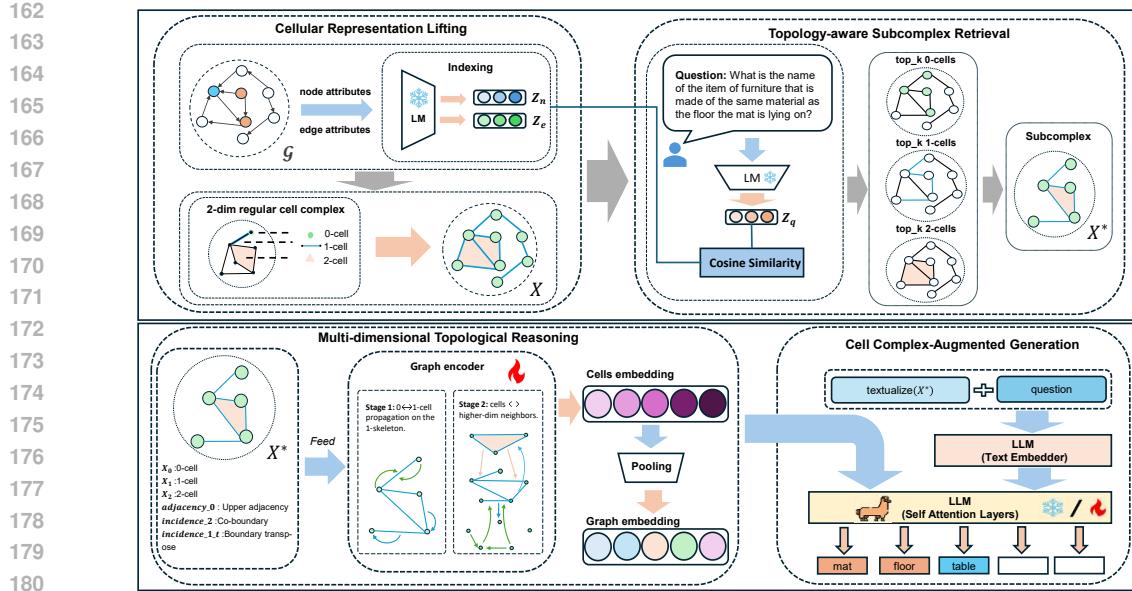


Figure 2: The overview of Topology-enhanced Retrieval-Augmented Framework.

Training proceeds by maximizing the likelihood of the ground-truth answer  $A^*$ :

$$\max_{P_e} \log p_\theta(A^* | [P_e; Q; X^*]), \quad (5)$$

where only the soft prompt parameters  $P_e$  are updated, while the LLM parameters  $\theta$  remain fixed.

## 4 THE TOPORAG FRAMEWORK

In this section, we present the architecture of **TopoRAG** (illustrated in Figure 2), a topology-enhanced retrieval-augmented generation framework designed for textual graph question answering. TopoRAG is composed of four key components. First, the *Cellular Representation Lifting* module transforms input textual graphs into regular cell complexes, providing expressive multi-dimensional topological representations that go beyond nodes and edges. Second, the *Topology-aware Subcomplex Retrieval* module identifies the most relevant subcomplexes with respect to the query by jointly considering semantic similarity and topological structure. Third, the *Multi-dimensional Topological Reasoning* module propagates relational information across different topological dimensions, enabling structured and logic-aware inference. Finally, the *Cell Complex-Augmented Generation* module integrates retrieved subcomplex representations into the LLM to guide answer generation, ensuring faithful and topology-consistent responses.

### 4.1 CELLULAR REPRESENTATION LIFTING

Given a textual graph  $\mathcal{G} = (V, E, \{t_n\}_{n \in V}, \{t_e\}_{e \in E})$ , we aim to lift it into a higher-dimensional topological space that faithfully encodes both relational and structural dependencies. This is achieved by constructing a *regular cell complex*  $X$  through a cellular lifting map  $f: \mathcal{G} \rightarrow X$ .

We first regard  $\mathcal{G}$  as a 1-dimensional cell complex, where each vertex  $v \in V$  corresponds to a 0-cell  $x_v^0 \in X^{(0)}$ , and each edge  $(u, v) \in E$  corresponds to a 1-cell  $x_{(u,v)}^1 \in X^{(1)}$  attached to its endpoint 0-cells  $x_u^0$  and  $x_v^0$ . This forms the *cellular 1-skeleton*:

$$X^{(1)} = X^{(0)} \cup \{x_{(u,v)}^1 \mid (u, v) \in E\}. \quad (6)$$

To elaborate, consider  $t_v \in D^{L_v}$  as the text attributes of vertex  $v$  and  $t_{(u,v)} \in D^{L_{(u,v)}}$  as those of edge  $(u, v)$ . Utilizing a pre-trained LM, such as SentenceBert (Reimers & Gurevych, 2019), we

216 apply the LM to these attributes, yielding the representations:  
 217

$$z_v^0 = \text{LM}(t_v) \in \mathbb{R}^d, \quad z_{(u,v)}^1 = \text{LM}(t_{(u,v)}) \in \mathbb{R}^d, \quad (7)$$

219 where  $d$  denotes the dimension of the output vector. This yields cellular embeddings for both nodes  
 220 and edges, which serve as the lifted representation in the subsequent module.  
 221

222 To incorporate high-dimensional topological structures, we extend  $X^{(1)}$  by identifying fundamental  
 223 cycles. Specifically, we fix a spanning tree  $\mathcal{T} \subseteq G$  and apply the quotient map:  
 224

$$\gamma : G \rightarrow G/\mathcal{T}, \quad (8)$$

225 which collapses  $\mathcal{T}$  to a single point. Each non-tree edge  $e = (u, v) \in E \setminus \mathcal{T}$  then induces a  
 226 fundamental cycle by connecting  $e$  with the unique path in  $\mathcal{T}$  between  $u$  and  $v$ . For every such  
 227 cycle, we attach a 2-cell  $x_e^2 \in X^{(2)}$  via the attaching map  
 228

$$\varphi_\alpha : \partial D^2 \cong S^1 \rightarrow G^{(1)}, \quad (9)$$

230 that glues the boundary of a disk  $D^2$  to the cycle. Formally, the set of 2-cells is  
 231

$$X^{(2)} = \{x_e^2 \in D^2 \mid e \in E \setminus \mathcal{T}\}. \quad (10)$$

233 The resulting cell complex  $X = X^{(0)} \cup X^{(1)} \cup X^{(2)}$  augments the original graph with multi-  
 234 dimensional topological structures.  
 235

**Proposition 1.** (Proof in Appendix C.1.)  $G/\mathcal{T}$  is homotopy-equivalent to  $G$ , and  $\gamma$  induces an  
 236 isomorphism on the first homology group  $H_1(G; \mathbb{Z})$ .  
 237

**Proposition 2.** (Proof in Appendix C.2.) Each non-tree edge  $e \in E \setminus \mathcal{T}$  induces a unique fundamental  
 238 cycle in  $G$ , which becomes a nontrivial loop in  $G/\mathcal{T}$ . The collection of these loops forms a basis  
 239 of the first homology group  $H_1(G; \mathbb{Z})$ , capturing all independent cycles and providing a concise  
 240 topological summary of the graph.  
 241

## 242 4.2 TOPOLOGY-AWARE SUBCOMPLEX RETRIEVAL

244 Given a query  $x_q$ , we first encode it into a  $d$ -dimensional embedding:  
 245

$$z_q = \text{LM}(x_q) \in \mathbb{R}^d. \quad (11)$$

247 To retrieve the most relevant cells, we compute the cosine similarity between  $z_q$  and the embeddings  
 248 of 0- and 1-cells:  
 249

$$\mathcal{X}_k^{(d)} = \text{argtopk}_{x^d \in X^{(d)}} \cos(z_q, z_{x^d}^d), \quad (12)$$

251 where  $d \in \{0, 1\}$  denotes the dimension,  $z_{x^d}^d$  is the embeddings of  $d$ -cell  $x^d$ . These provide the  
 252 top- $k$  relevant 0- and 1-cells.  
 253

254 *Prize assignment.* Each selected 0-cell  $x^0 \in \mathcal{X}_k^{(0)}$  and 1-cell  $x^1 \in \mathcal{X}_k^{(1)}$  is assigned a descending  
 255 prize according to its ranking:  
 256

$$\text{prize}(x^i) = \begin{cases} k - r, & \text{if } x^i \text{ is ranked } r\text{-th among top-}k \text{ cells,} \\ 0, & \text{otherwise,} \end{cases} \quad i = 0, 1. \quad (13)$$

259 For each 2-cell  $x^2 \in X^{(2)}$ , its prize is computed from the prizes of its boundary cells:  
 260

$$\text{prize}(x^2) = \sum_{d \in \{1, 2\}} \sum_{x^d \in \partial_d x^2} \text{prize}(x^d) - \text{cost}(x^2), \quad (14)$$

263 where  $\partial_d x^2$  denote the sets of boundary  $d$ -cells of  $x^2$ , and  $\text{cost}(x^2) = |\partial_1 x^2| \cdot C_2$  penalizes larger  
 264 faces with a tunable constant  $C_2$ . Top- $k$  2-cells are selected based on this prize ranking, denoted as  
 265  $\mathcal{X}_k^{(2)}$ , ensuring that all selected 2-cells share boundary cells with the chosen 0- and 1-cells.  
 266

267 *Subcomplex selection.* The final subcomplex  $X^*$  maximizes the total prize while controlling size:  
 268

$$X^* = \text{argmax}_{\substack{X' \subseteq X, \\ X' \text{ connected}}} \sum_{d \in \{1, 2, 3\}} \sum_{x^d \in X'^{(d)}} \text{prize}(x^d) - \text{cost}(X'), \quad (15)$$

