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ABSTRACT

Retrieval-Augmented Generation (RAG) enhances the reasoning ability of Large
Language Models (LLMs) by dynamically integrating external knowledge,
thereby mitigating hallucinations and strengthening contextual grounding for
structured data such as graphs. Nevertheless, most existing RAG variants for
textual graphs concentrate on low-dimensional structures—treating nodes as en-
tities (0-dimensional) and edges or paths as pairwise or sequential relations (1-
dimensional), but overlook cycles, which are crucial for reasoning over relational
loops. Such cycles often arise in questions requiring closed-loop inference about
similar objects or relative positions. This limitation often results in incomplete
contextual grounding and restricted reasoning capability. In this work, we pro-
pose Topology-enhanced Retrieval-Augmented Generation (TopoRAG), a novel
framework for textual graph question answering that effectively captures higher-
dimensional topological and relational dependencies. Specifically, TopoRAG first
lifts textual graphs into cellular complexes to model multi-dimensional topolog-
ical structures. Leveraging these lifted representations, a topology-aware sub-
complex retrieval mechanism is proposed to extract cellular complexes relevant to
the input query, providing compact and informative topological context. Finally,
a multi-dimensional topological reasoning mechanism operates over these com-
plexes to propagate relational information and guide LLMs in performing struc-
tured, logic-aware inference. Empirical evaluations demonstrate that our method
consistently surpasses existing baselines across diverse textual graph tasks.

1 INTRODUCTION

Large Language Models (LLMs) exhibit strong language understanding and generation capabil-
ities, but their reliance on pre-training corpora—limited in scope and timeliness—often leads to
hallucinations, producing inaccurate or fabricated content that challenges knowledge-intensive rea-
soning Huang et al. (2023b). To mitigate these issues, Retrieval-Augmented Generation (RAG) has
recently emerged as an effective approach Fan et al. (2024); Sun et al. (2024); Baek et al. (2023);
Sen et al. (2023), dynamically retrieving relevant external knowledge and incorporating it into the
generation process. By enhancing contextual grounding and factual accuracy, RAG improves rea-
soning over structured data and reduces hallucination Gao et al. (2023). However, traditional RAG
methods often overlook the structured dependencies among textual entities and struggle to capture
global relational patterns, limiting their applicability for graph-structured reasoning tasks.

To address these challenges, Graph Retrieval-Augmented Generation (GraphRAG) Edge et al.
(2024); Hu et al. (2024); Mavromatis & Karypis (2025) extends conventional RAG by retriev-
ing not only documents but also graph elements, which provide richer relational context for rea-
soning over textual graphs. G-Retriever He et al. (2024) introduces the first general GraphRAG
framework for textual graphs, formulating retrieval as a Prize-Collecting Steiner Tree problem
to extract compact and relevant subgraphs. GNN-RAG Mavromatis & Karypis (2025) and Sub-
graphRAG Li et al. (2025) further develop specialized retrieval modules to extract subgraphs
from knowledge graphs. However, existing approaches, primarily operate on low-dimensional
elements and largely ignore higher-dimensional topological structures such as cycles, which
are crucial for reasoning over relational loops and complex dependencies in textual graphs.
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Figure 1: Illustration of question answering with varying dimen-
sional topological characteristics.

In many real-world textual
graphs, essential information
arises not only from nodes
(0-cells) that encode entity
attributes, edges and paths
(1-cells) representing pairwise
or multi-hop relations, but also
from cycles (2-cells) capturing
higher-dimensional dependen-
cies. As illustrated in Fig. 1,
reasoning over 0-cells enables
answering simple attribute-
based questions (Fig. 1 a), while
incorporating 1-cells supports
inference over one-hop to multi-
hop relational queries (Fig. 1 b).
However, certain queries require
cyclic dependencies among multiple entities, where the answer emerges only from reasoning over
2-cells. For example, the question in Fig. 1 (c) involves a closed relational loop that links spatial
relations with material consistency, which cannot be resolved by nodes and edges alone. Capturing
structural information across multiple topological dimensions provides indispensable context for
structured logical inference, as higher-dimensional dependencies complement lower-dimensional
relations to enable reasoning beyond simple pairwise interactions. Consequently, retrieval and
reasoning mechanisms that explicitly incorporate multi-dimensional topological features are
essential for understanding and answering questions over complex textual graphs.

In this work, we propose Topology-enhanced Retrieval-Augmented Generation (TopoRAG), a
novel framework for textual graph question answering that explicitly models higher-dimensional
topological and relational dependencies. Specifically, TopoRAG first lifts input textual graphs into
cellular complexes to capture multi-dimensional topological structures, including cycles that encode
closed-loop dependencies critical for relational reasoning. Leveraging these lifted representations, a
topology-aware subcomplex retrieval mechanism is introduced to extract cellular complexes that are
most relevant to the input query, providing compact yet informative topological context for down-
stream reasoning. Furthermore, a multi-dimensional topological reasoning mechanism operates over
the retrieved complexes to propagate relational information across different topological dimensions,
enabling structured, logic-aware inference that naturally integrates with LLM reasoning. Extensive
experiments demonstrate that TopoRAG consistently outperforms state-of-the-art baselines.

2 RELATED WORKS

Large Language Models (LLMs) have shown impressive capabilities in language understanding
and text generation, yet they remain constrained by the boundaries of their pre-training corpus,
lacking domain-specific expertise, real-time updates, and proprietary knowledge. These limitations
frequently manifest as hallucinations, where models produce inaccurate or fabricated content Huang
et al. (2023b). To address this issue, Retrieval-Augmented Generation (RAG) Fan et al. (2024); Sun
et al. (2024); Baek et al. (2023); Sen et al. (2023) has emerged as a promising paradigm.

RAG enhances LLMs by dynamically retrieving relevant external knowledge and incorporating it
into the generation process, thereby improving factual accuracy, contextual grounding, and inter-
pretability Gao et al. (2023). Nevertheless, existing RAG methods are not without shortcomings in
real-world applications. They often overlook structured dependencies among textual entities, rely
on lengthy concatenated snippets that may obscure critical information (the “lost in the middle”
problem Liu et al. (2024)), and struggle to capture global structural patterns essential for tasks such
as query-focused summarization.

To address these challenges, Graph Retrieval-Augmented Generation (GraphRAG) Edge et al.
(2024); Hu et al. (2024); Mavromatis & Karypis (2025) extends conventional RAG by retrieving
not only documents but also graph elements such as nodes, triples, and subgraphs. Building on this
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idea, G-Retriever He et al. (2024) introduces the first general RAG framework for textual graphs,
formulating retrieval as a Prize-Collecting Steiner Tree problem to extract compact and relevant sub-
graphs. GNN-RAG Mavromatis & Karypis (2025) improves knowledge graph QA by integrating
GNN-based representations for task-specific subgraph selection, and SubgraphRAG Li et al. (2025)
incorporates lightweight triple scoring and distance encoding to achieve efficient subgraph retrieval.
Nevertheless, existing methods overlook high-dimensional cyclic dependencies, motivating our ap-
proach to incorporate multi-dimensional cell structures for enhanced retrieval and reasoning.

