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ABSTRACT

Mixed-precision quantization can potentially achieve the optimal tradeoff between
performance and compression rate of deep neural networks, and thus, have been
widely investigated. However, it lacks a systematic method to determine the exact
quantization scheme. Previous methods either examine only a small manually-
designed search space or utilize a cumbersome neural architecture search to explore
the vast search space. These approaches cannot lead to an optimal quantization
scheme efficiently. This work proposes bit-level sparsity quantization (BSQ) to
tackle the mixed-precision quantization from a new angle of inducing bit-level
sparsity. We consider each bit of quantized weights as an independent trainable
variable and introduce a differentiable bit-sparsity regularizer. BSQ can induce
all-zero bits across a group of weight elements and realize the dynamic precision
reduction, leading to a mixed-precision quantization scheme of the original model.
Our method enables the exploration of the full mixed-precision space with a single
gradient-based optimization process, with only one hyperparameter to tradeoff the
performance and compression. BSQ achieves both higher accuracy and higher bit
reduction on various model architectures on the CIFAR-10 and ImageNet datasets
comparing to previous methods.

1 INTRODUCTION

Numerous deep neural network (DNN) models have been designed to tackle real-world problems and
achieved beyond-human performance. DNN models commonly demand extremely high computation
cost and large memory consumption, making the deployment and real-time processing on embedded
and edge devices difficult (Han et al., 2015b; Wen et al., 2016). To address this challenge, model
compression techniques, such as pruning (Han et al., 2015b; Wen et al., 2016; Yang et al., 2020),
factorization (Jaderberg et al., 2014; Zhang et al., 2015) and fixed-point quantization (Zhou et al.,
2016; Wu et al., 2019; Dong et al., 2019), have been extensively studied. Among them, fixed-point
quantization works directly on the data representation by converting weight parameters originally
in the 32-bit floating-point form to low-precision values in a fixed-point format. For a DNN model,
its quantized version requires much less memory for weight storage. Moreover, it can better utilize
fixed-point processing units in mobile and edge devices to run much faster and more efficiently.

Typically, model compression techniques aim to reduce a DNN model size while maintaining its
performance. The two optimization objectives in this tradeoff, however, have a contrary nature: the
performance can be formulated as a differentiable loss function L(W ) w.r.t. the model’s weights
W ; yet the model size, typically measured by the number of non-zero parameters or operations, is
a discrete function determined mainly by the model architecture. To co-optimize the performance
and model size, some previous pruning and factorization methods relax the representation of model
size as a differentiable regularization term R(W ). For example, group Lasso (Wen et al., 2016)
and DeepHoyer (Yang et al., 2020) induce weight sparsity for pruning, and the attractive force
regularizer (Wen et al., 2017) and nuclear norm (Xu et al., 2018) are utilized to induce low rank. The
combined objective L(W ) + αR(W ) can be directly minimized with a gradient-based optimizer for
optimizing the performance and model size simultaneously. Here, the hyperparameter α controls the
strength of the regularization and governs the performance-size tradeoff of the compressed model.
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Unlike for pruning and factorization, there lacks a well-defined differentiable regularization term
that can effectively induce quantization schemes. Early works in quantization mitigate the tradeoff
exploration complexity by applying the same precision to the entire model. This line of research
focuses on improving the accuracy of ultra low-precision DNN models, e.g., quantizing all the weights
to 3 or less bits (Zhou et al., 2016; Zhang et al., 2018), even to 1-bit (Rastegari et al., 2016). These
models commonly incur significant accuracy loss, even after integrating emerging training techniques
like straight-through estimator (Bengio et al., 2013; Zhou et al., 2016), dynamic range scaling (Polino
et al., 2018) and non-linear trainable quantizers (Zhang et al., 2018). As different layers of a DNN
model present different sensitivities with performance, a mixed-precision quantization scheme would
be ideal for the performance-size tradeoff (Dong et al., 2019). There have also been accelerator designs
to support the efficient inference of mixed-precision DNN models (Sharma et al., 2018). However,
to achieve the optimal layer-wise precision configuration, it needs to exhaustively explore the
aforementioned discrete search space, the size of which grows exponentially with the number of layers.
Moreover, the dynamic change of each layer’s precision cannot be formulated into a differentiable
objective, which hinders the efficiency of the design space exploration. Prior studies (Wu et al.,
2019; Wang et al., 2019) utilize neural architecture search (NAS), which suffers from extremely
high searching cost due to the large space of mixed-precision quantization scheme. Recently, Dong
et al. (2019) propose to rank each layer based on the corresponding Hessian information and then
determine the relative precision order of layers based on their ranking. The method, however, still
requires to manually select the precision level for each layer.

Here, we propose to revisit the fixed-point quantization process from a new angle of bit-level sparsity:
decreasing the precision of a fixed-point number can be taken as forcing one or a few bits, most likely
the least significant bit (LSB), to be zero; and reducing the precision of a layer is equivalent to zeroing
out a specific bit of all the weight parameters of the layer. In other words, the precision reduction can
be viewed as increasing the layer-wise bit-level sparsity. By considering the bits of fixed-point DNN
parameters as continuous trainable variables during DNN training, we can utilize a sparsity-inducing
regularizer to explore the bit-level sparsity with gradient-based optimization, dynamically reduce
the layer precision and lead to a series of mixed-precision quantization schemes. More specific, we
propose Bit-level Sparsity Quantization (BSQ) method with the following contributions:

• We propose a gradient based training algorithm for bit-level quantized DNN models. The
algorithm considers each bit of quantized weights as an independent trainable variable and
enables the gradient-based optimization with straight-through estimator (STE).
• We propose a bit-level group Lasso regularizer to dynamically reduce the weight precision

of every layer and therefore induce mixed-precision quantization schemes.
• BSQ uses only one hyperparameter, the strength of the regularizer, to trade-off the model

performance and size, making the exploration more efficient.