270 where  $\text{cost}(X')$  is a size-dependent penalty. The boundary consistency constraint ensures that any  
 271 selected 2-cell  $x^2 \in X^{*(2)}$  has all of its boundary 0- and 1-cells included in  $X^{*(0)}$  and  $X^{*(1)}$ ,  
 272 preserving topological coherence.  
 273

274 The resulting topology-aware subcomplex selection problem can be seen as a generalization of  
 275 Prize-Collecting Steiner Tree (PCST) problem (Bienstock et al., 1993) to higher-dimensional cell  
 276 complexes with multi-dimensional prizes and size-dependent penalties. We adopt a near-linear time  
 277 approximation algorithm Hegde et al. (2015) to efficiently identify a near-optimal connected sub-  
 278 complex  $X^*$ . This ensures that the final subcomplex captures the most query-relevant structures  
 279 across all cell dimensions, while maintaining computational efficiency and topological validity.  
 280

#### 280 4.3 MULTI-DIMENSIONAL TOPOLOGICAL REASONING

282 After retrieving the query-relevant subcomplex  $X^* = X^{*(0)} \cup X^{*(1)} \cup X^{*(2)}$ , we propagate semantic  
 283 and relational information across different topological dimensions to enable structured reasoning  
 284 over the enriched cell complex. We employ a two-stage message passing mechanism that leverages  
 285 the multi-dimensional structure of the complex. In the first stage, information is propagated along  
 286 the 1-skeleton, between 0-cells and 1-cells, over  $L$  hops:  
 287

$$288 \mathbf{h}_x^l = \text{UPDATE}^l\left(\mathbf{h}_x^l, m_{\mathcal{F}}^l(x), m_{\mathcal{C}}^l(x)\right), \quad x \in X^{*(0)} \cup X^{*(1)}, \quad l = 1, \dots, L, \quad (16)$$

289 where  $m_{\mathcal{F}}^l(x)$  aggregates messages from faces, and  $m_{\mathcal{C}}^l(x)$  aggregates messages from cofaces:  
 290

$$291 m_{\mathcal{F}}^{l+1}(x) = \text{AGG}_{y \in \mathcal{F}(x)} M_{\mathcal{F}}(\mathbf{h}_x^l, \mathbf{h}_y^l), \\ 292 m_{\mathcal{C}}^{l+1}(x) = \text{AGG}_{z \in \mathcal{C}(x)} M_{\mathcal{C}}(\mathbf{h}_x^l, \mathbf{h}_z^l), \quad (17)$$

294 with  $\mathcal{F}(x)$  and  $\mathcal{C}(x)$  denoting the sets of faces and cofaces of  $x$ .  
 295

296 In the second stage, cells of all dimensions exchange information with higher-dimensional neigh-  
 297 bors to capture multi-dimensional topological context. For each cell  $x \in X^*$ , the representation is  
 298 updated as  
 299

$$300 \mathbf{h}_x^{L+1} = \text{UPDATE}\left(\mathbf{h}_x^L, m_{\mathcal{F}}^L(x), m_{\mathcal{C}}^L(x), m_{\uparrow}^{L+1}(x)\right), \quad (18)$$

301 where  $m_{\uparrow}^{L+1}(x)$  aggregates messages from adjacent cells via shared cofaces. Specifically, the mes-  
 302 sages are defined as  
 303

$$303 m_{\uparrow}^{L+1}(x) = \text{AGG}_{w \in \mathcal{N}_{\uparrow}(x)} M_{\uparrow}(\mathbf{h}_x^L, \mathbf{h}_w^L, \mathbf{h}_{x \cup w}^{L+1}), \quad (19)$$

304 with  $\mathcal{N}_{\uparrow}(x)$  the set of cells adjacent to  $x$  via a shared coface.  
 305

306 To generate a fixed-dimensional representation of the entire subcomplex, we aggregate the embed-  
 307 dings of all its cells:  
 308

$$309 \mathbf{h}_{X^*} = \text{POOL}\left(\{\mathbf{h}_x^{L+1} \mid x \in X^{*(0)} \cup X^{*(1)} \cup X^{*(2)}\}\right) \in \mathbb{R}^{d_s}, \quad (20)$$

310 where POOL can be implemented as mean pooling over the cell embeddings, and  $d_s$  denotes the  
 311 dimension of the resulting subcomplex representation. This aggregated embedding  $\mathbf{h}_{X^*}$  encodes  
 312 both the semantic attributes of individual cells and the multi-dimensional topological context of the  
 313 subcomplex, serving as input to the *Cell Complex-Augmented Generation* module for query-guided  
 314 answer generation.  
 315

#### 316 4.4 CELL COMPLEX-AUGMENTED GENERATION

317 With the subcomplex embedding  $\mathbf{h}_{X^*}$  obtained from the Multi-dimensional Topological Reasoning  
 318 module, we integrate it into a pretrained LLM to guide query-aware answer generation. First, we  
 319 align the subcomplex embedding to the LLM’s hidden space via a multilayer perceptron (MLP):  
 320

$$321 \hat{\mathbf{h}}_{X^*} = \text{MLP}_{\phi}(\mathbf{h}_{X^*}) \in \mathbb{R}^{d_l}, \quad (21)$$

322 where  $d_l$  is the hidden dimension of the LLM. The projected vector  $\hat{\mathbf{h}}_{X^*}$  acts as a soft prompt,  
 323 providing structured, topologically-informed guidance to the LLM.  
 324

To leverage the LLM’s text reasoning capabilities, we also transform the retrieved subcomplex into a textualized format, denoted as  $\text{textualize}(X^*)$ , by flattening the textual attributes of all cells while preserving the structural hierarchy. Given a natural language query  $x_q$ , we concatenate it with the textualized subcomplex and feed it into the LLM’s embedding layer:

$$\mathbf{h}_t = \text{TextEmbedder}([\text{textualize}(X^*); x_q]) \in \mathbb{R}^{L \times d_t}, \quad (22)$$

where  $[\cdot; \cdot]$  denotes concatenation,  $L$  is the number of tokens, and the TextEmbedder is a frozen pretrained LLM embedding layer.

The final answer  $Y$  is generated autoregressively, conditioned on both the soft subcomplex prompt  $\hat{\mathbf{h}}_{X^*}$  and the textual token embeddings  $\mathbf{h}_t$ :

$$p_{\theta, \phi}(Y \mid X^*, x_q) = \prod_{i=1}^r p_{\theta, \phi}(y_i \mid y_{<i}, [\hat{\mathbf{h}}_{X^*}; \mathbf{h}_t]), \quad (23)$$

where  $\theta$  denotes the frozen LLM parameters and  $\phi$  denotes the trainable parameters of the MLP and the subcomplex encoder. Gradients are backpropagated through  $\hat{\mathbf{h}}_{X^*}$ , enabling the subcomplex encoder to learn to generate embeddings that are optimally informative for downstream generation.

## 5 EXPERIMENTS

### 5.1 EXPERIMENT SETUP

**Datasets.** Following prior work He et al. (2024), we use three existing datasets: WebQSP Yih et al. (2016), ExplaGraphs Saha et al. (2021) and SceneGraphs Hudson & Manning (2019). These datasets are standardized into a uniform format suitable for graph question answering He et al. (2024), allowing consistent evaluation across diverse reasoning tasks. More details about these datasets are provided in Appendix D.

**Comparison Methods.** To evaluate the performance of TopoRAG, we consider three categories of baselines. We provide more details in Appendix E.

*Inference-only LLMs* directly answer questions using the textual graph as input, including zero-shot prompting, zero-shot Chain-of-Thought (Zero-CoT) Kojima et al. (2022), Build-a-Graph prompting (CoT-BAG) Wang et al. (2023), and KAPING Baek et al. (2023), a knowledge-augmented zero-shot approach; *Frozen LLMs with prompt tuning* keep model parameters fixed while optimizing the input prompt, including soft prompt tuning, GraphToken Perozzi et al. (2024), G-Retriever He et al. (2024) with a frozen LLM and SubgraphRAG Li et al. (2025); *Tuned LLMs* update model parameters using LoRA Hu et al. (2021), including standard LoRA fine-tuning and G-Retriever w/ LoRA He et al. (2024) combining retrieval augmentation with parameter-efficient tuning, GNN-RAG Mavromatis & Karypis (2025).

**Evaluation Metrics.** For ExplaGraphs and SceneGraphs, the performance is measured using Accuracy, which calculates the percentage of correctly predicted answers. For WebQSP, we use the Hit metric, which measures the percentage of queries for which at least one of the top returned answers is correct. This metric is particularly suitable for multi-hop reasoning tasks, where the model must traverse multiple hops in a knowledge graph to retrieve the correct answer.

**Experiment Settings.** All experiments are conducted on two NVIDIA A6000-48G GPUs. For retrieval, we set the top- $k$  for 0- and 1-cells to  $k = 3$  on WebQSP; on SceneGraphs, we set  $k = 3$  for 0-cells and  $k = 5$  for 1-cells. For 2-cells, we sweep the top- $k$  over  $k \in \{0, 1, 2, 3\}$ . For reasoning, the number of layers is varied in  $\{2, 3, 4, 5\}$ , with a uniform dimensionality of 1024 across all layers (input, hidden, and output). For generation, we employ the Llama-2-7B model Touvron et al. (2023) as the large language model backbone. When fine-tuning with LoRA Hu et al. (2021), we set the rank `lora_r` = 8, `lora_alpha` = 16, and dropout rate = 0.05; for prompt tuning, we use 10 virtual tokens. The maximum input length is set to 512 tokens, and the maximum number of generated tokens is set to 32. We adopt the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of  $1 \times 10^{-5}$ , a batch size of 8, and train for 10 epochs with early stopping (patience = 2).

