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Abstract
A distribution shift can have fundamental conse-
quences such as signaling a change in the operat-
ing environment or significantly reducing the ac-
curacy of downstream models. Thus, understand-
ing distribution shifts is critical for examining
and hopefully mitigating the effect of such a shift.
Most prior work focuses on merely detecting if a
shift has occurred and assumes any detected shift
can be understood and handled appropriately by
a human operator. We hope to aid in these man-
ual mitigation tasks by explaining the distribution
shift using interpretable transportation maps from
the original distribution to the shifted one. We
derive our interpretable mappings from a relax-
ation of optimal transport, where the candidate
mappings are restricted to a set of interpretable
mappings. We then inspect multiple quintessen-
tial use-cases of distribution shift in real-world
tabular, text, and image datasets to showcase how
our explanatory mappings provide a better bal-
ance between detail and interpretability than base-
line explanations by both visual inspection and
our PercentExplained metric.

1. Introduction
Most real-world environments are constantly changing, and
in many situations, understanding how a specific operating
environment has changed is crucial to making decisions
respective to such a change. Such a change might be due to
a new data distribution seen in deployment which causes a
machine-learning model to begin to fail. Another example
is a decrease in monthly sales data which could be due to
a temporary supply chain issue in distributing a product or
could mark a shift in consumer preferences. When these
changes are encountered, the burden is often placed on a
human operator to investigate the shift and determine the
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appropriate reaction, if any, that needs to be taken. In this
work, our goal is to aid these operators in providing an
explanation of such a change.

This ubiquitous phenomenon of having a difference between
related distributions is known as distribution shift. Much
prior work focuses on detecting distribution shifts; however,
there is little prior work that looks into understanding a
detected distribution shift. As it is usually solely up to an
operator investigating a flagged distribution shift to decide
what to do next, understanding the shift is critical for the
operator to more efficiently mitigate any harmful effects
of the distribution shift. Due to the fact that there are no
cohesive methods for understanding distribution shifts, as
well as, the potential high complexity of distribution shifts
(e.g., (Koh et al., 2021)), this important manual investiga-
tion task can be daunting. The current de facto standard
in analyzing a shift in tabular data is to look at how the
mean of the original, source, distribution shifted to the new,
target, distribution. However, this simple explanation can
miss crucial shift information due to being a coarse sum-
mary (e.g., Figure 2) or, in high-dimensional regimes, can
be uninterpretable. Thus, there is a need for methods that
can automatically provide detailed, yet interpretable, infor-
mation about a detected shift which ultimately can lead to
actionable insights about the shift.

Therefore, we propose a novel framework for explaining dis-
tribution shifts, such as showing how features have changed
or how groups within the distributions have shifted. Since a
distribution shift can be seen as a movement from a source
distribution x ∼ Psrc to a target distribution y ∼ Ptgt, we
define a distribution shift explanation as a transport map
T (x) which maps a point in our source distribution onto
a point in our target distribution. For example, under this
framework, the typical distribution shift explanation via
mean shift can be written as T (x) = x+ (µy − µx). Intu-
itively, these transport maps can be thought of as a functional
approximation of how the source distribution could have
moved in a distribution space to become our target distribu-
tion. However, without making assumptions on the type of
shift, there exist many possible mappings that explain the
shift (see subsection A.1 for examples). Thus, we leverage
prior optimal transport work to define an ideal distribution
shift explanation and develop practical algorithms for find-
ing and validating such maps.
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Figure 1: An overall look at our approach to explaining distribution shifts, where given a source Psrc and shifted Ptgt dataset
pair, a user can choose to explain the distribution shift using k-sparse maps (which are best suited for high dimensional or
feature-wise complex data), k-cluster maps (for tracking how heterogeneous groups change across the shift), or distribution
translation maps (for data which has uninterpretable raw features such as images). For details on the results seen in the three
boxes, please see experiments in section 5 and Appendix C.

We summarize our contributions as follows:

• In section 3, we define intrinsically interpretable transport
maps by constraining a relaxed form of the optimal trans-
port problem to only search over a set of interpretable
mappings and suggest possible interpretable sets. Also,
we suggest methods for explaining image-based shifts
such as distributional counterfactual examples.

• In section 4, we develop practical methods and a Percent-
Explained metric for finding intrinsically interpretable
mappings which allow us to adjust the interpretability of
an explanation to fit the needs of a situation.

• In section 5, we show empirical results on real-world
tabular, text, and image-based datasets demonstrating how
our explanations can aid an operator in understanding how
a distribution has shifted.

2. Related Works
The characterization of the problem of distribution shift has
been extensively studied (Quiñonero-Candela et al., 2009;
Storkey, 2009; Moreno-Torres et al., 2012) via breaking
down a joint distribution P (x, y) of features x and outputs
y, into conditional factorizations such as P (y|x)P (x) or
P (x|y)P (y). For covariate shift (Sugiyama et al., 2007) the
P (x) marginal differs from source to target, but the output
conditional P (y|x) the same, while label shift (also known
as prior probability shift) (Zhang et al., 2013; Lipton et al.,
2018) is when the P (y) marginals differ from source to
target, but the full-feature conditional P (x|y) remains the
same. In this work, we refer to general problem distribution
shift, i.e. a shift in the joint distribution (with no distinction
between y and x), and leave applications of explaining

specific sub-genres of distribution shift to future work.

As far as we are aware, this is the first work specifically
tackling explaining distribution shifts, thus there are no ac-
cepted methods, baselines, or metrics for distribution shift
explanations. However, there are distinct works that can
be applied to explain distribution shifts. For example, one
could use feature attribution methods (Saarela & Jauhiainen,
2021; Molnar, 2020) on a domain/distribution classifier (e.g.,
Shanbhag et al. (2021) uses Shapley values (Shapley, 1997)
to explain how changing input feature distributions affect
a classifier’s behavior), or once could find samples which
are most illustrative of the differences between distribu-
tions (Brockmeier et al., 2021). Additionally, one could
use counterfactual generation methods (Karras et al., 2019;
Sauer & Geiger, 2021; Pawelczyk et al., 2020) and apply
them for “distributional counterfactuals” which would show
what a sample from Ptgt would have looked like if it in-
stead came from Psrc (e.g., Pawelczyk et al. (2020) uses a
classifier-guided VAE to generate class counterfactuals on
tabular data). We explore this distributional counterfactual
explanation approach in subsection 3.4.

A sister field is that of detecting distribution shifts. This is
commonly done using methods such as statistical hypothesis
testing of the input features (Nelson, 2003; Rabanser et al.,
2018; Quiñonero-Candela et al., 2009), training a domain
classifier to test between source and non-source domain
samples (Lipton et al., 2018), etc. In Kulinski et al. (2020);
Budhathoki et al. (2021), the authors attempt to provide
more information beyond the binary “has a shift occurred?”
via localizing a shift to a subset of features or causal mecha-
nisms. Kulinski et al. (2020) does this by introducing the
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notion of Feature Shift, which first detects if a shift has
occurred and if so, localizes that shift to a specific subset
of features that have shifted from source to target. In Bud-
hathoki et al. (2021), the authors take a causal approach via
individually factoring the source and target distributions into
a product of their causal mechanisms (i.e. a variable condi-
tioned on its parents) using a shared causal graph, which is
assumed to be known a priori. Then, the authors “replace” a
subset of causal mechanisms from Psrc with Ptgt, and mea-
sure divergence from Psrc (i.e. measuring how much the
subset change affects the source distribution). Both of these
methods are still focused on detecting distribution shifts
(via identifying shifted causal mechanisms or feature-level
shifts), unlike explanatory mappings which help explain
how the data has shifted.

3. Explaining Shifts via Transport Maps
The underlying assumption of distribution shift is that there
exists a relationship between the source and target distribu-
tions. From a distributional standpoint, we can view distri-
bution shift as a movement, or transportation, of samples
from the source distribution Psrc to the target distribution
Ptgt. Thus, we can capture this relationship between the
distributions via a transport map T from the source distri-
bution to the target, i.e., if x ∼ Psrc, then T (x) ∼ Ptgt. If
this mapping is understandable to an operator investigating
a distribution shift, this can serve as an explanation to the
operator on what changed between the environments; thus
allowing for more effective reactions to the shift. Therefore,
in this work, we define a distribution shift explanation as:
finding an interpretable transport map T which approxi-
mately maps a source distribution Psrc onto a target distri-
bution Ptgt such that T♯Psrc ≈ Ptgt. Similar to ML model
interpretability (Molnar, 2020), an interpretable map can ei-
ther be one that is intrinsically interpretable (subsection 3.1)
or a mapping that is explained via post-hoc methods such
as sets of input-output pairs (subsection 3.4).

3.1. Intrinsically Interpretable Transportation Maps
To find such a mapping between distributions, it is natural to
look to Optimal Transport (OT) and its extensive prior work
in this field (Cuturi, 2013; Arjovsky et al., 2017; Torres
et al., 2021; Peyré & Cuturi, 2019). An OT mapping given
a transportation cost function c is a method of optimally
moving points from one distribution to align with another
distribution and is defined as:
TOT := argmin

T
EPsrc [c(x, T (x))] s.t. T♯Psrc = Ptgt

where T♯Psrc is the pushforward operator that can be viewed
as applying T to all points in Psrc, and T♯Psrc = Ptgt

is the marginal constraint, which means the pushforward
distribution must match the target distribution. OT is a
natural starting point for shift explanations as it allows for a
rich geometric structure on the space of distributions, and

by finding a mapping that minimizes a transport cost we are
forcing our mapping to retain as much information about
the original x samples when aligning Psrc and Ptgt. For
more details about OT, please see (Villani, 2009; Peyré &
Cuturi, 2019).