This work exclusively focuses on layer-wise mixed-precision quantization, which is the granularity
considered in most previous works. However, the flexibility of BSQ enables it to explore mixed-
precision quantization of any granularity with the same cost regardless of the search space size.

2 RELATED WORKS ON DNN QUANTIZATION

Quantization techniques convert floating-point weight parameters to low-precision fixed-point repre-
sentations. Directly quantizing a pre-trained model inevitably introduces significant accuracy loss. So
many of early research focus on how to finetune quantized models in low-precision configurations. As
the quantized weights adopt discrete values, conventional gradient-based methods that are designed
for continuous space cannot be directly used for training quantized models. To mitigate this problem,
algorithms like DoReFa-Net utilize a straight-through estimator (STE) to approximate the quantized
model training with trainable floating-point parameters (Zhou et al., 2016). As shown in Equation (1),
a floating-point weight element w is kept throughout the entire training process. Along the forward
pass, the STE will quantize w to n-bit fixed-point representation wq , which will be used to compute
the model output and loss L. During the backward pass, the STE will directly pass the gradient w.r.t.
wq onto w, which enables w to be updated with the standard gradient-based optimizer.

Forward: wq =
1

2n − 1
Round[(2n − 1)w]; Backward:

∂L
∂w

=
∂L
∂wq

. (1)
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Early studies revealed that weights of different layers have different dynamic ranges. It is important to
keep the dynamic range of each layer for maintaining the model performance, especially for quantized
models. He et al. (2016b) and Polino et al. (2018) propose to explicitly keep track of the dynamic
range of each layer by scaling all the weight elements in a layer to the range of [0,1] at every training
step, before applying the quantization STE. Other techniques, such as learnable nonlinear quantifier
function (Zhang et al., 2018) and incremental quantization (Zhou et al., 2017), are also useful in
improving the performance of quantized models. However, it is still very difficult to quantize the
entire DNN model to a unified ultra-low precision without incurring significant accuracy loss.

Recent research shows that different layers in a DNN model contribute to the overall performance
in varying extents. Therefore mixed-precision quantization scheme that assigns different precision
to layers (Wu et al., 2019; Dong et al., 2019) presents a better accuracy-compression tradeoff. The
challenge lies in how to determine the quantization scheme, i.e., the precision of each layer, as it
needs to explore a large and discrete search space. Some works design quantization criteria based
on concepts like “noise gain” (Sakr & Shanbhag, 2018; 2019) to constraint the relationship between
each layer’s precision and thus largely reduce the search space, yet those criteria are often heuristic,
preventing these methods to reach ultra-low precision and find the optimal tradeoff point between
model size and accuracy. Other works utilize neural architecture search (NAS). For example, Wang
et al. (2019) consider the precision assignment of each layer as an action and seek for the optimal
design policy via reinforcement learning. Wu et al. (2019) combine all possible design choices into a
“stochastic super net” and approximate the optimal scheme via sampling. However, the cost of NAS
methods scales up quickly as the quantization search space grows exponentially with the number of
layers. Common practices of constraining the search cost include limiting the precision choices or
designing the quantization scheme in a coarse granularity. A recent line of research work attempts to
rank layers based on their importance measured by the sensitivity or Hessian information. Higher
precision will then be assigned to more important layers (Dong et al., 2019). The exact precision of
each layer, however, needs to be manually selected. So these methods cannot adequately explore the
whole search space for the optimal quantization scheme.

3 THE BSQ METHOD

BSQ aims to obtain an optimal mixed-precision quantization scheme through a single-pass training
process of a quantized model. In this section, we first introduce how to convert a DNN model to the
bit representation and propose a gradient-based algorithm for training the resulted bit-level model.
A bit-level group Lasso regularizer is then proposed to induce precision reduction. In the end, we
elaborate the overall training objective of BSQ and the dynamical precision adjustment procedure.

3.1 TRAINING THE BIT REPRESENTATION OF DNN

As illustrated in Figure 1(a), we convert a floating-point weight matrix W of a pretrained network to
its bit representation through a pipeline of scaling, quantization and binary conversion. Similar to the
practice in (He et al., 2016b; Polino et al., 2018), we retain the dynamic range of W by scaling all
the elements to the range of [0, 1] before applying quantization. However, these prior works always
scale the largest element to 1 to fully utilize all the quantized bins at every training step, which
makes the dynamic precision reduction impossible. Instead, our method conducts the scaling only

Figure 1: An example of DNN training under the bit representation with precision n = 3.
(a) Pipeline of converting from the floating-point weight W to the bit representation; (b)
Training the bit-level model weight with STE.
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once, which is right before the bit representation training. Formally, before converting W to its bit
representation, we first extract its dynamic range as W = s ·Ws, where s = max|W | is the scaling
factor and Ws is the scaled weight matrix. The absolute value of any element ws in Ws is within
the range of [0, 1]. Now we apply an n-bit uniform quantization to the absolute value of ws such
as wq = Round[|ws|×(2n − 1)]/(2n − 1). Then wq can be exactly represented by a n-bit binary
number as wq = [

∑n−1
b=0 w

(b)
s 2b]/(2n−1), where w(b)

s denotes the bth bit in the binary representation.
Till this point, W in the floating-point form is replaced with

W ≡ sign(W )� sWq ≡ sign(W )� s

2n − 1

n−1∑
b=0

W (b)
s 2b, (2)

where� denotes the element-wise Hadamard product. We consider the bit representation W (b)
s where

b ∈ [0, n− 1] and the scaling factor s as independent trainable variables in the training process.

Note that W (b)
s is composed of binary values by definition and sign(W ) is a discrete function.