378 5.2 EXPERIMENT RESULT  
379380 Table 1: Performance comparison across ExplaGraphs, SceneGraphs, and WebQSP datasets  
381 under different configurations. The bold numbers indicate that the improvement of our model over  
382 the baselines is statistically significant with (p-value < 0.01), and the best baseline results are  
383 underlined  
384

| 385 Setting          | 386 Method                    | 387 ExplaGraphs | 388 SceneGraphs | 389 WebQSP   |
|----------------------|-------------------------------|-----------------|-----------------|--------------|
| 387 Inference-only   | Zero-shot                     | 0.5650          | 0.3974          | 41.06        |
|                      | Zero-CoT                      | 0.5704          | 0.5260          | 51.30        |
|                      | CoT-BAG                       | 0.5794          | 0.5680          | 39.60        |
|                      | KAPING                        | 0.6227          | 0.4375          | 52.64        |
| 391 Frozen LLM w/ PT | Prompt tuning                 | 0.5763          | 0.6341          | 48.34        |
|                      | GraphToken                    | 0.8508          | 0.4903          | 57.05        |
|                      | G-Retriever                   | 0.8516          | 0.8131          | 70.49        |
|                      | SubgraphRAG                   | 0.8535          | 0.8074          | 86.61        |
|                      | <i>TopoRAG (Ours)</i>         | 0.8899          | 0.8362          | 87.10        |
| 395 Tuned LLM        | LoRA                          | 0.8538          | 0.7862          | 66.03        |
|                      | G-Retriever w/ LoRA           | <u>0.8705</u>   | <u>0.8683</u>   | 73.79        |
|                      | GNN-RAG                       | 0.8466          | 0.8149          | 85.70        |
|                      | <i>TopoRAG w/ LoRA (Ours)</i> | <b>0.9151</b>   | <b>0.8768</b>   | <b>90.66</b> |

401 **Main Results.** As summarized in Table 1, our model consistently outperforms all baselines across  
402 datasets and configurations. We highlight three key findings:  
403

- 404 • ***TopoRAG* delivers the strongest overall performance.** Compared to the best baseline,  
405 *TopoRAG* improves ExplaGraphs and SceneGraphs Accuracy by 5.12% and 0.98%,  
406 respectively; on WebQSP, it increases the Hit metric by 4.67%. We attribute the improve-  
407 ments to the following reasons: 1) *Cellular Representation Lifting*, which transforms tex-  
408 tual graphs into cellular complexes and explicitly encodes higher-dimensional structures  
409 that support closed-loop relational reasoning; 2) *topology-aware subcomplex retriever* that  
410 selects query-relevant cellular complexes, supplying compact yet informative topological  
411 context; and 3) *multi-dimensional topological reasoning* that propagates information across  
412 0-/1-/2-cells to enable structured, logic-aware inference tightly integrated with LLM rea-  
413 soning. Together, these components overcome the limitations of node/edge-centric meth-  
414 ods and yield more accurate and robust QA over complex textual graphs.
- 415 • **Graph-structured prompts effectively improve QA performance.** All prompt-tuning  
416 approaches (e.g., GraphToken, SubgraphRAG) outperform inference-only baselines  
417 (Zero-shot, Zero-CoT), underscoring the value of structured context. *TopoRAG* further  
418 improves upon these by grounding prompts in higher-dimensional topological dependen-  
419 cies—beyond nodes and edges—thereby providing richer, loop-aware relational context,  
420 especially for queries involving multi-hop and cyclic dependencies.

421 **Ablation Study.** We conduct an ab-  
422 lation study to evaluate the contribu-  
423 tion of each component of TopoRAG.  
424 Specifically, we replace *Cellular Rep-  
425 resentation Lifting (CRL)* with a stan-  
426 dard edge-based graph structure, sub-  
427 stitute *Topology-aware Subcomplex Re-  
428 trieval (TSR)* with shortest-path-based  
429 retrieval, and replace *Multi-dimensional  
430 Topological Reasoning (MTR)* with a  
431 GCN Kipf & Welling (2017) for message  
432 passing.421 Table 2: Ablation Study on ExplaGraphs and WebQSP  
422 Datasets.

| 423 Method     | 424 ExplaGraphs (Accuracy) | 425 WebQSP (Hit) |
|----------------|----------------------------|------------------|
| w/o CRL        | 0.8576                     | 84.96            |
| w/o TSR        | 0.8524                     | 84.23            |
| w/o MTR        | 0.8611                     | 85.46            |
| <b>TopoRAG</b> | <b>0.9151</b>              | <b>90.66</b>     |

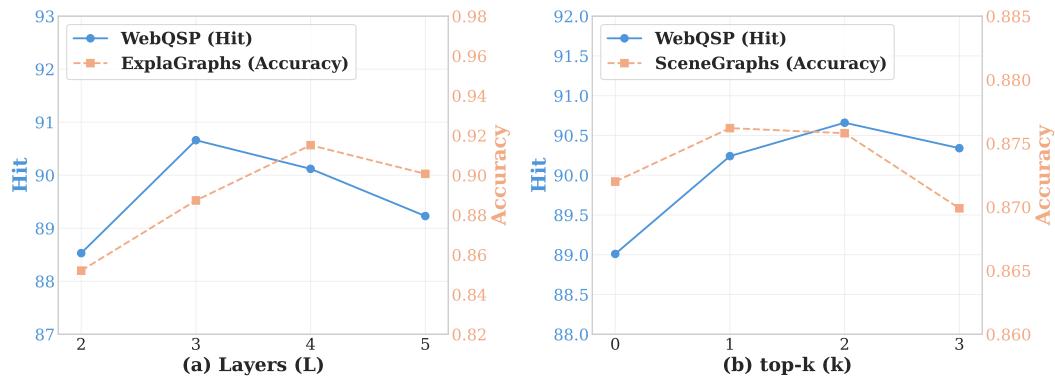


Figure 3: (a) Effect of layers  $L \in \{2, 3, 4, 5\}$  on *TopoRAG* performance: WebQSP (Hit) and ExplaGraphs (Accuracy). (b) Effect of top- $k$   $k \in \{0, 1, 2, 3\}$  on *TopoRAG* performance: WebQSP (Hit) and SceneGraphs (Accuracy).

- 1) Replacing *Cellular Representation Lifting (CRL)* with an edge-only graph representation removes the lifting of textual graphs into cellular complexes and, consequently, the explicit encoding of higher-dimensional structures (e.g., cycles) that support closed-loop relational reasoning. This loss of topological expressivity leads to a substantial performance drop, underscoring the necessity of CRL for modeling high-dimensional dependencies in RAG.
- 2) Replacing *Topology-aware Subcomplex Retrieval (TSR)* with shortest-path retrieval restricts results to the 1-skeleton and removes 2-cells, thereby discarding higher-dimensional motifs and closed-loop constraints that are critical for capturing query-relevant structure, underscoring the importance of TSR for sustaining *TopoRAG*'s effectiveness.
- 3) When removing *Multi-dimensional Topological Reasoning (MTR)*, the performance of *TopoRAG* drops significantly. This is due to the crucial role of MTR in enabling multi-dimensional message passing using cellular complexes. Without MTR, the model loses the ability to effectively propagate information from high-dimensional cells to low-dimensional ones, resulting in the loss of important high-dimensional structural information during the message passing process.

**Hyper-parameter Study.** We study the sensitivity of *TopoRAG* to two key hyperparameters: the number of layers  $L$  and the top- $k$  of 2-cell for subcomplex retrieval. The layer depth  $L$  controls the model's ability to capture hierarchical structures and long-range dependencies. Larger  $L$  enhances the model's representational capacity but may lead to overfitting or increased computational cost, while smaller  $L$  may limit structural information capture, causing underfitting. Figure 3 (a) shows the effect of different  $L$  values on performance: reasoning ability improves as  $L$  increases, but excessive depth reduces expressiveness. We also analyze the impact of the top- $k$  parameter for 2-cells selection on retrieval. Too small  $k$  causes information loss, while too large  $k$  introduces noise. Figure 3 (b) illustrates the effect of different  $k \in \{0, 1, 2, 3\}$  values, showing that a moderate  $k$  achieves a better balance between structural coverage and noise. In Appendix F, we present an extended sensitivity analysis of the choice of  $k$ .

## 6 CONCLUSION

In this work, we introduced **TopoRAG**, a topology-enhanced retrieval-augmented generation framework for textual graph question answering. Unlike conventional GraphRAG approaches that mainly rely on nodes and edges, TopoRAG explicitly incorporates higher-dimensional topological structures by lifting textual graphs into cellular complexes. Through a topology-aware subcomplex retrieval mechanism, TopoRAG provides compact yet informative multi-dimensional contexts, while the proposed multi-dimensional topological reasoning module enables structured and logic-aware inference that captures cyclic and higher-dimensional dependencies beyond pairwise relations. Experimental results demonstrate that TopoRAG outperforms existing methods across three datasets from different domains.

486 REFERENCES  
487

488 Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompt-  
489 ing for zero-shot knowledge graph question answering. In Bhavana Dalvi Mishra, Greg Dur-  
490 rett, Peter Jansen, Danilo Neves Ribeiro, and Jason Wei (eds.), *Proceedings of the 1st Workshop*  
491 *on Natural Language Reasoning and Structured Explanations (NLRSE)*, pp. 78–106, Toronto,  
492 Canada, June 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.nlrse-1.7.  
493 URL <https://aclanthology.org/2023.nlrse-1.7>.

494 S. Barbarossa and S. Sardellitti. Topological signal processing over simplicial complexes. *IEEE*  
495 *Transactions on Signal Processing*, 2020.