However, since OT considers all possible mappings which
satisfy the marginal constraint, this means the resulting TOT

can be arbitrarily complex and thus possibly uninterpretable
as a shift explanation. We can alleviate this by restricting the
candidate transport maps to belong to a set of user-defined
interpretable mappings Ω. However, this problem can be
infeasible if Ω does not contain a mapping that satisfies the
marginal alignment constraint. Therefore, we can use La-
grangian relaxation to relax the marginal constraint, giving
us an Interpretable Transport mapping TIT :
TIT := argmin

T∈Ω
EPsrc

[c(x, T (x))] + λ ϕ(PT (x), Ptgt)

(1)

where ϕ(·, ·) is a distribution divergence function (e.g.,
KL or Wasserstein). In this paper, we will assume c
is the squared Euclidean cost and ϕ(·, ·) is the squared
Wasserstein-2 metric, unless stated otherwise. Due to the
heavily complex and context-specific nature of distribution
shift, it is likely that Ω would be initialized based on context.
However, we suggest two general methods in the next sec-
tion as a starting point and hope that future work can build
upon this framework for specific contexts.

3.2. Intrinsically Interpretable Transport Sets
The current common practice for explaining distribution
shifts is comparing the means of the source and the target
distributions. The mean shift explanation can be generalized
as Ωvector = {T : T (x) = x + δ} where δ is a constant
vector and mean shift being the specific case where δ is the
difference of the source and target means. By letting δ be a
function of x, which further generalizes the notion of mean
shift by allowing each point to move a variable amount
per dimension, we arrive at a transport set that includes
any possible mapping T : RD → RD. However, even a
simple transport set like Ωvector can yield uninterpretable
mappings in high dimensional regimes (e.g., a shift vector
of over 100 dimensions). To combat this, we can constrain
the complexity of a mapping by forcing it to only move
points along a specified number of dimensions, which we
call k-Sparse Transport.

k-Sparse Transport: For a given class of transport maps,
Ω and a given k ∈ {1, ..., D}, we can find a subset Ω(k)

sparse

which is the set of transport maps from Ω which only
transport points along k dimensions or less. Formally,
we define an active set A to be the set of dimensions
along which a given T moves points: A(T ) ≜ {j ∈
{1, . . . , D} : ∃x, T (x)j − xj ̸= 0}. Then, we define
Ω

(k)
sparse = {T ∈ Ω : |A(T )| ≤ k}.
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k-sparse transport is most useful in situations where a dis-
tribution shift has happened along a subset of dimensions,
such as explaining a shift where some sensors in a network
are picking up a change in an environment. However, in
cases where points shift in different directions based on their
original value, e.g. when investigating how a heterogeneous
population responded to an advertising campaign, k-sparse
transport is not ideal. Thus, we provide a shift explanation
that breaks the source and target distributions into k sub-
populations and provides a vector-based shift explanation
per sub-population, which we call k-Cluster Transport.

k-Cluster Transport: Given a k ∈ {1, . . . , D} we
define k-cluster transport to be a mapping which moves
each point x by constant vector which is specific to x’s
cluster. More formally, we define a labeling function
σ(x;M) ≜ argmin j ∥mj − x∥2, which returns the
index of the column in M (i.e. the label of the cluster)
which x is closest to. With this, we define Ω

(k)
cluster ={

T : T (x) = x+ δσ(x;M),M ∈ RD×k,∆ ∈ RD×k
}

,
where δj is the jth column of ∆.

Since measuring the exact interpretability of a mapping
is heavily context-dependent, we can instead use k in the
above transport maps to define a partial ordering of inter-
pretability of mappings within a class of transport maps. Let
k1 and k2 be the size of the active sets for k-sparse maps
(or the number of clusters for k-cluster maps) of T1 and T2

respectively. If k1 ≤ k2, then Inter(T1) ≥ Inter(T2), where
Inter(T ) is the interpretability of shift explanation T . For
example, we claim the interpretability of a T1 ∈ Ω

(k=10)
sparse is

greater than (or possibly equal to) the interpretability of a
T2 ∈ Ω

(k=100)
sparse since a shift explanation in Ω which moves

points along only 10 dimensions is more interpretable than a
similar mapping which moves points along 100 dimensions.
A similar result can be shown for k-cluster transport since
an explanation of how 5 clusters moved under a shift is less
complicated than an explanation of how 10 clusters moved.
The above method allows us to define a partial ordering on
interpretability without having to determine the absolute
value of interpretability of an individual explanation T , as
this requires expensive context-specific human evaluations,
which are out of scope for this paper.

3.3. Intrinsically Interpretable Maps For Images
To find interpretable transport mappings for images, we
could first project Psrc and Ptgt onto a low-dimensional in-
terpretable latent space (e.g., a space which has disentangled
and semantically meaningful dimensions) and then apply the
methods above in this latent space. Concretely, let us denote
the (pseudo-)invertible encoder as g : RD → RD′

where
D′ < D (e.g., an autoencoder). Given this encoder, we de-
fine our set of high dimensional interpretable transport maps:
Ωhigh-dim :=

{
T : T = g−1

(
T̃ (g(x))

)
, T̃ ∈ Ω, g ∈ I

}

where Ω the set of interpretable mappings (e.g., k-sparse
mappings) and I is the set of (pseudo-)invertible functions
with an interpretable (i.e. semantically meaningful) latent
space. Finally, given an interpretable g ∈ I, this gives us
High-dimensional Interpretable Transport: THIT .

As seen in the Stanford Wilds dataset (Koh et al., 2021),
which contains benchmark examples of real-world image-
based distribution shifts, image-based shifts can be im-
mensely complex. In order to provide an adequate intrin-
sically interpretable mapping explanation of a distribution
shift in high dimensional data (e.g., images), multiple new
advancements must first be met (e.g., finding a disentangled
latent space with semantically meaningful dimensions, ap-
proximating high dimensional empirical optimal transport
maps, etc.), which are out of scope of this paper. We further
explore details about THIT , its variants, and the results of
using THIT to explain Colorized-MNIST in Appendix D,
and we hope future work could build upon this framework.

3.4. Post-Hoc Explanations of Image-Based Mappings
via Counterfactual Examples

As mentioned above, in some cases, solving for an inter-
pretable latent space can be too difficult or costly, and thus
a shift cannot be expressed by an interpretable mapping
function. However, if the samples themselves are easy to
interpret (e.g., images), we can still explain a transport map-
ping by visualizing translated samples. Specifically, we can
remove the interpretable constraint on the mapping itself
and leverage methods from the unpaired Image-to-Image
translation (I2I) literature to translate between the source
and target domain while preserving the content. For a com-
prehensive summary of the recent I2I works and methods,
please see (Pang et al., 2021).

Once an I2I mapping is found, to serve as an explanation,
we can provide an operator with a set of counterfactual pairs
{(x, T (x)) : x ∼ Psrc, T (x) ∼ Ptgt}. Then, by determin-
ing what commonly stays invariant and what commonly
changes across the set of counterfactual pairs, this can serve
as an explanation of how the source distribution shifted to
the target distribution. While more broadly applicable, this
approach could put a higher load on the operator than an
intrinsically interpretable mapping approach.

4. Practical Methods for Finding and
Validating Shift Explanations

In this section, we discuss practical methods for finding
these maps via empirical OT (Sec. 4.1, 4.2, and 4.3) and
introduce a PercentExplained metric which can assist the
operator in selecting the hyperparameter k in k-sparse and
k-cluster transport (Sec. 4.4).
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4.1. Empirical Interpretable Transport Upper Bound
As the divergence term in our interpretable transport ob-
jective (Equation 1) can be computationally-expensive to
optimize in practice, we propose to optimize the follow-
ing simplification, which simply computes the difference
between the map and the sample-based OT solution TOT

(which can be computed efficiently for samples or approxi-
mated via the Sinkhorn algorithm (Cuturi, 2013)):

argmin
T∈Ω

1

N

N∑
i=1

c
(
x(i), T (x(i))

)
+λd

(
T (x(i)), TOT (x

(i))
)

(2)
where d is the squared ℓ2 function. Notably, the diver-
gence value in Equation 1 is replaced with the average over
a sample-specific distance between T (x) and the optimal
transport mapping TOT (x). This is computationally attrac-
tive as the optimal transport solution only needs to be calcu-
lated once, rather than calculating the Wasserstein distance
once per iteration as would be required if directly optimizing
the Interpretable Transport problem. Additionally, we prove
in subsection A.2 that the second term in Equation 2 is an
upper bound when the divergence is the squared Wasserstein
distance, i.e., when ϕ = W 2

2 .

4.2. Finding k-Sparse Maps
The k-sparse algorithm can be broken down into two steps.
First, given k, we estimate the active set A by simply tak-
ing the k dimensions with the largest difference of means
between two distributions. This is a simple approach that
avoids optimization over an exponential number of possi-
ble subsets for A and can be optimal for some cases, as
explained below. Second, given the active set A, we need to
estimate the map. While estimating k-sparse solutions to the
original interpretable transport problem (Equation 1) is chal-
lenging, we prove that the solution with optimal alignment
to the upper bound above (Equation 2) can be computed in
closed-form for two special cases. If the optimization set
is restricted to only shifting the mean, i.e., Ω(k) = Ω

(k)
vector,

then the solution with optimal alignment is:

∀j, [T (x)]j =
{

xj + (µtgt
j − µsrc

j ), if j ∈ A
xj , if j ̸∈ A , (3)

where µsrc and µtgt are the mean of the source and target
distributions respectively. Similarly, if Ω(k) is unconstrained
except for sparsity, then the solution with optimal alignment
is simply:

∀j, [T (x)]j =
{

[TOT (x)]j , if j ∈ A
xj , if j ̸∈ A , (4)

where [TOT (x)]j is the j-th coordinate of the sample-based
OT solution. The proofs of alignment optimality w.r.t. the

divergence upper bound in Equation 2 are based on decom-
posability of the squared Euclidean distance and can be
found in Appendix A. The final algorithm for both sparse
maps can be found in Algorithm 1.