We also discuss related works on graphs & LLMs, and topological deep learning in Appendix B.

3 PRELIMINARIES

Definition 1. (Cell Complex Hansen & Ghrist (2019)). A regular cell complex is a topolog-
ical space X decomposed into a collection of disjoint subspaces {xσ}σ∈PX

, referred to as cells,
satisfying the following conditions:

1. For each point p ∈ X , ∃ an open neighborhood intersecting only finitely many cells.
2. For any pair of cells xσ, xτ , the intersection xτ ∩ xσ is nonempty if and only if xτ ⊆ xσ ,

where xσ denotes the topological closure of xσ .
3. Each cell xσ is homeomorphic to an open ball in Rn for some non-negative integer n.
4. (Regularity) The closure xσ of every cell is homeomorphic to a closed ball in Rnσ , with

the interior mapped homeomorphically onto xσ itself.

Definition 2. A cellular lifting map is a function f : G → X from the space of graphs G to the
space of regular cell complexes X , satisfying that two graphs G1, G2 ∈ G are isomorphic if and only
if their corresponding cell complexes f(G1) and f(G2) are isomorphic. Intuitively, a cell complex
is built hierarchically by first considering 0-cells (vertices), then attaching 1-cells (edges) via their
endpoints, and further incorporating higher-dimensional cells by gluing disks along cycles.

Definition 3. (Retrieved Cell Complex-Augmented Question Answering). Given a textual graph
G = (V,E, {tn}n∈V , {te}e∈E), where each node n ∈ V and edge e ∈ E is associated with textual
attributes tn ∈ DLn and te ∈ DLe , we lift G into a regular cell complex X through a cellular
lifting map f : G → X . The resulting complex X = {xσ} contains multi-dimensional structures,
including 0-cells (nodes), 1-cells (edges/paths), and higher-dimensional cells (e.g., 2-cells as cycles).

To enable retrieval, a query Q is first encoded by a language model into a dense representation:

zQ = LM(Q) ∈ Rd. (1)

Each cell xσ ∈ X is also represented by an embedding zσ , obtained from its textual attributes
together with a topological descriptor zdσ that summarizes its d-dimensional structure. We then
apply a k-nearest neighbors retrieval strategy to select the most relevant cells:

Xk = argtopkxσ∈X cos(zQ, zdσ), (2)

where cos(·, ·) denotes cosine similarity. This step yields a candidate set of cells Xk =
{xσ1 , . . . , xσk

} spanning multiple topological dimensions.

The task is defined as follows: given a natural language query Q and the lifted cell complex X , the
model must retrieve the most relevant subcomplexes X∗ and reason over their multi-dimensional
structures to generate an answer A. Formally, the QA function is

f : (G, X,Q) 7→ A, (3)

where A is a natural language sequence generated by the LLM under the conditional likelihood

pθ(A | [Pe;Q;X∗]) =

|A|∏
i=1

pθ(ai | a<i, [Pe;Q;X∗]). (4)

Here, [Pe;Q;X∗] denotes the concatenation of soft prompt embeddings Pe, query tokens, and re-
trieved subcomplex representations, while a<i represents the prefix of A up to step i− 1.

3
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Figure 2: The overview of Topology-enhanced Retrieval-Augmented Framework.

Training proceeds by maximizing the likelihood of the ground-truth answer A∗:

max
Pe

log pθ(A
∗ | [Pe;Q;X∗]), (5)

where only the soft prompt parameters Pe are updated, while the LLM parameters θ remain fixed.

4 THE TOPORAG FRAMEWORK

In this section, we present the architecture of TopoRAG (illustrated in Figure 2), a topology-
enhanced retrieval-augmented generation framework designed for textual graph question answering.
TopoRAG is composed of four key components. First, the Cellular Representation Lifting module
transforms input textual graphs into regular cell complexes, providing expressive multi-dimensional
topological representations that go beyond nodes and edges. Second, the Topology-aware Subcom-
plex Retrieval module identifies the most relevant subcomplexes with respect to the query by jointly
considering semantic similarity and topological structure. Third, the Multi-dimensional Topolog-
ical Reasoning module propagates relational information across different topological dimensions,
enabling structured and logic-aware inference. Finally, the Cell Complex-Augmented Generation
module integrates retrieved subcomplex representations into the LLM to guide answer generation,
ensuring faithful and topology-consistent responses.

4.1 CELLULAR REPRESENTATION LIFTING

Given a textual graph G = (V,E, {tn}n∈V , {te}e∈E), we aim to lift it into a higher-dimensional
topological space that faithfully encodes both relational and structural dependencies. This is
achieved by constructing a regular cell complex X through a cellular lifting map f : G → X .

We first regard G as a 1-dimensional cell complex, where each vertex v ∈ V corresponds to a 0-cell
x0
v ∈ X(0), and each edge (u, v) ∈ E corresponds to a 1-cell x1

(u,v) ∈ X(1) attached to its endpoint
0-cells x0

u and x0
v . This forms the cellular 1-skeleton:

X(1) = X(0) ∪ {x1
(u,v) | (u, v) ∈ E}. (6)

To elaborate, consider tv ∈ DLv as the text attributes of vertex v and t(u,v) ∈ DL(u,v) as those
of edge (u, v). Utilizing a pre-trained LM, such as SentenceBert (Reimers & Gurevych, 2019), we
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apply the LM to these attributes, yielding the representations:

z0v = LM(tv) ∈ Rd, z1(u,v) = LM(t(u,v)) ∈ Rd, (7)

where d denotes the dimension of the output vector. This yields cellular embeddings for both nodes
and edges, which serve as the lifted representation in the subsequent module.

To incorporate high-dimensional topological structures, we extend X(1) by identifying fundamental
cycles. Specifically, we fix a spanning tree T ⊆ G and apply the quotient map:

γ : G→ G/T , (8)

which collapses T to a single point. Each non-tree edge e = (u, v) ∈ E \ T then induces a
fundamental cycle by connecting e with the unique path in T between u and v. For every such
cycle, we attach a 2-cell x2

e ∈ X(2) via the attaching map

φα : ∂D2 ∼= S1 → G(1), (9)

that glues the boundary of a disk D2 to the cycle. Formally, the set of 2-cells is

X(2) = {x2
e ≃ D2 | e ∈ E \ T }. (10)

The resulting cell complex X = X(0) ∪ X(1) ∪ X(2) augments the original graph with multi-
dimensional topological structures.
Proposition 1. (Proof in Appendix C.1.) G/T is homotopy-equivalent to G, and γ induces an
isomorphism on the first homology group H1(G;Z).
Proposition 2. (Proof in Appendix C.2.) Each non-tree edge e ∈ E \T induces a unique fundamen-
tal cycle in G, which becomes a nontrivial loop in G/T . The collection of these loops forms a basis
of the first homology group H1(G;Z), capturing all independent cycles and providing a concise
topological summary of the graph.