496 Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar  
497 Veličković, and Pietro Liò. Sheaf neural networks with connection laplacians, 2022.

498 Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro. Tangent  
499 bundle filters and neural networks: From manifolds to cellular sheaves and back. In *ICASSP 2023-*  
500 *2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.  
501 1–5. IEEE, 2023.

502 Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro. Tangent  
503 bundle convolutional learning: from manifolds to cellular sheaves and back. *IEEE Transactions*  
504 *on Signal Processing*, 72:1892–1909, 2024.

505 Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David Williamson. A note on  
506 the prize collecting traveling salesman problem. *Mathematical programming*, 59(1-3):413–420,  
507 1993.

508 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar, and  
509 Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. *Advances in neural infor-*  
510 *mation processing systems*, 34:2625–2640, 2021a.

511 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar, and  
512 Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. In M. Ranzato, A. Beygelz-  
513 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information*  
514 *Processing Systems*, volume 34, pp. 2625–2640. Curran Associates, Inc., 2021b.

515 Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Liò, and  
516 Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.  
517 In *International conference on machine learning*, pp. 1026–1037. PMLR, 2021c.

518 Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and Michael M.  
519 Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing  
520 in GNNs. In *Advances in Neural Information Processing Systems*, 2022.

521 Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang  
522 Yang. Graphllm: Boosting graph reasoning ability of large language model. *arXiv preprint*  
523 *arXiv:2310.05845*, 2023.

524 Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang  
525 Tang. Label-free node classification on graphs with large language models (llms). In *The Twelfth*  
526 *International Conference on Learning Representations*.

527 Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei  
528 Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning  
529 on graphs. *ACM SIGKDD Explorations Newsletter*, 25(2):42–61, 2024.

530 S. Ebli, M. Defferrard, and G. Spreemann. Simplicial neural networks. In *Advances in Neural*  
531 *Information Processing Systems Workshop on Topological Data Analysis and Beyond*, 2020.

532 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,  
533 and Jonathan Larson. From local to global: A graph rag approach to query-focused summariza-  
534 tion, 2024. URL <https://arxiv.org/abs/2404.16130>.

540 Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and  
 541 Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In  
 542 *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp.  
 543 6491–6501, 2024.

544 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and  
 545 Haofen Wang. Retrieval-augmented generation for large language models: A survey. *arXiv*  
 546 *preprint arXiv:2312.10997*, 2023.

548 Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio  
 549 Barbarossa. Cell attention networks. In *2023 International Joint Conference on Neural Networks*  
 550 (*IJCNN*), pp. 1–8. IEEE, 2023.

551 Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial attention networks. In *ICLR*  
 552 *2022 Workshop on Geometrical and Topological Representation Learning*.

554 M. Hajij, G. Zamzmi, T. Papamarkou, N. Miolane, A. Guzmán-Sáenz, and K. N. Ramamurthy.  
 555 Higher-order attention networks, 2022.

556 Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. In *Advances in*  
 557 *Neural Information Processing Systems Workshop on TDA & Beyond*, 2020.

558 Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,  
 559 Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K. Dey, Soham Mukherjee, Shreyas N.  
 560 Samaga, Neal Livesay, Robin Walters, Paul Rosen, and Michael T. Schaub. Topological deep  
 561 learning: Going beyond graph data, 2023.

563 J. Hansen and R. Ghrist. Toward a spectral theory of cellular sheaves. *Journal of Applied and*  
 564 *Computational Topology*, 3:315–358, 2019.

566 Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020.

568 Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-  
 569 nessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation  
 570 learning. *arXiv preprint arXiv:2305.19523*, 2023.

571 Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,  
 572 and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and  
 573 question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907,  
 574 2024.

575 Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A nearly-linear time framework for graph-  
 576 structured sparsity. In *International Conference on Machine Learning*, pp. 928–937. PMLR,  
 577 2015.

579 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 580 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*  
 581 *arXiv:2106.09685*, 2021.

582 Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. Grag: Graph retrieval-  
 583 augmented generation, 2024. URL <https://arxiv.org/abs/2405.16506>.

585 Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage graph struc-  
 586 tural information: when and why. *arXiv preprint arXiv:2309.16595*, 2023a.

587 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong  
 588 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large  
 589 language models: Principles, taxonomy, challenges, and open questions, 2023b. URL <https://arxiv.org/abs/2311.05232>.

592 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning  
 593 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*  
*vision and pattern recognition*, pp. 6700–6709, 2019.

594 Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt:  
 595 A general framework for large language model to reason over structured data. *arXiv preprint*  
 596 *arXiv:2305.09645*, 2023.

597 Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on  
 598 graphs: A comprehensive survey. *arXiv preprint arXiv:2312.02783*, 2023.

600 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-  
 601 works. In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France,*  
 602 *April 24-26, 2017, Conference Track Proceedings*, 2017.

603 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large  
 604 language models are zero-shot reasoners. *Advances in neural information processing systems*,  
 605 35:22199–22213, 2022.

606 Bin Lei, Chunhua Liao, Caiwen Ding, et al. Boosting logical reasoning in large language models  
 607 through a new framework: The graph of thought. *arXiv preprint arXiv:2308.08614*, 2023.

609 Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models  
 610 in knowledge-graph-based retrieval-augmented generation. In *The Thirteenth International Con-  
 611 ference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net,  
 612 2025. URL <https://openreview.net/forum?id=Jvkuzz0407>.

613 Xin Li, Dongze Lian, Zhihe Lu, Jiawang Bai, Zhibo Chen, and Xinchao Wang. Graphadapter:  
 614 Tuning vision-language models with dual knowledge graph. *arXiv preprint arXiv:2309.13625*,  
 615 2023a.

616 Yuhang Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A  
 617 survey of graph meets large language model: Progress and future directions. *arXiv preprint*  
 618 *arXiv:2311.12399*, 2023b.

619 Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan  
 620 Zhang. One for all: Towards training one graph model for all classification tasks. *arXiv preprint*  
 621 *arXiv:2310.00149*, 2023.

622 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and  
 623 Percy Liang. Lost in the middle: How language models use long contexts. *Trans. Assoc. Comput.  
 624 Linguistics*, 12:157–173, 2024.

625 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 626 *arXiv:1711.05101*, 2017.

627 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and  
 628 interpretable large language model reasoning. *arXiv preprint arXiv:2310.01061*, 2023.

629 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for efficient large lan-  
 630 guage model reasoning on knowledge graphs. In *Findings of the Association for Computational  
 631 Linguistics: ACL 2025*, pp. 16682–16699, 2025.

632 Shirui Pan, Yizhen Zheng, and Yixin Liu. Integrating graphs with large language models: Methods  
 633 and prospects. *arXiv preprint arXiv:2310.05499*, 2023.

634 Bryan Perozzi, Bahareh Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and  
 635 Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. *arXiv*  
 636 *preprint arXiv:2402.05862*, 2024.

637 Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and Yong Liu. Can large language models  
 638 empower molecular property prediction? *arXiv preprint arXiv:2307.07443*, 2023.

639 Yijian Qin, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Disentangled representation learning with  
 640 large language models for text-attributed graphs. *arXiv preprint arXiv:2310.18152*, 2023.

641 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-  
 642 networks. *arXiv preprint arXiv:1908.10084*, 2019.

648 T. M. Roddenberry, N. Glaze, and S. Segarra. Principled simplicial neural networks for trajectory  
 649 prediction. In *International Conference on Machine Learning*, 2021.

650

651 T. Mitchell Roddenberry, Michael T. Schaub, and Mustafa Hajij. Signal processing on cell com-  
 652 plexes. In *ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal  
 653 Processing (ICASSP)*, pp. 8852–8856, 2022. doi: 10.1109/ICASSP43922.2022.9747233.

654

655 Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mohit Bansal. Explagraphs: An explanation  
 656 graph generation task for structured commonsense reasoning. *arXiv preprint arXiv:2104.07644*,  
 657 2021.

658

659 S. Sardellitti, S. Barbarossa, and L. Testa. Topological signal processing over cell complexes. In  
 660 *Asilomar Conference on Signals, Systems, and Computers*, 2021.

661

662 M. T. Schaub, Y. Zhu, J.B. Seby, T. M. Roddenberry, and S. Segarra. Signal processing on higher-  
 663 order networks: Livin’ on the edge... and beyond. *Signal Processing*, 2021.

664

665 Priyanka Sen, Sandeep Mavadia, and Amir Saffari. Knowledge graph-augmented language mod-  
 666 els for complex question answering. In Bhavana Dalvi Mishra, Greg Durrett, Peter Jansen,  
 667 Danilo Neves Ribeiro, and Jason Wei (eds.), *Proceedings of the 1st Workshop on Natural Lan-  
 668 guage Reasoning and Structured Explanations (NLRSE)*, pp. 1–8, Toronto, Canada, June 2023.  
 669 Association for Computational Linguistics. doi: 10.18653/v1/2023.nlse-1.1. URL <https://aclanthology.org/2023.nlse-1.1>.

670

671 Jiahuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,  
 672 Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large  
 673 language model on knowledge graph. In *The Twelfth International Conference on Learning Rep-  
 674 resentations*, 2024. URL <https://openreview.net/forum?id=nnVO1PvbTv>.

675

676 Shengyin Sun, Yuxiang Ren, Chen Ma, and Xuecang Zhang. Large language models as topological  
 677 structure enhancers for text-attributed graphs. *arXiv preprint arXiv:2311.14324*, 2023.

678

679 Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.  
 680 Graphgpt: Graph instruction tuning for large language models. *arXiv preprint arXiv:2310.13023*,  
 681 2023.