Algorithm 1 Finding k-Sparse Maps

Input: Domain datasets X ∈ RN×D and Y N×D with N
samples of dimensionality D each, the desired sparsity k,
and interpretable set type, i.e., Ω.

// Select active set based on means
µdiff ← µtgt − µsrc = 1

N

∑N
i=1 Yi − 1

N

∑N
i=1 Xi

A ← TopKIndices(abs(µdiff), k)
// Create dimension-wise maps based on active set
if Ω = Ωvector then

∀j, [T (x)]j =
{

xj + µdiff
j , if j ∈ A

xj , if j ̸∈ A
else

TOT (·)← OptimalTransportAlg(X,Y )

∀j, [T (x)]j =
{

[TOT (x)]j , if j ∈ A
xj , if j ̸∈ A

end if
Output: T (·)

4.3. Finding k-Cluster Maps

Similar to k-sparse maps, we split this algorithm into two
parts: (1) estimate pairs of source and target clusters and
then (2) compute mean shift for each pair of clusters. For the
first step, naı̈vely one might expect that independent cluster-
ing on each domain dataset followed by post-hoc pairing of
these clusters may be sufficient. However, this could yield
very poor clustering pairs that are significantly mismatched
because the domain-specific clustering may not be optimal
in terms of the alignment objective. For example, the source
domain may have one large and one small cluster and the
target domain could have equal-sized clusters. Therefore,
it is important to cluster the source and domain samples
jointly. To estimate paired (i.e., dependent) clusterings of
the source and target domain samples, we first find the OT
mapping from source to target. We then cluster an paired
dataset formed by concatenating each source sample with
its OT mapped sample (which actually corresponds to one
of the target samples). The clustering on these paired sam-
ples gives paired cluster centroids for the source and target,
denoted µsrc

ℓ and µtgt
ℓ respectively, which we use to construct

a cluster-specific mean shift map defined as:

T (x) = x+ (µtgt
σ(x) − µsrc

σ(x)) (5)

where σ(x) = argmin ℓ ∥x − µsrc
ℓ ∥22 is the cluster label

function. This map applies a simple shift to every source
domain cluster to map to the target domain. Algorithm 2
shows pseudo-code for both steps in our k-cluster method.
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Algorithm 2 Solving for k-Cluster Mappings

Input: Domain datasets X ∈ RN×D and Y N×D with N
samples of dimensionality D each and the desired number
of clusters k.

// Compute sample-based optimal transport map
TOT (·)← OptimalTransportAlg(X,Y )
// Compute paired clustering
Z ← [X,TOT (X)] ∈ RN×2D

[µ1, · · · , µk]
T ← KMeansClust(Z, k) ∈ Rk×2D

// Extract paired source and target centroids
∀ℓ ∈ {1, · · · , k}, µsrc

ℓ = [µℓ,1, · · · , µℓ,D]T ∈ RD

∀ℓ ∈ {1, · · · , k}, µtgt
ℓ = [µℓ,D+1, · · · , µℓ,2D]T ∈ RD

// Setup final cluster-based map
σ(x) = argmin ℓ ∥x− µsrc

ℓ ∥22 // Clust. label func
T (x) = x+ (µtgt

σ(x) − µsrc
σ(x))

Output: T (·)

4.4. Interpretability as a Hyperparameter

We now discuss how the k hyperparameter in k-sparse and k-
cluster maps can be adjusted to allow a user to automatically
change the level of interpretability of a shift explanation
as desired. While an optimal shift explanation could be
achieved by solving Equation 1, directly defining the set Ω,
which should contain both interpretable yet sufficiently ex-
pressive maps, can be a difficult task. Thus, we can instead
set Ω to be a super-class, such as Ωvector given in subsec-
tion 3.2 and adjust k until a Ω(k) is found which matches
the needs of the situation. This allows a human operator
to request a mapping with better alignment by increasing
k, which correspondingly will decrease the mapping’s in-
terpretability, or request a more interpretable mapping by
decreasing the complexity (i.e. decreasing k) which will
decrease the alignment.

To assist an operator in determining if the interpretability
hyperparameter should be adjusted, we introduce a Percent-
Explained metric, which we define to be:

PE(Psrc, Ptgt, T ) :=
W 2

2 (Psrc, Ptgt)−W 2
2 (T♯Psrc, Ptgt)

W 2
2 (Psrc, Ptgt)

(6)
where W 2

2 (·, ·) is the squared Wasserstein-2 distance be-
tween two distributions and PE is shorthand for Per-
centExplained. By rearranging terms we get 1 −
W 2

2 (T♯Psrc,Ptgt)

W 2
2 (Psrc,Ptgt)

, which shows this metric’s correspondence
to the statistics coefficient of determination R2, where
W 2

2 (T♯Psrc, Ptgt) is analogous to the residual sum of
squares and W 2

2 (Psrc, Ptgt) is similar to the total sum of
squares. This gives an approximation of how much a current
shift explanation T accurately maps onto a target distribu-
tion. This can be seen as a normalization of a mapping’s
fidelity with the extremes being T♯Psrc = Ptgt, which fully
captures a shift, and T = Id, which does not move the

points at all. When provided this metric along with a shift
explanation, an operator can decide whether to accept the
explanation (e.g., the PercentExplained is sufficient and T
is still interpretable) or reject the explanation and adjust k.

5. Experiments
In this section, we study the performance of our methods
when applied to real-world data.1 For gaining intuition
on different explanation techniques, we point the reader to
Appendix C where we present experiments on simple simu-
lated shifts. We first present results using k-cluster transport
to explain the difference between different groups of the
male population and groups of the female population in
the U.S. Census “Adult Income” dataset (Kohavi & Becker,
1996). We then use k-sparse transport to explain shifts be-
tween toxic and non-toxic comments across splits from the
Stanford WILDS distribution shift benchmark (Koh et al.,
2021) version of the “CivilComments” Dataset (Borkan
et al., 2019). Finally, we use distributional counterfactuals
to explain the high-dimensional shifts between histopathol-
ogy images from different hospitals as seen in the WILDS
Camelyon17 dataset (Bandi et al., 2018).

Adult Income Dataset This dataset originally comes from
the United States 1994 Census database and is commonly
used to predict whether a person’s annual income exceeds
$50k using 14 demographic features. Similar to (Bud-
hathoki et al., 2021), we consider a subset of non-redundant
features: age, years of education (where 12+ is beyond high
school), and income (which is encoded as 1 if the person’s
annual income is greater than $50k and 0 if it is below).
We then split this dataset along the sex dimension, and de-
fine our source distribution as the male population and the
target as the female population. In order to find the set of
paired clusters, we first standardize a copy of the data to
have zero mean and unit variance across all features, where
the µ and σ used for the standardization are found via the
feature-wise mean and standard deviation of the source dis-
tribution and perform clustering in the standardized joint
space using the method described in Section 4.3. The k
clustering labels are then used to label points to clusters in
the original (unstandardized) data space.

Suppose our role is a researcher seeking to implement a
social program targeting gender inequalities. We could
compare the means of the male/female distributions, which
shows on average a 20% lower chance of having an annual
income above $50k when moving from the male population
to the female population. Additionally, we could train a
classifier to predict between male/female data points and
use a feature importance measurement tool like Shapley
values (Lundberg & Lee, 2017) to determine that income
is a main differing feature (insight 1 from Figure 2). How-

1Code to recreate the experiments can be found at
https://github.com/inouye-lab/explaining-distribution-shifts.
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𝜇! : [Age: 39.7, Edu: 10.2, Inc: 0.29]
𝜇" : [Age: 36.6, Edu: 10.1, Inc: 0.10]

𝜇#!" : [Age: 35.6, Edu: 12.9, Inc: 0.00]    𝜇#!# : [Age: 29.7, Edu:   8.9, Inc: 0.03] 
𝜇#!" →#$" : [Age: 32.1, Edu: 12.5, Inc: 0.01]    𝜇#!# →#$# : [Age: 26.3, Edu:  9.0, Inc: 0.00]

𝜇#!% : [Age: 56.3, Edu:    8.4, Inc: 0.13]   𝜇#!& : [Age: 43.5, Edu: 12.1, Inc: 1.00]
𝜇#!% →#$% : [Age: 53.7, Edu:    8.7, Inc: 0.01]   𝜇#!& →#$& : [Age: 40.2, Edu: 11.9, Inc: 0.38]

Baseline Mean Shift Explanation:

𝒌 - Cluster Explanation (ours), 𝒌 = 𝟒:

Baseline Feature 
Importance of Domain 
Classifier Explanation:

More FemaleMore Male

Income
Age

Education

Shap Value (impact on model output)

Fe
at

ur
e 

Va
lu

e
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1
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Tr
an

sp
or

t C
os

t

.5

1

1.5

Insight           :
The income 
difference is 
largest in 𝑀!! , 
middle-aged 
adults with a 
bachelor’s degree

2

Figure 2: Using k-cluster transport (bottom) to explain the shift from the male population to the female population of the
Adult Income dataset allows us to capture how heterogeneous groups within the dataset moved. For example, while all
three methods show that income is indeed the largest difference between M and F for this dataset (insight 1), only the
k-cluster-based explanation reveals insight 2, that the income disparity is most prevalent between middle-aged males and
females with a bachelor’s degree (edu=12) seen in C4.

ever, suppose we want to dig deeper. We could instead
use k-cluster transport to see how heterogeneous subgroups
shifted across a range of clusters, as seen in Figure 2. If
we accept the explanation at k = 4 (since beyond this, the
marginal advantage of adding an additional cluster is mini-
mal in terms of both transport cost and PercentExplained),
we can now make insight 2. Here, µC4

M→C4
F

shows the
income difference is significantly larger between middle-
aged males/females with a bachelor’s degree (a decrease
from nearly 100% high-income likelihood to only a 38%
chance). While insight 1 validates the need for our social
program, insight 2 (which is hidden in both the mean-shift
and distribution classifier explanations) provides a signif-
icantly narrower scope for us to focus our efforts in, thus
allowing for swifter action.