4.2 TOPOLOGY-AWARE SUBCOMPLEX RETRIEVAL

Given a query xq , we first encode it into a d-dimensional embedding:

zq = LM(xq) ∈ Rd. (11)

To retrieve the most relevant cells, we compute the cosine similarity between zq and the embeddings
of 0- and 1-cells:

X (d)
k = argtopkxd∈X(d) cos(zq, zdxd), (12)

where d ∈ {0, 1} denotes the dimension, zdxd is the embeddings of d-cell xd. These provide the
top-k relevant 0- and 1-cells.

Prize assignment. Each selected 0-cell x0 ∈ X
(0)
k and 1-cell x1 ∈ X

(1)
k is assigned a descending

prize according to its ranking:

prize(xi) =

{
k − r, if xi is ranked r-th among top-k cells,
0, otherwise,

i = 0, 1. (13)

For each 2-cell x2 ∈ X(2), its prize is computed from the prizes of its boundary cells:

prize(x2) =
∑

d∈{1,2}

∑
xd∈∂dx2

prize(xd)− cost(x2), (14)

where ∂dx
2 denote the sets of boundary d-cells of x2, and cost(x2) = |∂1x2| · C2 penalizes larger

faces with a tunable constant C2. Top-k 2-cells are selected based on this prize ranking, denoted as
X (2)

k , ensuring that all selected 2-cells share boundary cells with the chosen 0- and 1-cells.

Subcomplex selection. The final subcomplex X∗ maximizes the total prize while controlling size:

X∗ = argmax
X′⊆X,

X′ connected

∑
d∈{1,2,3}

∑
xd∈X′(d)

prize(xd)− cost(X ′), (15)

5
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where cost(X ′) is a size-dependent penalty.The boundary consistency constraint ensures that any
selected 2-cell x2 ∈ X∗(2) has all of its boundary 0- and 1-cells included in X∗(0) and X∗(1),
preserving topological coherence.

The resulting topology-aware subcomplex selection problem can be seen as a generalization of
Prize-Collecting Steiner Tree (PCST) problem (Bienstock et al., 1993) to higher-dimensional cell
complexes with multi-dimensional prizes and size-dependent penalties. We adopt a near-linear time
approximation algorithm Hegde et al. (2015) to efficiently identify a near-optimal connected sub-
complex X∗. This ensures that the final subcomplex captures the most query-relevant structures
across all cell dimensions, while maintaining computational efficiency and topological validity.

4.3 MULTI-DIMENSIONAL TOPOLOGICAL REASONING

After retrieving the query-relevant subcomplex X∗ = X∗(0)∪X∗(1)∪X∗(2), we propagate semantic
and relational information across different topological dimensions to enable structured reasoning
over the enriched cell complex. We employ a two-stage message passing mechanism that leverages
the multi-dimensional structure of the complex. In the first stage, information is propagated along
the 1-skeleton, between 0-cells and 1-cells, over L hops:

hl
x = UPDATEl

(
hl
x,m

l
F (x),m

l
C(x)

)
, x ∈ X∗(0) ∪X∗(1), l = 1, . . . , L, (16)

where ml
F (x) aggregates messages from faces, and ml

C(x) aggregates messages from cofaces:

ml+1
F (x) = AGGy∈F(x)MF (h

l
x,h

l
y),

ml+1
C (x) = AGGz∈C(x)MC(h

l
x,h

l
z),

(17)

with F(x) and C(x) denoting the sets of faces and cofaces of x.

In the second stage, cells of all dimensions exchange information with higher-dimensional neigh-
bors to capture multi-dimensional topological context. For each cell x ∈ X∗, the representation is
updated as

hL+1
x = UPDATE

(
hL
x ,m

L
F (x),m

L
C (x),m

L+1
↑ (x)

)
, (18)

where mL+1
↑ (x) aggregates messages from adjacent cells via shared cofaces. Specifically, the mes-

sages are defined as
mL+1

↑ (x) = AGGw∈N↑(x)M↑(h
L
x ,h

L
w,h

L+1
x∪w), (19)

with N↑(x) the set of cells adjacent to x via a shared coface.

To generate a fixed-dimensional representation of the entire subcomplex, we aggregate the embed-
dings of all its cells:

hX∗ = POOL
(
{hL+1

x | x ∈ X∗(0) ∪X∗(1) ∪X∗(2)}
)
∈ Rds , (20)

where POOL can be implemented as mean pooling over the cell embeddings, and ds denotes the
dimension of the resulting subcomplex representation. This aggregated embedding hX∗ encodes
both the semantic attributes of individual cells and the multi-dimensional topological context of the
subcomplex, serving as input to the Cell Complex-Augmented Generation module for query-guided
answer generation.

4.4 CELL COMPLEX-AUGMENTED GENERATION

With the subcomplex embedding hX∗ obtained from the Multi-dimensional Topological Reasoning
module, we integrate it into a pretrained LLM to guide query-aware answer generation. First, we
align the subcomplex embedding to the LLM’s hidden space via a multilayer perceptron (MLP):

ĥX∗ = MLPϕ(hX∗) ∈ Rdl , (21)

where dl is the hidden dimension of the LLM. The projected vector ĥX∗ acts as a soft prompt,
providing structured, topologically-informed guidance to the LLM.
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To leverage the LLM’s text reasoning capabilities, we also transform the retrieved subcomplex into
a textualized format, denoted as textualize(X∗), by flattening the textual attributes of all cells while
preserving the structural hierarchy. Given a natural language query xq , we concatenate it with the
textualized subcomplex and feed it into the LLM’s embedding layer:

ht = TextEmbedder([textualize(X∗);xq]) ∈ RL×dl , (22)

where [·; ·] denotes concatenation, L is the number of tokens, and the TextEmbedder is a frozen
pretrained LLM embedding layer.

The final answer Y is generated autoregressively, conditioned on both the soft subcomplex prompt
ĥX∗ and the textual token embeddings ht:

pθ,ϕ(Y | X∗, xq) =

r∏
i=1

pθ,ϕ(yi | y<i, [ĥX∗ ;ht]), (23)

where θ denotes the frozen LLM parameters and ϕ denotes the trainable parameters of the MLP
and the subcomplex encoder. Gradients are backpropagated through ĥX∗ , enabling the subcomplex
encoder to learn to generate embeddings that are optimally informative for downstream generation.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. Following prior work He et al. (2024), we use three existing datasets:WebQSP Yih et al.
(2016), ExplaGraphs Saha et al. (2021) and SceneGraphs Hudson & Manning (2019). These
datasets are standardized into a uniform format suitable for graph question answering He et al.
(2024), allowing consistent evaluation across diverse reasoning tasks. More details about these
datasets are provided in Appendix D.