682

683 Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V Chawla,  
 684 and Panpan Xu. Graph neural prompting with large language models. *arXiv preprint  
 685 arXiv:2309.15427*, 2023.

686

687 Hugo Touvron, Louis Martin, and et al. Llama 2: Open foundation and fine-tuned chat models,  
 688 2023. URL <https://arxiv.org/abs/2307.09288>.

689

690 Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia  
 691 Tsvetkov. Can language models solve graph problems in natural language? *arXiv preprint  
 692 arXiv:2305.10037*, 2023.

693

694 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny  
 695 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in  
 696 neural information processing systems*, 35:24824–24837, 2022.

697

698 Maosheng Yang and Elvin Isufi. Convolutional learning on simplicial complexes, 2023.

699

700 Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient representation learning for higher-order  
 701 data with simplicial complexes. In Bastian Rieck and Razvan Pascanu (eds.), *Proceedings of  
 702 the First Learning on Graphs Conference*, volume 198 of *Proceedings of Machine Learning  
 703 Research*, pp. 13:1–13:21. PMLR, 09–12 Dec 2022. URL <https://proceedings.mlr.press/v198/yang22a.html>.

702

703 Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is  
 704 all a graph needs. *arXiv preprint arXiv:2308.07134*, 2023.

702 Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value  
703 of semantic parse labeling for knowledge base question answering. In *Proceedings of the 54th*  
704 *Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016,*  
705 *Berlin, Germany, Volume 2: Short Papers*, 2016.

706 Minji Yoon, Jing Yu Koh, Bryan Hooi, and Ruslan Salakhutdinov. Multimodal graph learning for  
707 generative tasks. *arXiv preprint arXiv:2310.07478*, 2023.

709 Jianxiang Yu, Yuxiang Ren, Chenghua Gong, Jiaqi Tan, Xiang Li, and Xuecang Zhang. Em-  
710 power text-attributed graphs learning with large language models (llms). *arXiv preprint*  
711 *arXiv:2310.09872*, 2023a.

712 Junchi Yu, Ran He, and Rex Ying. Thought propagation: An analogical approach to complex  
713 reasoning with large language models. *arXiv preprint arXiv:2310.03965*, 2023b.

715 Jiawei Zhang. Graph-toolformer: To empower llms with graph reasoning ability via prompt aug-  
716 mented by chatgpt. *arXiv preprint arXiv:2304.11116*, 2023.

717 Ziwei Zhang, Haoyang Li, Zeyang Zhang, Yijian Qin, Xin Wang, and Wenwu Zhu. Graph meets  
718 llms: Towards large graph models, 2023.

720 Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhi-Hong Deng, Lingpeng Kong, and  
721 Qi Liu. Gimlet: A unified graph-text model for instruction-based molecule zero-shot learning.  
722 *bioRxiv*, pp. 2023–05, 2023a.

724 Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and  
725 Jian Tang. Graphtext: Graph reasoning in text space. *arXiv preprint arXiv:2310.01089*, 2023b.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Table 3: Notation and definitions used in the TopoRAG framework.

| Notation                                     | Definition                                                                                                        |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| $\mathcal{G}$                                | The input textual graph, defined as $\mathcal{G} = (V, E, \{t_n\}_{n \in V}, \{t_e\}_{e \in E})$ .                |
| $V, E$                                       | The sets of vertices (nodes) and edges in the graph $\mathcal{G}$ .                                               |
| $t_n, t_e$                                   | The text attributes associated with node $n \in V$ and edge $e \in E$ .                                           |
| $X$                                          | The regular cell complex constructed from the graph $\mathcal{G}$ .                                               |
| $X^{(d)}$                                    | $d$ -skeleton.                                                                                                    |
| $x^k$                                        | A $k$ -dimensional cell in the complex (e.g., $x^0$ : a 0-cell, $x^1$ : a 1-cell).                                |
| $z_v^0, z_e^1$                               | The $d$ -dimensional embedding of node $v$ (0-cell) and edge $e$ (1-cell), obtained via a Language Model (LM).    |
| $\mathcal{T}$                                | A spanning tree of the graph $\mathcal{G}$ , used for cycle detection.                                            |
| $x_e^2$                                      | A 2-cell attached to a fundamental cycle induced by a non-tree edge $e \in E \setminus \mathcal{T}$ .             |
| $z_q$                                        | The $d$ -dimensional embedding of the input query $x_q$ .                                                         |
| $\mathcal{X}_k^{(d)}$                        | The set of top- $k$ retrieved $d$ -cells ( $d = 0, 1, 2$ ) based on semantic similarity or prize.                 |
| $\text{prize}(x^i)$                          | The prize (relevance score) assigned to cell $x^i$ during retrieval.                                              |
| $X^*$                                        | The final retrieved and connected subcomplex, $X^* = X^{(0)*} \cup X^{(1)*} \cup X^{(2)*}$ .                      |
| $\partial_k x$                               | The boundary operator; $\partial_k x$ gives the set of $(k-1)$ -cells on the boundary of a $k$ -cell $x$ .        |
| $\mathbf{h}_x^l$                             | The hidden representation of cell $x$ at message passing layer $l$ .                                              |
| $\mathcal{F}(x), \mathcal{C}(x)$             | The set of faces (lower-dimensional boundary cells) and cofaces (higher-dimensional incident cells) of cell $x$ . |
| $m_{\mathcal{F}}^l(x), m_{\mathcal{C}}^l(x)$ | Messages aggregated from faces and cofaces of cell $x$ at layer $l$ .                                             |
| $\mathbf{h}_{X^*}$                           | The final pooled representation of the entire subcomplex $X^*$ .                                                  |
| $\hat{\mathbf{h}}_{X^*}$                     | The projected subcomplex embedding, aligned to the LLM’s hidden space via an MLP.                                 |
| $p_{\theta, \phi}(Y   X^*, x_q)$             | The conditional probability of generating answer $Y$ , given the subcomplex $X^*$ and query $x_q$ .               |

## A NOTATIONS

The notations in the TopoRAG framework are summarized in Table 3.

## B ADDITIONAL RELATED WORK

**Graphs and Large Language Models.** In parallel, there has been a surge of interest in combining graphs with LLMs Pan et al. (2023); Li et al. (2023b); Jin et al. (2023); Wang et al. (2023); Zhang et al. (2023). This line of research spans a wide spectrum, from the design of general graph models Ye et al. (2023); Liu et al. (2023); Yu et al. (2023b); Lei et al. (2023); Tang et al. (2023); Perozzi et al. (2024), to multi-modal architectures Li et al. (2023a); Yoon et al. (2023), and diverse downstream applications.

Applications of Graph-augmented LLMs include fundamental graph reasoning Zhang (2023); Chai et al. (2023); Zhao et al. (2023b), node classification He et al. (2023); Huang et al. (2023a); Sun et al. (2023); Chen et al.; Yu et al. (2023a); Chen et al. (2024); Qin et al. (2023), and graph classification/regression Qian et al. (2023); Zhao et al. (2023a). Furthermore, LLMs have been increasingly employed for knowledge graph-related tasks such as reasoning, completion, and question answering Tian et al. (2023); Jiang et al. (2023); Luo et al. (2023).

**Topological deep learning.** Topological deep learning expands graph learning by modelling relations that exceed simple pairwise links. Early work in Topological Signal Processing (TSP) emphasized the value of higher-dimensional structure for signal and relational modeling Barbarossa & Sardellitti (2020); Schaub et al. (2021); Roddenberry et al. (2022); Sardellitti et al. (2021), prompting extensions of graph tools to richer discrete geometries such as simplicial and cell complexes. Theoretical progress—e.g., higher-dimensional generalizations of the Weisfeiler–Lehman test—has clar-

ified the expressive power required for distinguishing complex topologies and motivated message-passing schemes beyond traditional GNNs Bodnar et al. (2021c;a).

On the modelling side, researchers have proposed numerous neural architectures that operate on these higher-dimensional domains, including convolutional-style operators for simplicial and cell complexes Ebli et al. (2020); Yang et al. (2022); Hajij et al. (2020); Yang & Isufi (2023); Roddenberry et al. (2021); Hajij et al. (2022) and attention-based formulations that incorporate incidence relations and coface interactions Goh et al.; Giusti et al. (2023). Efforts to unify these variants led to combinatorial-complex frameworks that generalize message passing to a wide class of combinatorial objects (simplicial complexes, CW complexes, hypergraphs) Hajij et al. (2023). Complementary lines of work use sheaf-theoretic constructions to impose local consistency and handle heterophilous patterns, demonstrating another principled route to encode localized topological constraints Hansen & Ghrist (2019); Hansen & Gebhart (2020); Bodnar et al. (2022); Battiloro et al. (2023; 2024); Barbero et al. (2022).

While these works have substantially advanced higher-dimensional representation learning, current topological deep learning methods exhibit limited generalization to unseen graphs with substantially different topologies, a sensitivity that hinders their applicability in real-world scenarios where structural variability is common. Moreover, they remain largely tied to static, pre-defined complexes and traditional graph formulations, leaving them ill-suited for reasoning in question answering tasks that require integrating textual graph inputs with large language models and dynamically incorporating external knowledge. In this work, we address these limitations by introducing TopoRAG, a framework that explicitly models multi-dimensional topological structures and couples topology-aware retrieval with large language models to enable robust and context-sensitive reasoning over textual graphs.

## C PROOFS

## C.1 PROOFS REGARDING PROPOSITION 1

**Proof. Contractibility of the spanning tree.** A spanning tree  $\mathcal{T}$  is connected and acyclic, hence it is contractible. In topological terms, a contractible subspace can be continuously shrunk to a point within itself.