Civil Comments Dataset Here we present results using
k-sparse shifts to explain the difference between three splits
of the CivilComments dataset (Borkan et al., 2019) from the
WILDS datasets (Koh et al., 2021). This dataset consists of
comments scraped from the internet where each comment is
paired with a binary toxicity label and demographic informa-
tion pertaining to the content of the comment. If we were an
operator trying to see how the comments and their toxicity
change across targeted demographics, we could create three
splits: {F, M}, {F0, F1}, and {M0, M1}, where F repre-
sents all female comments, M are all male comments, and
F0, F1 are nontoxic, toxic female comments, respectively
(and likewise for males). We can explain these three splits
using vanilla mean shift, a k-sparse mean shift (k-µ), and
k-sparse OT (k-OT) shift explanations, as seen in Table 1
which shows results for the unigrams which the maximize
the alignment between the unigram distributions created
for each split. The baseline vanilla mean-shift explanation
yields all 30K features at once (with no guide for truncat-
ing), while the k-sparse shifts provide explanations up to k

words as well as a corresponding PercentExplained to aid
in determining if additional words should be added to the
explanation. Note that for k-µ explanations, when trans-
porting a word, that word is added equally to all comments
in Psrc, while since k-OT allows for each comment to be
shifted optimally (via conditioning on the other words in
each comment), thus k-OT can explain significantly more of
the shift by transporting the same word (which can highlight
words that have complex dependencies such as “don’t”).

It is clear that performing a vanilla mean shift explanation
on the unigram data between splits is unwise due to the
high dimensionality of the data and it is unclear when to
truncate such an explanation. However, in our approach,
by iteratively reporting the shifted unigrams along with
the cumulative PercentExplained, a practitioner can better
understand the impact each additional word has on the shift
explanation. For example, it makes sense that adding “man”,
“men”, and subtracting “woman” were the three unigrams
that best aligned the female and male comment distributions
and could account for as much as 10% of the shift.

With the k-sparse explanation, insight 1 suggests that a
content moderator is more likely to encounter toxic com-
ments that target individuals rather than groups, and thus
a moderator could train a classifier to predict if the object
of a comment is an individual or group of people. This
quality, which is not obvious at first glance (and especially
not from the simple mean shift explanation), may enable
more explainable moderation as an explanation about why
a comment was removed could state that a comment is tar-
geting an individual as one feature. Additionally, insight 2
shows that if the moderator’s goal is to be equitable across
groups, they may want to target words that have roughly
equal impact across groups like “stupid”. If on the other
hand, the moderator’s goal is merely to detect any toxicity

7
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Table 1: A baseline vanilla mean shift explanation, k-sparse mean shift explanation, (k-µ-Ex), and k-sparse OT explanations
(k-OT-Ex) for the three splits from CivilComments (to save space the baseline is only used for F→M). Each cell represents
adding/subtracting a unigram from Psrc to align it with the comment distribution of Ptgt and the respective PercentExplained
(excluding the baseline method). For example, in k-µ-Ex(F0→F1), adding “stupid” aligns the non-toxic female comments to
the toxic female comments and cumulatively explains 0.2% of the shift.

𝑘 𝑘-𝜇-Ex(F,	M) 𝑘-OT-Ex(F,	M)
1 +	man 2.4% +	man 6.9%
2 +	men 2.4% +	men 9.2%
3 - woman 2.6% - woman 10.8%
4 +	white 2.7% +	white 12.0%
5 +	male 2.8% - people 13.0%
6 +	black 2.8% - like 13.9%
7 +	god 2.8% - just 14.7%
8 - female 2.8% +	male 15.4%
9 - abortion 2.8% - don't 16.3%
10 +	males 2.8% +	god 16.8%

𝑘 𝑘-𝜇-Ex(F! ,	F") 𝑘-OT-Ex(F! ,	F")
1 +	white 0.1% +	trump 2.6%
2 - women 0.1% +	people 3.7%
3 +	like 0.2% +	woman 4.7%
4 +	stupid 0.2% +	like 5.7%
5 - church 0.2% - men 6.6%
6 +	hillary 0.2% +	just 7.5%
7 +	black 0.2% +	don't 8.3%
8 +	sex 0.2% +	white 9.2%
9 - female 0.2% +	man 9.9%
10 - abortion 0.3% - think 10.5%

𝑘 𝑘-𝜇-Ex(M! ,	M") 𝑘-OT-Ex(M! ,	M")
1 +	trump 0.2% - women 2.8%
2 - women 0.3% - men 4.1%
3 +	black 0.3% +	man 5.3%
4 - church 0.3% +	people 6.3%
5 +	stupid 0.3% +	like 7.3%
6 +	gay 0.4% +	trump 8.3%
7 +	racist 0.4% +	just 9.2%
8 - god 0.4% +	don't 10.9%
9 - jesus 0.4% +	black 11.6%
10 +	man 0.4% - male 12.3%

𝑘 Baseline: 𝜇(𝐹,𝑀)
1 +	man
2 +	men
3 - woman
4 +	white
…	[29K	more	entries]	…

29,553 +	martina
29,554 - diqlmjawsae
29,555 - да
29,556 - bodybuilder
29,557 +	philhiblers

Insight          :
The decrease (increase) 
in plural (singular) words 
suggests individuals are 
being targeted in toxic 
comments

1

Insight          :
Words such as “stupid” 
are predictive of toxicity 
for both males and 
females, while “racist” is 
more specific to males

2

regardless of group, this may signal that they should provide
group variables such as “gay” or “racist” (which are more
predictive of toxicity towards males) to the model as it is an
important signal.

Explaining Shifts in H&E Images Across Hospitals
We apply this distribution counterfactual approach to the
Camelyon17 dataset (Bandi et al., 2018) which is a real-
world distribution shift dataset that consists of whole-slide
histopathology images from five different hospitals. We use
the Stanford WILDS (Koh et al., 2021) variant of the dataset
which converts the whole-slide images into over 400 thou-
sand patches. Since each hospital has varying hematoxylin
and eosin (H&E) staining characteristics, this, among other
batch effects, leads to heterogeneous image distributions
across hospitals, as suggested by insight 1 in Figure 3.

To generate the counterfactual examples, we treat each hos-
pital as a domain and train a StarGAN model (Choi et al.,
2018) to translate between each domain. For training, we
followed the original training approach seen in (Choi et al.,
2018), with the exception that we perform no center crop-
ping. After training, we can generate distribution counter-
factual examples by inputting a source image and the label
of the target hospital domain to the model. Counterfactual
generation was done for all five hospitals and can be seen
on the right-hand side of Figure 3. It can be seen that the
distributional counterfactuals lead to insight 2 —that each
hospital has a distinct level of staining that seems to be
characteristic across samples from the same hospital. For
example, P1 (hospital 1) consists of mostly light staining,
and thus transporting to this domain usually involves light-
ening of the image. Thus, if a practitioner is building a
model which should generalize to slides from a new hos-
pital within a network, insight 2 confirms that controlling
for different levels of staining (e.g., color augmentations)
is necessary in the training pipeline. We further explore
distinctly content-based counterfactuals (as opposed to style
changes such as levels of staining) of an image using the
CelebA dataset in subsection C.4.

Baseline: Saliency Maps for Domain Classifier

Insight         :
There seems to be a difference in 
staining across hospitals

1 Insight        :
There is a clear difference in staining, and it seems to 
be unique to each hospital

2

𝑃!→#𝑃!→$ 𝑃!→% 𝑃!→& 𝑃!→'𝑃!

𝑃#

𝑃$

𝑃%

𝑃&

𝑃'

Original Counterfactual Examples (ours)
𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%

Baseline: Visual Inspection of Samples

Figure 3: While the baseline method of unpaired samples
(top-left) hints that there is a difference in staining (but
is relatively unclear), our explanation approach (right) of
showing paired counterfactual images translated between
the hospital domains (represented as P1, P2, . . . ) quickly
leads to the stronger insight 2 —indeed the staining/coloring
differs across the hospital domains and the type of staining
seems to be consistent and unique for each hospital. For the
counterfactual examples, the (irow, jcolumn) pair represents
the pushforward of a sample from domain Pi onto the Pj do-
main. Using Grad-CAM (Selvaraju et al., 2016) to explain a
ResNet-50 (He et al., 2016) domain classifier (bottom-left)
does not lead to actionable insights.

6. Discussion and Limitations
Choosing Between k-sparse vs. k-cluster Explanations
We first highlight that distribution shift is a highly context-
specific problem. Thus, the explanation method will likely
depend on the nature of the data (e.g., the data may contain
natural subgroups or clusters). If the sparsity or cluster
structure is unknown, we suggest following the logical flow
for method selection in Figure 1 to determine which shift
explanation method to use for their specific context. In short,
the k-sparse mappings are useful to allow an operator to see
how specific features changed from Psrc to Ptgt, and the
k-cluster mappings are useful to track how sub-groups of
samples changed under the distribution shift.