Neither of them can be directly trained with gradient descent. To mitigate the binary constraint of
W

(b)
s , we adopt the STE proposed by Bengio et al. (2013) during the training process. As shown in

Equation (1), STE enables a quantized model to be trained with continuous floating-point weights.
Specifically, the STE for the bit representation training is defined as:

Forward: Wq =
1

2n − 1
Round

[
n−1∑
b=0

W (b)
s 2b

]
; Backward:

∂L
∂W

(b)
s

=
2b

2n − 1

∂L
∂Wq

. (3)

STE relaxes the binary constraint and allows gradient updates for the elements in W (b)
s . As illustrated

in Figure 1(b), during the forward pass, s ·Wq will be used to reconstruct the model weight W
and compute the loss, which demonstrates the performance of the current model after quantization.
The gradient w.r.t. Wq from the back-propagation will be passed through the rounding function and
updated on the continuous values of W (b)

s . The proposed bit representation can therefore be trained
with any gradient-based optimizer.

The proposed bit representation training only leads to minimal computational and run-time memory
overhead comparing to the normal back propagation procedure. From the memory consumption
perspective, the bit representation training treats each bit as separated floating-point trainable variables,
so a N -bit model in bit representation will have N times more parameters and gradients to be stored
comparing to that of the baseline training. Though for actual run-time memory consumption, the
hidden feature between each layer consumes a significantly larger memory than weights and gradients.
As the bit representation does not affect the hidden features, the increase in trainable variables does not
lead to significant increase in run-time memory consumption. From the perspective of computation
cost, note that the gradient w.r.t. each W (b)

s can be computed as the gradient w.r.t. the corresponding
Wq scaled by a power of 2. So under a N -bit scheme there will only be N additional scaling for each
parameter comparing to the normal training. These additional computations are very cheap comparing
to the floating-point operations involved in back propagation. So the proposed bit representation
training only leads to minimal computational overhead comparing to a normal back propagation.

We restrict the value of W (b)
s within [0, 2] throughout the training, so that the corresponding Wq has

the chance to increase or decrease its precision in the “precision adjustment” step, which will be
discussed in Section 3.3. This is enforced by trimming W (b)

s to 0 or 2 if it exceeds the range after a
training step.

To enable the dynamic update of sign(W ) during training, we separate the positive and negative
elements in Ws as Ws = (Wp−Wn) before quantization. Here Wp =Ws�1(Ws ≥ 0) contains all
the positive elements and Wn = −Ws � 1(Ws < 0) includes the absolute value of all the negative
weight elements. Wp and Wn will be respectively converted to W (b)

p and W (b)
n by following the

process in Equation (2), so that W (b)
s = W

(b)
p −W (b)

n . Note that the replacement of W (b)
s with

W
(b)
p −W (b)

n does not introduce any non-differentiable function. Therefore all elements in W (b)
p and

W
(b)
n can take continuous values between [0, 2] and be trained with the bit representation STE in

Equation (3). As such, the original weight matrix W is converted into trainable variables W (b)
p , W (b)

n

and s throughout the BSQ training process.
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3.2 BIT-LEVEL GROUP LASSO

To induce the mixed-precision quantization scheme of a DNN model during training, we propose a
bit-level group Lasso (BGL) regularizer based on the group Lasso (Hastie et al., 2015) and apply it to
W

(b)
p and W (b)

n that are converted from a group of weights W g . The regularizer is defined as:

BGL(W
g) =

n−1∑
b=0

∥∥∥[W (b)
p ;W (b)

n

]∥∥∥
2
, (4)

where W (b)
p and W (b)

n are bit representations converted from W g , and [·; ·] denotes the concatenation
of matrices. BGL could make a certain bit b of all elements in both W (b)

p and W (b)
n zero simultane-

ously. The bit can thus be safely removed for the precision reduction. Note that the granularity of
the quantization scheme induced by BGL is determined by how W g is grouped. Our experiments
organize W g in a layer-wise fashion. So all elements in a layer have the same precision, which
is a common setting in previous mixed-precision quantization work. W g can also be arranged
as any group of weight elements, such as block-wise, filter-wise or even element-wise if needed.
Accordingly, the formulation of the regularizer need to be revised to assist the exploration of the
mixed-precision quantization at the given granularity. The cost for evaluating and optimizing the
regularizer will remain the same under different granularity settings.

3.3 OVERALL TRAINING PROCESS

The overall training process starts with converting each layer of a pretrained floating-point model to
the bit representation with a relatively high initial precision (e.g., 8-bit fixed-point). BSQ training
is then preformed on the achieved bit representation with bit-level group Lasso integrated into
the training objective. Re-quantization steps are conducted periodically to identify the bit-level
sparsity induced by the regularizer and allow dynamic precision adjustment. As the mixed-precision
quantization scheme is finalized, the achieved model is further finetuned for a higher accuracy.

Objective of BSQ training. For higher memory efficiency it is desired to find a mixed-precision
quantization scheme that minimizes the total number of bits in the model. Thus, in BSQ training we
propose to penalize more on the layers with more bits by performing a memory consumption-aware
reweighing to BGL across layers. Specifically, the overall objective of training a L-layer DNN model
with BSQ is formulated as:

L = LCE(W
(1:L)
q ) + α

L∑
l=1

#Para(W l)×#Bit(W l)

#Para(W (1:L))
BGL(W

l). (5)

HereLCE(W
(1:L)
q ) is the original cross entropy loss evaluated with the quantized weightWq acquired

from the STE in Equation (3), α is a hyperparameter controlling the regularization strength, and
#Para(W l) and #Bit(W l) respectively denote the parameter number and precision of layer l.
The loss function in Equation (5) enables a layer-wise adjustment in the regularization strength by
applying a stronger regularization on a layer with higher memory usage.