Comparison Methods. To evaluate the performance of TopoRAG, we consider three categories
of baselines. We provide more details in Appendix E.

Inference-only LLMs directly answer questions using the textual graph as input, including zero-shot
prompting, zero-shot Chain-of-Thought (Zero-CoT) Kojima et al. (2022), Build-a-Graph prompting
(CoT-BAG) Wang et al. (2023), and KAPING Baek et al. (2023), a knowledge-augmented zero-shot
approach; Frozen LLMs with prompt tuning keep model parameters fixed while optimizing the input
prompt, including soft prompt tuning, GraphToken Perozzi et al. (2024), G-Retriever He et al. (2024)
with a frozen LLM and SubgraphRAG Li et al. (2025); Tuned LLMs update model parameters using
LoRA Hu et al. (2021), including standard LoRA fine-tuning and G-Retriever w/ LoRA He et al.
(2024) combining retrieval augmentation with parameter-efficient tuning, GNN-RAG Mavromatis
& Karypis (2025).

Evaluation Metrics. For ExplaGraphs and SceneGraphs, the performance is measured us-
ing Accuracy, which calculates the percentage of correctly predicted answers. For WebQSP, we use
the Hit metric, which measures the percentage of queries for which at least one of the top returned
answers is correct. This metric is particularly suitable for multi-hop reasoning tasks, where the
model must traverse multiple hops in a knowledge graph to retrieve the correct answer.

Experiment Settings. All experiments are conducted on two NVIDIA A6000-48G GPUs. For
retrieval, we set the top-k for 0- and 1-cells to k = 3 on WebQSP; on SceneGraphs, we set
k = 3 for 0-cells and k = 5 for 1-cells. For 2-cells, we sweep the top-k over k ∈ {0, 1, 2, 3}. For
reasoning, the number of layers is varied in {2, 3, 4, 5}, with a uniform dimensionality of 1024 across
all layers (input, hidden, and output). For generation, we employ the Llama-2-7B model Touvron
et al. (2023) as the large language model backbone. When fine-tuning with LoRA Hu et al. (2021),
we set the rank lora r = 8, lora alpha = 16, and dropout rate = 0.05; for prompt tuning, we use
10 virtual tokens. The maximum input length is set to 512 tokens, and the maximum number of
generated tokens is set to 32. We adopt the AdamW optimizer Loshchilov & Hutter (2017) with a
learning rate of 1 × 10−5, a batch size of 8, and train for 10 epochs with early stopping (patience
= 2).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 EXPERIMENT RESULT

Table 1: Performance comparison across ExplaGraphs, SceneGraphs, and WebQSP datasets
under different configurations. The bold numbers indicate that the improvement of our model over
the baselines is statistically significant with (p-value < 0.01), and the best baseline results are
underlined
.

Setting Method ExplaGraphs SceneGraphs WebQSP

Inference-only

Zero-shot 0.5650 0.3974 41.06
Zero-CoT 0.5704 0.5260 51.30
CoT-BAG 0.5794 0.5680 39.60
KAPING 0.6227 0.4375 52.64

Frozen LLM w/ PT

Prompt tuning 0.5763 0.6341 48.34
GraphToken 0.8508 0.4903 57.05
G-Retriever 0.8516 0.8131 70.49
SubgraphRAG 0.8535 0.8074 86.61
TopoRAG (Ours) 0.8899 0.8362 87.10

Tuned LLM

LoRA 0.8538 0.7862 66.03
G-Retriever w/ LoRA 0.8705 0.8683 73.79
GNN-RAG 0.8466 0.8149 85.70
TopoRAG w/ LoRA (Ours) 0.9151 0.8768 90.66

Main Results. As summarized in Table 1, our model consistently outperforms all baselines across
datasets and configurations. We highlight three key findings:

• TopoRAG delivers the strongest overall performance. Compared to the best baseline,
TopoRAG improves ExplaGraphs and SceneGraphs Accuracy by 5.12% and 0.98%,
respectively; on WebQSP, it increases the Hit metric by 4.67%. We attribute the improve-
ments to the following reasons: 1) Cellular Representation Lifting, which transforms tex-
tual graphs into cellular complexes and explicitly encodes higher-dimensional structures
that support closed-loop relational reasoning; 2) topology-aware subcomplex retriever that
selects query-relevant cellular complexes, supplying compact yet informative topological
context; and 3) multi-dimensional topological reasoning that propagates information across
0-/1-/2-cells to enable structured, logic-aware inference tightly integrated with LLM rea-
soning. Together, these components overcome the limitations of node/edge-centric meth-
ods and yield more accurate and robust QA over complex textual graphs.

• Graph-structured prompts effectively improve QA performance. All prompt-tuning
approaches (e.g., GraphToken, SubgraphRAG) outperform inference-only baselines
(Zero-shot, Zero-CoT), underscoring the value of structured context. TopoRAG further
improves upon these by grounding prompts in higher-dimensional topological dependen-
cies—beyond nodes and edges—thereby providing richer, loop-aware relational context,
especially for queries involving multi-hop and cyclic dependencies.

Table 2: Ablation Study on ExplaGraphs and WebQSP
Datasets.

Method ExplaGraphs (Accuracy) WebQSP (Hit)

w/o CRL 0.8576 84.96
w/o TSR 0.8524 84.23
w/o MTR 0.8611 85.46
TopoRAG 0.9151 90.66

Ablation Study. We conduct an ab-
lation study to evaluate the contribu-
tion of each component of TopoRAG.
Specifically, we replace Cellular Rep-
resentation Lifting (CRL) with a stan-
dard edge-based graph structure, sub-
stitute Topology-aware Subcomplex Re-
trieval (TSR) with shortest-path-based
retrieval, and replace Multi-dimensional
Topological Reasoning (MTR) with a
GCN Kipf & Welling (2017) for message
passing.
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Figure 3: (a) Effect of layers L ∈ {2, 3, 4, 5} on TopoRAG performance: WebQSP (Hit) and Expla-
Graphs (Accuracy). (b) Effect of top-k k ∈ {0, 1, 2, 3} on TopoRAG performance: WebQSP (Hit)
and SceneGraphs (Accuracy).

1) Replacing Cellular Representation Lifting (CRL) with an edge-only graph representation re-
moves the lifting of textual graphs into cellular complexes and, consequently, the explicit encoding
of higher-dimensional structures (e.g., cycles) that support closed-loop relational reasoning. This
loss of topological expressivity leads to a substantial performance drop, underscoring the necessity
of CRL for modeling high-dimensional dependencies in RAG.