Evaluating Shift Explanations A primary challenge in
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developing distribution shift explanations is determining
how to evaluate the efficacy of a given explanation in a
given context. Evaluating explanations is an active area
of research (Robnik-vSikonja & Bohanec, 2018; Molnar,
2020; Doshi-Velez & Kim, 2017) with commonalities such
as an explanation should be contrastive, succinct, should
highlight abnormalities, and should have high fidelity (Mol-
nar, 2020). For the case of distribution shift explanations,
as this is a highly context-dependent problem (dependent
on the data setting, task setting, and operator knowledge)
and our approach is designed to tackle this problem in gen-
eral, we do not have a general automated way of measuring
whether a given explanation is indeed interpretable. Instead,
we provide a general contrastive method that supplies the
PercentExplained (approximation of fidelity) and the ad-
justable k-level of sparse/cluster mappings (which trades
off between succinctness and fidelity) but ultimately leaves
the task of validating the explanation up to the operator.

Potential Failure Cases Our explanations are meant as a
diagnostic tool like most initial data analyses. While our ex-
planations can provide actionable insights, they are one step
in the diagnosis process and need to be investigated further
before making a decision, especially in high-stakes scenar-
ios. As with most explanation methods, the explanations
may be incorrectly interpreted as being causal while they
likely only show correlations and many hidden confounders
could exist. While causal-oriented explanation methods are
much more difficult to formulate and optimize, they could
provide deeper insights than standard methods. Because OT
with squared Euclidean cost is the basis for several of our
methods, this could cause a misleading explanation if the
scaling of the dimensions does match the operator’s expec-
tations (more discussion below). Another example failure
case would be using k-cluster transport when no natural
clusters exist. In practice, we noticed that StyleGAN can
fail to recover large content-based shifts (as opposed to style-
based shifts) such as the shift from “wearing hat”→ “bald”
in Celeb-A (as seen in Figure 8). This case is difficult to di-
agnose, but could be alleviated by using an Image-To-Image
translation approach which does not have the style-based
biases seen in methods like StyleGAN (Karras et al., 2019).

Motivation for using Optimal Transport and Euclidean
cost Because there are many possible mappings between
source and target distributions, any useful mapping will
need to make some assumptions about the shift. We chose
the OT assumption, which can be seen as a simplicity as-
sumption (similar to Occam’s Razor) because points are
moved as little as possible. Additionally, the OT mapping is
unique (even with just samples) and can be computed with
fast known algorithms (Peyré & Cuturi, 2019). The squared
Euclidean distance is a reasonable cost function when point-
wise distances are semantically or causally meaningful (e.g.,
increasing the education of a person)–as is the case for many

shift settings in this work. However, squared Euclidean dis-
tance in the raw feature space might not be meaningful for
some datasets such as raw pixel values of images. For cases
like these, a cost function other than the ℓ22 cost can be
used, and we explore this in subsection 3.3 and in detail
in Appendix D. In those sections, we look at first apply-
ing a semantic-encoding function g(x) which projects x to
a semantically meaningful latent space and then calculate
the transportation cost in this meaningful latent space. In
general, because OT algorithms can use any distance func-
tion, context-dependent cost functions could easily be used
within our framework for improved interpretability.

Future Directions For Shift Explanations We believe
developing new shift explanation maps and evaluation crite-
ria for specific applications (e.g., explaining the results of
biological experiments run with different initial conditions)
is a rich area for future work. Also, the PercentExplained
metric does not provide information on specifically what
is missing from the explanation, i.e., the missing informa-
tion is a “known unknown”. For image-based explanations,
the explanation may fail to show certain domain changes
that could mislead an operator, i.e., “unknown unknowns”.
Methods to quantify and analyze these unknowns would im-
prove the trustworthiness of shift explanations. For further
discussions of challenges with explaining distribution shifts
(e.g., finding an interpretable latent space, approximations
of Wasserstein distances in high dimensional regimes, etc.)
we point the reader to Appendix B.

7. Conclusion
In this paper, we introduced a framework for explaining
distribution shifts using a transport map T between a source
and target distribution. We constrained a relaxed form of
optimal transport to theoretically define an intrinsically in-
terpretable mapping TIT and introduced two interpretable
transport methods: k-sparse and k-cluster transport. We pro-
vided practical approaches to calculating a shift explanation,
which allows us to use treat interpretability as a hyperparam-
eter that can be adjusted based on a user’s need and showed
how our methods can help an operator investigate a distribu-
tion shift on real-world examples. Both in section 5 and in
Appendix C, we show the feasibility of our techniques on
many different shift problems to both gain intuition for the
different types of shift explanations and to show how our
methods can help an operator investigate a distribution shift.
We hope our work suggests multiple natural extensions such
as using trees as a feature-axis-aligned form of clustering or
even other forms of interpretable sets. Given our results and
potential ways forward, we ultimately hope our framework
lays the groundwork for providing more information to aid
in investigations of distribution shift.
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Peyré, G. and Cuturi, M. Computational optimal transport.
Foundations and Trends in Machine Learning, 11(5-6):
355–607, 2019.
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A. Proofs
A.1. Proof that there are an infinite number of possible mappings between distributions

As stated in the introduction, given two distributions, there exist many possible mappings such that T♯Psrc = Ptgt (it should
be noted that here we are speaking of the general mapping problem, not the optimal transport problem which can be shown
via Brenier’s theorem (Peyré & Cuturi, 2019) to have a unique matching for some cases). For instance, given two isometric
Gaussian distributions x ∼ N1(µ1, I), y ∼ N2(µ2, I), where I is the Identity matrix, there exist an infinite number of T ’s
such that T (x) ∼ N2. Specifically, any T of the form: T (x) = µ2 +R(x− µ1), where is R is an arbitrary rotation matrix,
will shift T♯N1 to have a mean of µ2 and perfectly align the two distributions (since any rotation of an isometric Gaussian
will still be an isometric Gaussian).

A.2. Proof that practical interpretable transport objective is an upper bound of theoretic interpretable transport

First, recall our empirical approximation problem for finding T where the second term is an approximation to the Wasserstein
distance:

argmin
T∈Ω

1

N

N∑
i=1

c(x(i), T (x(i))) + λd(T (x(i)), TOT (x
(i))) (7)

where TOT is the optimal transport solution between our source and target domains with the given c cost function. The
empirical average over samples can be viewed as an empirical expectation (which converges to the population expectation
as N approaches infinity). Because the Wasserstein distance is well-defined for discrete distributions (like the empirical
distribution) and continous distributions, we can simply prove that our approximation is an upper bound for any expectation
(empirical or population-level) as follows:

W 2
2 (PT (x), PY ) = min

T ′:T ′
♯PT (x)=Ptgt

Ez∼PT (x)
[d (z, T ′(z))] (8)

= min
T ′:T ′

♯PT (x)=Ptgt

Ex∼Psrc [d (T (x), T
′ ◦ T (x))] (9)

≤ Ex∼Psrc
[d
(
T (x), (TOT ◦ T−1) ◦ T (x)

)
] (10)

= Ex∼Psrc
[d (T (x), TOT (x))] , (11)

where Equation 8 is by definition of Wasserstein distance, Equation 9 is by a change of variables, Equation 10 is by taking
T ′ = TOT ◦ T−1 (which by construction satisfies the alignment constraint and which must be greater or equal to the
minimum), and Equation 11 is merely as simplification. Note that if T is the identity, then the inequality becomes an
equality. A similar proof could be used for any W p

p distance where p ≥ 1.

A.3. Proof that k-sparse truncated OT minimizes alignment upper bound

In this section, we prove that the best possible alignment objective in terms of the upper bound on Wasserstein distance in
Equation 2 is given by the truncated OT solution, i.e., the solution in the limit as λ → ∞. This solution is more akin to
the constraint-based (i.e., non-Lagragian relaxation) of OT except replacing the alignment metric with the upper bound
above. While this enforces the best possible alignment and does not directly consider the transportation cost, the solution is
relatively low cost because it based on the OT solution. Additionally, it is the unique solution to the problem as λ→∞.

We will now prove that it is the optimal and unique solution. First, let z = T (x), zOT = TOT (x), and x ∈ RN×D. If d is
the squared Euclidean distance and we restrict to mappings that only change dimensions in A, then we can decompose the
distance term as follows:

N∑
i=1

d(zi, z
OT
i ) =

N∑
i=1

∑
j∈A

(
zi,j − zOT

i,j

)2
+
∑
j ̸∈A

(
xi,j − zOT

i,j

)2
︸ ︷︷ ︸
=αi , since constant w.r.t T

=

N∑
i=1

αi +
∑
j∈A

(
zi,j − zOT

i,j

)2
. (12)

Notice that the sum of squares corresponding to A is dependent on the mapping while the others are a constant w.r.t. T
because T cannot modify any dimensions j ̸∈ A. Given this, we now choose our solution to k-sparse optimal transport as
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given in the paper:

∀j, [T (x)]j =
{

[TOT (x)]j , if j ∈ A
xj , if j ̸∈ A (13)

where A is the active set of k dimensions which our k-sparse map T can move points. With this solution, we arrive at the
following:

N∑
i=1

d(zi, z
OT
i ) =

N∑
i=1

αi +
∑
j∈A

(
zi,j − zOT

i,j

)2
=

N∑
i=1

αi +
∑
j∈A

N∑
i=1

(
zOT
i,j − zOT

i,j

)2
=

N∑
i=1

αi ,

where the αi are positive constants that cannot be reduced by T . Therefore, this is indeed the optimal solution to our
empirical interpretable transport problem with the alignment approximation as in Equation 2. This can easily be extended
to show that the optimal active set for this case is the one that minimizes

∑N
i=1 αi, thus the active set should be the k

dimensions which have the largest squared difference between x and zOT .