Re-quantization and precision adjustment. As BSQ trains the bit representation of the model
with floating-point variables, we perform re-quantization to convert W (b)

p and W (b)
n to exact bi-

nary values and identify the all-zero bits that can be removed for precision reduction. The re-
quantization step reconstructs the quantized scaled weight W ′q from W

(b)
p and W (b)

n as: W ′q =

Round
[∑n−1

b=0 W
(b)
p 2b −

∑n−1
b=0 W

(b)
n 2b

]
. As we allow the values of W (b)

p and W (b)
n to be within

[0, 2], the reconstructed W ′q has a maximum absolute value of 2n+1. In this way, W ′q is converted to

a (n+ 1)-bit binary number, where each bit is denoted by W (b)
q . After the re-quantization, we will

adjust the precision of each layer. Specifically, we first check W (b)
q from the MSB down to the LSB

and remove the bits with all zero elements until the first non-zero bit. The scaling factor s of the layer
remains unchanged during this process. A similar check will then be conducted from the LSB up to
the MSB. s needs to be doubled when a bit from the LSB side is removed, as all elements in W ′q are
shifted right for one bit. Assume that the precision adjustment makes the precision of a layer change
from n to n′, the scaling factor will be updated as s′ = s 2

n′
−1

2n−1 . In this way, the bit representations
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Figure 2: Quantization schemes achieved with or without layer-wise regularization reweigh-
ing. The compression rate and the accuracy after finetuning are listed in the legend.

of W before and after the precision adjustment are equivalent, as indicated in Equation (6). The
precision of a n-bit layer may change between 0 and (n+ 1)-bit after the precision adjustment.

W ≡ s

2n − 1

n−1∑
b=0

W (b)
q 2b ≡ s′

2n′ − 1

n′−1∑
b=0

W (b)
q 2b. (6)

As formulated in Equation (5), the regularization strength assigned to each layer will change with
the quantization scheme of the model. The re-quantization and precision adjustment step will be
performed periodically during the training process, with an interval of several training epochs. After
each precision adjustment, we separate the positive elements and negative elements in W ′q to form

the new W
(b)
p and W (b)

n , respectively. The training can then resume with the newly adjusted W (b)
p

and W (b)
n and scaling factor s′. It is worth mentioning that sWq from the forward pass STE remains

unchanged before and after the re-quantization and precision adjustment, so the model performance
and the gradient from the loss LCE will not be affected. The interval between re-quantizations needs
to be carefully chosen: it shall promptly and properly adjust the regularization strength for stable
convergence. The ablation study on re-quantization interval selection is presented in Appendix B.1.

Activation quantization. Since BSQ modifies only the precision of weights but not affecting the
precision of activations, we predetermine the activation precision and fix it throughout the BSQ
training process. The activations are quantized in the same way as proposed by Polino et al. (2018).
For training stability, we use ReLU-6 activation function for layers with 4-bit or above activations,
and use PACT (Choi et al., 2018) for layers with a lower activation precision.

Post-training finetuning. At the end of the BSQ training, we perform a final re-quantization and
precision adjustment to get the final mixed-quantization scheme. The achieved model can be further
finetuned under the obtained precision for improving the overall accuracy. As the quantization
scheme is fixed, we adopt the quantization-aware training method proposed by Polino et al. (2018)
for finetuning in our experiment.

4 ABLATION STUDY

We perform the ablation studies on key design choices of the BSQ algorithm. This section presents
the effectiveness of layer-wise memory consumption-aware regularization reweighing and the model
size-accuracy tradeoff under different regularization strengths. All experiments are conducted with
ResNet-20 models (He et al., 2016a) with 4-bit activation on the CIFAR-10 dataset (Krizhevsky &
Hinton, 2009). Detailed experiment setup and hyperparameter choices can be found in Appendix A.

4.1 EFFECT OF LAYER-WISE REGULARIZATION REWEIGHING

As stated in Equation (5), we propose to apply layer-wise memory consumption-aware reweighing on
the BGL regularizer to penalize more on larger layers during the BSQ training. Figure 2 compares the
quantization scheme and the model performance achieved when performing the BSQ training with or
without such a reweighing term. Here we set the regularization strength α to 5e-3 when training with
the reweighing, and to 2e-3 when training without the reweighing to achieve comparable compression
rates. All the other hyperparameters are kept the same. As shown in the figure, training without
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Figure 3: Layer-wise precision comparison of the quantization schemes achieved under
different regularization strengths.

Table 1: Accuracy-#Bits tradeoff under different regularization strengths. “FT” stands for finetuning.
The last row is achieved by training with quantization schemes achieved by BSQ from scratch.

Strength α 3e-3 5e-3 7e-3 1e-2 2e-2

#Bits per Para / Comp (×) 3.02 / 10.60 2.25 / 14.24 1.66 / 19.24 1.37 / 23.44 0.87 / 36.63
BSQ acc before / after FT (%) 91.30 / 92.60 90.98 / 92.32 90.42 / 91.48 90.35 / 91.16 85.77 / 89.49

Train from scratch acc (%) 91.72 91.45 91.12 89.57 89.14

the reweighing term will lead to over-penalization on earlier layers with fewer parameters, while
later layers with more parameters are not compressed enough. Therefore the achieved quantized
model will have less accuracy even with a smaller compression rate comparing to the model achieved
with layer-wise regularization reweighing. As we only show one pair of comparison here, the
difference between BSQ training with or without the reweighing term is consistent when varying the
regularization strength α. Additional results with other α values are shown in Appendix B.2.

4.2 ACCURACY-#BITS TRADEOFF UNDER DIFFERENT REGULARIZATION STRENGTHS

We fix all the other hyperparameters while varying only the regularization strength α from 3e-
3 to 2e-2, to control the tradeoff between the model size and accuracy achieved by BSQ. The
quantization schemes achieved by running BSQ with different α’s are shown in Figure 3, and the
detailed comparison on the compression rate comparing to the 32-bit floating point model (denoted
as “Comp”) and the validation accuracy (denoted as “Acc”) is summarized in Table 1. As shown in
Figure 3, the relative ranking of the precision assignment is mostly consistent under different α’s,
which is consistent with the previous observation that more important layers should be assigned
with higher precision. This effect is further illustrated in Appendix B.3, where we compare the
quantization scheme achieved by BSQ with the layer importance measured in HAWQ (Dong et al.,
2019). Furthermore, as α increases, the overall bit reduction increases with the cost of a small
performance loss. This tradeoff is also observed on models trained with 2-bit or 3-bit activation as we
show their quantization schemes and performances in Appendix B.4. Note that some layers achieve
0-bit precision under large regularization strength, indicating all the weights become zero and the
layer can be skipped. This is possible as the shortcut connection existing in the ResNet architecture
enables the pass of information even if the weights are all zero in some layers. We also note that
BSQ not only finds the desired mixed-precision quantization scheme, but also provides a model with
higher performance under the same quantization scheme. As shown in Table 1, when training a model
with the same quantization scheme as achieved by BSQ using the DoReFa-Net algorithm (Zhou et al.,
2016) from scratch, the resulted accuracy is always lower than the BSQ model after finetuning.