**Collapsing a contractible subspace.** Consider the quotient map  $\gamma : G \rightarrow G/\mathcal{T}$  that identifies all points of  $\mathcal{T}$  to a single vertex  $v_0$ . Collapsing a contractible subspace is a deformation retraction up to homotopy: there exists a continuous map  $r : G \rightarrow G/\mathcal{T}$  and a homotopy  $H : G \times [0, 1] \rightarrow G$  such that  $H(x, 0) = x$  and  $H(x, 1) = r(x)$  for all  $x \in G$ , with  $r \circ \gamma \simeq \text{id}_{G/\mathcal{T}}$ . Therefore,  $G$  and  $G/\mathcal{T}$  are homotopy-equivalent.

**Induced isomorphism on first homology.** Homotopy-equivalent spaces have isomorphic homology groups. Hence the induced map  $\gamma_* : H_1(G; \mathbb{Z}) \rightarrow H_1(G/\mathcal{T}; \mathbb{Z})$  is an isomorphism.

**Intuition in graph terms.** The spanning tree  $\mathcal{T}$  contains no cycles, so collapsing it does not remove or merge any cycles in  $G$ . Each fundamental cycle in  $G$  (formed by a non-tree edge and the unique tree path connecting its endpoints) is preserved in  $G/\mathcal{T}$  as a loop based at the collapsed tree vertex. Therefore, the first homology group  $H_1(G)$  — which measures independent cycles — remains unchanged.  $\square$

## C.2 PROOFS REGARDING PROPOSITION 2

*Proof.* Let  $G = (V, E)$  be a finite connected graph and  $\mathcal{T} \subset G$  a spanning tree.

**Existence and uniqueness of fundamental cycles.** For each non-tree edge  $e = (u, v) \in E \setminus \mathcal{T}$ , there exists a unique simple path  $P_{\mathcal{T}}(u, v)$  in  $\mathcal{T}$  connecting  $u$  and  $v$ , by acyclicity of  $\mathcal{T}$ . Concatenating  $e$  with  $P_{\mathcal{T}}(u, v)$  defines a unique simple cycle

$$C_e = e \cup P_{\mathcal{T}}(u, v) \subset G.$$

Under the quotient map  $\gamma : G \rightarrow G/\mathcal{T}$  that collapses  $\mathcal{T}$  to a point, the tree-path  $P_{\mathcal{T}}(u, v)$  is mapped to that point, so  $C_{\mathcal{C}}$  becomes a nontrivial loop in  $G/\mathcal{T}$ .

864 **Spanning and independence in homology.** The cyclomatic number of  $G$  is  $\beta_1(G) = |E| - |V| + 1$ ,  
 865 which equals the number of non-tree edges. Thus there are exactly  $\beta_1(G)$  fundamental cycles.  
 866

867 Any cycle in  $G$  can be expressed as a linear combination of these fundamental cycles: traversing a  
 868 cycle, each time a non-tree edge  $e$  is encountered, the corresponding  $C_e$  can be used to eliminate  
 869 segments along  $\mathcal{T}$ .

870 These cycles are independent in  $H_1(G)$ , because under  $\gamma$ , each fundamental cycle maps to a distinct  
 871 loop in  $G/\mathcal{T}$ , and loops around different edges of a wedge of circles are linearly independent in  
 872 homology.

873 Hence the set

$$\{[C_e] \mid e \in E \setminus \mathcal{T}\}$$

876 forms a basis of  $H_1(G)$ .

877 **Topological summary.** Different choices of spanning tree yield different sets of fundamental cycles  
 878 as edge sets, but the corresponding homology classes always span  $H_1(G)$ . Therefore, these loops  
 879 capture all independent cyclic dependencies of  $G$ , providing a concise topological summary suitable  
 880 for lifting  $G$  into a higher-dimensional cell complex.  $\square$

## 882 D DATASETS

884 Following prior work He et al. (2024), we use three existing datasets: WebQSP, ExplaGraphs  
 885 and SceneGraphs, which are summarized in Table 4. These datasets are standardized into a uni-  
 886 form format suitable for graph question answering, allowing consistent evaluation across diverse  
 887 reasoning tasks. ExplaGraphs focuses on generative commonsense reasoning. The task requires  
 888 predicting whether an argument supports or contradicts a given belief, evaluated using Accuracy.  
 889 SceneGraphs is a visual question answering dataset. The task is to answer questions based on  
 890 textualized scene graphs, requiring spatial reasoning and multi-step inference, evaluated by Accu-  
 891 racy. WebQSP is a large-scale multi-hop knowledge graph QA dataset, which contains facts within  
 892 2-hops of entities mentioned in the questions. Each question is associated with a subgraph extracted  
 893 from Freebase. The task involves multi-hop reasoning, evaluated using Hit for the top returned  
 894 answer.

895 Table 4: Overview of datasets used in the GraphQA benchmark.

| 898 Dataset          | ExplaGraphs           | SceneGraphs                               | WebQSP             |
|----------------------|-----------------------|-------------------------------------------|--------------------|
| 900 Number of Graphs | 2,766                 | 100,000                                   | 4,737              |
| 901 Average Nodes    | 5.17                  | 19.13                                     | 1,370.89           |
| 902 Average Edges    | 4.25                  | 68.44                                     | 4,252.37           |
| 903 Node Features    | Commonsense concepts  | Object properties (e.g., color, shape)    | Freebase entities  |
| 904 Edge Features    | Commonsense relations | Object interactions and spatial relations | Freebase relations |
| 905 Task Type        | Commonsense reasoning | Scene graph QA                            | Knowledge graph QA |
| Evaluation Metric    | Accuracy              | Accuracy                                  | Hit                |

## 907 E COMPARISON METHODS

910 In our experiments, we consider three categories of baselines: 1) *Inference-only*, 2) *Frozen LLM w/  
 911 prompt tuning (PT)*, 3) *Tuned LLM*. The details of each baseline are described as follows.

913 **Inference-only.** Using a frozen LLM for direct question answering with textual graph and ques-  
 914 tion.

916 

- 917 • Zero-shot. In this approach, the model is given a textual graph description and a task de-  
 918 scription, and is immediately asked to produce the desired output. No additional examples  
 919 or demonstrations are provided.

- 918 • Zero-CoT. Zero-shot Chain-of-thought (Zero-CoT) prompting (Kojima et al., 2022) is a  
919 follow-up to CoT prompting (Wei et al., 2022), which introduces an incredibly simple zero  
920 shot prompt by appending the words "Let's think step by step." to the end of a question.  
921
- 922 • CoT-BAG. Build-a-Graph Prompting (BAG) (Wang et al., 2023) is a prompting technique  
923 that adds "Let's construct a graph with the nodes and edges first." after the textual descrip-  
924 tion of the graph is explicitly given.  
925
- 926 • KAPING. KAPING (Baek et al., 2023) is a zero-shot knowledge-augmented prompting  
927 method for knowledge graph question answering. It first retrieves triples related to the  
928 question from the graph, then prepends them to the input question in the form of a prompt,  
929 which is then forwarded to LLMs to generate the answer.  
930

**Frozen LLM w/ prompt tuning (PT).** Keeping the parameters of the LLM frozen and adapting only the prompt.

- 932 • GraphToken (Perozzi et al., 2024), which is a graph prompt tuning method.  
933
- 934 • G-Retriever He et al. (2024) is an efficient and lightweight model that adapts frozen large  
935 language model parameters to graph question answering tasks solely through trainable  
936 graph-structured soft prompts.  
937
- 938 • SubgraphRAG Li et al. (2025) is a retrieval-augmented generation framework based on  
939 knowledge graphs, which effectively improves the accuracy, efficiency, and interpretability  
940 of question answering through lightweight subgraph retrieval and inference with an untuned  
941 large language model.  
942

**Tuned LLM.** Fine-tuning the LLM with LoRA.

- 944 • G-Retriever (w/ LoRA) He et al. (2024) is a high-precision model that fine-tunes large  
945 language model parameters using techniques such as LoRA, enabling deep integration of  
946 graph structure information to enhance graph question answering performance.  
947
- 948 • GNN-RAG Mavromatis & Karypis (2025) is a retrieval-augmented generation framework  
949 based on graph neural networks, which efficiently retrieves multi-hop reasoning paths from  
950 knowledge graphs using GNNs and inputs them as context to an LLM, enhancing the ac-  
951 curacy and efficiency of complex knowledge graph question answering.  
952

## F IMPACT OF TOP- $K$ SELECTION ON SUBCOMPLEX RETRIEVAL

To further quantify the influence of  $k$  on subcomplex retrieval, we conduct supplementary experiments with  $k \in \{1, 2, 3\}$  and report, on WebQSP and SceneGraphs, the average numbers of 0-, 1-, and 2-cells per retrieved subcomplex. As shown in Table 5, larger  $k$  yields more retrieved 2-cells; the accompanying inclusion of higher-dimensional structures also increases the counts of 0- and 1-cells, underscoring the trade-off that  $k$  introduces between structural coverage and noise.

960 Table 5: Impact of Top- $K$  Selection on Subcomplex Retrieval.  
961

| 963 Dataset     | $k$ | 964 Number of Cells per Dimension |             |             |
|-----------------|-----|-----------------------------------|-------------|-------------|
|                 |     | 965 0-cells                       | 966 1-cells | 967 2-cells |
| 968 WebQSP      | 1   | 9                                 | 12          | 4           |
|                 | 2   | 9                                 | 13          | 5           |
|                 | 3   | 9                                 | 14          | 6           |
| 969 SceneGraphs | 1   | 15                                | 17          | 2           |
|                 | 2   | 16                                | 18          | 3           |
|                 | 3   | 17                                | 20          | 4           |

972 **G DISCUSSION ON THE COMPLEXITY**  
973

974 Following prior work, TopoRAG adopts the LLM+X framework, which enhances LLMs with multi-  
975 modal capabilities by integrating them with encoders from other modalities. In recent years, the  
976 LLM+X framework has been widely adopted in various RAG methods. Notable examples include:  
977 1) KG+LLM approaches, such as RoG, ToG, StructGPT, and KAPING, and 2) GNN+LLM ap-  
978 proaches, including G-Retriever and GNN-RAG. These models have demonstrated strong perfor-  
979 mance in both efficiency and accuracy. Furthermore, we introduce Topo+LLM.