To prove uniqueness, we use proof by contradiction. Suppose there exists another optimal solution T ′ that is distinct
from the optimal T given in Equation 13. This would mean that there exists a pair (x, j) such that [T ′(x)]j ̸= [T (x)]j =
[TOT (x)]j = zOT

j . However, this would mean that the corresponding term in the summation would be non-zero, i.e.,
(zj − zOT

j )2 > 0. But this would mean that the overall distance function is greater than the sum of the constants yielding
a contradiction to the hypothesis that there could exist another solution. Therefore, the k-sparse solution that optimizes
alignment is unique.

A.4. Proof that k-mean shift is the k-vector shift that gives the best alignment

Similar to the previous proof, we consider the solution to Equation 2 when λ→∞, i.e., the optimal alignment solution, but
restrict ourselves to the space of vector maps Ωvector. First, we recall the definition of Ωvector:

Ω
(k)
vector = {T : T (x) = x+ δ̃}, where δ̃j =

{
δj , if j ∈ A
0 if j ̸∈ A , (14)

where δj for j ∈ A are the only learnable parameters. Given this, we decompose the sum of distances similar to the previous
proof:

N∑
i=1

d(zi, z
OT
i ) =

N∑
i=1

αi +
∑
j∈A

(
zi,j − zOT

i,j

)2
(15)

=

N∑
i=1

αi +
∑
j∈A

(
(xi,j + δj)− zOT

i,j

)2
(16)

where Equation 15 is from Equation 12 and Equation 16 is by the definition of Ω(k). Because this is a convex function that
decomposes over each coordinate, we can take the derivative and set to zero to solve:

d

dδj

(
N∑
i=1

d(zi, z
OT
i )

)
=

d

dδj

N∑
i=1

(
(xi,j + δj)− zOT

i,j

)2
= 2

N∑
i=1

(
(xi,j + δj)− zOT

i,j

)
= 2

(
Nδj +

N∑
i=1

xi,j − zOT
i,j

)
,

(17)

where the first equals is by Equation 16 and noticing that other terms do constants w.r.t. δj and the rest is simple calculus.
Solving this for δj yields the following simple solution:

δj =
1

N

N∑
i=1

zOT
i,j − xi,j = µzOT

j − µsrc
j = µtgt

j − µsrc
j (18)

where the second is just by definition of the mean, and the last is by noticing that the mean of the projected OT samples is
equal to the man of the target samples since the projected samples will match the target dataset by construction of the OT
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solution. This solution matches the one in the main paper which we recall here:

∀j, [T (x)]j =
{

xj + (µtgt
j − µsrc

j ), if j ∈ A
xj , if j ̸∈ A , (19)

Thus showing the optimal delta vector to minimize k-vector transport is exactly the k-sparse mean shift solution.

B. Challenges of Explaining Distribution Shifts and Limitations of Our Method
Distribution shift is a ubiquitous and quite challenging problem. Thus, we believe discussing the challenges of this problem
and the limitations of our solution should aid in advancements in this area of explaining distribution shifts.

As mentioned in the main body, as distribution shifts can take many forms, trying to explain a distribution shift is a highly
context-dependent problem (i.e., dependent on the data setting, task setting, and operator knowledge). Thus, a primary
challenge in developing distribution shift explanations is determining how to evaluate whether a given explanation is
valid for a given context. In this work, we hope to introduce the problem of explaining distribution shifts in general (i.e.
not with a specific task nor setting in mind), therefore we do not have an automated way of measuring whether a given
explanation is indeed interpretable. Evaluating explanations is an active area of research (Robnik-vSikonja & Bohanec,
2018; Molnar, 2020; Doshi-Velez & Kim, 2017) with commonalities such as an explanation should be contrastive, succinct,
should highlight abnormalities, and should have high fidelity. Instead, we introduce a proxy method that supplies the
operator with the PercentExplained and the adjustable k-level of sparse/cluster mappings but leaves the task of validating
the explanation up to the operator. We believe developing new shift explanation maps and criteria for specific applications
(e.g., explaining the results of experiments run with different initial conditions) is a rich area for future work.

Explaining distribution shifts becomes more difficult when the original data is not interpretable. This typically can take two
forms: 1) the raw data features are uninterpretable but the samples are interpretable (e.g., a sample from the CelebA dataset
(Liu et al., 2015) is interpretable but the pixel-level features are not) or 2) when both the raw data features and samples are
uninterpretable (e.g., raw experimental outputs from material science simulations). In the first case, one can use the set of
counterfactual pairs method outlined in subsection 3.4 (see Figure 8 for examples with CelebA), however, as mentioned in
the main paper, this is less sample efficient than an interpretable transport map. For the second case, if the original features
are not interpretable, one must first find an interpretable latent feature space – which is a challenging problem by itself. As
seen in Figure 10, it is possible to solve for a semantic latent space and solve interpretable transport maps within the latent
space, in this case, the latent space of a VAE model. However, if the meaningful latent features are not extracted, then any
transport map within this latent space will be meaningless. In the case of Figure 10, the 3-cluster explanation is likely only
interpretable because we know the ground truth and thus know what to look for. As such, this is still an open problem and
one we hope future work can improve on.

Additionally, while the PercentExplained metric shows the fidelity of an explanation (i.e. how aligned T♯(Psrc) and Ptgt

are), we do not have a method of knowing specifically what is missing from the explanation. This missing part of the
explanation can be considered a “known unknown”. For example, if a given T has a PercentExplained of 85%, we know
how much is missing, but we do not know what information is contained in the missing 15%. Similarly, when trying to
explain an image-based distribution shift with large differences in content (e.g., a dataset with blonde humans and a dataset
with bald humans), leveraging existing style transfer architectures (where one wishes to only change the style of an image
while retaining as much of the original content as possible) to generate distributional counterfactuals can lead to misleading
explanations. This is because explaining image-based distribution shifts might require large changes in content (such as
removing head hair from an image), which most style-transfer models are biased against doing. As an example, Figure 8
shows an experiment that translates between five CelebA domains (blond hair, brown hair, wearing hat, bangs, bald). It can
be seen that the StarGAN model can successfully translate between stylistic differences such as “blond hair”→ “brown
hair” but is unable to make significant content changes such as “bangs”→ “bald”.

The above issues are mainly problems that affect distribution shift explanations in general, but below are issues specific to
our shift explanation method (or any method which similarly uses empirical OT). Since we rely on the empirical OT solution
for the sparse and cluster transport (and the percent explained metric), the weaknesses of empirical OT are also inherited.
For example, empirical OT, even using the Sinkhorn algorithm with entropic regularization, scales at least quadratically
in the number of samples (Cuturi, 2013). Thus, this is only practical for thousands of samples. Furthermore, empirical
OT is known to poorly approximate the true population-level OT in high dimensions although entropic regularization can
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reduce this problem (Genevay et al., 2019). Finally, empirical OT does not provide maps for new test points. Some of these
problems could be alleviated by using recent Wasserstein-2 approximations to optimal maps via gradients of input-convex
neural networks based on the dual form of Wasserstein-2 distance (Korotin et al., 2019; Makkuva et al., 2020). Additionally,
when using k-cluster maps, the clusters are not guaranteed to be significant (i.e. it might be indiscernible what makes
this cluster different than another cluster), and thus if using k-cluster maps on datasets that do not have natural significant
clusters (e.g., Psrc ∼Uniform(0, 1), Ptgt ∼Uniform(1, 2)) an operator might waste time looking for significance where
there is none. While this cannot be avoided in general, using a clustering method that is either specifically designed for
finding interpretable clusters (Fraiman et al., 2013; Bertsimas et al., 2021) or one which directly optimizes the objective in
interpretable transport equation Equation 1 might lead to easier to explanations which are easier to interpret or validate.

C. Experiments on Known Shifts
Here we present additional results on simulated experiments as well as an experiment on UCI “Breast Cancer Wisconsin
(Original)” dataset (Mangasarian & Wolberg, 1990). Our goal is to illuminate when to use the different sets of interpretable
transport, and how the explanations can be interpreted, where in this case, a ground truth explanation is known. 2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Three toy dataset shift examples showing the advantages of the different shift explanation methods, where a mean
shift between Gaussians (top row) can be easily explained using k-sparse vector shifts, a varying mean shift across mixture
components of a Gaussian mixture model (middle row) is best explained using k-sparse transport maps, while a complex
shift (bottom row) requires a complex feature-wise mapping, such as k-sparse optimal transport, which maximally aligns
the distributions as it can perform conditional transport mappings for each sample (as seen by the differing vertical shifts
in (h) depending on where the blue sample lies on the horizontal axis), at the expense of interpretability. Each example
shows three levels of decreasing interpretability, where the leftmost column shows the original shift (which has maximal
interpretability since k = 0) from source (blue diamonds) to target (red down arrows), and the rightmost column shows a
shift with near-perfect fidelity.

2Code to recreate all experiments can be found at https://github.com/inouye-lab/explaining-distribution-shifts.
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C.1. Simulated Experiments

In this section we study three toy shift problems: a mean shift between two, otherwise identical, Gaussian distributions, a
Gaussian mixture model where each mixture component has a different mean shift, and a flipped and shifted half-moon
dataset, as seen in figures (a), (d), and (g) in Figure 4.

The first case is a mean shift between two, otherwise identical, Gaussian distributions can be easily explained using k-sparse
mean shift (as well as vanilla mean shift). We first calculate the OT mapping TOT between the two Gaussian distributions,
which has a closed form solution of TOT (x) = µtgt +A(x− µsrc), where A is a matrix that can be seen as a conversion
between the source and target covariance matrices, and because the covariance matrices are identical, A is the identity.