5 EXPERIMENTAL RESULTS

In this section we compare BSQ with previous state-of-the-art methods. Here, ResNet-20 models are
used for the comparison on the CIFAR-10 dataset, and ResNet-50 and Inception-V3 models (Szegedy
et al., 2016) are utilized for the experiments on the ImageNet dataset (Russakovsky et al., 2015). The
hyperparameters used for BSQ training and finetuning are listed in Appendix A. All the compression
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Table 2: Quantization results of ResNet-20 models on the CIFAR-10 dataset. BSQ is compared with
DoReFa-Net (Zhou et al., 2016), PACT (Choi et al., 2018), LQ-Net (Zhang et al., 2018), DNAS (Wu
et al., 2019) and HAWQ (Dong et al., 2019). “MP” denotes mixed-precision quantization.

Benchmarks BSQ

Act. Prec. Method Weight Prec. Comp (×) Acc (%) α Comp (×) Acc (%)

32-bit Baseline 32 1.00 92.62
LQ-Nets 3 10.67 92.00 5e-3 14.24 92.77
DNAS MP 11.60 92.72 7e-3 19.24 91.87

LQ-Nets 2 16.00 91.80

4-bit HAWQ MP 13.11 92.22 5e-3 14.24 92.32

3-bit LQ-Nets 3 10.67 91.60 2e-3 11.04 92.16
PACT 3 10.67 91.10 5e-3 16.37 91.72

DoReFa 3 10.67 89.90

2-bit LQ-Nets 2 16.00 90.20
PACT 2 16.00 89.70 5e-3 18.85 90.19

DoReFa 2 16.00 88.20

Table 3: Quantization results of ResNet-50 and Inception-V3 models on the ImageNet dataset. BSQ
is compared with DoReFa-Net (Zhou et al., 2016), PACT (Choi et al., 2018), LSQ (Esser et al., 2019),
LQ-Net (Zhang et al., 2018), Deep Compression (DC) (Han et al., 2015a), Integer (Jacob et al., 2018),
RVQ (Park et al., 2018), HAQ (Wang et al., 2019) and HAWQ (Dong et al., 2019).

ResNet-50 Inception-V3

Method Prec. Comp (×) Top1 (%) Method Prec. Comp (×) Top1 (%)

Baseline 32 1.00 76.13 Baseline 32 1.00 77.21

DoReFa 3 10.67 69.90 Integer 8 4.00 75.40
PACT 3 10.67 75.30 Integer 7 4.57 75.00

LQ-Nets 3 10.67 74.20 RVQ MP 10.67 74.14
DC 3 10.41 75.10 HAWQ MP 12.04 75.52

HAQ MP 10.57 75.30
LSQ 3 10.67 75.80

BSQ 5e-3 MP 11.90 75.29 BSQ 1e-2 MP 11.38 76.60
BSQ 7e-3 MP 13.90 75.16 BSQ 2e-2 MP 12.89 75.90

rates reported in Table 2 and Table 3 are compared to the 32-bit floating point model, and all the
accuracy reported is the testing accuracy evaluated on models after finetuning.

Table 2 reports the quantization results of ResNet-20 models on the CIFAR-10 dataset. Here we
set the activation of the first convolutional layer and the final FC layer to 8 bits while all the other
activations to 4, 3 or 2 bits respectively to match the settings of previous methods. The reported 32-bit
activation model performance is achieved by finetuning the 4-bit activation model under full precision
activation. The exact BSQ quantization schemes of the 4-bit activation models are listed in Figure 3,
while those of the 2-bit and 3-bit activation models can be found in Appendix B.4. Comparing to
previous mixed-precision quantization methods, the model obtained by BSQ with 4-bit activation and
α = 5e-3 has slightly higher accuracy as the model achieved by HAWQ (Dong et al., 2019), but a
higher compression rate (14.24× vs. 13.11×). The same model with 32-bit activation obtains 23%
more compression rate with the same accuracy as the model found by DNAS (Wu et al., 2019), with
a much less training cost as our method does not involve the costly neural architecture search. The
advantage of BSQ is even larger comparing to single-precision quantization methods (Zhou et al.,
2016; Choi et al., 2018; Zhang et al., 2018), as BSQ achieves both higher compression rate and higher
accuracy comparing to all methods with the same activation precision.

The results of BSQ and previous quantization methods on the ImageNet dataset are summarized in
Table 3. The exact BSQ quantization schemes can be found in Appendix C. For ResNet models, the
activation of the first and the final layer are set to 8 bits while all the other activations are set to 4
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bits. For Inception-V3 models the activation of all the layers are set to 6 bits. On ResNet-50 models,
BSQ with α = 5e-3 achieves the same top-1 accuracy as PACT (Choi et al., 2018) and 0.5% less
top-1 accuracy as the best available method LSQ (Esser et al., 2019) with a higher compression rate
(11.90× vs. 10.67×), showing competitive accuracy-compression tradeoff. BSQ can further increase
the compression rate of ResNet-50 to 13.90× with α = 7e-3, with only 0.13% top-1 accuracy loss
over the “5e-3” model. On Inception-V3 models, BSQ with α = 2e-2 achieves both higher accuracy
(75.90% vs. 75.52%) and higher compression rate (12.89× vs 12.04×) comparing to the best previous
method HAWQ (Dong et al., 2019). Adopting a smaller α = 1e-2 makes BSQ to achieve 0.7%
accuracy improvement trading off ∼10% less compression rate comparing to the “2e-2” model.