980 Regarding the integration of topological methods into RAG, it does not significantly increase the  
981 time or computational complexity associated with LLM-based answer generation, as both cellular  
982 complex construction and subcomplex retrieval are implemented during the preprocessing phase.

983 In contrast to G-Retriever, we use a more complex *Multi-dimensional Topological Reasoning*  
984 to capture high-dimensional topological structures, which introduces some additional time over-  
985 head. However, the benefits achieved outweigh the costs. To validate this, we conducted experi-  
986 ments using two A6000-48G GPUs with Llama2-7b as the LLM, training on ExplaGraphs and  
987 SceneGraphs. Detailed experimental settings are provided in Appendix C. The results in Table 6  
988 show that, compared to baseline methods, our approach incurs only a slight increase in runtime, yet  
989 significantly improves model performance.

990  
991 Table 6: Performance and Efficiency Comparison of TopoRAG and G-Retriever on ExplaGraphs  
992 and SceneGraphs Datasets.

| 994<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008<br>1009<br>1010<br>1011<br>1012<br>1013<br>1014<br>1015<br>1016<br>1017<br>1018<br>1019<br>1020<br>1021<br>1022<br>1023<br>1024<br>1025 | Setting             | Method | ExplaGraphs   |        | SceneGraphs   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|---------------|--------|---------------|------|
|                                                                                                                                                                                                                                                        |                     |        | Hit           | Time   | Accuracy      | Time |
| Frozen LLM w/ PT                                                                                                                                                                                                                                       | G-Retriever         | 0.8516 | 2.6 min/epoch | 0.8131 | 267 min/epoch |      |
|                                                                                                                                                                                                                                                        |                     | 0.8899 | 3.0 min/epoch | 0.8362 | 300 min/epoch |      |
| Tuned LLM                                                                                                                                                                                                                                              | G-Retriever w/ LoRA | 0.8705 | 3.0 min/epoch | 0.8683 | 285 min/epoch |      |
|                                                                                                                                                                                                                                                        | TopoRAG w/ LoRA     | 0.9151 | 3.3 min/epoch | 0.8768 | 310 min/epoch |      |

## H ALGORITHMS

1004  
1005 **Cellular Representation Lifting Algorithm.** We present Algorithm 1, which formally describes  
1006 the Cellular Representation Lifting process outlined in Section 4.1. The algorithm takes a textual  
1007 graph  $\mathcal{G}$  and lifts it into a regular cell complex  $X$  endowed with feature representations for all its  
1008 cellular substructures. The algorithm proceeds in two main phases.

1009 The first phase (Lines 1–15) constructs the **1-skeleton** ( $X^{(1)}$ ) of the complex. It initializes the sets  
1010 of 0-cells ( $X^{(0)}$ ) and 1-cells ( $X^{(1)}$ ) and their corresponding feature dictionaries ( $\mathbf{Z}^0, \mathbf{Z}^1$ ). For each  
1011 vertex  $v \in V$ , a 0-cell  $x_v^0$  is instantiated, and its representation  $z_v^0$  is obtained by encoding the  
1012 vertex’s text attribute  $t_v$  using a pre-trained language model (LM). Similarly, for each edge  $e \in E$ ,  
1013 a 1-cell  $x_e^1$  is created, attached to the 0-cells of its endpoints, and its representation  $z_e^1$  is computed  
1014 from the edge text  $t_e$ .

1015 The second phase (Lines 16–28) augments the 1-skeleton with **2-cells** to capture higher-dimensional  
1016 topological information. A spanning tree  $\mathcal{T}$  of  $\mathcal{G}$  is computed, whose complement  $E_{\text{non-tree}}$  defines  
1017 the set of fundamental cycles in the graph. For each non-tree edge  $e \in E_{\text{non-tree}}$ , the algorithm  
1018 identifies the corresponding fundamental cycle by finding the unique path between the endpoints of  
1019  $e$  in  $\mathcal{T}$  and appending  $e$  itself (as detailed in the subroutine Algorithm 2). A 2-cell  $x_e^2$  is then created  
1020 and attached to this cycle. The initial representation  $z_e^2$  for the 2-cell is computed by aggregating  
1021 (e.g., via mean pooling) the representations of all the 0-cells and 1-cells that constitute its boundary  
1022 cycle. This provides an inductive bias that initializes the feature of a higher-dimensional cavity  
1023 based on the features of its lower-dimensional boundaries.

1024 Finally, the complete cell complex  $X$  is formed by the union of all cells across dimensions (Line 30).  
1025 The algorithm returns both the topological structure  $X$  and the associated features  $\mathbf{Z}^0, \mathbf{Z}^1, \mathbf{Z}^2$ , which  
serve as the input for subsequent cellular message-passing networks (Bodnar et al., 2021b). This

1026 lifting procedure effectively transforms a plain graph into a richer topological domain, explicitly  
 1027 encoding relational cycles as tangible geometric entities.  
 1028

1029 **Topology-aware Subcomplex Retrieval Algorithm.** Algorithm 3 formalizes the Topology-aware  
 1030 Subcomplex Retrieval process outlined in Section 4.2. The algorithm takes as input the cell complex  
 1031  $X$  with precomputed cellular embeddings, a textual query  $x_q$ , and parameters  $k$  and  $C_2$ . It returns  
 1032 a connected subcomplex  $X^*$  that maximizes the relevance prize under topological constraints. The  
 1033 procedure operates in three distinct phases.

1034 The first Phase is Query-based Cell Retrieval (Lines 1–7). The algorithm begins by encoding the  
 1035 query  $x_q$  into an embedding  $z_q$  using the language model (LM). It then computes the cosine simi-  
 1036 larity between  $z_q$  and the embeddings of all 0-cells and 1-cells. The top- $k$  most similar cells from  
 1037 each dimension are selected, forming the initial sets of highly relevant candidates,  $X_k^{(0)}$  and  $X_k^{(1)}$ .  
 1038

1039 The second Phase is Multi-dimensional Prize Assignment (Lines 9–26). This phase assigns a prize  
 1040 value to each cell, quantifying its incentive for inclusion in the final subcomplex. Prizes for the  
 1041 top- $k$  0-cells and 1-cells are assigned in descending order based on their similarity ranking (e.g., the  
 1042 highest-ranked cell receives a prize of  $k$ ). For a 2-cell  $x^2$ , its prize is computed inductively as the  
 1043 sum of the prizes of all its boundary 0-cells and 1-cells, minus a cost penalty  $\text{cost}(x^2) = |\partial_1 x^2| \cdot C_2$   
 1044 that discourages the selection of overly large faces. This design propagates relevance signals from  
 1045 lower-dimensional cells to the higher-dimensional structures they define. Finally, the top- $k$  2-cells  
 1046 by prize, denoted  $X_k^{(2)}$ , are selected.

1047 The last phase is Prize-Collecting Steiner Subcomplex Extraction (Lines 28–34). The core challenge  
 1048 is to extract a *connected* subcomplex that includes high-prize cells while respecting the *boundary*  
 1049 *consistency constraints* (i.e., if a 2-cell is selected, all its boundary cells must also be included). We  
 1050 model this as a Prize-Collecting Steiner Tree (PCST) problem on a hypergraph representation  $G_{\text{hyper}}$   
 1051 of the cell complex, where 2-cells are modeled as hyperedges. The set  $R_{\text{terminals}}$  consists of the top- $k$   
 1052 cells from all dimensions, and the prize function  $\mathcal{P}$  is defined from the previous phase. Solving  
 1053 this generalized PCST problem yields a connected subcomplex  $X^*$  that approximates the optimal  
 1054 trade-off between total collected prize and the cost of the required connecting cells. We employ a  
 1055 near-linear time approximation algorithm (Hegde et al., 2015) to ensure computational feasibility.

1056 The algorithm’s output,  $X^*$ , provides a coherent, query-focused topological summary of the original  
 1057 complex, which can be directly utilized for downstream tasks such as reasoning or explanation  
 1058 generation.

## 1059 I STATEMENT

1060 **Ethics Statement.** This research follows the ICLR Code of Ethics. The work does not involve  
 1061 experiments with human participants, collection of personal data, or sensitive information. All  
 1062 datasets employed are publicly released and widely used in prior studies. The proposed framework is  
 1063 intended to advance topology-aware retrieval and reasoning in textual graphs for question answering,  
 1064 and we do not anticipate direct societal risks or harmful misuse. Potential biases have been carefully  
 1065 considered, and we adopt standard practices to minimize unintended artifacts. No external funding  
 1066 sources or conflicts of interest influenced the conduct of this work.

1067 **Reproducibility Statement.** To support reproducibility, all datasets are publicly available and  
 1068 preprocessing procedures are documented in the main text or supplementary material. We provide  
 1069 a complete implementation as part of the supplementary package, which enables replication of our  
 1070 experiments without additional dependencies. Hyperparameters, training configurations, and eval-  
 1071 uation protocols are described in detail to facilitate verification and future extensions.

1072 **LLM Usage.** We acknowledge the use of large language models (LLMs) as auxiliary tools for  
 1073 improving readability and clarity of writing. The conceptual development, methodology design,  
 1074 experimental setup, and analysis were entirely conducted and validated by the authors. LLMs were  
 1075 not used to generate novel research ideas nor to contribute to technical content.