The second toy example of distribution shift is a shifted Gaussian mixture model which represents a case where groups
within a distribution shift in different ways. An example of this type of shift could be explaining the change in immune
response data across patients given different forms of treatment for a disease. Looking at (d) in Figure 4, it is clear that
sparse feature transport will not easily explain this shift. Instead, we turn to cluster-based explanations, where we first
find k paired clusters and attempt to show how these shift from Psrc to Ptgt. Following the mean-shift transport of paired
clusters approach outlined in subsection 4.3, the k = 3 case as seen in the Appendix shows that three clusters can sufficiently
approximate the shift by averaging the shift between similar groups. If a more faithful explanation is required, (f) of Figure 4
shows that increasing k to 6 clusters can recover the full shift, i.e. PercentExplained=100, at the expense of being less
interpretable (which is especially true in a real-world case where the number of dimensions might be large).

The half-moon example, figure (g) in Figure 4, shows a case where a complex feature-wise dependency change has
occurred. This example is likely best explained via feature-wise movement, so will use k-sparse transport. If we follow
the approach in subsection 4.2 with our interpretable set as the Ω(k) and let k = 1, we get a mapping that is interpretable,
but has poor alignment (see Figure (h) in Figure 4). For this example, we can possibly reject this explanation due to a
poor PercentExplained. With the understanding that this shift is not explainable via just one feature, we can instead use
a k = 2-sparse OT solution. The k = 2 case can be seen in (i) of Figure 4 which shows that this approach aligns the
distributions perfectly, at the expense of interpretability.

C.2. Explaining Shift in Wisconsin Breast Cancer Dataset

This tabular dataset consists of tumor samples collected by Mangasarian & Wolberg (1990) where each sample is described
using nine features which are normalized to integers from [0, 10]. We split the dataset along the class dimension and set Psrc

to be the 443 benign tumors and Ptgt as the 239 malignant samples. To explain the shift, we used two forms of k-sparse
transport, the first being k-sparse mean transport and the second being k-sparse optimal transport. The left of Figure 5
shows that the k-sparse mean shift explanation is sufficient for capturing the 50% of the shift between Psrc and Ptgt using
only four features, and nearly 80% of the shift with all 9 features. However, if an analyst requires a more faithful mapping,
they can use the k-sparse OT explanation which can recover the full shift, at the expense of the interpretability. The right of
Figure 5 shows example explanations that an analyst can use along with their context-specific expertise for determining the
main differences between the different tumors they are studying.

2 Features: “Bare Nuclei and Cell Size were shifted by 
6.28 and 5.27”

5 Features: “Bare Nuclei, Cell Size, Cell Shape, Normal 
Nucleoli, and Marginal Adhesion were shifted 
by 6.28, 5.27, 5.15, 4.6, 4.24”

All Features: “Bare Nuclei, Cell Size, Cell Shape, Normal 
Nucleoli, Marginal Adhesion, Clump Thickness, 
Bland Chromatin, Single Epithelial Cell Size, 
and Mitoses were shifted by 6.28, 5.27, 5.15, 
4.6, 4.24, 4.22, 3.89, 3.22, 1.54
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Number of Features Changed

Figure 5: A comparison of the performance of k-sparse mean shift explanations (solid line) and k-sparse optimal transport
explanations (dashed line) when explaining the shift from the benign tumor samples to malignant tumor samples for the
UCI Wisconsin Breast Cancer dataset. On the right are example explanations a human operator would see as they change
the level of interpretability during k-sparse mean shift explanations (where “All Features” is the baseline full mean shift
explanation).
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C.3. Counterfactual Example Experiment to Explain a Multi-MNIST shift

As mentioned in subsection 3.4, image-based shifts can be explained by supplying an operator with a set of distributional
counterfactual images with the notion that the operator would resolve which semantic features are distribution-specific.
Here we provide a toy experiment (as opposed to the real-world experiment seen in subsection 3.4) to illustrate the power
of distributional counterfactual examples. To do this, we apply the distributional counterfactual example approach to a
Multi-MNIST dataset where each sample consists of a row of three randomly selected MNIST digits (Deng, 2012) and is
split such that Psrc consists of all samples where the middle digit is even and zero and Ptgt is all samples where the middle
digit is odd, as seen in Figure 6.

Figure 6: A grid of 25 raw samples from each domain (left is Psrc and right is Ptgt). Even for the relatively simple shift seen
in the Shifted Multi-MNIST dataset, it may be hard to tell what is different between the two distributions by just looking at
samples (without knowing the oracle shift). Each sample in this dataset contains three MNIST digits along a diagonal and
the domain label corresponds to the evenness of the middle MNIST digit (where Psrc contains even middle digits and Ptgt

contains odd middle digits).

Algorithm 3 Generating distributional counterfactuals using DIVA

Input: x1 ∼ D1, x2 ∼ D2, model
zy1

, zd1
, zresidual1 ← model.encode(x1)

zy2
, zd2

, zresidual2 ← model.encode(x2)
x̂1→2 ← model.decode(zy1

, zd2
, zresidual1 )

x̂2→1 ← model.decode(zy2 , zd1 , zresidual2 )
Output: x̂1→2, x̂2→1

To generate the counterfactual examples, we use a Domain Invariant Variational Autoencoder (DIVA) (Ilse et al., 2020),
which is designed to have three independent latent spaces: one for class information, one for domain-specific information
(or in this case, distribution-specific information), and one for any residual information. We trained DIVA on the Shifted
Multi-MNIST dataset for 600 epochs with a KL-β value of 10 and latent dimension of 64 for each of the three sub-spaces.
Then, for each image counterfactual, we sampled one image from the source and one image from the target and encoded
each image into three latent vectors: zy, zd, and zresidual. The latent encoding zd was then “swapped” between the two
encoded images, and the resulting latent vector set was decoded to produce the counterfactual for each image. This process
is detailed in Algorithm 2 below. The resulting counterfactuals can be seen in Figure 7 where the middle digit maps from
the source (i.e., odd digits) to the target (i.e., even digits) and vice versa while keeping the other content unchanged (i.e., the
top and bottom digits).
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𝑃!"# 𝑃!"#→ 𝑃$%$ 𝑃$%$𝑃$%$→ 𝑃!"#𝑃!"# 𝑃$%$

Figure 7: A comparison of the baseline grid of unpaired source and target samples (left) and counterfactual pairs (right)
which show how counterfactual examples can highlight the difference between the two distributions. For each image, the
top left digit represents the class label, the middle digit represents the distribution label (where Psrc only contains even
digits and zero and Ptgt has odd digits), and the bottom right digit is noise information and is randomly chosen. The second,
third columns show the counterfactuals from Psrc → Ptgt and Ptgt → Psrc, respectively. Hence we can see under the push
forward of each image the “evenness” of the domain digit changes while the class and noise digits remain unchanged.

C.4. Using StarGAN to Explain Distribution Shifts in CelebA

Here we apply the distributional counterfactual approach seen in subsection 3.4 to the CelebA dataset (Liu et al., 2015),
which contains over 200K images of celebrities, each with 40 attribute annotations. We split the original dataset into 5
related sets, P1=“blonde hair”, P2=“brunette hair”, P3=“wearing hat”, P4=“bangs”, P5=“bald”. These five sets were chosen
as they are related concepts (all related to hair) yet mostly visually distinct. Although there are images with overlapping
attributes, such as a blonde/brunette person with bangs, these are rare and naturally occurring, thus they were not excluded.

We trained a StarGAN model (Choi et al., 2018) to generate distributional counterfactuals following the same approach seen
in subsection 3.4. The result of this process can be seen in Figure 8, where we can see the model successfully translating
“stylistic” parts of the image such as hair color. However, the model is unable to translate between distributions with larger
differences in “content” such as removing hair when translating to “bald”. This highlights a difference between I2I tasks
such as style transfer (where one wishes to bias a model to only change the style of an image while retaining as much of the
original content as possible) the mappings required for explaining image-based distribution shifts, which might require large
changes in content (such as adding a hat to an image).
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𝑃!→# 𝑃!→$ 𝑃!→% 𝑃!→& 𝑃!→'𝑃!
𝑃#

𝑃$

𝑃%

𝑃&

𝑃'

Original Counterfactual Examples𝑃# 𝑃$ 𝑃% 𝑃& 𝑃'

Figure 8: StarGAN is able to adequately translate between distributions with similar content but different style (e.g.,
P1 → P2), however, when transporting between distributions with different content (e.g., ”no hat”→ P3) the I2I model
is unable to properly capture the shift. This is likely due to the model being biased to only change the style of the image,
while maintaining as much content as possible. The figure breakdown is similar to Figure 3 with the baseline method of
unpaired samples on the left and paired counterfactual images on the right, where here P1=“blonde hair”, P2=“brunette
hair”, P3=“wearing hat”, P4=“bangs”, P5=“bald”.

D. Explaining Shifts in Images via High-Dimensional Interpretable Transportation Maps
If x is an image with domain RD>>1, then any non-trivial transportation map in this space is likely to be hard to optimize
for as well as uninterpretable. However, if Psrc, Ptgt can be expressed on some interpretable lower dimensional manifold
which is learned by some manifold-invertible function g : RD → RD′

where D < D′, we can project Psrc, Ptgt onto this
latent space and solve for an interpretable mapping such that it aligns the distributions in the latent space, PT (g(x)) ≈ Pg(y).
Note, in practice, an encoder-decoder with an interpretable latent space can be used for g, however, requiring g to be exactly
invertible allows for mathematical simplifications, which we will see later. For explainability purposes, we can use g−1 to
re-project T (g(x)) back to RD in order to display the transported image to an operator. With this, we can define our set
of high dimensional interpretable transport maps: Ωhigh-dim :−

{
T : T = g−1

(
T̃ (g(x))

)
, T̃ ∈ Ω(k), g ∈ I

}
where Ω(k)

is the set of k-interpretable mappings (e.g., k-sparse or k-cluster maps) and I is the set of invertible functions with an
interpretable (i.e. semantically meaningful) latent space.