6 CONCLUSIONS

In this work, we propose BSQ, which fully explores the accuracy-model size tradeoff of DNN’s
mixed-precision quantization schemes with a differentiable training algorithm using DNN’s bit
representation as trainable variables. A bit-level group Lasso regularizer with memory consumption-
aware layer-wise reweighing is applied to induce bit-level sparsity, which leads to the dynamic
adjustment of each layer’s precision and finally a mixed-precision quantization scheme through a
single-pass gradient-based training process. This enables BSQ to dynamically produce a series of
quantization schemes trading off accuracy and model size and provides models with higher accuracy
comparing to training from scratch under the same quantization scheme. We apply BSQ in training
ResNet-20 models on the CIFAR-10 dataset and training ResNet-50 and Inception-V3 models on the
ImageNet dataset. In all the experiments, BSQ demonstrates the ability to reach both a better accuracy
and a higher compression rate comparing to previous quantization methods. Our results prove that
BSQ can successfully fill in the gap of inducing a mixed-precision quantization scheme with a
differentiable regularizer, so as to effectively explore the tradeoff between accuracy and compression
rate for finding DNN models with both higher accuracy and fewer bits.

ACKNOWLEDGMENTS

This work is supported in part by NSF CCF-1910299 and NSF CNS-1822085.

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 293–302, 2019.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. In Advances in neural information processing systems, pp. 1135–1143, 2015b.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the lasso and
generalizations. CRC press, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Qinyao He, He Wen, Shuchang Zhou, Yuxin Wu, Cong Yao, Xinyu Zhou, and Yuheng Zou. Effective quantization
methods for recurrent neural networks. arXiv preprint arXiv:1611.10176, 2016b.

9



Published as a conference paper at ICLR 2021

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2704–2713, 2018.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks with low
rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization for training and inference of neural
networks. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 580–595, 2018.

A. Polino, R. Pascanu, and D. Alistarh. Model compression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. In European conference on computer vision, pp. 525–542.
Springer, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Charbel Sakr and Naresh Shanbhag. An analytical method to determine minimum per-layer precision of deep
neural networks. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1090–1094. IEEE, 2018.

Charbel Sakr and Naresh Shanbhag. Per-tensor fixed-point quantization of the back-propagation algorithm.
In International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rkxaNjA9Ym.

Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra, and Hadi Esmaeilzadeh.
Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural network. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 764–775. IEEE,
2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826, 2016.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quantization with
mixed precision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8612–8620, 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. In Advances in neural information processing systems, pp. 2074–2082, 2016.

Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Coordinating filters for faster deep
neural networks. In Proceedings of the IEEE International Conference on Computer Vision, pp. 658–666,
2017.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,
Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
10734–10742, 2019.

Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai
Xiong. Trained rank pruning for efficient deep neural networks. arXiv preprint arXiv:1812.02402, 2018.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable scale-
invariant sparsity measures. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rylBK34FDS.

10

https://openreview.net/forum?id=rkxaNjA9Ym
https://openreview.net/forum?id=rkxaNjA9Ym
https://openreview.net/forum?id=rylBK34FDS
https://openreview.net/forum?id=rylBK34FDS


Published as a conference paper at ICLR 2021

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceedings of the European conference on computer vision
(ECCV), pp. 365–382, 2018.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional networks
for classification and detection. IEEE transactions on pattern analysis and machine intelligence, 38(10):
1943–1955, 2015.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

11



Published as a conference paper at ICLR 2021

A HYPERPARAMETER CHOICES IN THE EXPERIMENTS

A.1 CIFAR-10 EXPERIMENTS

We use ResNet-20 models on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) to do all of our
ablation studies and evaluate the performance of BSQ. The CIFAR-10 dataset can be directly accessed
through the dataset API provided in the “torchvision” python package. We do not change the splitting
between the training and the test set. Standard preprocessing procedures, including random crop
with a padding of 4, random horizontal flip and normalization, are used on the training set to train
the model. The validation set is normalized with the same mean and variance as the training set.
We implemented ResNet-20 models following the description in (He et al., 2016a), and pretrain the
model for 350 epochs. The learning rate is set to 0.1 initially, and decayed by 0.1 at epoch 150,
250 and 325. The weights of all the layers except the batch normalization are then quantized to
8-bit before the BSQ training. The batch normalization layers are kept in the floating-point format
throughout the training process. Similar to previous quantization works, we also apply the activation
quantization during the training. For 4-bit or above activation precision we replace all the ReLU
activation function in the model with the ReLU6 activation function. For lower activation precision
we use the trainable PACT activation (Choi et al., 2018) with weight decay 0.0001. These changes
will help achieving higher accuracy and better training stability when the activation is quantized as it
eliminates extremely large activation values. As BSQ does not consider activation quantization as an
objective, we fix the activation precision throughout the BSQ training and the finetuning process.

We start the BSQ training with the 8-bit quantized pretrained model following the process described
in Section 3.3. The BSQ training is done for 350 epochs, with the first 250 epochs using learning
rate 0.1 and the rest using learning rate 0.01. Unless otherwise specified, the re-quantization and
precision adjustment is done every 100 epochs, as well as after the BSQ training is finished to adjust
and finalize the quantization scheme. Different regularization strengths α are tried to explore the
tradeoff between accuracy and compression rate. The exact α used for each set of experiment is
reported alongside the results in the main article. For comparing with previous methods, we further
finetune the achieved mixed-precision model with the DoReFa-Net algorithm (Zhou et al., 2016)
while fixing the quantization scheme. The finetuning is performed for 300 epochs with an initial
learning rate 0.01 and the learning rate decay by 0.1 at epoch 150 and 250. The “train from scratch”
accuracy reported in Table 1 is achieved by first quantizing a pretrained floating-point model to the
mixed precision quantization scheme achieved by BSQ, then performing DoReFa-Net quantization
aware training on the model. The training is done for 350 epochs, with an initial learning rate 0.1 and
the learning rate decay by 0.1 at epoch 150, 250 and 325. All the training tasks are optimized with
the SGD optimizer (Sutskever et al., 2013) with momentum 0.9 and weight decay 0.0001, and the
batch size is set to 128. All the training processes are done on a single TITAN XP GPU.