2) Replacing Topology-aware Subcomplex Retrieval (TSR) with shortest-path retrieval restricts
results to the 1-skeleton and removes 2-cells, thereby discarding higher-dimensional motifs and
closed-loop constraints that are critical for capturing query-relevant structure, underscoring the im-
portance of TSR for sustaining TopoRAG’s effectiveness.

3) When removing Multi-dimensional Topological Reasoning (MTR), the performance of TopoRAG
drops significantly. This is due to the crucial role of MTR in enabling multi-dimensional message
passing using cellular complexes. Without MTR, the model loses the ability to effectively propagate
information from high-dimensional cells to low-dimensional ones, resulting in the loss of important
high-dimensional structural information during the message passing process.

Hyper-parameter Study. We study the sensitivity of TopoRAG to two key hyperparameters: the
number of layers L and the top-k of 2-cell for subcomplex retrieval. The layer depth L controls the
model’s ability to capture hierarchical structures and long-range dependencies. Larger L enhances
the model’s representational capacity but may lead to overfitting or increased computational cost,
while smaller L may limit structural information capture, causing underfitting. Figure 3 (a) shows
the effect of different L values on performance: reasoning ability improves as L increases, but
excessive depth reduces expressiveness. We also analyze the impact of the top-k parameter for
2-cells selection on retrieval. Too small k causes information loss, while too large k introduces
noise. Figure 3 (b) illustrates the effect of different k ∈ {0, 1, 2, 3} values, showing that a moderate
k achieves a better balance between structural coverage and noise. In Appendix F, we present an
extended sensitivity analysis of the choice of k.

6 CONCLUSION

In this work, we introduced TopoRAG, a topology-enhanced retrieval-augmented generation frame-
work for textual graph question answering. Unlike conventional GraphRAG approaches that mainly
rely on nodes and edges, TopoRAG explicitly incorporates higher-dimensional topological struc-
tures by lifting textual graphs into cellular complexes. Through a topology-aware subcomplex re-
trieval mechanism, TopoRAG provides compact yet informative multi-dimensional contexts, while
the proposed multi-dimensional topological reasoning module enables structured and logic-aware
inference that captures cyclic and higher-dimensional dependencies beyond pairwise relations. Ex-
perimental results demonstrate that TopoRAG outperforms existing methods across three datasets
from different domains.
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Table 3: Notation and definitions used in the TopoRAG framework.

Notation Definition

G The input textual graph, defined as G = (V,E, {tn}n∈V , {te}e∈E).
V , E The sets of vertices (nodes) and edges in the graph G.
tn, te The text attributes associated with node n ∈ V and edge e ∈ E.
X The regular cell complex constructed from the graph G.
X(d) d-skeleton.
xk A k-dimensional cell in the complex (e.g., x0: a 0-cell, x1: a 1-cell).
z0v , z1e The d-dimensional embedding of node v (0-cell) and edge e (1-cell), obtained

via a Language Model (LM).
T A spanning tree of the graph G, used for cycle detection.
x2
e A 2-cell attached to a fundamental cycle induced by a non-tree edge e ∈ E \T .

zq The d-dimensional embedding of the input query xq .
X (d)

k The set of top-k retrieved d-cells (d = 0, 1, 2) based on semantic similarity or
prize.

prize(xi) The prize (relevance score) assigned to cell xi during retrieval.
X∗ The final retrieved and connected subcomplex, X∗ = X(0)∗ ∪X(1)∗ ∪X(2)∗.
∂kx The boundary operator; ∂kx gives the set of (k − 1)-cells on the boundary of a

k-cell x.
hl

x The hidden representation of cell x at message passing layer l.
F(x), C(x) The set of faces (lower-dimensional boundary cells) and cofaces (higher-

dimensional incident cells) of cell x.
ml

F (x), ml
C(x) Messages aggregated from faces and cofaces of cell x at layer l.

hX∗ The final pooled representation of the entire subcomplex X∗.
ĥX∗ The projected subcomplex embedding, aligned to the LLM’s hidden space via

an MLP.
pθ,ϕ(Y | X∗, xq) The conditional probability of generating answer Y , given the subcomplex X∗

and query xq .

A NOTATIONS

The notations in the TopoRAG framework are summarized in Table 3.

B ADDITIONAL RELATED WORK

Graphs and Large Language Models. In parallel, there has been a surge of interest in combin-
ing graphs with LLMs Pan et al. (2023); Li et al. (2023b); Jin et al. (2023); Wang et al. (2023);
Zhang et al. (2023). This line of research spans a wide spectrum, from the design of general graph
models Ye et al. (2023); Liu et al. (2023); Yu et al. (2023b); Lei et al. (2023); Tang et al. (2023);
Perozzi et al. (2024), to multi-modal architectures Li et al. (2023a); Yoon et al. (2023), and diverse
downstream applications.

Applications of Graph-augmented LLMs include fundamental graph reasoning Zhang (2023); Chai
et al. (2023); Zhao et al. (2023b), node classification He et al. (2023); Huang et al. (2023a); Sun
et al. (2023); Chen et al.; Yu et al. (2023a); Chen et al. (2024); Qin et al. (2023), and graph classifi-
cation/regression Qian et al. (2023); Zhao et al. (2023a). Furthermore, LLMs have been increasingly
employed for knowledge graph-related tasks such as reasoning, completion, and question answer-
ing Tian et al. (2023); Jiang et al. (2023); Luo et al. (2023).

Topological deep learning. Topological deep learning expands graph learning by modelling re-
lations that exceed simple pairwise links. Early work in Topological Signal Processing (TSP) em-
phasized the value of higher-dimensional structure for signal and relational modeling Barbarossa &
Sardellitti (2020); Schaub et al. (2021); Roddenberry et al. (2022); Sardellitti et al. (2021), prompting
extensions of graph tools to richer discrete geometries such as simplicial and cell complexes. Theo-
retical progress—e.g., higher-dimensional generalizations of the Weisfeiler–Lehman test—has clar-
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ified the expressive power required for distinguishing complex topologies and motivated message-
passing schemes beyond traditional GNNs Bodnar et al. (2021c;a).

On the modelling side, researchers have proposed numerous neural architectures that operate on
these higher-dimensional domains, including convolutional-style operators for simplicial and cell
complexes Ebli et al. (2020); Yang et al. (2022); Hajij et al. (2020); Yang & Isufi (2023); Rodden-
berry et al. (2021); Hajij et al. (2022) and attention-based formulations that incorporate incidence
relations and coface interactions Goh et al.; Giusti et al. (2023). Efforts to unify these variants led to
combinatorial-complex frameworks that generalize message passing to a wide class of combinato-
rial objects (simplicial complexes, CW complexes, hypergraphs) Hajij et al. (2023). Complementary
lines of work use sheaf-theoretic constructions to impose local consistency and handle heterophilous
patterns, demonstrating another principled route to encode localized topological constraints Hansen
& Ghrist (2019); Hansen & Gebhart (2020); Bodnar et al. (2022); Battiloro et al. (2023; 2024);
Barbero et al. (2022).