---

1080  
 1081  
 1082 **Algorithm 1** Cellular Lifting of Textual Graphs

---

1083 **Require:** Textual graph  $\mathcal{G} = (V, E, \{t_v\}_{v \in V}, \{t_e\}_{e \in E})$ , pre-trained language model  $\text{LM}(\cdot)$ .  
 1084 **Ensure:** A regular cell complex  $X$  with cellular embeddings  $\{z_v^0\}, \{z_e^1\}, \{z_e^2\}$ .

1085 1: **Step 1: Construct the 1-Skeleton and Compute Initial Embeddings**  
 1086 2:  $X^{(0)} \leftarrow \emptyset, X^{(1)} \leftarrow \emptyset$  {Initialize sets of 0-cells and 1-cells}  
 1087 3:  $\mathbf{Z}^0 \leftarrow \{\}, \mathbf{Z}^1 \leftarrow \{\}$  {Initialize dictionaries for embeddings}  
 1088 4: **for**  $v \in V$  **do**  
 1089 5:   Create a 0-cell  $x_v^0$  for vertex  $v$   
 1090 6:    $X^{(0)} \leftarrow X^{(0)} \cup \{x_v^0\}$   
 1091 7:    $z_v^0 \leftarrow \text{LM}(t_v)$  {Encode vertex text attribute}  
 1092 8:    $\mathbf{Z}^0[x_v^0] \leftarrow z_v^0$   
 1093 9: **end for**  
 1094 10: **for**  $e = (u, v) \in E$  **do**  
 1095 11:   Create a 1-cell  $x_e^1$  attached to  $x_u^0$  and  $x_v^0$   
 1096 12:    $X^{(1)} \leftarrow X^{(1)} \cup \{x_e^1\}$   
 1097 13:    $z_e^1 \leftarrow \text{LM}(t_e)$  {Encode edge text attribute}  
 1098 14:    $\mathbf{Z}^1[x_e^1] \leftarrow z_e^1$   
 1099 15: **end for**  
 1100 16:  $X^{(1)} \leftarrow X^{(0)} \cup X^{(1)}$  {The 1-skeleton is complete}  
 1101 17:  
 1102 18: **Step 2: Augment with 2-Cells to Capture Higher-Dimensional Structures**  
 1103 19:  $X^{(2)} \leftarrow \emptyset$   
 1104 20:  $\mathbf{Z}^2 \leftarrow \{\}$   
 1105 21:  $\mathcal{T} \leftarrow \text{SpanningTree}(\mathcal{G})$  {e.g., using BFS or DFS}  
 1106 22:  $E_{\text{non-tree}} \leftarrow E \setminus \mathcal{T}$   
 1107 23: **for**  $e \in E_{\text{non-tree}}$  **do**  
 1108 24:    $u, v \leftarrow \text{endpoints}(e)$   
 1109 25:   cycle  $\leftarrow \text{FindFundamentalCycle}(e, \mathcal{T})$   
 1110 26:   {cycle is the unique path from  $u$  to  $v$  in  $\mathcal{T}$  plus edge  $e$ }  
 1111 27:   Create a 2-cell  $x_e^2$   
 1112 28:   Attach  $x_e^2$  to the 1-skeleton via the attaching map  $\varphi_e : \partial D^2 \rightarrow \text{cycle}$   
 1113 29:    $X^{(2)} \leftarrow X^{(2)} \cup \{x_e^2\}$   
 1114 30:    $z_e^2 \leftarrow \text{AggregateCycleEmbeddings}(\text{cycle}, \mathbf{Z}^0, \mathbf{Z}^1)$   
 1115 31:   {e.g., mean/max pooling of embeddings of all 0/1-cells in the cycle}  
 1116 32:    $\mathbf{Z}^2[x_e^2] \leftarrow z_e^2$   
 1117 33: **end for**  
 1118 34:  
 1119 35:  $X \leftarrow X^{(0)} \cup X^{(1)} \cup X^{(2)}$  {The final cell complex}  
 36:  
 37: **return**  $X, \mathbf{Z}^0, \mathbf{Z}^1, \mathbf{Z}^2$

---

1120  
 1121  
 11221123 **Algorithm 2** Find Fundamental Cycle

---

1124 **Require:** Non-tree edge  $e = (u, v)$ , spanning tree  $\mathcal{T}$ .  
 1125 **Ensure:** An ordered list of 0-cells and 1-cells forming the fundamental cycle.

1126 1:  $\text{path\_u\_to\_v} \leftarrow \text{GetUniquePathInTree}(u, v, \mathcal{T})$   
 1127 2:  $\text{cycle\_vertices} \leftarrow \text{path\_u\_to\_v.vertices}$   
 1128 3:  $\text{cycle\_edges} \leftarrow \text{path\_u\_to\_v.edges}$   
 1129 4:  $\text{cycle\_edges.append}(e)$  {Add the non-tree edge to complete the cycle}  
 1130 5:  
 1131 6: **return**  $\text{cycle\_vertices}, \text{cycle\_edges}$

---

1132  
 1133

21

---

1134  
 1135  
 1136  
 1137  
 1138  
 1139 **Algorithm 3** Topology-Aware Subcomplex Retrieval

---

 1140  
 1141 **Require:** Cell complex  $X = X^{(0)} \cup X^{(1)} \cup X^{(2)}$  with embeddings  $\mathbf{Z}^0, \mathbf{Z}^1, \mathbf{Z}^2$ ; query  $x_q$ ; parameters  
 $k, C_2$ .  
 1142 **Ensure:** A connected, topology-aware subcomplex  $X^* \subseteq X$ .  
 1143 1: **Step 1: Encode Query and Retrieve Top- $k$  Cells**  
 1144 2:  $z_q \leftarrow \text{LM}(x_q)$  {Encode the query}  
 1145 3:  $S^0 \leftarrow \text{ComputeCosineSimilarity}(z_q, \mathbf{Z}^0)$  { $S^0$  is a list of (cell, score) pairs for all 0-cells}  
 1146 4:  $S^1 \leftarrow \text{ComputeCosineSimilarity}(z_q, \mathbf{Z}^1)$  { $S^1$  is a list of (cell, score) pairs for all 1-cells}  
 1147 5:  $X_k^{(0)} \leftarrow \text{ArgTopK}(S^0, k)$  {Set of top- $k$  relevant 0-cells}  
 1148 6:  $X_k^{(1)} \leftarrow \text{ArgTopK}(S^1, k)$  {Set of top- $k$  relevant 1-cells}  
 1149 7:  
 1150 8: **Step 2: Prize Assignment**  
 1151 9:  $\mathcal{P} \leftarrow \{\}$  {Initialize a prize dictionary for all cells}  
 1152 10: // Assign prizes to top- $k$  0/1-cells based on ranking  
 1153 11: rank  $\leftarrow 0$   
 1154 12: **for**  $x^0 \in X_k^{(0)}$  (in descending order of similarity) **do**  
 1155 13:    $\mathcal{P}[x^0] \leftarrow k - \text{rank}$   
 1156 14:   rank  $\leftarrow \text{rank} + 1$   
 1157 15: **end for**  
 1158 16: rank  $\leftarrow 0$   
 1159 17: **for**  $x^1 \in X_k^{(1)}$  (in descending order of similarity) **do**  
 1160 18:    $\mathcal{P}[x^1] \leftarrow k - \text{rank}$   
 1161 19:   rank  $\leftarrow \text{rank} + 1$   
 1162 20: **end for**  
 1163 21: // Compute prizes for 2-cells based on boundary cells  
 1164 22: **for**  $x^2 \in X^{(2)}$  **do**  
 1165 23:   boundary\_prize  $\leftarrow 0$   
 1166 24:   **for each**  $x^0 \in \partial_0 x^2$  **do** boundary\_prize  $\leftarrow \text{boundary\_prize} + \mathcal{P}.\text{get}(x^0, 0)$   
 1167 25:   **for each**  $x^1 \in \partial_1 x^2$  **do** boundary\_prize  $\leftarrow \text{boundary\_prize} + \mathcal{P}.\text{get}(x^1, 0)$   
 1168 26:   cost  $\leftarrow |\partial_1 x^2| \cdot C_2$  {Penalize larger faces}  
 1169 27:    $\mathcal{P}[x^2] \leftarrow \text{boundary\_prize} - \text{cost}$   
 1170 28: **end for**  
 1171 29:  $X_k^{(2)} \leftarrow \text{ArgTopK}(\{\mathcal{P}[x^2] \text{ for } x^2 \in X^{(2)}\}, k)$  {Select top- $k$  2-cells by prize}  
 30:  
 1172 31: **Step 3: Prize-Collecting Subcomplex Selection**  
 1173 32:  $V \leftarrow X^{(0)} \cup X^{(1)} \cup X^{(2)}$  {Candidate cells across all dimensions}  
 1174 33:  $R \leftarrow X_k^{(0)} \cup X_k^{(1)} \cup X_k^{(2)}$  {Top- $k$  cells as prize terminals}  
 1175 34: // Assign prizes to 0- and 1-cells based on query similarity  
 1176 35: // Compute 2-cell prizes from boundary consistency with selected cells  
 1177 36:  
 1178 37:  $X^* \leftarrow \text{ApproxPCSTComplex}(X, R, \mathcal{P})$   
 1179 38:   {Solve generalized PCST over cell complex with multi-dimensional prizes}  
 1180 39: // Enforce boundary consistency: any 2-cell in  $X^*$  must share boundary with chosen 0-  
 1181 and 1-cells  
 1182 40:  
 1183 41: **return**  $X^*$ 

---

 1184  
 1185  
 1186  
 1187