A.2 IMAGENET EXPERIMENTS

The ImageNet dataset is used to further compare BSQ with previous methods in Table 3. The
ImageNet dataset is a large-scale color-image dataset containing 1.2 million images of 1,000
categories (Russakovsky et al., 2015), which has long been utilized as an important bench-
mark on image classification problems. In this paper, we use the “ILSVRC2012” version of
the dataset, which can be found at http://www.image-net.org/challenges/LSVRC/
2012/nonpub-downloads. We use all the data in the provided training set to train our model,
and use the provided validation set to evaluate our model and report the testing accuracy. We follow
the data reading and preprocessing pipeline suggested by the official PyTorch ImageNet example.
For training images, we first perform the random sized crop on the training images with the desired
input size, then apply random horizontal flipping and finally normalize them before feeding them into
the network. We use an input size of 224× 224 for experiments on the ResNet-50, and use an size
of 299× 299 for the Inception-V3 experiments. Validation images are resized then center cropped
to the desired input size and normalized before used for testing. For both the ResNet-50 and the
Inception-V3 model, the model architecture and the pretrained model provided in the “torchvision”
package are directly utilized. The first convolutional layer of the ResNet-50 model and the first
5 conventional layers of the Inception-V3 model are quantized to 8-bit, while all the other layers
are quantized to 6-bits before the BSQ training. Similar to the CIFAR-10 experiments, the batch
normalization layers are kept as floating-point.
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Figure 4: Range of testing accuracy and bit reduction rate achieved from 5 repeated runs
with different random seeds. Solid line links the average performance, error bar marks the
maximal and minimal performance achieved with each set of hyperparameters.

We start the BSQ training with the quantized pretrained model. For both ResNet-50 and Inception-V3
models, the BSQ training is done for 90 epochs, with the first 30 epochs using learning rate 0.01
and the rest using learning rate 0.001. The re-quantization interval is set to 10 epochs for all the
ImageNet experiments. The regularization strength α used is reported alongside the results in Table 3.
The model after BSQ training is further finetuned with DoReFa-Net for 90 epochs, with the initial
learning rate 0.001 and a learning rate decay by 0.1 after 30 epochs. All the models are optimized
with the SGD optimizer with momentum 0.9 and weight decay 0.0001, and the batch size is set as
256 for all the experiments. Two TITAN RTX GPUs are used in parallel for the BSQ training and
finetuning of both ResNet-50 and Inception-V3 models.

B ADDITIONAL ABLATION STUDY RESULTS

B.1 CHOICE OF RE-QUANTIZATION INTERVAL

We propose the layer-wise regularization reweighing in Section 3.3 and show its importance in
Section 4.1. This reweighing can be more effective if we adjust the precision of each layer reg-
ularly throughout the BSQ training routine. The precision adjustment is done through periodic
re-quantization. From the one hand, a smaller re-quantization interval would help the precision to be
adjusted in-time. From the other hand, it may cause the training unstable due to the frequent change
in bit representation and regularizer values. So here we gradually increase the re-quantization interval
to find the best choice that can reach high and stable performance. Figure 4 demonstrates the stability
and performance under re-quantization intervals 20, 50, 100 and compare them with the performance
achieved without re-quantization during the training. Each point in the figure corresponds to the
averaged compression rate and accuracy after 5-time repeated BSQ training with a fixed regularization
strength α but with different random seeds. The observation in the figure supports our analysis that
as re-quantization is important to reach a better accuracy-# bits tradeoff, applying it too frequent will
make the training unstable and hinders the overall performance. Comparing to not performing the
re-quantization and applying it every 20 epochs, re-quantizing every 50 or 100 epochs yields similarly
better tradeoff between accuracy and compression rate. Re-quantization interval 100 leads to a higher
accuracy in a wider range of compression rate comparing to the Int 50 model, and the performance is
more stable throughout the repeated trails. Therefore in all the other CIFAR-10 experiments we set
the re-quantization interval to 100 epochs.

B.2 ADDITIONAL RESULTS ON REGULARIZATION REWEIGHING

Figure 5 and Figure 6 compares the quantization scheme and the model performance achieved when
performing the BSQ training with or without the memory consumption-aware reweighing of the
bit-level group Lasso regularizer under additional choices of regularization strength α. The α used for
each set of experiment are chosen so that comparable compression rates are achieved with or without
reweighing. The α used are listed in the caption of the figures. All the other hyperparameters are kept
the same. From both figures we can observe a consistent trend that training without the reweighing
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Figure 5: Quantization schemes achieved with or without layer-wise regularization reweigh-
ing. The compression rate and the accuracy after finetuning are listed in the legend.
α =6e-3 with reweighing and α =3e-3 without reweighing.

Figure 6: Quantization schemes achieved with or without layer-wise regularization reweigh-
ing. The compression rate and the accuracy after finetuning are listed in the legend.
α =0.015 with reweighing and α =5e-3 without reweighing.

term will lead to less precision assigned to earlier layers with fewer parameters, while later layers
with more parameters are not compressed enough. Therefore the achieved quantized model will
have less accuracy and smaller compression rate comparing to the model achieved with layer-wise
regularization reweighing. This observation is consistent with the results shown in Section 4.1. All
these results show that the memory consumption-aware reweighing proposed in BSQ training is
crucial for generating models with both higher compression rate and higher accuracy.