While these works have substantially advanced higher-dimensional representation learning, current
topological deep learning methods exhibit limited generalization to unseen graphs with substantially
different topologies, a sensitivity that hinders their applicability in real-world scenarios where struc-
tural variability is common. Moreover, they remain largely tied to static, pre-defined complexes and
traditional graph formulations, leaving them ill-suited for reasoning in question answering tasks that
require integrating textual graph inputs with large language models and dynamically incorporating
external knowledge. In this work, we address these limitations by introducing TopoRAG, a frame-
work that explicitly models multi-dimensional topological structures and couples topology-aware
retrieval with large language models to enable robust and context-sensitive reasoning over textual
graphs.

C PROOFS

C.1 PROOFS REGARDING PROPOSITION 1

Proof. Contractibility of the spanning tree. A spanning tree T is connected and acyclic, hence it
is contractible. In topological terms, a contractible subspace can be continuously shrunk to a point
within itself.

Collapsing a contractible subspace. Consider the quotient map γ : G → G/T that identifies all
points of T to a single vertex v0. Collapsing a contractible subspace is a deformation retraction up
to homotopy: there exists a continuous map r : G → G/T and a homotopy H : G × [0, 1] → G
such that H(x, 0) = x and H(x, 1) = r(x) for all x ∈ G, with r ◦ γ ≃ idG/T . Therefore, G and
G/T are homotopy-equivalent.

Induced isomorphism on first homology. Homotopy-equivalent spaces have isomorphic homology
groups. Hence the induced map γ∗ : H1(G;Z)→ H1(G/T ;Z) is an isomorphism.

Intuition in graph terms. The spanning tree T contains no cycles, so collapsing it does not remove
or merge any cycles in G. Each fundamental cycle in G (formed by a non-tree edge and the unique
tree path connecting its endpoints) is preserved in G/T as a loop based at the collapsed tree vertex.
Therefore, the first homology group H1(G) — which measures independent cycles — remains
unchanged.

C.2 PROOFS REGARDING PROPOSITION 2

Proof. Let G = (V,E) be a finite connected graph and T ⊂ G a spanning tree.

Existence and uniqueness of fundamental cycles. For each non-tree edge e = (u, v) ∈ E\T , there
exists a unique simple path PT (u, v) in T connecting u and v, by acyclicity of T . Concatenating e
with PT (u, v) defines a unique simple cycle

Ce = e ∪ PT (u, v) ⊂ G.

Under the quotient map γ : G→ G/T that collapses T to a point, the tree-path PT (u, v) is mapped
to that point, so Ce becomes a nontrivial loop in G/T .
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Spanning and independence in homology. The cyclomatic number of G is β1(G) = |E|−|V |+1,
which equals the number of non-tree edges. Thus there are exactly β1(G) fundamental cycles.

Any cycle in G can be expressed as a linear combination of these fundamental cycles: traversing a
cycle, each time a non-tree edge e is encountered, the corresponding Ce can be used to eliminate
segments along T .

These cycles are independent in H1(G), because under γ, each fundamental cycle maps to a distinct
loop in G/T , and loops around different edges of a wedge of circles are linearly independent in
homology.

Hence the set
{[Ce] | e ∈ E \ T }

forms a basis of H1(G).

Topological summary. Different choices of spanning tree yield different sets of fundamental cycles
as edge sets, but the corresponding homology classes always span H1(G). Therefore, these loops
capture all independent cyclic dependencies of G, providing a concise topological summary suitable
for lifting G into a higher-dimensional cell complex.

D DATASETS

Following prior work He et al. (2024), we use three existing datasets: WebQSP, ExplaGraphs
and SceneGraphs, which are summarized in Table 4. These datasets are standardized into a uni-
form format suitable for graph question answering, allowing consistent evaluation across diverse
reasoning tasks. ExplaGraphs focuses on generative commonsense reasoning. The task requires
predicting whether an argument supports or contradicts a given belief, evaluated using Accuracy.
SceneGraphs is a visual question answering dataset. The task is to answer questions based on
textualized scene graphs, requiring spatial reasoning and multi-step inference, evaluated by Accu-
racy. WebQSP is a large-scale multi-hop knowledge graph QA dataset, which contains facts within
2-hops of entities mentioned in the questions. Each question is associated with a subgraph extracted
from Freebase. The task involves multi-hop reasoning, evaluated using Hit for the top returned
answer.

Table 4: Overview of datasets used in the GraphQA benchmark.

Dataset ExplaGraphs SceneGraphs WebQSP

Number of Graphs 2,766 100,000 4,737
Average Nodes 5.17 19.13 1,370.89
Average Edges 4.25 68.44 4,252.37
Node Features Commonsense concepts Object properties (e.g., color, shape) Freebase entities
Edge Features Commonsense relations Object interactions and spatial relations Freebase relations
Task Type Commonsense reasoning Scene graph QA Knowledge graph QA
Evaluation Metric Accuracy Accuracy Hit

E COMPARISON METHODS

In our experiments, we consider three categories of baselines: 1) Inference-only, 2) Frozen LLM w/
prompt tuning (PT), 3) Tuned LLM. The details of each baseline are described as follows.

Inference-only. Using a frozen LLM for direct question answering with textual graph and ques-
tion.

• Zero-shot. In this approach, the model is given a textual graph description and a task de-
scription, and is immediately asked to produce the desired output. No additional examples
or demonstrations are provided.
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• Zero-CoT. Zero-shot Chain-of-thought (Zero-CoT) prompting (Kojima et al., 2022) is a
follow-up to CoT prompting (Wei et al., 2022), which introduces an incredibly simple zero
shot prompt by appending the words ”Let’s think step by step.” to the end of a question.

• CoT-BAG. Build-a-Graph Prompting (BAG) (Wang et al., 2023) is a prompting technique
that adds ”Let’s construct a graph with the nodes and edges first.” after the textual descrip-
tion of the graph is explicitly given.

• KAPING. KAPING (Baek et al., 2023) is a zero-shot knowledge-augmented prompting
method for knowledge graph question answering. It first retrieves triples related to the
question from the graph, then prepends them to the input question in the form of a prompt,
which is then forwarded to LLMs to generate the answer.

Frozen LLM w/ prompt tuning (PT). Keeping the parameters of the LLM frozen and adapting
only the prompt.

• GraphToken (Perozzi et al., 2024), which is a graph prompt tuning method.