Looking at our interpretable transport problem:

argmin
T∈Ωhigh-dim

EPsrc [c(x, T (x))] + λϕ(PT (x)), Py) (20)

Although our transport is now happening in a semantically meaningful space, our transportation cost is still happening in
the original raw pixel space. This is undesirable since we want a transport cost that penalizes large semantic movements,
even if the true change in the pixel space is small (e.g., a change from “dachshund” to “hot dog” would be a large semantic
movement). We can take a similar approach as before and instead calculate our transportation cost in the g space. This logic
can similarly be applied to our divergence function ϕ (especially if ϕ is the Wasserstein distance, since this term can be seen
as the residual shift not explained by T ). Thus, calculating our cost and alignment functions within the latent space gives us:

argmin
g∈I,T̃∈Ω(k)

EPsrc

[
c
(
g(x), T̃ (g(x))

)]
+ λϕ(PT̃ (g(x)), Pg(y)) (21)
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This formulation has a critical problem however. Since we are jointly learning our representation g and our transport map T ,
a trivial solution for the above minimization is for g to map each point to an arbitrarily small space such that the distance
between any two points c(g(x), g(y)) ≈ 0, thus giving us a near zero cost regardless of how “far” we move points. To
avoid this, we can use pre-defined image representation function h, e.g., the latter layers in Inception V3, and calculate
pseudo-distances between transported images in this space. Because h expects an image as an input, we can utilize the
invertibility of g and perform our cost calculation as: c

(
h(x), h

(
g−1

(
T̃ (g(x))

)))
, or more simply, ch (x, T (x)), where

T = g−1
(
T̃ (g(x))

)
. Similar to the previous equation, we also apply this h pseudo-distance to our divergence function to

get ϕh. With this approach, we can still use g to jointly learn a semantic representation which is specific to our source and
target domains (unlike h which is trained on images in general, e.g., ImageNet) and an interpretable transport map T̃ within
g’s latent space. This gives us:

argmin
g∈I,T∈Ω

EPsrc [ch (x, T (x))] + λϕh(PT (x), Py) (22)

While the above equation is an ideal approach, it can be difficult to use standard gradient approaches to optimize over in
practice due it being a joint optimization problem and any gradient information having to first pass through h which could be
a large neural network. To simplify this, we can optimize T̃ and g separately. With this, we can first find a g which properly
encodes our source and target distributions into a semantically meaningful latent space, and then find the best interpretable
transport to align the distributions in the fixed latent space. The problem can be even further simplified by setting the
pre-trained image representation function h to be equal to the pretrained g, since the disjoint learning of g and T̃ removes
the shrinking cost problem. By setting h := g, we can see that c

(
h(x), h ◦ g−1 ◦ T̃ ◦ g(x)

)
= c

(
g(x), T̃ ◦ g(x)

)
=

cg(x, T̃ (x)), which simplifies Equation 22 back to our interpretable transport problem, Equation 20, where g is treated as a
pre-processing step on the input images:

argmin
T∈Ω

EPsrc
[c(g(x), g (T (x)))] + λϕg(PT (x)), Py) (23)

Another way to simplify Equation 22 is to relax the constraint that g is manifold-invertible and instead use a pseudo-invertible
function such as an encoder g and decoder g+ structure where g+ is a pseudo-inverse to g such that g+(g(x)) ≈ x. This
gives us:

argmin
T̃∈Ω̃,g,g+

EPsrc

[
ch

(
x, g+(T̃ (g(x)))

)]
+ λFid ϕh(Pg+(T̃ (g(x))), Py)

+ λRecon E 1
2Psrc+

1
2Ptgt

[
L
(
x, g+(T̃ (g(x)))

)] (24)

where L(x, ·) is some reconstructive-loss function.

D.1. Explaining a Colorized-MNIST shift via High-dimensional Interpretable Transport

In this section we present a preliminary experiment showing the validity of our framework for explaining high-dimensional
shifts. The experiment consists of using k-cluster maps to explain a shift in a colorized-version of MNIST, where the source
environment is yellow/light red digits with a light grayscale background color (i.e. light gray) and the target environment
consists of darker red digits and/or a darker grayscale background colors. Like the lower dimensional experiments before,
our goal is to test our method on a shift where the ground truth is known and thus the explanation can validated against. We
follow the framework presented in Equation 23, where the fixed g is a semi-supervised VAE (Siddharth et al., 2017) which
is trained on a concatenation of Psrc and Ptgt. Our results show that k-cluster transport can capture the shift and explain the
shift, however, we suspect the given explanation is interpretable because the ground truth is already known. Our hope is
that future work will improve upon this framework by better finding a latent space which is interpretable and disentangled,
leading to better latent mappings, and thus better high-dimensional shift explanations.

Data Generation The base data is the 60,000 grayscale handwritten digits from the MNIST dataset (Deng, 2012). We
first colored each digit by copying itself along the red and green channel axes with an empty blue channel, yielding an initial
dataset of yellow digits. We then randomly sampled 60,000 points from a two-dimensional Beta distribution with shape
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Figure 9: The left figure shows samples from the source environment which has lighter digits and backgrounds while the
right figure shows the target environment which has darker digits and/or darker backgrounds

parameters, α = β = 5. The first dimension of our Beta distribution represented how much of the green channel would be
visible per sample meaning low values would result in a red image, while high values would result in a yellow image. The
second dimension of our Beta distribution represented how white vs. black the background of the image would be, where
0 := black background and 1 := white background.

Specifically, the data was generated as follows. With xraw representing a grayscale digit from the unprocessed MNIST
dataset, a mask of representing the background was calculated m = xraw ≤ 0.1, where any pixel value below 0.1 is
deemed to be the background (where each pixel value ∈ [0, 1]). Then, the foreground (i.e. digit) color was created
xdigit−color = [(1−m) · xraw, b1 · (1−m) · xraw,0], where 0 is a zero-valued matrix matching the size of xraw and
b1 ∼ Beta(α, β). The background color was calculated via xback−color = [b2 ·m · xraw, b2 ·m · xraw, b2 ·m · xraw].
Then xcolored = xdigit−color + xback−color, which results in a colorized MNIST digit with a stochastic foreground and
background coloring.

The environments were created by setting the source environment to be any images where b1 ≥ 0.4 and b2 ≥ 0.4, i.e.
any colorized digits that had over 40% of the green channel visible and a background at least 40% white, and the target
environment is all other images. Informally, this split can be thought of as three sub-shifts: a shift which is only reddens the
digit, a second shift which only a darkens the background, and a third shift which is both a digit reddening and background
darkening. The environments can be seen in Figure 9.

Model To encode and decode the colored images, we used a semi-supervised VAE (SSVAE) (Siddharth et al., 2017). The
SSVAE encoder consisted of an initial linear layer with input size of 3 · 28 · 28 and a latent size of 1024. This was then
multi-headed into a classification linear layer of size 1024 to 10, and for each sample with a label, digit label classification
was performed on the output of this layer. The second head of the input layer was sent to a style linear layer of size 1024 to
50 which is to represent the style of the digit (and is not used in classification). The decoder followed a typical VAE decoder
approach on a concatenation of the classification and style latent dimensions. The SSVAE was trained for 200 epochs
on a concatenation of both Psrc and Ptgt with 80% of the labels available per environment, and a batch size of 128 (for
training details please see (Siddharth et al., 2017)). The transport mapping was then found on the saved lower-dimensional
embeddings.

Shift Explanation Results Given the shift is divided into three main sub-shifts, we used k = 3 cluster maps to explain the
shift. We followed the approach given in Equation 23, where the three cluster labels and transport were found in the 60
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Figure 10: The linear interpolation explanations for the three clusters where the left cluster seems to explain the darkening
digit shift, the right-most figure explains the shift which darkens the background, and the middle cluster explains the case
where both digit and background darkens. For each cluster, the left-most digit x is the reconstruction of original encoding
from the source distribution, the right-most digit is the cluster-based push-forward of that digit T (x), and the three middle
images are reconstructions of a linear interpolations λ · x+ (1− λ) · T (x) with λ ∈ {0.25, 0.5, 0.75}.

dimensional latent space using the algorithm given in Algorithm 1. Since our current approach is not able to find a latent
space with disentangled and semantically meaningful axes, we cannot use the mean shift information per cluster as the
explanation itself (as it is meaningless if the space is uninterpretable). Instead, we provide an operator with m samples from
our source environment and the linear interpolation to the samples’ push-forward versions under the target environment,
for each cluster. The goal is for the operator to discern the meaning of each cluster’s mean shift by finding the invariances
across the m linear interpolations. The explanations can be seen in Figure 10.

The linear interpolations from the first cluster (the left of Figure 10) seem to show a darkening of the source digit, while
keeping the background relatively constant. The third cluster (right-most side of the figure) represents the situation where
only the background is darkened but the digit is not. Finally, the third cluster seems to explain the sub-shift where both
the background and the digit are darkened. However, the changes made in the figures are quite faint, and without a priori
knowledge of the shift it is possible that this could be an insufficient explanation. As mentioned in Appendix D, this could
be improved by finding a disentangled latent space with semantically meaningful dimensions, better approximating high
dimensional empirical optimal transport maps, jointly finding a representation space and transport map like in Equation 23,
and more; however, these advancements are out of scope for this work. We hope that this current preliminary experiment
showcases the validity of using transportation maps to explain distribution shifts in images and inspires future work to build
upon this foundation.
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