B.3 QUANTIZATION SCHEME COMPARISON WITH HAWQ

As discussed in Section 4.2 and shown in Figure 3, for the same model architecture the relative
ranking of the precision assignment by BSQ is mostly consistent under different α’s. Here we
compare quantization schemes achieved by BSQ with the “layer importance ranking” measured
in HAWQ (Dong et al., 2019) to further analyze this consistency. HAWQ proposes to rank all the
layers in the model with an importance score Si = λi/ni, where λi denotes the top eigenvalue of
the Hessian matrix of layer i, and ni represents the number of parameters in layer i. A layer with a
higher Si will be assigned with higher precision in the mixed-precision quantization scheme. The
quantization schemes achieved by BSQ and HAWQ are compared in Figure 7, where the black dotted

Figure 7: Layer-wise precision comparison between the quantization schemes achieved
with BSQ and the scheme achieved with HAWQ (Dong et al., 2019) on the ResNet-20
model.
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Figure 8: Layer-wise precision comparison of the quantization schemes achieved under
different regularization strengths with 2-bit activation.

Table 4: Accuracy-#Bits tradeoff with 2-bit activation. “FT” stands for finetuning.

Strength α 1e-3 2e-3 3e-3 5e-3

#Bits per Para / Comp (×) 3.77 / 8.48 2.86 / 11.20 2.26 / 14.13 1.70 / 18.85
BSQ acc before / after FT (%) 91.03 / 91.21 90.19 / 90.70 89.54 / 90.39 88.13 / 90.19

line shows the HAWQ scheme while the color solid lines demonstrate the schemes achieved by BSQ
under different α. It can be observed that the relative ranking of BSQ’s precision is consistent with
the ranking of precision in HAWQ, which to some extent shows that BSQ can dynamically identify
the important layers during the training and assign higher precision to them. Note that HAWQ can
only come up with the precision ranking of each layer, while the exact precision is designed manually.
BSQ on the other hand is able to explicitly assign the precision to each layer during a single training
process, and can dynamically tradeoff model size and accuracy by only changing α. Thus BSQ can
easily find better tradeoff points with both higher accuracy and higher compression rate comparing to
HAWQ and other quantization methods, as discussed in Section 5.

B.4 MODELS ACHIEVED UNDER DIFFERENT ACTIVATION PRECISION

As we discuss the BSQ quantization schemes and model performances under 4-bit activation in
Figure 3 and Table 1, here we show the tradeoff between model size and accuracy under different
regularization strength α with 2-bit activation in Figure 8 and Table 4, as well as those with 3-bit
activation in Figure 9 and Table 5. In both cases we observe that the relative ranking of the precision
assignment is mostly consistent under different α’s. As α increases, less bits are assigned to each
layer, leading to increasing overall bit reduction with the cost of a small performance loss. This
tradeoff is consistent with our previous observations on the 4-bit activation models .

C DETAILED QUANTIZATION SCHEMES FOR IMAGENET EXPERIMENTS

The quantization schemes of the reported ResNet-50 and Inception-V3 models can be found in
Table 6 and Table 7 respectively.

Figure 9: Layer-wise precision comparison of the quantization schemes achieved under
different regularization strengths with 3-bit activation.
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Table 5: Accuracy-#Bits tradeoff with 3-bit activation. “FT” stands for finetuning.
Strength α 2e-3 5e-3 8e-3 1e-2

#Bits per Para / Comp (×) 2.90 / 11.04 1.95 / 16.37 1.39 / 23.04 1.28 / 25.06
BSQ acc before / after FT (%) 90.45 / 92.16 90.44 / 91.72 89.01 / 90.93 88.41 / 90.51

Table 6: Quantization schemes of ResNet-50 models on ImageNet dataset achieved by BSQ in Table 3.
The scheme on the left is achieved with α = 5e-3 and the one on the right is achieved with α = 7e-3.
Except the first row for the leading convolutional layer and the last row for the FC layer, each row in
the table reports the precision assigned to the 3 layers in a residual block, with layer 1-3 listed from
left to right.

BSQ 5e-3 BSQ 7e-3

Conv 1 7 7

Block 1-0 7 6 6 7 6 6
Block 1-1 6 6 6 6 6 6
Block 1-2 6 6 6 6 5 6

Block 2-0 4 3 4 4 3 4
Block 2-1 4 4 4 4 3 4
Block 2-2 4 4 4 4 3 4
Block 2-3 4 3 4 3 3 4

Block 3-0 4 3 3 4 3 3
Block 3-1 3 3 4 3 3 3
Block 3-2 3 3 3 3 3 3
Block 3-3 3 3 3 3 2 3
Block 3-4 3 3 3 3 3 3
Block 3-5 3 3 3 3 3 3

Block 4-0 3 2 2 3 2 2
Block 4-1 2 2 3 2 2 2
Block 4-2 2 3 3 2 2 2

FC 3 2

Table 7: Quantization schemes of Inception-V3 model on ImageNet dataset achieved by BSQ in Ta-
ble 3. The scheme on the left is achieved with α = 1e-2 and the one on the right is achieved with α =
2e-2. Except for the first 5 convolutional layers and the final FC layer, each row in the table reports
the precision assigned to the layers within the inception block. The order from left to right follows the
parameter definition order provided in the torchvision package implementation (https://github.
com/pytorch/vision/blob/master/torchvision/models/inception.py).

BSQ 1e-2 BSQ 2e-2

Conv 1a 8 8
Conv 2a 7 7
Conv 2b 6 6
Conv 3b 8 8
Conv 4a 5 4

Mixed 5b 4 4 4 4 4 3 4 4 4 3 4 3 3 4
Mixed 5c 4 4 3 4 3 3 4 4 4 3 4 3 3 4
Mixed 5d 4 4 4 4 4 3 4 4 4 3 4 3 3 4

Mixed 6a 2 4 4 3 2 4 3 3
Mixed 6b 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Mixed 6c 4 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3
Mixed 6d 5 3 3 3 4 3 3 3 3 3 5 3 3 3 4 3 3 3 2 3
Mixed 6e 5 4 3 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 3

Mixed 7a 3 3 4 3 3 2 3 3 3 3 3 2
Mixed 7b 2 3 3 3 2 2 3 2 3 2 2 3 3 2 1 2 2 2
Mixed 7c 2 2 3 3 3 2 3 3 2 2 2 3 3 2 2 3 3 2

FC 3 3
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