• G-Retriever He et al. (2024) is an efficient and lightweight model that adapts frozen large
language model parameters to graph question answering tasks solely through trainable
graph-structured soft prompts.

• SubgraphRAG Li et al. (2025) is a retrieval-augmented generation framework based on
knowledge graphs, which effectively improves the accuracy, efficiency, and interpretability
of question answering through lightweight subgraph retrieval and inference with an untuned
large language model.

Tuned LLM. Fine-tuning the LLM with LoRA.

• G-Retriever (w/ LoRA) He et al. (2024) is a high-precision model that fine-tunes large
language model parameters using techniques such as LoRA, enabling deep integration of
graph structure information to enhance graph question answering performance.

• GNN-RAG Mavromatis & Karypis (2025) is a retrieval-augmented generation framework
based on graph neural networks, which efficiently retrieves multi-hop reasoning paths from
knowledge graphs using GNNs and inputs them as context to an LLM, enhancing the ac-
curacy and efficiency of complex knowledge graph question answering.

F IMPACT OF TOP-K SELECTION ON SUBCOMPLEX RETRIEVAL

To further quantify the influence of k on subcomplex retrieval, we conduct supplementary exper-
iments with k ∈ {1, 2, 3} and report, on WebQSP and SceneGraphs, the average numbers of
0-, 1-, and 2-cells per retrieved subcomplex. As shown in Table 5, larger k yields more retrieved
2-cells; the accompanying inclusion of higher–dimensional structures also increases the counts of
0- and 1-cells, underscoring the trade-off that k introduces between structural coverage and noise.

Table 5: Impact of Top-K Selection on Subcomplex Retrieval.

Dataset k
Number of Cells per Dimension

0-cells 1-cells 2-cells

WebQSP
1 15 17 2
2 16 18 3
3 17 20 4

SceneGraphs
1 9 12 4
2 9 13 5
3 9 14 6
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G DISCUSSION ON THE COMPLEXITY

Following prior work, TopoRAG adopts the LLM+X framework, which enhances LLMs with mul-
timodal capabilities by integrating them with encoders from other modalities. In recent years, the
LLM+X framework has been widely adopted in various RAG methods. Notable examples include:
1) KG+LLM approaches, such as RoG, ToG, StructGPT, and KAPING, and 2) GNN+LLM ap-
proaches, including G-Retriever and GNN-RAG. These models have demonstrated strong perfor-
mance in both efficiency and accuracy. Furthermore, we introduce Topo+LLM.

Regarding the integration of topological methods into RAG, it does not significantly increase the
time or computational complexity associated with LLM-based answer generation, as both cellular
complex construction and subcomplex retrieval are implemented during the preprocessing phase.

In contrast to G-Retriever, we use a more complex Multi-dimensional Topological Reasoning
to capture high-dimensional topological structures, which introduces some additional time over-
head. However, the benefits achieved outweigh the costs. To validate this, we conducted experi-
ments using two A6000-48G GPUs with Llama2-7b as the LLM, training on ExplaGraphs and
SceneGraphs. Detailed experimental settings are provided in Appendix C. The results in Table 6
show that, compared to baseline methods, our approach incurs only a slight increase in runtime, yet
significantly improves model performance.

Table 6: Performance and Efficiency Comparison of TopoRAG and G-Retriever on ExplaGraphs
and SceneGraphs Datasets.

Setting Method ExplaGraphs SceneGraphs

Hit Time Accuracy Time

Frozen LLM w/ PT G-Retriever 0.8516 2.6 min/epoch 0.8131 267 min/epoch
TopoRAG 0.8899 3.0 min/epoch 0.8362 300 min/epoch

Tuned LLM G-Retriever w/ LoRA 0.8705 3.0 min/epoch 0.8683 285 min/epoch
TopoRAG w/ LoRA 0.9151 3.3 min/epoch 0.8768 310 min/epoch

H ALGORITHMS

Cellular Representation Lifting Algorithm. We present Algorithm 1, which formally describes
the Cellular Representation Lifting process outlined in Section 4.1. The algorithm takes a textual
graph G and lifts it into a regular cell complex X endowed with feature representations for all its
cellular substructures. The algorithm proceeds in two main phases.

The first phase (Lines 1–15) constructs the 1-skeleton (X(1)) of the complex. It initializes the sets
of 0-cells (X(0)) and 1-cells (X(1)) and their corresponding feature dictionaries (Z0, Z1). For each
vertex v ∈ V , a 0-cell x0

v is instantiated, and its representation z0v is obtained by encoding the
vertex’s text attribute tv using a pre-trained language model (LM). Similarly, for each edge e ∈ E,
a 1-cell x1

e is created, attached to the 0-cells of its endpoints, and its representation z1e is computed
from the edge text te.

The second phase (Lines 16–28) augments the 1-skeleton with 2-cells to capture higher-dimensional
topological information. A spanning tree T of G is computed, whose complement Enon-tree defines
the set of fundamental cycles in the graph. For each non-tree edge e ∈ Enon-tree, the algorithm
identifies the corresponding fundamental cycle by finding the unique path between the endpoints of
e in T and appending e itself (as detailed in the subroutine Algorithm 2). A 2-cell x2

e is then created
and attached to this cycle. The initial representation z2e for the 2-cell is computed by aggregating
(e.g., via mean pooling) the representations of all the 0-cells and 1-cells that constitute its boundary
cycle. This provides an inductive bias that initializes the feature of a higher-dimensional cavity
based on the features of its lower-dimensional boundaries.

Finally, the complete cell complex X is formed by the union of all cells across dimensions (Line 30).
The algorithm returns both the topological structure X and the associated features Z0,Z1,Z2, which
serve as the input for subsequent cellular message-passing networks (Bodnar et al., 2021b). This
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lifting procedure effectively transforms a plain graph into a richer topological domain, explicitly
encoding relational cycles as tangible geometric entities.

Topology-aware Subcomplex Retrieval Algorithm. Algorithm 3 formalizes the Topology-aware
Subcomplex Retrieval process outlined in Section 4.2. The algorithm takes as input the cell complex
X with precomputed cellular embeddings, a textual query xq , and parameters k and C2. It returns
a connected subcomplex X∗ that maximizes the relevance prize under topological constraints. The
procedure operates in three distinct phases.

The first Phase is Query-based Cell Retrieval (Lines 1–7). The algorithm begins by encoding the
query xq into an embedding zq using the language model (LM). It then computes the cosine simi-
larity between zq and the embeddings of all 0-cells and 1-cells. The top-k most similar cells from
each dimension are selected, forming the initial sets of highly relevant candidates, X(0)

k and X
(1)
k .

The second Phase is Multi-dimensional Prize Assignment (Lines 9–26). This phase assigns a prize
value to each cell, quantifying its incentive for inclusion in the final subcomplex. Prizes for the
top-k 0-cells and 1-cells are assigned in descending order based on their similarity ranking (e.g., the
highest-ranked cell receives a prize of k). For a 2-cell x2, its prize is computed inductively as the
sum of the prizes of all its boundary 0-cells and 1-cells, minus a cost penalty cost(x2) = |∂1x2| ·C2

that discourages the selection of overly large faces. This design propagates relevance signals from
lower-dimensional cells to the higher-dimensional structures they define. Finally, the top-k 2-cells
by prize, denoted X

(2)
k , are selected.

The last phase is Prize-Collecting Steiner Subcomplex Extraction (Lines 28–34). The core challenge
is to extract a connected subcomplex that includes high-prize cells while respecting the boundary
consistency constraints (i.e., if a 2-cell is selected, all its boundary cells must also be included). We
model this as a Prize-Collecting Steiner Tree (PCST) problem on a hypergraph representation Ghyper
of the cell complex, where 2-cells are modeled as hyperedges. The set Rterminals consists of the top-k
cells from all dimensions, and the prize function P is defined from the previous phase. Solving
this generalized PCST problem yields a connected subcomplex X∗ that approximates the optimal
trade-off between total collected prize and the cost of the required connecting cells. We employ a
near-linear time approximation algorithm (Hegde et al., 2015) to ensure computational feasibility.

The algorithm’s output, X∗, provides a coherent, query-focused topological summary of the original
complex, which can be directly utilized for downstream tasks such as reasoning or explanation
generation.
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Algorithm 1 Cellular Lifting of Textual Graphs

Require: Textual graph G = (V,E, {tv}v∈V , {te}e∈E), pre-trained language model LM(·).
Ensure: A regular cell complex X with cellular embeddings {z0v}, {z1e}, {z2e}.

1: Step 1: Construct the 1-Skeleton and Compute Initial Embeddings
2: X(0) ← ∅, X(1) ← ∅ {Initialize sets of 0-cells and 1-cells}
3: Z0 ← {}, Z1 ← {} {Initialize dictionaries for embeddings}
4: for v ∈ V do
5: Create a 0-cell x0

v for vertex v
6: X(0) ← X(0) ∪ {x0

v}
7: z0v ← LM(tv) {Encode vertex text attribute}
8: Z0[x0

v]← z0v
9: end for

10: for e = (u, v) ∈ E do
11: Create a 1-cell x1

e attached to x0
u and x0

v

12: X(1) ← X(1) ∪ {x1
e}

13: z1e ← LM(te) {Encode edge text attribute}
14: Z1[x1

e]← z1e
15: end for
16: X(1) ← X(0) ∪X(1) {The 1-skeleton is complete}
17:
18: Step 2: Augment with 2-Cells to Capture Higher-Dimensional Structures
19: X(2) ← ∅
20: Z2 ← {}
21: T ← SpanningTree(G) {e.g., using BFS or DFS}
22: Enon-tree ← E \ T
23: for e ∈ Enon-tree do
24: u, v ← endpoints(e)
25: cycle← FindFundamentalCycle(e, T )
26: {cycle is the unique path from u to v in T plus edge e}
27: Create a 2-cell x2

e
28: Attach x2

e to the 1-skeleton via the attaching map φe : ∂D
2 → cycle

29: X(2) ← X(2) ∪ {x2
e}

30: z2e ← AggregateCycleEmbeddings(cycle,Z0,Z1)
31: {e.g., mean/max pooling of embeddings of all 0/1-cells in the cycle}
32: Z2[x2

e]← z2e
33: end for
34:
35: X ← X(0) ∪X(1) ∪X(2) {The final cell complex}
36:
37: return X,Z0,Z1,Z2

Algorithm 2 Find Fundamental Cycle

Require: Non-tree edge e = (u, v), spanning tree T .
Ensure: An ordered list of 0-cells and 1-cells forming the fundamental cycle.

1: path u to v← GetUniquePathInTree(u, v, T )
2: cycle vertices← path u to v.vertices
3: cycle edges← path u to v.edges
4: cycle edges.append(e) {Add the non-tree edge to complete the cycle}
5:
6: return cycle vertices, cycle edges
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Algorithm 3 Topology-Aware Subcomplex Retrieval

Require: Cell complex X = X(0)∪X(1)∪X(2) with embeddings Z0,Z1,Z2; query xq; parameters
k,C2.

Ensure: A connected, topology-aware subcomplex X∗ ⊆ X .
1: Step 1: Encode Query and Retrieve Top-k Cells
2: zq ← LM(xq) {Encode the query}
3: S0 ← ComputeCosineSimilarity(zq,Z0) {S0 is a list of (cell, score) pairs for all 0-cells}
4: S1 ← ComputeCosineSimilarity(zq,Z1) {S1 is a list of (cell, score) pairs for all 1-cells}
5: X

(0)
k ← ArgTopK(S0, k) {Set of top-k relevant 0-cells}

6: X
(1)
k ← ArgTopK(S1, k) {Set of top-k relevant 1-cells}

7:
8: Step 2: Prize Assignment
9: P ← {} {Initialize a prize dictionary for all cells}

10: // Assign prizes to top-k 0/1-cells based on ranking
11: rank← 0
12: for x0 ∈ X

(0)
k (in descending order of similarity) do

13: P[x0]← k − rank
14: rank← rank + 1
15: end for
16: rank← 0
17: for x1 ∈ X

(1)
k (in descending order of similarity) do

18: P[x1]← k − rank
19: rank← rank + 1
20: end for
21: // Compute prizes for 2-cells based on boundary cells
22: for x2 ∈ X(2) do
23: boundary prize← 0
24: for each x0 ∈ ∂0x

2 do boundary prize← boundary prize + P.get(x0, 0)
25: for each x1 ∈ ∂1x

2 do boundary prize← boundary prize + P.get(x1, 0)
26: cost← |∂1x2| · C2 {Penalize larger faces}
27: P[x2]← boundary prize− cost
28: end for
29: X

(2)
k ← ArgTopK({P[x2] for x2 ∈ X(2)}, k) {Select top-k 2-cells by prize}

30:
31: Step 3: Prize-Collecting Subcomplex Selection
32: V ← X(0) ∪X(1) ∪X(2) {Candidate cells across all dimensions}
33: R← X

(0)
k ∪X

(1)
k ∪X

(2)
k {Top-k cells as prize terminals}

34: // Assign prizes to 0- and 1-cells based on query similarity
35: // Compute 2-cell prizes from boundary consistency with selected cells
36:
37: X∗ ← ApproxPCSTComplex(X,R,P)
38: {Solve generalized PCST over cell complex with multi-dimensional prizes}
39: // Enforce boundary consistency: any 2-cell in X∗ must share boundary with chosen 0-

and 1-cells
40:
41: return X∗
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